DCX-AT200

Modular Multi-Axis Motion Control System

Instaliation and User’'s Manual

Revision 4.0

Precision MicroControl Corp.

@PMC

Precision MicroControl Corporation
2075-N Corte del Nogal
Carlsbad, CA 92009-1415 USA

Tel: (760) 930-0101
Fax: (760) 930-0222

WWW.pmccorp.com

Information: info@pmccorp.com
Technical Support: support@pmccorp.com

LIMITED WARRANTY

All products manufactured by PRECISION MICROCONTROL CORPORATION are guaranteed to be
free from defects in material and workmanship, for a period of five years from the date of shipment.
Liability is limited to FOB Factory repair, or replacement, of the product. Other products supplied as
part of the system carry the warranty of the manufacturer.

PRECISION MICROCONTROL CORPORATION does not assume any liability for improper use or
installation or consequential damage.
(c)Copyright Precision Micro Control Corporation, 1994-2000. All rights reserved.

Information in this document is subject to change without notice.

IBM and IBM-AT are registered trademarks of International Business Machines Corporation.
Intel and is a registered trademark of Intel Corporation.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corporation.
Acrobat and Acrobat Reader are registered trademarks of Adobe Corporation.

Precision MicroControl
2075-N Corte del Nogal
Carlsbad, CA 92009-1415

Phone: (760)930-0101

Fax: (760)930-0222

World Wide Web: www.pmccorp.com

Email:
Information: info@pmccorp.com
Technical support: support@pmccorp.com
Sales: sales@pmccorp.com

Precision MicroControl

Table of Contents

Table of Contents

a1 o7 [0 o1 o] IR PP PP OPPP PP 5
1013 =11 = 11 o] PP PPP TP PPPPP 11
DCX Motion Control System INStallation..............ouuiiiiiiii e e e e e e e e e e e e s e anaes 11
Installing the DCX Software (IMCAPI)oooo ettt e e e e e e e e e e e e s et ba e e e e e e e e sanreaeeeaaeesaanaes 13
Installing DCX Motor Control and /O MOAUIESoouuiiiiii e e 22
DCX-MC200 — Servo Motor Module InsStallation 24
DCX-MC210 — Servo Motor Module InsStallation 28
DCX-MC260 — Stepper Motor Module Installation......... ... 32
DCX-MC400 - Digital 1/0 Expansion Module Installation................coooiiiiiiii e 35
DCX-MC500 — Analog I/0 Expansion Module Installation..............ccccuuiiiiiiiiiiiiiiieee e 36
DCX-MF300 — RS-232 Stand Alone Communication Module Installation.............cccccoviiiiiiiiiiiinie e, 36
DCX-MF310 — IEEE-488 Stand Alone Communication Module Installation.............cccocccee e, 37
Programming, SOftware and ULIIITIEScooioueiiiiiiee e e e e e e e e e e e e e e e aaeeeas 41
(076] 011 ro] [T g a1 =Y g 7= ot T Y/ o =T PSS PPRT 42
Building Application Programs using Motion Control APccoo i 43
(O ST= To g o1 (= o oo = 10 0 T PP PP TP 48
Y o) T o [a1 (=Te | = 1 (o] SR PP TP 49
PIMC UIIIEIES ..ttt ettt ettt e e ettt e e et e e s e e e e e as e e e e e asbeeeeansbeeeeansteeesasseeeeansseeeeenteneeanssaneennnes 52
(07N I B [T = o = o SO 55
1070 00T 0o 18T Cor= o] 0 oY (=T = Lo 3SR 59
PC communications INtEIfACES ...ttt e ettt e e e e e e e e e et e e e e ea s e e eeeaeeeeaannnes 60
RS-232 CommuNiCatioNs INEITACEooiiiiiiii e et ste e e e e nbee e e e neeas 60
IEEE-488 CommunicatioNs INTEITACEccoi i e e et e et e e e e 61
(D109 Q0] o1 r= i o] T =TT (ot TSR PPP 63
a1 10To 0131 o] o [PP OPPPPPPPPRN 63
LOW LEVEI DCX OPEIAtiONS....ciiieiiiiiiiiiieiee e e ettt e e e e ettt e e e e e e e ettt e e e e e e e s sabaaaeeaaeesseasnsssaeeeaeesaasnraseeaaaeesaansnes 64
/0] (o] o TN @1 o S 69
Theory of DCX MOION CONIOL ...t e e bt e e e aa b e e e e abe e e e sbeee e e sbreeeeaans 69
D109 QRS T=T o TN =T Lo SO UERR 70
TUNING The SEIVO ...ttt e e bttt e e e b bt e e e bttt e e e bt e e e aabee e e e sabbe e e e sbeeeeeaans 74
D109 QRS (=T o] oY gl = 7= 1] o7 SO SERR 87
L@ ToET=To I e Yo o S (=Y o] 01T 7R 88
Moving Motors With PIMC AEMIO’Suuiiiiieiiii ittt e et e e e e e e e st e e e e e e s e s saasbaaeeeeaeessreseeaaaeesaannes 92
Defining the Characteristics Of @ IMOVEcooiiiiiiiiicc e e e e e e e e e e e e e e e e e s eannes 93
RV oot 4V o o) 1 L= PRSP 94
POiNt 10 POINt IMOION ...ttt e e e e e s b e e e e e e e s e aab e et e e e e e e e aanae 95
Constant VEIOCItY IMOLIONuuiiiiiii ettt e e e e e e e e e e e e e s et bt e e e eaeeeesataeeaaeeeesnnsabaneeaaeanan 95
Contour Motion (ArcS @Nd lINES)cciiiiiiiiiie et e e e e e e e e e e e e st a e e eaeeesssnbeeaaeeesnnraraneeaaeeean 96
[oToti o] a1 [C ==y o T TR ST RPP T PPR 104
N [oTe T 11T F PRSPPI 105
Defining MOLION LIMIEScoiiiiie ettt e e e e e e b bt eea bt e e e nbe e e e e anbe e e e e areas 107
HOMING AXES ..ttt et e e oottt e e oo a bt e e o oMb et e e oo a b et e oo e a b et e e e aa b e e e e abe e e e e nbe e e e e anbeeeeenneas 109
1Y/ [} To T @FoTa T o] 1] (=N FaTo o7=1 (o] = SRR 118
O Tl (o[o VA ol =T o =T OO PP PPN 119
Feed Forward (Velocity, Acceleration, Deceleration)ocoooiiiiiiiiie i 120
Save and Restore AxXis CONfIQUIAtioNooiiiiiiiiiieie e e e e e e e e e e e e e eaeeeas 121
YN o] o] Lez= 11 o] g TS To] [V o] =T PRSP 123
F 0D d1E= T 2 =1 oo To 1= USSR 123
Backlash COMPENSALIONooiiiiiiiieiiee et e e e e e e e e e e e s et aeeeeeeeessaaabaeeeeeseanntaseeeeeeeaansnes 127
g1 [T e) (o] o H TSRO PRPPPTPPR 128
e g ToTo T =T g Lo} 1 1YY S 130
Flash Memory Firmware UDPGrade ..ottt ettt e e e nbe e e e eneeas 131
(I TS7=T o 01U 1 1o T PR RPP U PPP 132
Learning/Teaching POINEScooi it e bt e et e e e b e e e e e aneas 135
= ToT] (o I 1Y/ o] 1To] o TN 9 - | - SRS 136

DCX-AT200 User’s Manual i

Table of Contents

Manually ReSetting the DX e it e e et e e et e e e b e e e e enbeas 137
Tangential KNife CONTIOL...... ..o i ettt e e sabe e e e s aaneeee s 138
THreading OPEratiONS oottt ettt e e sttt e e ettt e e aab et e e e aabe e e s bbe e e e sbbeeeesanneeee s 140
Torque Mode OUIPUL CONIFOLo et e e e e et e aneeeeaeeaeaannsneneeas 141
DefiNiNG USEI UNILS ...t b et e e bttt e e e bt e e e e b b et e a bt e e e e s be e e e e enbeeeeenreas 143
D109 QAT £=1 (o1 s Te [o o SO SPPROE 145
GENETAI PUIPOSE [/ ...ttt e ettt e e e e e s et eeeeeeeeesataaaeeeaeeeesasseeeaaeesasasssesneaaaeeaananne 149
DCX Motherboard DiIgital /Oouiiiiiiiiii et e e e e e e e s e e e e e e e e e seaanbaeeeeeassannraaeeeaeeeaaannes 149
Configuring the DCX DIgital 1/Ocooiiiiieeiie et e e e e e e e e e e e e e st e raeaeeesennnraneaaaeaean 150
Using the DCX Digital I/O......ueeiiii ettt e e e et e e e e e e e st e e e e e e e seaassbaeeeeeseannnreaneeeaeeaannnes 152
DCX Motherboard ANalog INPULSuiiiiiiie et e et e e e 154
(D09 Q1Y (ol [0 L3 Y o = {[o e 1 1L O PTOUPRPP T PPP 155
USING the ANGIOG /O ... ettt e e oot e e e e bt e e e e s b et e e ea bt e e e e st e e e e e nnbee e e enreas 156
Calibrating the MC500/MC520 +/- 10V ANalog OULPULS:coiuiiiiiiiiiie et 158
Motion Control APl FUNCHON REFEIENCE ...t e e e e e e e e e 161
Motion Control APl Function Quick Reference TabIes ... 163
Yoy (0 o3 @7e] 20120 F=1 3 o PSPPI 166
Y[To] g T kUl g Ted o] o I PP PPPPTOE 178
XY o o] 1Yo LU To 1o o 1 PSPPIt 193
1L I 0] o7 1T o LSRR 210
Y =Tl fo = T To I 1YL =T] o PPNt 214
Y T7 N o Y=Y o U] o1 o) o - TSRS 216
109 QRS =T e71 7= 1 o] o 1< 5SS UEER 223
Motherboard: DOX-AT200cooii ettt e e e e et et ee e e e e e e e ateeeeeeaae e e s e neeeeeeaaeeaaaannsaneeeaeaaannsnneeeeeeeaaaannes 223
DCX-MC200 - +/- 10 Volt Analog Servo Motor Control ModuIecooiiiiiiiiii e 224
DCX-MC210 - PWM Motor Drive Servo Control Module ... 225
DCX-MC260 - Stepper Motor Control MOAUIE ...t e e e e e 226
DCX-MC400 - 16 channel Digital /O MOAUIEooiiiiiiiiii e 227
DCX-MC5X0 - ANAIOG [/O MOAUIEeeeiiieieieee ettt e e e e e e et e e e e e e s e st aeeeeaaeseasasaeeaaaeesannnnns 227
DCX-MF300 - RS-232 Communications Interface ModuIe.............cooiiiiiiiiiiiie e 229
DCX-MF310 - IEEE-488 Communications Interface Module............ccccuiieiiiiiiiiiiii e 229
Connectors, JUMPErS, and SCNEMATICScciiiiiiiiiiiie e e e e e e e e e e s e e e e e e e e e essbeaeeeaeeeanannnes 231
DCX-AT200 Motion Control MotherbOard...........c.ueie i 231
DCX-MC200 +/- 10V Servo Motor Control MOAUIE............eiiie e e e 238
DCX-MC210 PWM Motor Drive Servo Control MOAUIEooiiee e 243
DCX-MC260 Stepper Motor Control MOAUIEoooo e e e e e e e e e 249
DCX-MC400 Digital [/O MOUIEco ettt e e e e e s e e e e et e e e s ssbe e e e e antaeeeestaeaeeantaeeeenseas 254
DCX-MC500/510/520 ANalog 1/O MOUIE.........cciiiie ettt e e e stee e et ae e e e snrae e e e sreeeeenreas 256
DCX-MF300 — RS-232 Interface MOAUIEttt et e e e e e e e e e e e e e e ennnes 258
DCX-MF310 IEEE-488 INterface MOUIE...........ccuuiiiiiiie ettt et e e e et e e 262
DCX-BF022 Relay RaACK INTEITACEceiiiiieiiiiiiiee ettt e e e e e e e e e e e e e e e staaeeeaeeesennnnes 266
DCX-BF100 Servo Module INterconnect BOAId.............coeiiiuiiieiiiiiie ettt e 270
DCX-BF160 Stepper Module Interconnect BOArd...............ueeiiiiiiiiiiiiiiie e e e 275
(D10, Q1Y (101 I @70]2 101 =1 oo L3S 281
Introduction to MCCL (low level COMMAaNd SEL)ciiiiiiiiiiiiiiiie e a e e e e e e e e e e e e eannes 281
MCCL Command Quick Reference TabIes........ ..ot e e e e 283
BUilding MCCL MaCIO SEQUENCESuieiiiiiiiee ettt ettt ettt ettt e e st e e e aa bt e e e e s be e e e e aabee e e e aabee e e anbeeeeenreas 286
MOCL MURI=TASKINGttiie ettt e et e e e sttt e e e et e e e e eteeeeesseeeeesnsaeaeessseeeeateeaeeastaeaeeansaeeeannses 288
Downloading MCCL TeXE FIlES ...ttt e e e b e e e e e e aeeas 290
Single StePPING MOCL PrOgramsScooi ittt ettt ettt et e e e s bt e e e sttt e e e st bt e e e sbeeeeesbeeeeeaaes 290
Outputting Formatted MeSSAage STHNGSceiiiiiiiiieiie e e e e e e s ee e e e e e e eernreeeaaaeeaan 292
PLC 1/0O Control using MCCL Sequence COMMANGASuueiiiieiiiiiiiiiieeeeeieeiiieeeeeeeessearseeeeaeesessnseseeeaasssannsnns 292
PLC Control and DCX ANGIOG /Ouuieiiiie ettt e e e e e e e e e e e e e se et abaeeaaaeessestaaeeeaeeesannsnes 296
D109 QU Y=Y =T 1] (=] SO SPRRE 298
Reading Data from DCX IMEMOIYuuiiiiiieiiiiiiie et e e e ettt e e e e e e st e e e e e e e s e sasbaeeeeaeeesesansbaeeeaaeesaaasaneeaeesaannsnes 299
D109 QS Tol ¢=) (o] a T == To I 1Y, =1 4 g To] oY OO RPPROE 302
MCCL Command Set DeSCIIPLIONeeiiiieee et e e e e e e e e e e e e e e e e e e e aeeeaaaeeeeeeeeeaaannnes 303
1= 0 o3 @0 010 0 =T o <SS 303

Precision MicroControl

Table of Contents

1Y/ T o [@2 o] 4o g =T Lo LS USS 315

1Y/ T] 1o T @ o0 1o 0 =1 g o -0 PR 317
(Y=Y ool u 11aTe I @70]0 0]/ =T a o K- PRSP 326

7@ 2 @7] o 111 0= Lo LTSRS PRPPPPRPRN 334
Macro and Multi-Tasking COMMANGS............coiiiiiiiiiii e e e e e e e e e e ee e e e e e s enbsrereeaeeeean 337
YCTo 153 (=T g OTo g a4 T T T [PPSR 339
Sequence (If/Then) COMMEANGAScoiiiiiiiii e e e e e e e e e e e e e s e et e e e e e aeeesassnbeeeeeeseannreneeeas 345
MiSCEllaNEOoUS COMMEANGSooiiiiiiiie ittt e et e ettt e e et e e e ante e e e e anaeeeeeanseeeeeanseeeeesnseeesnnseeeesanneeeesn 351

Bl 10 o] L=T=1 gToTo)] o [PP PPPOTPPP 355
(00T a1 1o} | L= gl 4 o T O o o L= SO ERR 365
(@7 B =ty o) GO0 o 1= PR 366
[0 @ I o o'oY [SRR 367
Printing @ PDF DOCUMIENT........coiiiiiii ittt e bt e e s bt e e s bttt e e s bbe e s sb et e e s nbe e e e s nnneee s 369
(€[0S | Y OO PP O PRPO 371
Y o] o 1= o o 11 GO 377
DT E= 1B o o (=0 N1 =T 0 s o APPSRt 377
Binary CommuniCation INTEITACE...........uuiiiii e e e e e e e e e e e e eanba e e e e aeeeaaannes 382
ASCI CommuUuNICAtioN INTEITACE.ciiiiiii et e e e e et ee e e enbe e e s e nbe e e e eneeas 386
Power SUPPIY REQUIFEIMENTScoeeiiiiiiiiee ettt e e e et e et e e e s e st e e e e e e e e sesasstaeeeeaeeennnsaseeeaeeeaannsnns 387
(DS =10 L ST=] 4] o ST OUPRPP TP PR 388
Pause and ReSUME MOTION ... ettt ettt e e e e e e ettt e e e e e e e e e nneneeaeeeeannneeeeeaeeeaaannes 389
Physical Assignment of AXES NUMDEISuiii i e 389
Multiple User Communications INtErfaCesot e e e e e e e e e e e 390
ST F=Ta Lo I N (o g U= N o] o1 = i) o -SSR 391
(@B Lo T= T o I 1 L= @ o= =T o] o ISR 392

[| €1 I o] T SRS 395
1o = TSSO P PPPPP PP 401

User manual revision history

Revision | Date | Description

1.0a 9/1/94 | Initial release
1.1a 11/1/94 | Added cubic spline interpolation to contouring.
Added Profile Parabolic command.
Added Move Absolute command description.
Made miscellaneous corrections and changes.
1.5a 3/20/96 | Added description of backlash compensation function and commands.
Added description of file commands.
Added description of plotting commands.
Added appendix describing HPGL commands.
Created new page layout with standardized headers and footers.
Changed format of command descriptions.
Made miscellaneous corrections and changes.
4.0 2/1/2K | Added firmware revisions to rev. 4.0a
Added MCAPI revisions to rev 2.20.0000
Added references to Motion Integrator 1.0a
Added Flash Wizard text (requires firmware 3.6a or higher)
Converted to Word - User Manual Format
Changed organization structure
Added Application Solutions chapter
Added Troubleshooting chapter
Converted all command references from MCCL to MCAPI
Added descriptions of Feed forward and Velocity Mode Amplifier servo tuning
Added C++, Visual Basic, Delphi, and LabVIEW program build information

DCX-AT200 User’s Manual iii

Table of Contents

Contact us at:

Precision MicroControl
2075-N Corte del Nogal
Carlsbad, CA 92009-1415

Phone: (760)930-0101

Fax: (760)930-0222

World Wide Web: www.pmccorp.com

Email:
Information: info@pmccorp.com
Technical support: support@pmccorp.com
Sales: sales@pmccorp.com

Precision MicroControl

Introduction

This document describes the installation and use of the DCX-AT200 Modular Multi-Axis Motion
Control System. In a typical application, the DCX is installed in an Intel compatible PC computer. The
PC will run high level language (C++, Visual Basic, Delphi, LabVIEW) application programs written by
the machine builder, that uses Precision MicroControl’s Motion Control API to issue high level motion
functions to one or more DCX controllers. The DCX executes these motion functions independent of
the host. The DCX Motion Control system can be installed in most any Windows PC computer that
has available ISA slots. The DCX requires no minimum system hardware, memory size, or
configuration.

*’j PC computer

Volume 2.0

Documentation
Applications
Drivers

.................................. : PMC's Motion CD
@ Motion Control API

@ Integration Software tools
® Sample programs

® User Manuals

||
DCX Motion
Control System

The modular architecture of the DCX system allows the user to ‘mix and match’ components to meet
the specific requirements of each application. The DCX system controls the motion of any
combination of servos and stepper motors simultaneously. In addition the DCX system supports;
direct motor drive (no servo amplifier required) of small servo motors, expandable digital and analog
I/0, and stand alone applications.

DCX-AT200 User’s Manual 5

Introduction

The term DCX refers to a system consisting of from 1 to 7 circuit boards assembled together to form a
motion control assembly. The main component of the assembly is the DCX-AT200 "motherboard". It is
a ‘full’ size (approximately 5" x 13") ISA peripheral card.

The DCX-AT200 motherboard is the platform upon which the DCX motion control system is built. It
communicates with the PC host via the ISA bus. On board dual ported memory is used to pass data
between the DCX-AT200 and the PC. The on board CPU (Intel 1960) allows the DCX-AT200 to
operate autonomously from the PC, freeing the host to process critical events while the DCX handles
all motion control. The DCX-AT200 motherboard also includes 16 general purpose TTL level digital
I/O channels and 4 analog input channels (8 bit, 0 to +5V).

On this DCX-AT200 motherboard, the user can install as many as 6 smaller "daughter boards" known
as "DCX modules". There are seven DCX module types available which allow the DCX system to be
configured for a variety of applications. A key feature of the DCX system is its ability to sense which
DCX modules are present. This results in easy system configuration; simply install whatever modules
the application calls for. The logic on the motherboard will adjust its' operation accordingly.

DCX Motion Control Modules

DCX-MC200 - Servo Motor Control Module
+/- 10 volt, 12 bit analog command output for use with a servo amplifier/drive
Inputs - Encoder Coarse Home, Limit +, and Limit -, Amplifier Fault
Output — Amplifier Enable
Quadrature Incremental Encoder Interface
Primary - Single ended (A, B, Z) or Differential (A+, A-, B+, B-, Z+, Z-)
Auxiliary - Single ended (A, B, Z+, Z-)

DCX-MC210 - Servo Motor Control Module
PWM output for direct drive of small motors (12W, 12 volt @ 1 A)
Inputs - Encoder Coarse Home, Limit +, and Limit -, Amplifier Fault
Output — Amplifier Enable
Quadrature Incremental Encoder Interface
Primary - Single ended (A, B, Z) or Differential (A+, A_, B+, B-, Z+, Z-)
Auxiliary - Single ended (A, B, Z+, Z-)

DCX-MC260 — Stepper Motor Control Module
Pulse/CCW and Direction/CW outputs for use with a stepper driver
Inputs - Home, Limit +, and Limit -, Null
Outputs — Drive Enable, Half/Full step, Full/Half current
Quadrature Incremental Encoder Interface
Auxiliary - Single ended (A, B, Z) or Differential (A+, A_, B+, B-, Z+, Z-)

6 Precision MicroControl

Introduction

DCX General Purpose 1/O Modules

DCX-MC400 - 16 Channel Digital I/O Expansion module
Each channel is individually programmable as either an input or output
TTL level (0 — 5 volt, 2 ma sink/source)

DCX-MC500 — Analog I/O Expansion module
Inputs — 4 channels, 0 — 5 volts, 12 bit
Outputs — 4 channels, 0 — 5 volts and/or —10 - +10 volts, 12 bit

00SON-X0a

Options:
MC510 — 4 input channels only
MC520 — 4 output channels only

DCX Auxiliary Communication Modules for Stand Alone Applications

DCX-MF300 — RS232 Interface Module
ASCIlI command interface for stand alone applications

DCX-MF310 — IEEE-488 Interface Module
ASCIlI command interface for stand alone applications

DCX Interconnect and Isolation Assemblies

I DCX-BF022 — Opto 22 Relay Rack Interface

e 16 digital 1/0O channels, each channel individually configured via user installed jumper
as input or output. Connects to DCX digital I/O via 26 conductor ribbon cable.

DCX-AT200 User’s Manual 7

Introduction

DCX Interconnect and Isolation Assemblies (continued)

DCX-BF100 — Opto isolation and Interconnect assembly for DCX Servo Motor
Control Modules (DCX-MC200, DCX-MC210)

Opto isolated inputs — Enc. Coarse Home, Limit +, Limit -, Amp Fault

Open collector output — Amplifier Enable

Differential receiver for Index +, Index —

External system connections via DB25 or two 14 contact screw terminal strip

LED indicators for:
Amplifier enable
Encoder Coarse Home
Limit +
Limit —

Amplifier Fault

DCX-BF160 — Opto isolation and Interconnect assembly for DCX Stepper
Motor Control Module (DCX-MC260)

Opto isolated inputs — Home, Limit +, Limit -, Null, Enc. Coarse Home

Open collector output — Drive Enable

Differential receiver for Index +, Index —

External system connections via DB25 or two 14 contact screw terminal strip

LED indicators for:
Drive enable
Home
Encoder Coarse Home
Limit +
Limit —
Null Position

8 Precision MicroControl

Introduction

DCX-AT200 User’s Manual 9

Installation

Chapter Contents

e PC based Application Installation

e DCX-AT200 Controller Installation

¢ Installing the DCX Software (MCAPI)

¢ Installing DCX Motor Control and 1/0O Modules

e DCX-MC200 — Servo Motor (+/- 10V output) Module Installation

¢ DCX-MC210 — Servo Motor (PWM output for direct motor drive) for Module Installation
e DCX-MC260 — Stepper Motor Module Installation

¢ DCX-MC400 — Digital I/0 Expansion Module Installation

e DCX-MC500 — Analog I/0O Expansion Module Installation

e DCX-MF300 — RS-232 Stand Alone Communication Module Installation

¢ DCX-MF310 — IEEE-488 Stand alone Communication Module Installation

10 Precision MicroControl

Installation

Typically the DCX is installed in an ISA slot of a PC computer or the passive back plane of an
industrial computer. Power (+5V, +12V, and —12V), Ground reference, and communications (Address,
Data, and Read/Write control signals) are supplied via the ISA edge connector of the DCX.

The DCX on-board intelligence enables it to operate as a stand-alone controller. Optional RS-232 or
IEEE-4888 communication interfaces allow a host computer to communicate with the DCX for
programming and/or operator control. For stand-alone installation information please refer to Stand-
alone Application section in the Appendix at the end of this user manual.

DCX Motion Control System Installation
The basic steps of installing a DCX motion controller for PC based applications are as follows:

Select the memory address of the DCX

Install the DCX in an available ISA slot

Install the DCX software (MCAPI, drivers and utilities)

Install and wire DCX servo and stepper motion control modules

Install and wire digital and analog I/O modules

Verify servo operation (refer to DCX Servo Basics in the Motion Control Chapter)
Verify stepper operation (refer to DCX Stepper Basics in the Motion Control Chapter)
Verify 1/0 operation (refer to DCX General Purpose 1/0 Chapter)

Setting the memory address of the DCX

When installed in a PC, the dual ported memory of the DCX occupies 4K of the PC’s memory space.
As shipped form the factory, the DCX is configured to reside at memory address DOOOH. This
configuration is defined by the settings of jumper JP8 (base memory address) and SW1 (memory
address offset). The addressing of the DCX should be left as is unless it is determined that another
device resides at the same location.

DCX-AT200 User’s Manual 11

Installation

In most Intel compatible PC’s, the 64K area from D000 hex to DFFF hex is available and has been
chosen as the factory default memory range for the DCX. Jumper JP8 supports memory address
ranges from 8000 hex to FOOO0 hex. The following table details the possible settings of jumper JPS.

JP8 - IBM-PC Interface base memory address select

JP8 5 to 6 JP8 3 to 4 JP8 1 to 2

8000 hex connected connected connected
9000 hex connected connected open
A000 hex connected open connected
B00O hex connected open open
C000 hex open connected connected
D000 hex open connected open
EO000 hex open open connected
FOO00 hex open open open

Most other ranges that can be set with jumper JP8 will result in hardware conflicts within the host
computer when the DCX is installed. Unless the user determines that another range is required,
jumper JP8 should be left at its default setting as shown in appendix B.

The 16 position rotary SW1 is used to define at which 4K offset the DCX will reside. With jumper JP8
set to the factory defined configuration the DCX will occupy 4K bytes somewhere between D000 hex
and DFFF hex in the PC's memory space as selected by the rotary switch. If the rotary switch SW1 on
the motherboard is set to 0, the DCX will occupy D000:0000 hex through DO00:0FFF hex. If it is set to
1, it will occupy D000:1000 hex through D000:1FFF hex, and so on. In the host's memory map, the
lowest numbered memory location that a DCX board occupies is referred to as the 'base' address.
The two graphics below show the memory switch setting for a DCX at address D0000:0000 (SW1=0)
and D000:4000 (SW1=4).

Default memory address switch SW1=0 Memory address switch SW1=4
D000:0000 - D000:0FFFH D000:4000 - D000:4FFFH

Install the DCX in an available ISA slot

ISA slots are memory address independent, the DCX can be installed in any of the PC’s available ISA
with no changes in jumpering. The DCX modules and cabling may interfere with an ISA card installed
in the slot next to the DCX, so It is recommended that the slot next to the DCX be left open . Make
sure to attach the bracket of the DCX to the back panel of the PC.

12 Precision MicroControl

Installation

\ PC computer

DCX Motion
Control System

Installing the DCX Software (MCAPI)

Control API software. For the most recent version of the MCAPI please

6 DCX controllers ship with PMC’s Motion CD which includes the Motion
check the support page of PMC’s website www.pmccorp.com

Installation from PMC’s Motion CD

To install the Motion Control API software which includes: setup, integration, and diagnostic utilities,
place the PMC Motion CD into the PC computer CD drive. If the Motion CD does not auto start,
browse the CD and select the file STARTUP.EXE.

The Motion Control API will can be installed ‘on top of’ previous
installations, there is no need to remove earlier versions of the MCAPI.

6 Starting with version 2.20 the MCAPI default directory was changed to
/Program Files/Motion Control/Motion Control API. Previous versions of
the MCAPI were installed in /PMC/MCAPI.

DCX-AT200 User’s Manual 13

Installation

The following windows should be displayed:

& Motion CD

Manuals, Software Drivers, Application Programs and Ut

Additional Software Tools / b-Axis Modular Servo { Stepper Motion Controller

Economical 8-Axis Modular Servo { Stepper Motion Controller

Dedicated 2-Axis Servo Controller
-

s PHC Hotion ¢l

£k T

part?

Iake Disk Create an Install Diskette
Install

Install
B

¥iew the Motion Control API User's Manual from the CDRom.
~ — - g

Step 3) Select “Windows” Step #4) Choose the appropriate
installation. Follow the on screen instructions.

Downloading the Most Recent release of the Motion Control APl from PMC’s web site

Due to the dated nature of a CD, it is recommended that the user check PMC’s web
(www.pmccorp.com) site for the most recent release of the MCAPI. Go to the support page and select
the link to the Motion Control API page.

3 Precision MicroControl Corp. - Microsoft Internet Explorer
| Fie Edt Vew Favoite Tools Help ‘
.=+ .9 AT =< W= o AR (3 S s
Back Forar Stop Refresh Home Search Favorites History Mail Frirt Edit Discuss
Addiess [@] hip. /4w prccorp.com/shames himl -] @G H Links >
ABPMC
T et support@pmc
g s e L D S 2 e b S e i
hats eyl w one convenient CD-ROM. Support for the Metion CD may be found here

Motion Centrol AP - Applications programming support, drivers, and utilities
for Windows 95 7 98, Windows NT, and Windows 2.1

R, Motion VI Library - Support for National Instruments’ LabVIEVY and
‘w BridgeVIEW graphical programming environments

ap Servo Tuning - Servo Tuning Utility provides graphical servo tuning support for
! all of PMC’s motion control cards on Windows 95 F 98, VWindows NT, and
Windows 3.1

" | TechNOTES- TechNOTES are concise technical support documents that
pravide clarification, additional information, tips, and f or carrective action for a =
4

i mean
[[@ Intemet

14 Precision MicroControl

Installation

Selecting the Motion Control API will begin the file download of this self extracting zip file. As shown in
the following graphic, it is recommended that the file be saved to disk.

File Download

*You have chosen to download a file from this location.

mcapi2lc.exe from ftp.priccorp. com

Wwhat waould you like ta do with this file?
" Run thiz program from its curent location

& Save this program o disk

¥ | Elways ask before opening this e af file

0K Cancel More Info

The installation of the MCAPI will begin upon launching the downloaded file. Follow the on screen

instructions.

Motion Control APl Components
Upon successful installation of PMC’s Motion Control API, the Motion Control Panel will be available
from the Windows Control Panel and the following components will be available from the Windows
Start menu. For additional information on individual MCAPI components please refer to the Software
and Utilities section of the Programming, Software, and Utilities chapter of this manual.

o [B i 1 R Q@ Q@B B

PMC MCAPI Components

CwDemno —

Do sample programs
C+, Wisual Basic, and Celphi sample programs (souree files

WEB Demo
Pazcal Demo —
Japztick Dema
MCAPI Guide —
MCAP Referetice

included). These samples provide motion, position
feedback, status, and configuration infarmation for 1axis.

Sample program for moving 2 axes with a 'PC joystick

MZAPT On-line Help
Comprehensive on-line help documents, function references,

MCDLG Reference
katian W Library Help —
FCAP! Setup —

Serva Tuning

and LabWIEW WI library reference for the MCAPT

MCAPT Utilities
Software / DCX controller configuration - MCAPT Setup

Position Beadout

Wi Contral —
Flash “izard
Yigit PMC on the ‘web

Cantroller integration - Servo Tuning and Win Control
Motion and IA0 debug and diagnostics - Win Control and

Pozition Readout
b firmware upgrade wizard

Connect to P 'S web site

DCX-AT200 User’s Manual

15

Installation

| e Edit

Miew Go Favorites Help

E3 control Panel - [Of x|
|J Address I@ Control Panel 'I

e -5 -G # BaEwxeE

Accessibility
COptions

2,

Same
Contrallers

System

s s i i
B o IE
Add Mew Add/Remove Date/Time

Hardware Programs
27
Internet Keyboard Metwiork
Cptions
Tweak UT Printers Maltimedia

<
A;% =l
Desktop Display
Thernes
Reqional ODEC Data
Settings Sources [..

Sounds

D

Mouze

Passwords Personal Web
Server

PAC Control

¢ Pare|
@g Installation

Maodems i
o

ni applet

24 objects(s) My Computer

Configure the MCAPI driver with the Setup applet
The MCAPI device driver must be configured for the type, memory address, and quantity of DCX
controllers installed in your computer. Launch PMC’s New Controller Wizard by selecting the Motion
Control icon from the Windows Control Panel or from the Windows Start menu (Motion Control —
Motion Control APl - MCAPI Setup).

Q

Controller ID

Do not attempt to setup the Motion Control APl without a DCX motion
controller installed in the PC. The last step of the New Controller
Wizard verifies communication between the DCX controller and the PC.

Mew Controller Wizard E

This “Wizard installs the driver software far a new mation
controller.

To begin installation click Mext.

< Back Mext > Cancel

Each PMC motion controller installed in your PC requires an individual Controller ID number. The
MCAPI supports controller ID’s between 0 and 15, supporting applications with as many as 16 DCX
controllers in a single computer. Typically the Controller ID is selected to match the rotary switch
setting (memory offset) of the DCX controller. This simplifies keeping track of memory addresses, etc.

16

Precision MicroControl

Installation

Hew Controller Wizard | x|

Select an (D number far thiz contraller fram the list below.
The controller ID number uniquely identifies this mation
cantroller and iz used by application pragrams when they
select which controller b Lse.

Contraller ID I 1] = I

A reasonable default value has been pre-selected for
you,

< Back Hext > Cancel

Controller Type

The MCAPI supports mixing and matching various PMC controllers (DCX-AT300, DCX-PC100, and
DC2-PC) within a single PC. A list of PMC controllers that are supported by the MCAPI will be

displayed. Select the DCX-AT200.

New Controller Wizard E

Fleaze zelect the model [type] of motion controller that is
being installzd.

Controller Tppe [DC<-AT 200 'l

DCx-PCI00
1]

0
DC2-5TH
DC<-AT300

¢ Back I Mext > I Cancel

Description

Allows the user to enter comments about the controller. An example of a completed General setup of

a DCX-AT200 follows:

New Controller Wizard E

Enter & descriptive sting to identify this controller. The
deserption sting is displayed nest to the controller 10 and
Type in the Motion Contral Panel

Description IAHes 1-6(1-4 zervo, 5&E Step

“Y'ou may leave this field blank for now and enter ar
madify it at a later time.

¢ Back Mext > Cancel

DCX-AT200 User’s Manual

17

Installation

Communications Interface
A list of supported controller interfaces will be displayed. Select the PC-Bus.

New Controller Wizard E
Next select the interface that will be used to
communicate with this motion controller,
Interface Type IPC-Eus 'l
If the mation contraller has been installad in a PC slot
[mazt comman)] select PC-Bus for the interface type
¢ Back Mext > Cancel

Define the Memory Address of the DCX Controller

Select the Interface tab to configure the MCAPI for the address of the Dual Ported Memory of the
DCX. For additional information about the memory address of the DCX please refer to the description
of Setting the memory address of the DCX earlier in this chapter.

Although the hardware of the DCX controllers supports memory
addresses as low as 8000:0000, under Windows the lowest address
range available for the controller is A000:0000. The DCX driver will not
allow you to select an address any lower than that.

Hew Controller Wizard [x]

Select the baze memaory address for this contraller.

Segment IDI]I]I]H 'I
Offset IDDDDH 'l

The Offset value must be zet to match the rotary switch
on the mation controller. [t is unlikely that you will need to
change the Segment value.

< Back Next > Cancel

Testing the Installation
The final step of the New Controller Wizard is to test the communication between the Motion Control
API and the DCX motion controller.

18 Precision MicroControl

Installation

New Controller Wizard

Installation complete. To test your newly configured
zettings click on the Test buttan, below.

Test |

< Back Finizh Cancel

A successful controller communication test will result in the following displays:

Test Settings

Congratulations, your new controller settings
have been successiully tested.

Motion Control Panel |

@ |Jze thiz application to configure and test maotion contrallers.

— Motion Contrallers

Add... Remowve... | Properties. .. I

ok | Hep |

To complete the New Controller Wizard select OK. If you need to configure another controller select
Add.

DCX-AT200 User’s Manual 19

Installation

If the test fails and the New Controller Wizard is unable to verify communication between the
controller and the Motion Control API refer to the troubleshooting guide in this manual.
Test Settings [<]

Unable ko access the controller. Please check the jumper/switch settings
oh ypour motioh controller and re-run the Add Controller Yizard.

Reporting Software and Firmware Versions

From the Motion Control panel you can view the installed versions of the Motion Control API and the
on-board firmware of the DCX-AT200 controller. To report the software and firmware versions select
Properties and then Info. The MCAPI will query the DCX controller for its firmware version. If the
Motion Control Panel is unable to acquire this information the version will be reported as unknown.

Motion Controller Properties EH |

Generall Interfacel Advanced Info |

— Mation Contraller

Controller Model dox-at200

Firrnweare Yersion: pm Revision: 3.7a

[— Mation Contral AP

MCAPI DLL Wersion: 2.20.0000 [mcapidz. dil]
Drriver DLL Wersion: 2200000 [pracrern. dil]
Config DLL Werzsion: 2200000 [cfgat2. dll]

k. Caricel e 1]

20 Precision MicroControl

Installation

Removing the Motion Control API

To remove the MCAPI , launch the Add/Remove Programs applet in the Windows Control Panel. After
the Uninstall Shield has removed the MCAPI you will need to restart the computer to remove active
.dII's. If you are going to install an older version of the MCAPI (2.1c or earlier) you will need to
manually delete the file mcapi.ini from the Windows folder.

Add/Remove Programs Properties EH |

Install/Uninstal IWindu:uws Setupl Startup Diskl

@ Tainstall a new program fram a floppy disk ar CO-ROM

drive, click [nstall
Ingtall...

The following zoftware can be automatically removed by
Windows. To remove a program or bo modify itz inztalled
components, select it from the list and click
Add/Remove.

Lucent ‘win Modem [REMOYE OMLY) :I
Modfee ViruzScan w4.0.2 [Retal/0EM)
Microzoft Office 2000 Profeszsional
Microsoft Project 98

Microzaft web Publizhing *izard 1.6
Microsaft Windows 92 Resource Kit Toolz
‘b otion Control AP

kSDM Library - Qctober 1999
Protel 98 d|

Add/Bemove... |

OF. | Cancel |) [|

DCX-AT200 User’s Manual 21

Installation

Installing DCX Motor Control and I/O Modules

DCX Modules can be placed in any open module position on the DCX motherboard. If there are fewer
than six modules to be installed on the DCX, spread them out as much as possible. This will allow
easier installation and removal of the modules as well as mating cables.

If there are to be motor control modules installed on the DCX, and you want them to be numbered in a
specific order, install them in module positions on the DCX in that order. For example, the module that
is to control motor number 1 could be installed in module position number 1 (refer to the module
numbers on the DCX circuit board). The module controlling motor number 2 could be installed in
position number 2, and so on. Alternatively, the second module could be installed in any other module
position and it will still be assigned number 2 since it is the second motor module on the DCX.

mMc2o0 B[mc260 [[MC400 |F
Axis # | Axis #3 [| Dig ll0 §

If a group of motors will be required to perform multi-axis contouring motion, one axis of the group
should be assigned to axis 1. This will be the controlling axis for the group. Other groups of axes on
the controller can also perform contouring motion, but will be more limited in the number of motion
segments that can be stored on the board. For additional information on multi-axis contouring please
see the description of Contouring Motion (arcs and lines) in the Motion Control chapter of this
manual.

To install the modules, lay the DCX-AT200 motherboard on a flat surface, component side up. Place
each DCX module in the desired position, aligning the connectors and mounting holes with their
respective mates on the DCX motherboard. When you are satisfied that the module is properly
aligned, carefully press the module into the DCX. The header pins of the module should seat
completely into the mating connectors on the DCX motherboard. Two nylon mounting screws are
supplied with each DCX module. These should be installed from the backside of the motherboard, into
the standoffs on the modules. Repeat this process for installing modules on the DCX until all modules
are in place.

Next the DCX should be re-installed in the PC chassis and interfacing cables connected. Refer to the
following sections in this chapter for specific jumper and wiring information for the types of modules
that are being used. When cabling has been completed, power can be applied to the system and
initial checkout can begin.

22 Precision MicroControl

Installation

Please note that all DCX modules contain a 26 pin, shrouded, center
polarized header for I/0O connections. The pins of this connector are

0 numbered from 1 to 26. The following diagram shows the location of pins
1, 2, 25 and 26. The other 22 pins are numbered and located
respectively.

DCX MODULE CONNECTOR PIN NUMBERING
(TOP SIDE VIEW)

HI0O0 0000000000 0ON
OOOOOOOOOOOOO p \‘

DCX-AT200 User’s Manual

23

Installation

DCX-MC200 — Servo Motor Module Installation

Installation of a DCX-MC200 Servo Motor Control Module includes setting three jumpers (JP1, JP2,
and JP3). These jumpers are used to configure the module for the type of incremental encoder that
will be used. These jumpers are configured by installing shorting blocks on the pins of the jumpers, or
leaving them open. Note that the pins of the three jumpers are numbered sequentially from 1 to 3,
with pin 1 being shown as a square.

a LR L L N R AN
P 2R ERREEERRED

DCX-MC200

Jumper JP1 configures the module's encoder phase inputs for 'single ended' (A and B) or 'differential’
(A+, A-, B+, and B-) signals. For single ended outputs, install the 3 hole shorting block (supplied with
the module) across all 3 pins of jumper JP1. Connect the A and B signals from the encoder to the A+
and B+ inputs of the module. If an encoder with differential phase outputs is to be connected to the
module, jumper JP1 should be left open (no shorting block installed).

Jumper JP2 is used to configure the module's encoder index input. Either a single ended or
differential index signal can be connected to the module. The table below lists the possible
combinations.

MC200 Module Encoder Index Configuration

Signal Name | Input Type Active Level Jumper JP2

Index + Single ended High 1to 2 Pin 8
Index - Single ended Low 2to3 Pin 25
Index +/- Differential N/A None Pins 8(+) & 25(-)

The MC200 provides a user selectable Encoder Power supply by routing +5V or +12V from the PC
supply to connector J3 pin 17. The Encoder Power supply can provide up to 500ma of current.

MC200 Encoder Power Selection Jumper

Setting Encoder Power Supply (JP3 pin 17)

JP3 Pins 1 to 2 +5VDC
JP3 Pins 2to 3 +12 VDC
JP3 Open Open

not required that it be used to power the encoder. If an external +5 volts or +12
volts supply is used to power the encoder, jumper JP3 must still be configured to
match the voltage level (+5 volts or +12 volts) of the external supply.

: Note: The DCX-MC200 provides the Encoder Power output as a convenience, It is

24 Precision MicroControl

Installation

After configuring the jumpers of the module, the servo encoder, amplifier and limit switches can be
connected to the module. Wiring diagrams on the next two pages depict typical installations. The first
diagram details direct connection of the MC200 to the external components (servo amplifier, encoder,

and sensors). The second diagram details typical connections when a DCX-BF100 Opto Isolation
and Interconnect Assembly is used.

DCX-AT200 User’s Manual 25

Installation

Servo Amplifier
—

aly

— Gnd

Quadrature
Encoder

DCX-MC200
I/O Connector J3
2 Command Output (+/- 10V)
1 - Analog Ground
1 Amplifier Enable (output)
Amplifier Fault (input)
10
Ground
5
Limit Positive (input
14 (input)
15 Limit Negative (input)
9 Coarse Home (input)
Encoder Phase A+
16
1 9 Encoder Phase A- (Differential only)
Encoder Phase B+
23
20 A Encoder Phase B- (Differential only)
8 Encoder Index +
Encoder Index -
25
Encoder Power (+5 / +12)
17
26 Ground

26

Servo Motor

Precision MicroControl

Installation

DCX-BF100 - 24

DCX-MC200 Opto Isolation and Servo Amplifier
Interconnect Assembly]
J3 conn. conn.
Command Output (+/- 10V)
Analog Ground
11 Amplifier Enable (output)
10 Amplifier Fault (input)
5 Ground
14 TS1-11 Limit Positive (input \._
15 TS1-12 > e
26 conductor 9 TS1-7 \.—
ribbon cable TS1-13 Opto Isolator supply
- Power Supply
+24 vdc
16 Encoder Phase A+
19
23
Encoder Phase B- (Differential only)
Encoder Index +
Encoder Index -
Encoder Power (+5 / +12)
Ground Quadrature
Encoder

DCX-AT200 User’s Manual 27

Installation

DCX-MC210 — Servo Motor Module Installation

Installation of a DCX-MC210 Servo Motor Control Module includes setting three jumpers (JP1, JP2,
and JP3). These jumpers are used to configure the module for the type of incremental encoder that
will be used. These jumpers are configured by installing shorting blocks on the pins of the jumpers, or
leaving them open. Note that the pins of the three jumpers are numbered sequentially from 1 to 3,
with pin 1 being shown as a square.

-] YT T a
JP1 ssssssessasss JP3

1H® 8

Jumper JP1 configures the module's encoder phase inputs for 'single ended' (A and B) or 'differential’
(A+, A-, B+, and B-) signals. For single ended outputs, install the 3 hole shorting block (supplied with
the module) across all 3 pins of jumper JP1. Connect the A and B signals from the encoder to the A+
and B+ inputs of the module. If an encoder with differential phase outputs is to be connected to the
module, jumper JP1 should be left open (no shorting block installed).

Jumper JP2 is used to configure the module's encoder index input. Either a single ended or
differential index signal can be connected to the module. The table below lists the possible
combinations.

Table 2: MC210 Module Encoder Index Configuration

Signal Name | Input Type Active Level Jumper JP2

Index + Single ended High 1to 2 Pin 8
Index - Single ended Low 2to3 Pin 25
Index +/- Differential N/A None Pins 8(+) & 25(-)

The MC210 provides a user selectable Encoder Power supply by routing +5V or +12V from the PC
supply to connector J3 pin 17. The Encoder Power supply can provide up to 500ma of current.

MC200 Encoder Power Selection Jumper

Setting Encoder Power Supply (JP3 pin 17)

JP3 Pins 1 to 2 +5VDC
JP3 Pins 2to 3 +12 VDC
JP3 Open Open

not required that it be used to power the encoder. If an external +5 volts or +12
volts supply is used to power the encoder, jumper JP3 must still be configured to
match the voltage level (+5 volts or +12 volts) of the external supply.

: Note: The DCX-MC210 provides the Encoder Power output as a convenience, It is

28 Precision MicroControl

Installation

After configuring the jumpers of the module, the servo encoder, motor and limit switches can be
connected to the module. Wiring diagrams on the next two pages depict typical installations. The first
diagram details direct connection of the MC210 to the external components (servo motor, encoder,

and sensors). The second diagram details typical connections when the DCX-BF100 Opto Isolation
and Interconnect Assembly is used.

DCX-AT200 User’s Manual 29

Installation

DCX-MC210
I/0 Connector J3

PWM Motor Drive + (output)

; PWM Motor Drive -

14 J—Limit Positive (input) Servo Motor
Quadrature

15 - Limit Negative (input Encoder

9 - Coarse Home (input)

f1f

- Gnd

Encoder Phase A+

16
19 Encoder Phase A- (Differential only)
| Encoder Phase B+
23
20 - Encoder Phase B- (Differential only)
8 Encoder Index +
Encoder Index -
25
17 - Encoder Power (+5 / +12)
26 Ground

30 Precision MicroControl

Installation

DCX-BF100 - 24
Opto Isolation and
Interconnect Assembly

DCX-MC210

J3 conn. conn.

Servo

Quadrature

Encoder
14 Limit Positive (input \._
15 > e
26 conductor 9 \._
ribbon cable Opto Isolator supply
- Power Supply
+24 vdc
+
16 TS2-3 Encoder Phase A+
19 TS2-4
23 TS2-5
20 TS2-6
8 TS2-7
25 TS2-8
TS2-13

TS2-14

DCX-AT200 User’s Manual 31

Installation

DCX-MC260 — Stepper Motor Module Installation

Installation of a DCX-MC260 Stepper Motor Control Module includes setting jumper JP1if an
incremental encoder will be used for position feedback.

Jumper JP1 configures the module's encoder phase inputs for 'single ended' (A and B) or 'differential’
(A+, A-, B+, and B-) signals. For single ended outputs, a 3 hole shorting block (supplied with the
module) should be installed across all 3 pins of jumper JP1. In this case, the A and B signals from the
encoder should be connected to the A+ and B+ inputs of the module. If an encoder with differential
phase outputs is to be connected to the module, jumper JP1 should be left open (no shorting block
installed).

DCX-MC260

After configuring the jumper of the module, the stepper driver, limit switches and optional encoder can
be connected to the module. Wiring diagrams on the next two pages depict typical installations.

The first diagram details direct connection of the MC260 to the external components (stepper driver,
sensors, and optional encoder). The second diagram details typical connections when the DCX-
BF160 Opto Isolation and Interconnect Assembly is used.

32 Precision MicroControl

DCX-MC260
[/O Connector J3

3
4
16
14

1

13

23

18
19
20
21
22

26

Direction or CW Pulse (output)

Stepper Driver
e

Pulse or CCW Pulse (output)

Motor On (output)

15 A

_| Full/ Half Step (output)

Full / Half Current (output)

Ground

Limit Positive (input)

_ Limit Negative (input)

Home (input)

i

| Encoder Coarse Home (optional) . \.

Encoder Phase A+

e Gnd

Encoder Phase A- (Differential only)

Encoder Phase B+

Encoder Phase B- (Differential only)

Encoder Index -

Encoder Power (+5)

Quadrature
Encoder
(optional)

Ground

DCX-AT200 User’s Manual

Stepper Motor

Installation

33

Installation

DCX-MC260

J3 conn.

26 conductor
ribbon cable

DCX-BF160 - 24
Opto Isolation and
Interconnect Assembly

conn.

Stepper Driver

S —

TS1-11

9 TS1-12
13 TS2-11 Home (input) .\._
23 TS2-10 Lo e

TS1-13

Encoder Phase A+

=+

Power Supply
+24 vdc

Encoder Phase A- (Differential only)

Encoder Phase B+

Encoder Phase B- (Differential only)

Stepper
Motor

Encoder Index -

Encoder Power (+5)

Ground

Quadrature
Encoder
(optional)

34

Precision MicroControl

Installation

DCX-MC400 — Digital I/O Expansion Module Installation

One or more MC400 digital I/O modules can be installed on the DCX. There are no jumpers on this
module to be configured. The module's TTL digital I/0 signals can be connected directly to the
external circuits if output loading (1ma maximum sink/source)and input voltages are within acceptable
limits. Alternatively, a BFO22 interface board can be used to connect the module's 1/O to a relay rack
in order to provide optically isolated inputs and outputs.

The BFO22 interface board provides a convenient means of connecting the MC400's TTL digital I/O
channels to a 16 position relay rack available from two manufacturers, Opto22 (P/N PB16H) and
Grayhill (P/N 70RCK16-HL). These relay racks accept up to 16 optically isolated input or output
modules for interfacing with external electrical systems. Using one of these relay racks and a BFO22,
an optically isolated I/O module can be connected to each of the MC400's digital I/O channels.

' oexcarons
i i | DCX-BF022

As shown above, the BFO22 plugs directly into the relay rack's 50 pin header connector and then
connects to the MC400 via a 26 conductor ribbon cable. Note that the relays are numbered
sequentially starting from 0, while the DCX digital I/0O channels are numbered sequentially starting
with 1.

Although the relay rack has screw terminals for connecting a logic supply, it is not necessary to make
this connection. By installing a shorting block on jumper JP17 of the BFO22, the 5 volt supply of the
DCX will be supplied to the relay rack.

For detailed information on configuring the DCX-BF022, please refer to the schematic and jumper
table in the DCX-BF022 Appendix in this user manual.

DCX-AT200 User’s Manual 35

Installation

DCX-MC500 — Analog I/0 Expansion Module Installation

One or more MC500 analog I/0 modules can be installed in the DCX as described in the first section
of this chapter. There are no jumpers on this module to be configured. The module's I/O signals can
be connected directly to the user's external circuits as long as output loading is not excessive and
input voltages are maintained within the specified limits (see the MC500 appendix).

A voltage level greater than 5.6 volts will damage DCX-MC500 analog
input channels. The schematic below is recommended to protect an
analog input from damage due to an over voltage condition. This circuit
will limit the maximum voltage applied to the A/D converter to 5.6 VDC.

Analog Input Protection Circuit

10K
To external R Analog Input
zensar [pot (to connectar J3
inz 1,3, 5, andfior 7
| [AN
.

TMS231 zener diode
LAY or
SALSOL TS (Gen. Semil)

DCX-MF300 — RS-232 Stand Alone Communication Module
Installation

A single MF300 RS-232 module can be installed in any module position on the DCX. There are
several jumpers on the module that should be configured before connecting the module to an external
device. These jumpers are configured by installing shorting blocks on the pins of the jumpers, or
leaving them open. An appendix of this manual which covers the RS-232 module, includes a
description of these jumpers and a diagram showing their locations. In addition, a portion of the
module schematic is included in the appendix to help in configuring the module. Note that the pins of
each jumper are numbered sequentially from 1, with pin 1 being shown as a square.

The RS-232 module connector J3 pin-out, is designed to allow a cable to be assembled from ribbon
cable and Insulation Displacement Connectors (IDC). Such a cable, with a 25 pin D-subminiature
connector on one end, can be directly connected to a terminal or host computer serial port. If the
external device is considered to be Data Terminal Equipment (DTE), then the RS-232 module should

36 Precision MicroControl

Installation

be configured as Data Communications Equipment (DCE). This is the default configuration of the RS-
232 module as shipped from the factory, and should have the jumpers set as follows:

Default setting

JP1 Pins 9 to 10
JP2 Pins1to3,2to4
JP3 Pins 1to 2
JP4 Pins 1to 2
JP5 Open

JP6 Pins 1to 2
JP7 Open

JP8 Pins 1 to 2
JP9 Open

JP10 Pins 1 to 2
JP11 Open

JP12 Open

JP13 Open

JP14 Open

Jumper JP2 on the RS-232 module is used to select whether internal control signals are used for
hardware handshaking, or for networking. When a single DCX is connected to the communicating
device, this jumper should be configured for handshaking. This is done by installing a shorting block
on pins 1 and 3, and another on pins 2 and 4 (shorting blocks will be perpendicular to 'JP2' label). For
configuration of the module for use on a RS-232 network, a shorting block should be installed on pins
1 and 2, and another on pins 3 and 4.

DCX-MF310 — IEEE-488 Stand Alone Communication Module
Installation

A single MF-310 IEEE-488 module can be installed in any module position on the DCX. There are two
jumpers on the module that should be configured before connecting the module to an external device.
These jumpers are configured by installing a shorting block on the pins of the jumpers, or leaving
them open. An appendix of this manual which covers the IEEE-488 module includes a description of
these jumpers and a diagram showing their locations.

The IEEE-488 module connector J3 pin-out, is designed to allow a cable to be assembled from ribbon
cable and Insulation Displacement Connectors (IDC). Such a cable, with an IEEE-488 connector on
one end, can be directly connected to a IEEE-488 controller.

Jumper JP1 should have a shorting block installed to provide open collector drivers on the module.
Leaving the pins of jumper JP1 open will configure the module drivers as push-pull for high speed
communications.

Installing a shorting block on jumper JP2, will connect the IEEE-488 connector’s shield signal to the
DCX's ground. Since the IEEE-488 controller should provide the grounding point for the cable shields,
this jumper should be left open. The other jumpers on the IEEE-488 module are for production
options, and should be left as shipped from the factory (JP3 hardwired, JP4 and JP5 open).

DCX-AT200 User’s Manual 37

Installation

The six position DIP switch on IEEE-488 module is used to set the address of the DCX on the IEEE-
488 bus. In the DCX-MF310 section of the Connectors, Jumpers, and Schematics chapter a table
lists all possible address settings. As an example, to set the DCX's address to 4 (talk address = 'D’,
listen address ='$'), switches 1, 2, 4, 5 and 6 should be in the OFF position, and switch 3 should be in
the OFF position.

38 Precision MicroControl

Installation

DCX-AT200 User’s Manual 39

Programming, Software, and Ulilities

Chapter Contents

¢ Introduction to the Motion Control Application Programming Interface (MCAPI)
e Controller Interface Types

¢ Building Application Programs using MCAPI
C++ programming
Visual Basic Programming
Delphi Programming
LabVIEW programming

e PMC Sample Programs

e Motion Integrator
System Integration Wizards
Servo Tuning tool
Embeddable OLE servers

e PMC Utilities
MCAPI Setup
WinControl
FlashWizard
Joystick Applet
Position Readout

¢ MCAPI On-line Help
MCAPI Users Guide
MCAPI on-line function reference
MCAPI Common Dialog help
LabVIEW Motion VI Library Help

40 Precision MicroControl

Programming, Software and Utilities

The DCX motion control system is engineered to integrate seamlessly into high performance, PC
based, Windows applications. Support for all popular high level languages is provided by the Motion
Control API. Additionally, a powerful set of board level commands are available, allowing the motion
controller to execute local ‘macro’ routines independent of the PC host and application program.

PMC’s Motion Control API (MCAPI) is a group of Windows components that, taken together, provide a
consistent, high level, Applications Programming Interface (API) for PMC's motion controllers. The
difficulties of interfacing to new controllers, as well as resolving controller specific details, are handled
by the API, leaving the applications programmer free to concentrate on the application program.

Visual MCCL
) Programming ASCII
HighLevel Advanced e Visual Basic Command
Languages Development o LabVIEW Interface
oC Environments o BridgeVIEW
o C++ ® Delphi ¢
® Visual Basic e [ab Windows Drivers
¢ Pascal ® Visual C/C++ ® OLE Controls
® LabVIEW VI WinControl

! 1 {
Motion Control APl (MCAPI)

i §
Low-Level Device Driver (DLL)

Command Interpreter
Motion Control Command
Language (MCCL)

DCX-AT200 User’s Manual 41

Programming, Software, and Ulilities

The API has been constructed with a layered approach. As new versions of the Windows operating
system and new motion controllers become available it will be possible to provide API support by
replacing one or more of these layers. Because the public API (the part the applications programmer
sees) is above these layers, few or no changes to applications programs will be required to support
new systems.

The API itself is implemented in three parts. The low level device driver provides communications with
the motion controller, in a way that is compatible with the Microsoft Windows operating system. The
MCAPI low level driver passes binary MCCL commands (Motion Control Command Language — the
instruction set of the DCX motion controller) to the DCX. By placing the operating system specific
portions of the API here it will be possible to replace this component in the future to support new
operating systems without breaking application programs, which rely on the upper layers of the API.

Sitting above that, and communicating with the driver is the APl Dynamic Link Library (DLL). The DLL
layer implements the high level motion functions that make up the API. This layer also handles the
differences in operation of the various PMC Motion Controllers, making these differences virtually
transparent to users of the API.

At the highest level are environment specific drivers and support files. These components support
specific features of that particular environment or development system.

Care has been exercised in the construction of the API to ensure it meets with Windows interface
guidelines. Consistency with the Windows guidelines makes the API accessible to any application that
can use standard Windows components - even those that were developed after the Motion Control
API! See the Programming section for additional information on adapting the API to other
development environments.

Controller Interface Types

The DCX controller supports two onboard interfaces, an ASCII (text) based interface and a binary
interface. The binary interface is used for high speed command operation, and the ASCII interface is
used for interactive text based operation. The CWDEMO and VBDEMO sample programs use the
binary interface, PMC WinControl uses the ASCII interface.

Application programs must indicate which interface they intend to use when they open a handle for a
particular controller. A controller may have more than one open handle at a time, but all open handles
for a particular controller must specify the same interface (all must be open with the binary interface or
all must be open with the ASCII interface). The open mode is specified by setting the second
argument of the MCOpen() function to either MC_OPEN_ASCII or MC_OPEN_BINARY.

Note that not all functions are available in the ASCIl mode of operation, this mode is intended
primarily for use with the pmcgetc(), pmcgets(), pmcputc(), and pmcputs() character based
functions (these 4 functions are not available in binary mode). This restriction will be eliminated in a
future release of the API.

42 Precision MicroControl

Programming, Software, and Ulilities

Building Application Programs using Motion Control API

The Motion Control Application Programming Interface (MCAPI) is designed to allow a programmer to
quickly develop sophisticated application programs using popular development tools. The MCAPI
provides high level function calls for:

Configuring the controller (servo tuning parameters, velocity and ramping, motion limits, etc.)
¢ Defining on-board user scaling (encoder/step units, velocity units, dwell time units, user and
part zero)
¢ Commanding motion (Point to Point, Constant velocity, Electronic Gearing, Lines and Arcs,
Joystick control)
Reporting controller data (motor status, position, following error, current settings)
e Monitoring Digital and Analog 1/0
¢ Driver functions (open controller handle, close controller handle, set timeout)

A complete description of all MCAPI functions can be found in chapter 9, Motion Control Function
Reference.

Included with the installation of the Motion Control APl is the Sources ‘folder’. In this folder are
complete program sample source files for C++, VisualBasic, Delphi.

& Sources =
J File Edit “iew Go Favortes Help ‘
& . = [t | ¥ 9 | X 2
Back FEarsard Up Cut Copy FPazte Undo Delete Properties Wiews
J Address I[:I C:%Program Files'\Motion Control\Motion Control 2P1%S ources ﬂ
D Jou FazDemo WBDema WBDemod2 WinCH
Sources
A # #] A
Select an item to view its . - . . .
description, Ctl3dh CH3d.lib Mcapibaz mcapi.def Mezapi.h Mcapilib
#A A A ' =i A
Mcapipas Mcapi3Zbas meapi3Z.def meapidZ b Meclh MCDIg. bas
A = A A A A
MCDg. def MCDIa.h Medlg lib MCOlapaz MCDIg32 baz MCDIg32 def
#A :
MCDLGIZNIb Usertype.dat
26EKE |_§‘ ty Computer i

DCX-AT200 User’s Manual

43

Programming, Software, and Ulilities

C++ Programming

Included with each of the C program samples (CWDemo. Joystick demo, and WinControl) is a read
me file (readme.ixt) that describes how to build the sample program. The following text was reprinted
from the readme.txt file for the CWDemo program sample.

Contents

- How to build the sample
- LIB file issues
- Contacting technical support

How to build the sample

To build the samples you will need to create a new project or make file within your C/C++ development
tool. Include the following files in your project:

CWDemo.c

CWDemo.def

CWDemo.rc

For 16-bit development you will also need:
.\mcapi.lib
.\mcdig.lib
.\ctl3d.lib

For 32-bit development you will also need:
.\mcapi32.lib
.\mcdig32.lib

If your compiler does not define the _WIN32 constant for 32-bit projects you will need to define it at
the top of the source file (before the header files are included).

LIB File Issues

Library (LIB) files are included with MCAPI for all the DLLs that comprise the user portion of the API
(MCAPI.DLL, MCAPI32.DLL, MCDLG.DLL, and MCDLG32.DLL). These LIB files make it easy to resolve
references to functions in the DLL using static linking (typical of C/C++). Unfortunately,

under WIN32 the format of the LIB files varies from compiler vendor to compiler vendor. If you cannot use
the included LIB files with your compiler you will need to add an IMPORTS section to your projects DEF
file. We have included skeleton DEF files for all of the DLLs for which we also include a LIB file
(MCAPI.DEF, MCAPI32.DEF, MCDLG.DEF, and MCDLG32.DEF).

The 16-bit LIB files were built with Microsoft Visual C/C++ Version 1.52,
and the 32-bit LIB files Microsoft Visual Studio Version 5.

& CWDemo H=] &3

o @ % %) x

j Back Forward Up Cut Copy Pazte Undo Delete Properties
J Address I[:I C:%Program FilesiMation ControlsMation Control AP14Sourcest\CwDemo

= RN BCCE

Cwdemo.def Cwdemoh cwdemoico CwDemomak CwDemo.RC
CWDemo

g:lsiﬁpiino:lem fo view its Cwihemod2.. CwDemo3Z.. Headme kst

Wiews

| |48.DKB |_§‘ by Computer i

44 Precision MicroControl

Programming, Software, and Ulilities

Visual Basic Programming

Included with each of the Visual Basic program samples (VBDemo. VBDemo32) is a read me file
(readme.txt) that describes how to build the sample program. The following text was reprinted from
the readme.txt file for the VBDemo32 program sample.

Contents

- About the sample
- How to build the sample
- Contacting technical support

About the sample

(such as a full-featured, ready-to-run

How to build the sample

About32.frm
Main32.frm
Servo32.frm
Step32.frm
VBDemo.bas

.\mcapi32.bas
.\mcdlg32.bas

Set frmMain as the startup object for the project.

axis configuration dialog) are also demonstrated.

This sample demonstrates a simple user interface to one axis of a motion controller. The user may
program moves and interact with the motion in a number of ways (stop it, abort it, etc.). Sample forms
demonstrate how to configure servo or stepper motor axes. A number of the new MCDialog functions

To build the samples you will need to create a new project or use the Visual Basic project file (created
with Visual Basic v6.0) included with the sample. Include the following files if you create your own project:

& VBDemo32 M=l &3
J File Edit “iew Go Favoites Help |
& o= @ ¥ 9 | X =
Back Farand Up Cut Copy Paste Undo Delete Properties WViews
J Address I[:I C:%Program FilesiMaotion ControlsMotion Control P15 ources\VBDemo32 j
About3Z2fm Main32.frm FReadme.tst Servod2 fim Step32fm Ybdemo3Z bas
VBDemo32
Select an itemn to view its .32
description. EMmose....
|88.DKB |_§‘ by Computer i

DCX-AT200 User’s Manual

45

Programming, Software, and Ulilities

Delphi Programming

Included with each of the Delphi program sample (PasDemo) is a read me file (readme.txt) that
describes how to build the sample program. The following text was reprinted from the readme.txt file

for the PasDemo program sample.

Contents

- About the sample
- How to build the sample
- Contacting technical support

About the sample

(such as a full-featured, ready-to-run
axis configuration dialog) are also demonstrated.

How to build the sample

own project:

About.pas
Global.pas
PasDemo.pas
Servo.pas
Stepper.pas

For 16-bit projects you will also need:

.\mcapi.pas
.\mcdlg.pas

For 32-bit projects you will also need:

.\mcapi32.pas
.\mcdig32.pas

This sample demonstrates a simple user interface to one axis of a motion controller. The user may
program moves and interact with the motion in a number of ways (stop it, abort it, etc.). Sample forms
demonstrate how to configure servo or stepper motor axes. A number of the new MCDialog functions

To build the samples you will need to create a new project or use the Delphi project files included with the
sample (Pdemo.dpr for 16-bit, Pdemo32.dpr for 32-bit). Include the following files if you create your

& PasDemo H= E3

File Edit “iew Go Favortes Help |ﬁ
. [xd 4 Y X =
B ack Forward Up Cuat Copy Paste Undo Delete Properties WViews

J Address ID C:\Program FilestMation ControlsMotion Contral AP1%Sources\PasDemo j
B Global.pas Pasdemo.pas Pdema.dpr Pdemoico Pdemo3Z2.dpr
PasDemo
g:;ﬁp‘:g:lem to view its Feadme.t«t Servo.pas Stepper.pas

| |5?.2KB |_§‘ My Computer i

46

Precision MicroControl

Programming, Software, and Ulilities

LabVIEW Programming
PMC’s LabVIEW Virtual Instrument Library includes an On-Line help with a Getting Started guide.

% Motion ¥ Library Help M= E3
Fil= Edit Bookmark Optioh: Help
Qontentsl Index I Back | Frirnt I e | e I

Getting Started

Befare you install the Motion %1 Library you must first install Lab%IEW version 5.0 for Windows 95 /98 / NT. j

-‘D:m""l‘mf’"‘[)'i"fﬂs This is necessary so that the Motion %I Library can add its function and control palettes to the LabWIEW
Motion V1 Librar menu systern, and install the online help where LabWIEVY can locate it.
—F

i otion

You also need to have the 32-bit Motion Contral API {(MCAPT) installed and configured before you can begin
using the hotion s, The current MCAP] release is available frorm the PMC Waorld Wide Web site and may
be installed before or after you install the Motion I Library. For full functionality you must use MCAPI
wersion 2.1¢ or higher,

i
¥+ —FOMotion V1 Library

‘_l l
Mave [17O

ﬁ 1
MCDlg| Cmd ¢0

Samples

Four sample programs are now included with the Motion %1 library. The first, SIMPLE.VI, shows how to execute a simple move. The SAMPLE. VI
sample provides an interactive panel for moving an axis and monitoring the status of that axis. CYCLE.VI demaonstrates how to implement a state
machine and execute multiple moves under program contral (the state machine approach makes it easy to monitor the status of axes while the
mations are executed). Finally, ANALOG.VI demonstrates the use of the auxiliary analog inputs available on most PMC maotion controllers.

The Maotion ls are installed in the Instrument Drivers function palette in a number of logically arranged sub-palettes. To better see how the Vs
are used, open the SAMPLE. VI frarm the file menu (select File | Open, select the INSTR.LIB directory, then the MOTION CONTROL directory, and

finally SAMPLE.VI).

The first step in any motion prograrm is to obtain a handle to the contraller, using the MCOpen 1. This handle is used in all subsequent calls to
the Maotion %ls. When the program completes the handle should be passed to the MCClose %I to ensure the motion controller is properly closed.
Failure to properly close the handle is the primary source of errors when using the Mation 1 Library. The following wiring diagram, from the
SIMPLE.VI sample prograrm, demonstrates how to open the mation controller, perform a simple move, and close the mation controller:

Minirnal motion sample - opens a motion
controller, moves axis one 1500.0 counts in
the pazitive direction, and closes the handle.

Open Eﬂ-’.} Claze
3 Fiel »

.

DCX-AT200 User’s Manual 47

Programming, Software, and Utilities

PMC Sample Programs

Sample programs with full source code are supplied with the MCAPI. These C++, Visual Basic, and
Delphi sample programs allow the user to:

Move an axis (servo or stepper)

Monitor the actual, target, and optimal positions of an axis

Monitor axis 1/0 (Limits +/-, Home, Index, an Amplifier Enable)

Define or change move parameters (Maximum velocity, acceleration/deceleration)
Define or change the servo PID parameters

EMD\PI 32-bit Delphi Example

M= E3

Sy L Servo Setup
Actual Position 2192 on Error & Axis 1 - DCX_MC200
Optimal Pasition 2192 T O +Lim O Mation PID Filter
N Dir- O - Lim @
Target Position 2192 Acceleration [5000.000000 Integral Gain |0.000000
Horme © Armp O
Following Error ‘ index ® | Phase @ Deceleration [5000.000000 Integration Limit [50.000000
Max. Velocity (1000000.000000 Derivative Gain |6191.000000
. on | of
Distance |10100 Max. Torque [2047.000000 Deriv. Sampling [0.001000
" Absolute @ Relative imie | e Proportional Gain [1400.000000 Following Error [1024.000000
Sl | Aport Velocity Gain |0.000000
.] =
Auds Mumber Zoro
X Cancel
Motion Control APl 'C' Sample |
Setup Help Axis 1 - MC260 Advanced Stepper Module
fctual Posit m D O b ation Pozition
ctual Fozibion On Errar
_ _ Aceleration [10000.000000 Current |-5100.000000
R 5100 M Deceleration [10000.000000
- Dir-Q | | Lim-@ : Hard Limits
Taget Posiion [EEEM | | 1o @ o © Max. Yelocity [1000.000000 ™+ Limit Erable
i Ind Ph Min. Yelogity |100.000000
Fallowing Evor ([||| @ =~ = © ase © ™ - Limit Enable
Fi ate B9
On Off Lirit Maode |0 -
Target 5100 | | & Low Med ¢ High
+ phsolute © Relative T Cypcle Move + Mo - | Profie Saft Limits
Stop | Abort | : [+ Limit Enable
¥ Trapezoid
.":".HiS Number .“:".HiS-I - Home | zEfD | ~ S-EL,II'VE LIITIIt DDDDDDD
™ Parahola [- Limit Enable
Lirmt {0.000000

Mizcellansouz

[HalfStep [Low Cument

]9

LimitMode [0 =]
Cancel

48

Precision MicroControl

Programming, Software, and Ulilities

Motion Integrator

PMC’s new Motion Integrator program is just like having your own ‘Systems Integrator’ to assist you

with every step of the integration process. Motion Integrator is a suite of powerful Windows tools that
are used to:

Configure the DCX motion control system e Tune the servo axes
o Verify the operation of the control system o Diagnose controller failures
Execute and plot the results of single e View comprehensive on-line help

and/or multi-axes moves including detailed wiring diagrams
e Connect and test I/0

Axis I/0 (Home, Limits, Enable)
General purpose Digital /0
General purpose Analog I/O

For first time PMC motion control users, Motion Integrator can be run as a series of Windows Wizards

© Molion System Setup. Main [[=] B3

© Molion System Setup. Connect and Test Switches [[=] B3
Eie Hel Eie Hel
D LED - Connect Axis 1/0 Wizard =l
Start Done s i SR This wizard wil help you connect and test your Ais 1/0
1. Connect and Test Switches: Enable/Inhibit, Home, Limits, Amp Fault Oteme @ Caarss ey

Limit + @ Error
2. Connect and Test Motors and Encoders o e
Qlint- @ Fee

_|Lateh _ |Enable

|eri=

- Axis 4 Servo
7. Multiple Mave @Home @ Amp Fault

Q@Lmt+ @Fior
Qumt- @Fiee

_|tstich _[Enabie < ERcl Hext> Cancel

IGye

The signals cavered inthis section are Limits, Coarse
Home, Amp Faul, and Amp Enable for servo systems and
Limits, Home, Coarse Hame, and Diive Enable for stepper
systems.

3. Define Limits
4 Homing Routine
Ta begin connecting your A /0, click Next

5. Tuning and Trajectory

6. Simpls Move

[o o o e o
EEEEEEm

oK

On-line help provides detailed information, wiring diagrams, and application examples.

< Motion Integrator Bniine Help HE B <& Motion Integrator Online Help 1 [=] 3
Fle Edt Bookmak Options Help
File Edit Bockmark Options Helo =
Comets] Inder [ok [e [&= [5 | Conterts[Index | Back [Pint [<« [» |
; Fy Typical Analog Input wiring diagrams
DCX Series Digital /O yp g 'np g diag
The DCX-PC /AT / MCS00 Analog Input channels are designed to acquire data from low [
170 Bank Select - 'Click ii woltage (0 to +5vDC) sensors. The following diagrams show a typical connection to a
on' the apprapriate fab to

potertiometer,
select which bank of 10 is

- +5VDC
1o be excercised.
L +
© Digital 171 Test Panel
Active Level Select - Fie Vew e I

Define the active

Jevel of the /O Sercerai Mekde 1 | 1/0 Channel Type - Toggle

the 'pushbutton’ to define
channel, The

the channel as an Input or
an Output

controller defaults to
Positive logic, Select
active level Enable Input Latching - Not
supported on this conroller

Test
Channel State Indicator e || Q! | at this time.

The channel is active if
the LED is on (yellow).

Cutput Test button - If this
channel s defined as an output,
pressing this pushbutton will
toggle the channel on and off.

Integrator Section: Digital /0
Product: DCX PC100, DCX AT, DX MC400

Introduction Extermal Cirouit Protes
Welcome to the PMIC's Mation Integrator Digital Q1 Test Panel. This tool allows you to: configure any or all xternal Circuit Protection

of the DCX (DCX-PCA0D, DEX-ATO, DEXHCATD) TTL Digital /) channels a5 inputs and / or outputs, j::gz‘ﬁ‘“;:hd‘;’:a”gfﬁe";S"S:fe‘n"j’“‘ih‘s E'”‘:ufdvla;; . any votage leele “;“"‘f‘mdi”“;‘fhe
monir e siste of s gl npu, 4 o s oF a il cutpf, amd e e et leve of an 10 e e T e T 2ot oo
= & Transient Voliage Suppressor (TV3) <

DCX-AT200 User’s Manual 49

Programming, Software, and Ulilities

Tuning servo’s with Motion Integrator
Motion Integrator provides a powerful and easy to use tool for ‘dialing in’ the performance of servo

systems. From simple current/torque mode amplifiers to sophisticated Digital Drives, Motion Integrator
makes tuning a servo is quick and easy.

By disabling the Trajectory generator, the user can execute repeated Gain mode (no ramping -
maximum velocity or acceleration/deceleration) step responses to determine the optimal PID filter
parameters:

Proportional gain
Derivative gain

Derivative sampling period

Integral gain
Integration Limit

With the Trajectory generator turned on, the user can execute ‘real world’ moves displaying the

calculated position, actual position, following error, and DAC output plots.

F Servo Tuning
Fil= Setup Help

o |

Position 100

—Motor

© _on | _of |

— Trajectory Generator
Q On | jj |

~Test

Step Plus | Step Minusl

Clear | Zero |
P | D
=l 2] _a]
I
I
= II =

BE%a 0% 13%

< Wwindows Servo Tuming Utility Help
File Edit Bookmark COptiohz Help

= E3

Qontentsl §earch| Blach I Frrint |

« | » |

Windows Servo Tuning Util

YWelcome to the online help for the Windows Servo Tuning
Utility. Help provides assistance with installation issues,
sorme servo tuning background information, and a
description of the Serva Tuning Utility operation.

Contents

Wsing the Servo Tuning Litility

Y

| |

The Servo Tuning Utility on-line help provides assistance both in using the utility and it provides a
‘primer’ describing basics of servo tuning.

50

Precision MicroControl

Programming, Software, and Ulilities

Motion and I/O Test Panels are Embeddable OLE Servers

The Motion Integrator test panels (Axis I/O, Digital /0, and Analog I/O) allow the user to easily
exercise the system outside the application program. These OLE Server tools can be embedded into
the user’s application program for system diagnostics.

< Motion System Setup. Connect and Test Encoders M= 3
File Help

—&xiz 2 Servo —Axiz 3 Servo

—Axiz 1 Stepper

QHome (@ Coarse @ Home @ Amp Fautt QHome @ Amp Fault
@Limt+ @ Error @ Limit + @ Error @ Limit + @ Error
@ Limit- @ Phzze @ Limit- @ Fhzse @ Limit - @ Fhizse

_|Lsteh | Enable _|Lsteh _ |Enable _|Lsteh _ |Enable

nPosﬂion 200.02 RS ‘Posﬂion
] - | | G o | . o |

Ol
2 Digital 1/0 Test Panel [_ ol =]
File ‘iew Help
Standatd (02 |Mndula1 I
~Ch1— Ch2—~ Ch3— Chd4— Chs - ChB— Ch7 - Ch&—
Cr T T T < I
B B3 o
e | e | = | Letch|]
Test Test Test Test
Ll 5 s]
~Ch 89— ~Ch 10—+ Ch 11— Ch 12— ~Ch 13— Ch 14— ~Ch 15— ~Ch 16—
) DO)) O | O
2 D D Em) D D e
e | e | =T | = | | == | = | == |
Test Test Test Test Test Test Test Test
S T e) |
% Analog Test Panel | _ (O] x|

File Help
Standard 0 Module 1 |

Reference Voltage Select Installed Module Type
’7 5 _I —‘ “MCSDD 4 Inputs and 4 Cutputs j

—Analog Input 5 ~Analog Input B —Analog Input 7 ~Analog Input 8
—&nalog Qutput 1——— ~Analog Output 2——— ~Analog Output 3——— ~Analog Output 4———
Setup Setup Setup Setup

DCX-AT200 User’s Manual 51

Programming, Software, and Ulilities

PMC Utilities

A powerful suite of utilities are included with the Motion Control API. These tools allow the user:

Configure the Motion Control API for the type and quantity of DCX controllers
Issue native language (MCCL) commands directly to the DCX controller
Upgrade the firmware of the DCX controller

Display the position of any or all axes

The MCAPI Setup Utility

This utility is used to configure the MCAPI for the type, address, and quantity of DCX control cards. It

can be launched either from the Windows Start menu or by selecting the Motion Control icon from the
Windows Control Panel.

Motion Controller Properties EHE

General | Interfacel .-’-‘«dvanc:edl Irfor I

Cantraller (D I i} ~ l
Controller Type IDDQ‘-\T2DD ‘I
Interface IF'E-Bus ‘I

Description I.t'-‘-.xes 1-6(1-4 zerva, 5 & 6 stepper)

0K | Cancel Apply

WinControl — MCCL (Motion Control Command Language) command set interface utility

This utility provides the user with a direct communication interface with the DCX in the native
language (MCCL) of the controller. This tool is extremely useful not only during initial controller
integration but also as a debug tool during application software development. Two methods of
executing DCX MCCL commands are supported: A PC keyboard key stroke is passed directly to the
DCX controller, and/or download a MCCL command text file via the File — Open menu options

. [l winControl32 M= E
E Fil= Edit Help

D ~ _
wWinControl.exe 0 | L= | i 2 | w [af

ve
DCH-ATZ200 Motion Controller

Hardware: 256K Dual Port BAM, 256K Private RAM, 1024K Flash Memory
System Firmware Yer. PM1 Rev. 3.0a

Copyright [c] 1994-1999 Precision MicroControl Corporation

All rights reserved.
>

52 Precision MicroControl

Programming, Software, and Ulilities

Flash Wizard

PMC'’s Flash Wizard provides the user with an easy to use tool for ‘field’ upgrades of the Flash based
DCX firmware.

Welcome to Flash Wizard |

Flazhitfiz. exe

YWelcome to PMC's Mation Controller Flazh wizard. The Flash
"izard will quide vou through the installation of new system or
application firrmware far your mation contraller.

[t ig recommended that pou exit all ather Windows programs
before proceeding with the Flagh wizard.

Select the Mext buttan Belaw when you are ready to continue
with the Flazh Wizard.

< Back

Cancel |

Joystick Applet

Allows the user to manually position two axes using a joystick connected to the game port of a PC.
Full source code for this applet is provided.

- " . —l
Motion Joyztick [32-hit) 4 = MCAPI Jopstick Demo Help M= B
Setup Help

File Edit Bookmark Option: Help

¥ Pos m O on| 0| Zenl Enntentsl ﬁearchl Each | Eririt | 25 | 3 |
vro: I © on| o] zeof Motion Control APl Joystick Demo

~Paosiion————— ~PointStorage | & & o The Joystick demo program demonstrates j
o e yelocity mode operation and point store /

o N ®- == oo]
Index |1 move to point operation using MCAP
A functions.
Tota
During Joystick operation, each controlled

Leam | Forget | Clear axis is placed in velocity mode and welacities propartional to
the joystick displacement are sent ta the controller
"on-the-fly". Pressing the nurmber one button on the joystick
stares the current point in point memary. If the number two
buttan is pressed the controlled axes are operated in slow
speed mode for as long as the button is pressed

Rewind| Stop i

MOTE: This application requires the MC260 or MC3E0 j

DCX-AT200 User’s Manual 53

Programming, Software, and Ulilities

Position Readout
This MCAPI utility will report the position of all installed motor control modules.

Poz. exe

Position Digplay Ed

File About

54

Precision MicroControl

Programming, Software, and Ulilities

MCAPI On-line Help

Complete and up to date (from PMC website www.pmccorp.com) On-line help for PMC’s MCAPI

(Motion Control Application Programming Interface). Help documents include; installation and basic
usage, complete function call reference and examples, high level dialog descriptions, and LabVIEW
VI Library reference.

<

M cguide.hip

@

kzapi.hip

< Motion Control APl User's Guide
Eile Edit Bookmark Options Help

=

Qﬂntanlsl Eean:hl Ean:kl Print | 1 | 23 I

Motion Control APl Users Guide

The MCAPI Users Guide On-line Help
describes the basics of PMC’s MCAPI. This
should be the ‘first stop’ for any questions

This manual describes the installation and
usage of PMC's Motion Control AP| (MCAPI)
for the Windows operating systern. This AP
brings the power and perfarmance of PMC's
DCx and DC2 families of programmable
maotion controllers to high level Windows
programming and development tools

For detailed MCAR| programming information

B| see the MCAPI Online Refarence, or for help

with the Maotion Dialog functions see the

f| about the MCAPI.

Mation Dialog Reference

Introduction
Installation

Demo Programs
Programming Basics
Glossary

Technical Support

£ Mation Contiol AP Reference [_ O[]
Fle Edt Bookmak Qptions Help
Conterts | Sesrch | Baok | Print | Eunctions [Constants [Stuctues] < |
P
MCMoveRelative
#include meapi.h ﬂ

void MCMoveRelative(#Ctlr, wixis, distance)

HCTRLR ACtl; /7 contraller handle %/

WORD wAxis; 7 avis nurmber */

double distance; 7 distance to move from current
position %/

MCMoveRelative() initiates = relative position move for the specified axis or all
axes

The MCAPI On-line Help provides a
complete listing and description of all MCAPI
functions. Function calls are grouped both
alphabetically and by functional groups
(Motion, Setup, Reporting, Gearing, etc...).
Source code examples are provided for C++,
Visual Basic, and Delphi.

Parameter Description El MCAPI Programming Sample S [=1 |
kCilr ;:nncngn!e"r mande oumed o7 [C f C++ Move Sample

whiis A“H number to move This example homes all axes, then draws a rectangle using absolute coordinates for axis
distance Amount of distance ta move. | 1 and relative coordinates for axis 2

Returns MCEnabledxis{ hCtlr, MC_ALL_AXES |: /4 enable all axes

This function does not retum a value.

Comment
The axis must be enabled prior to executing & move (a
the MC) is used with MCL. i

HCGoHome [hCtlr, 1):
UCGoHome [hCtlr, 2):
UCWaitForstop(hCtlr, MC_ALL_AXES, 0.1):

HCHovedbsolute [hCtlr, 1, 1000.0);

Example

@G IC++| eDelphi

MCCL Reference

L| wcwaicForstop(mCtlr, 1, 0.1);
NCHoveRelative [hCtlr, 2, 500.0)
HCWaitForstop(BCUlE, 1, 0.1):
NCHovedbsolute | hCtlr, 1, 0.0)
HCWaitForstop(KCtlr, 1, 0.1)3
NCHoveRelative| hCtlr, 2, -500.0)7
HCWaitForstop(KCtlr, 1, 0.1);

KX

// send axiz 1 home
/4 send axis 2 home
// wait till we're there

/4 bottow edge (out to 1000
J/ wait Till we're there
7/ right side (up by 500)
// wait till we're there
7/ top edge (back to zero)
J/ wait Till we're there
/7 1left side ({down by S00)
/7 wait till we're there

DCX-AT200 User’s Manual

55

Programming, Software, and Ulilities

b zdlg. hip

Ml hlp

& Common Motion Control Dialogs Help M=l 3

File Edit Bookmak Options Help

The MCAPI Common Dialog On-line Help

Conterts] Search [Boce [Bt [o [o]

describes the high level MCAPI Dialog

Common Motion Dialog Functions Version 2.1

functions. These operations include: Save

The Common Motion Dialog library includes easy-to-use
high-level functions for the control and configuration of your
motion controller. By combining these functions in a single
library wewe made it easy for programrmers to include the
Comrmon Mation Dialog functionality in their application
programs. Functions are provided for the configuration of

| =semo and stepper axes, scaling setup, contraller selection,

file download, and savefrestore of motor settings.

@ Motion Dialog Functions
MCDLG_AboutBox
MCDLG_ConfigureAsxis
MCDLG_CantrollerDesc
MCDLG_Controllernfo
MCDLG_DownloadFile
MCDLG_Initialize
MCDLG_ListControllers
MCDLG_hoduleDesc
MCDLG_RestoreAuxis
MCDLG_RestoreDigitalld
MCDLG_Savebxis
MCDLG_SaveDigitallQ
MCDLG_Scaling
MCDLG_SelectCantroller

@ Motion Dialog Window Classes
MCOLG_| EDCLASS
MCDLG_READOUTCLASS

@ Technical Support

3 and Restore axis configurations (PID and
Trajectory), Windows Class Position and
Status displays, Scaling, and 1/0
configuration.

il 1

LT WA Bemponents e BEIE The Motion VI Library On-line Help provides
Cortents] Sewch| B | B | o | o | installation assistance and detailed

Motion VI Library descriptions of available VI’s.

Version 1.1 - Windows 95

‘Welcome to the online help for the Motion | library. The online help file

contains detailed infarmation about the Vs that make up the Library,

and tips for working with Lab%IEWY. This version of the Motion 1 l

has been designed for the LabVIEW 4.0 (32-bit) running under Wi

95, You should install LabVIEWY 4.0 and the 32-bit edition of the h Lic £t Bookmak Options Help

Control AP before you install the Mation %I Library. See the Getti Eof"lenlsl Search | Back | Frint I £ I 2> |

Started section for details B
Motion Vis
This section describes the s for the control of motion, including =
Getting Started starting motion, stopping motion, and controlling the direction of
travel

Digital & Analog O

Mation Functions
Parameter Setup Functions
Reporting Functions

Systern Functions

Lowe-Level OEM Functions

ERRERRERERELR

Contacting Tecnical Support

o

The Motion Function Palette.

MCAbort MiChoveAhsolute
MCDirection IChdoveRelative
MCEnabledxis MCStop
MCGa MCWal

56

Precision MicroControl

Programming, Software, and Ulilities

DCX-AT200 User’s Manual 57

Communication Interfaces

Chapter Contents

e PC Communication Interface

e RS-232 Communications Interface

e |EEE-488 Communications Interface

58

Precision MicroControl

Communication Interfaces

The DCX controller provides a high speed binary interface for communicating with the PC via the ISA
bus. This interface is implemented using dual ported memory that is mapped into the PC using a
single address switch.

An ISA ASCII communication interface is also provided. This communication port allows the user to
communicate directly with the DCX in its native language, MCCL (Motion Control Command
Language).

The DCX board also supports optional auxiliary communications interfaces. The optional RS-232
serial interface is supported by installing the DCX-MF300 RS-232 interface module available from
PMC. For interfacing to the DCX board over the IEEE-488 Bus, the MF310 IEEE-488 module is
available from PMC.

Commands sent to the DCX through any of the ASCIlI communication
interfaces must be followed by a carriage return (ASCII 13). A
linefeed (ASCII 10) is not required at the end of command lines, and
should not be sent.

DCX-AT200 User’s Manual 59

Communication Interfaces

PC communications Interfaces

With the DCX board installed in an a Intel compatible PC, the WinControl Terminal Emulator
implements MCCL (Motion Control Command Language) low level communications with the DCX
through the host ASCII interface. This utility is installed as a component of the MCAPI (Motion Control
Application Programming Interface) which is available from PMC’s Motion CD or web site
WWwWWw.pmccorp.com

[winContral32 mEE
— File Edit Help
winControl.exe W= S = T

vE

DCX-AT200 Motion Controller

Hardware: 256K Dual Port RAM, 256K Private RAM, 1024K Flash Memory
System Firmware Yer. PM1 Rev. 3.5a

Copyright [c] 1994-1999 Precision MicroControl Corporation

All rights reserved.
>

In addition to sending command lines from the keyboard and displaying responses on the host
display, this program can be used to send a text file containing MCCL commands to the controller.
Simply store the command lines in a file using a text editor. Use WinControl’s File menu option to
open the file. Each command line will be executed as it is displayed.

Most PC based motion control applications require high speed communications between the host and
the controller. PMC’s MCAPI provides C++, Visual Basic, Delphi, and LabVIEW drivers for PC
applications programmed in high level languages. For additional information about available software
and integration tools please refer to the Programming, Software, and Utilities chapter of this
manual.

The MCAPI drivers are implemented using the 'DCX Binary Command Interface'. This interface uses
binary formatted commands and replies that provide the most efficient means for the host to
communicate with the DCX. The DCX Binary Command Interface is described in full detail in the
Appendix at the end of this manual. In some situations, it is preferable for the host to send
commands to the DCX in an ASCII character format, and for the board to send replies as ASCII
characters. This is accomplished using the 'ASCII Command Interface' of the DCX. This interface is
described in full detail in the Appendix found at the end of this manual.

RS-232 Communications Interface

The RS-232 interface has been designed to use either software or hardware

handshaking for its operation. Hardware handshaking can be enabled or disabled by use of the HN
and HF commands. Software handshaking can be enabled or disabled by use of the XN and XF
commands.

Set the configuration of the RS-232 host to 8 data bits, one stop bit and no parity. This is the factory
default configuration of the RS-232 interface. Also set the device to translate carriage returns received

60 Precision MicroControl

Communication Interfaces

into carriage return and linefeed. The baud rate of the host should be set to match the baud rate of the
RS-232 module (9600 baud is the default).

Note that input characters are only echoed through the RS-232 interface when enabled by the Echo
oN (EN) command.

IEEE-488 Communications Interface

In order to send commands to the DCX via the IEEE-488 Bus interface it must first be addressed to
listen. The command line is then sent in ASCII format, including the ending carriage return (no line
feed). The DCX should then be unaddressed as a listener and addressed as a talker. If the DCX has
a response to the command ready, it will send it at that time. Note that the DCX will not accept a new
command line until the responses to the previous command have been accepted.

DCX-AT200 User’s Manual 61

DCX Operation Basics

Chapter Contents

e [ntroduction

¢ Commanding DCX Operations

62 Precision MicroControl

DCX Operation Basics

Introduction

At its lowest level the operation of the DCX is similar to a microprocessor, it has a predefined
instruction set of operations which it can perform. This instruction set, known as MCCL (Motion
Control Command Language), consists of over 200 operations which include motion, setup,
conditional (If/Then), mathematical, and 1/O operations.

However the typical PC based application will never use these low level commands. Instead the
programmer will call high level functions (C++, Visual Basic, Delphi, or LabVIEW) which are passed to
the DCX via the MCAPI device driver. A example MCAPI function description is:

Move to relative position

This command generates a motion of relative distance of n in the specified direction. A motor number
must be specified and that motor must be in the on state for any motion to occur. If the motor is in the
off state, only its internal target position will be changed.

compatibility: MC200, MC210, MC260

see also: Move to absolute position

C++ Function: void MCMoveRelative(HCTRLR hCtlr, WORD wAxis, double Distance);

Delphi Function: procedure MCMoveRelative(hCtir: HCTRLR; wAxis: Word; Distance: Double);

VB Function: Sub MCMoveRelative (ByVal hCtrir As Integer, ByVal axis As Integer, ByVal distance As Double)

MCCL command: aMRn a=Axisnumber n =integer or real
Execute [T]

Handle In Eﬂ-? Handle Out
LabVIEW VI. Axis In [1] - Rl L Axis Out
Distance [0.0] —

MCMoveRelative. vi

DCX-AT200 User’s Manual 63

DCX Operation Basics

Throughout this manual, when a DCX operation is referenced, the MCAPI command function will be
identified by bold, italicized text. The following description differentiates between an absolute and
relative move.

Point to Point motion is commanded using either of two DCX functions.
To move an axis to an absolute position use the function
MCMoveAbsolute. To move an axis a relative distance from the current
position use the function MCMoveRelative.

Low Level DCX Operations

The WinControl utility allows the user to communicate with the DCX in the native language (MCCL) of
the controller. This utility allows the user to issue MCCL commands directly to the DCX via any of the
supported interfaces (ISA host ASCII, RS-232, and IEEE-488). Each MCCL command is described in
detail in the DCX MCCL Command section of the Appendix of this user manual.

Note — Prior to issuing any commands to the DCX via WinControl, the
MCAPI Setup utility must be configured for type, address, and

6 quantity of DCX controllers. See the description of the MCAPI Setup
utility in the Installation and Programming, Software, and Utilities
chapters.

MCCL commands are two character alphanumeric mnemonics built with two key characters from the
description of the operation (eg. "MR" for Move Relative). When the command is received by the
DCX (followed by a carriage return) it will be executed. The following graphic shows the result of
executing the VE command. This command causes the DCX to report firmware version and the
amount of installed memory.

(7] winControl32 =] E3

File Edit Help
D@ ¢ R -l e
vE
DCX-AT200 Motion Controller
Hardware: 256K Dual Port RAM, 256K Private RAM, 1024K Flash Memory

System Firmware Yer. PM1 Rew. 3.ba
Copyright [c] 1994-1999 Precision MicroControl Corporation

All rights reserved.
>

64 Precision MicroControl

DCX Operation Basics

All axis related MCCL commands will be preceded by an axis specifier, identifying to which axis the
operation is intended. The graphic below shows the result of issuing the Tell Position (aTP) command
to axis number one.

tZ[WinControl32
File Edit Help

=] E3

O & B2l af

> 1tp
01 1500
>

Note that each character typed at the keyboard should be echoed to your display (this requires Echo
oN for the RS-232 interface). If you enter an illegal character or an illegal series of valid characters,
the DCX will echo a question mark character, followed by an error code. The MCCL Error Code
listing can be found in the Appendix near the end of this manual. On receiving this response, you
should re-enter the entire command string. If you make a mistake in typing, the backspace can be
used to correct it, the DCX will not begin to execute a command until a carriage return is received.

Once you are satisfied that the communication link is correctly conveying your commands and
responses, you are ready to check the motor interface. When the DCX is powered up or reset, each
motor control module is automatically set to the "motor off" state. In this state, there should be no
drive current to the motors. For servos it is possible for a small offset voltage to be present. This is
usually too small to cause any motion, but some systems have so little friction that a few millivolts can
cause them to drift in an objectionable manner. If this is the case, the "null" voltage can be minimized
by adjusting the offset adjustment potentiometer on the respective module.

Before a motor can be successfully commanded to move certain parameters must be set by issuing
commands to the DCX. These include; PID filter gains (servo only), trajectory parameters (maximum
velocity, acceleration, and deceleration), allowable following error (servo only), configuring motion
limits (hard and soft).

At this point the user should refer to the Motion Control chapter sections titled Theory of Operation
— Motion Control, Servo Operation and Stepper Operation. There the user will find more specific
information for each type of motor, including which parameters must be set before a motor should be
turned on and how to check the status of the axis.

Assuming that all of the required motor parameters have been defined, the axis is enabled with the
Motor oN (aMN) command. Parameter ‘a’ of the Motor oN command allows the user to turn on a
specific axes or all axes. To enable all, enter the Motor oN command with parameter ‘@’ = 0. To
enable a single axis issue the Motor oN command where ‘@’ = the axis number to be enabled.

After turning a particular axis on, it should hold steady at one position without moving. The Tell Target
(aTT) and Tell Position (aTP) commands should report the same number. There are several
commands which are used to begin motion, including Move Absolute (MA) and Move Relative (MR).

DCX-AT200 User’s Manual 65

DCX Operation Basics

To move axis 2 by 1000 encoder counts, enter 2MR1000 and a carriage return. If the axis is in the
"Motor oN" state, it should move in the direction defined as positive for that axis. To move back to the
previous position enter 2MR-1000 and a carriage return.

With the DCX controller, it is possible to group together several commands. This is not only useful for
defining a complex motion which can be repeated by a single keystroke, but is also useful for
synchronizing multiple motions. To group commands together, simply place a comma between each
command, pressing the return key only after the last command.

A repeat cycle can be set up with the following compound command:

2MR1000,WS0.5,MR-1000,WS0.5,RP6 <returns>

This command string will cause axis 2 to move from position 1000 to position —1000 7 times. The
RePeat (RP) command at the end causes the previous command to be repeated 6 times. The Wait for
Stop (WS) commands are required so that the motion will be completed before the return motion is
started. The number 0.5 following the WS command specifies the number of seconds to wait after the
axis has ceased motion to allow some time for the mechanical components to come to rest and
reduce the stresses on them that could occur if the motion were reversed instantaneously. Notice that
the axis number need be specified only once on a given command line.

A more complex cycle could be set up involving multiple axes. In this case, the axis that a command
acts on is assumed to be the last one specified in the command string. Whenever a new command
string is entered, the axis is assumed to be 0 (all) until one is specified.

Entering the following command:

2MR1000,3MR-500,0WS0.3,2MR1000,3MR500,0WS0.3,RP4 <return>

will cause axis 2 to move in the positive direction and axis 3 to move in the negative direction. When
both axes have stopped moving, the WS command will cause a 0.3 second delay after which the
remainder of the command line will be executed.

After going through this complex motion 5 times, it can be repeated another 5 times by simply
entering a return character. All command strings are retained by the controller until some character
other than a return is entered. This comes in handy for observing the position display during a move.
If you enter:

1MR1000 <return>
1TP <return>
(return)

(return)

(return)

(return)

The DCX will respond with a succession of numbers indicating the position of the axis at that time.
Many terminals have an "auto-repeat" feature which allows you to track the position of the axis by
simply holding down the return key.

Another way to monitor the progress of a movement is to use the Repeat command without a value. If
you enter:

1MR10000 <return>
1TP,RP <return>

The position will be displayed continuously. These position reports will continue until stopped by the
operator pressing the Escape key.

66 Precision MicroControl

DCX Operation Basics

While the DCX is executing commands, it will ignore all alphanumeric keys that are pressed. The user
can abort the commands by pressing the escape key. If the user wishes only to pause the execution
of commands, the user should press the space bar. In order to restart command execution press the
space bar again. If after pausing command execution, the user decides to abort execution, this can be
done by pressing the escape key.

[winControl32

File Edit Help
O & & R -l e

> md100,in3,mj101,no,in6,mj102,no,jr 6 ;monitor digital inputs 5 &6

> md101,1mr1.5,Tws.1,mj100 :if channel 5 is on move relative 1.5
= md102,1mr-1.5,1ws.1,mj100 :if channel 6 is on move relative -1.5"
=gt100 :hegin sequence as a background task
=1rl0,ar100 istore task identifier in register 100

-

= in2,etzl100,no,jr-3 sterminate the background task if digital
sinput #2 is on

DCX-AT200 User’s Manual 67

Motion Control

Chapter Contents

e Theory of DCX Motion Control

e DCX Servo Basics

e Tuning the Servo

e DCX Stepper Basics

e Closed Loop Steppers

¢ Moving Motors with PMC demo’s

o Defining the Characteristics of a Move
¢ Velocity Profiles

e Point to Point Motion

e Constant Velocity Motion

e Contour Motion (arcs and lines)

e Electronic Gearing

e Jogging

e Defining Motion Limits

e Homing Axes

¢ Motion Complete Indicators

¢ On the Fly Changes

o Feed Forward (Velocity, Acceleration, Deceleration)

e Save and Restore Axis Configuration

68 Precision MicroControl

Motion Control

This chapter describes the basic building blocks of DCX motion control. In general, the modes of
motion described in this chapter are common to both servo and stepper motors, with specific
differences detailed in the text.

Theory of DCX Motion Control

The DCX motherboard (DCX-AT200) uses a 32 bit RISC processor which is programmed to perform
motion control tasks. Specially designed servo or stepper motor control modules are installed on the
motherboard to configure it for controlling from 1 to 6 servos or stepper motors. Each DCX motion
control module (DCX-MC200, DCX-MC210, DCX-MC260) installed on the motherboard provides all
the circuitry required to control one motor and its associated axis 1/0 (home, limits, amp/driver enable,
fault, etc...).

The motherboard processor implements a trajectory generator (trapezoidal, S curve, and parabolic)
which calculates the desired position and velocity of each servo or stepper motor at fixed time
intervals. These values are sent to the respective servo (DCX-MC200 or DCX-MC210) or stepper
module (DCX-MC260) installed on the motherboard. Each servo or stepper module has a 16 bit
processor which is programmed to provide the appropriate control of the servo or stepper motor
interfaced to the module.

Servo Motor Control

The DCX servo modules use a velocity feed-forward and a position feedback loop to control the
servo. The DCX-MC200 uses a 12 bit, +/-10 volt analog output signal to an external servo amplifier.
The DCX-MC210 provides a 23.4 KHz, 8 bit, PWM direct motor drive output capable of driving a 12
volt motor with up to 1A of current.

Incremental encoder input to these modules provide feedback information for closing the position
loop. In operation, the servo module subtracts the actual position (feedback position) from the desired
position (trajectory generator position), and the resulting position error is processed by the digital filter
on the module. The output of the digital filter and the velocity feed-forward are combined to set the

DCX-AT200 User’s Manual 69

Motion Control

module’s analog output level. The external amplifier uses this signal to drive the motor to the desired
position.

The module processor monitors the motor's position via an incremental encoder. The two quadrature
signals from the encoder are used to keep track of the absolute position of the motor. Each time a
logic transition occurs at one of the quadrature inputs, the DCX position counter is incremented or
decremented accordingly. This provides four times the resolution over the number of lines provided by
the encoder. The encoder interface is buffered by a differential line receiver on the DCX module.
Jumpers on the DCX module allow the user to configure the differential receiver for use with single
ended or differential encoder.

A "Proportional Integral Derivative" (PID) digital filter on the module is used to compensate the servo
feedback loop. The motor is held at the desired position by applying a restoring force to the motor that
is proportional to the position error, plus the integral of the error, plus the derivative of the error. The
following discrete-time equation illustrates the control performed by the servo controller:

u(n) = Kp*E(n) + Ki sum E(n) + KA[E(n') - E(n" - 1)]

where u(n) is the module's output signal output at sample time n, E(n) is the position error at sample
time n, n' indicates sampling at the derivative sampling rate, and kp, ki, and kd are the discrete-time
filter parameters loaded by the users. The first term, the proportional term, provides a restoring force
proportional to the position error. The second term, the integration term, provides a restoring force
that grows with time. The third term, the derivative term, provides a force proportional to the rate of
change of position error. It provides damping in the feedback loop. The sampling interval associated
with the derivative term is user-selectable; this capability enables the servo controller to control a
wider range of inertial loads.

Stepper Motor Control

The MC260 stepper module contains a pulse generator which is used to provide step and direction (or
clockwise/counter clockwise) signals to an external stepper motor driver. In addition to auto calibration
on power up, the module has an internal feedback loop which accurately maintains the output pulse
frequency. The auxiliary encoder inputs of the module can be connected to an optional incremental
encoder for motor position verification or closed loop stepper control.

DCX Servo Basics

The basic steps required to implement closed loop servo motion are:

Proper encoder operation

Setting the allowable following error
Verify proper motor/encoder phasing
Tuning the servo (PID)

Quadrature Incremental Encoder

All closed loop servo systems require position or velocity feedback. These feedback devices output
signals that relay position and/or velocity with which motion controller ‘closes the loop’. The most
common feedback device used with intelligent motion control systems is quadrature incremental
encoder.

70 Precision MicroControl

Motion Control

A quadrature incremental encoder is an opto electric feedback device. A light source and photo
sensor pickup are used to detect markings on a glass ‘scale’. The more markings on the glass scale,
the higher the resolution of the encoder. Circuitry connected to the photo sensor generates two wave
forms (Phase A and Phase B) which have a phase difference of 90 degrees. This phase difference is
used by the encoder input circuitry of the DCX to:

Determine the direction of rotation (positive or negative) of the encoder/motor
Enhance the resolution of the encoder by a factor of 4.

For example, a 500 line quadrature incremental encoder will have 2000 encoder counts per full
rotation. The 90 degree phase difference is also used to determine the direction of motion of the
encoder. If phase A comes before phase B, the DCX will determine that motion is in the positive or
clockwise direction. If phase B comes before phase A, the DCX will determine that motion is in the
negative or counter-clockwise direction.

Some quadrature encoders include an additional ‘mark’ on the glass scale which is used to generate
an index pulse. This signal, which ‘goes active’ once per rotation, is used by the motion controller to
accurately home (re-define the position of an axis) the axis. Please refer to the Homing Axes section
of this chapter.

There are few options that are typically associated with quadrature encoders.
Output type: Differential or single ended
Differential outputs (A+, A-, B+, B-) are recommended for superior noise immunity but the DCX

supports either output type

Index or no Index (used for homing the axis)
Differential Index (Z+, Z-) is recommended but the DCX supports single ended Z+ or Z-

+5 volt supply required or +12 volt supply required.
A +5 volt encoder is recommended but the DCX also supports a +12V encoder

Glass scale

B
Phase A
: Ph ﬂ Index
Photo ase
LED sensor generation
circuitry

DCX-AT200 User’s Manual 71

Motion Control

Encoder Checkout
The Motion Integrator program provides easy to use tools for testing the operation of an encoder.. The
user has the option of using the Connect Encoder Wizard or the Motion System Setup Test Panel.

Test panel does not allow the user to verify the operation of the encoder

0 Note — Unlike the Connect Encoder Wizard, the Motion System Setup
Index.

Encoder Test: Rotate encoder shaft a few degrees File Help
ity both directions.
—&xiz 1 Serva——— ~&xiz 2 Servao
@ Home @ &mp Fault @ Home (& Amp Fault
O Passed Encoder Test @ Limit + @ Error @ Limit + @ Error
451 R @ Limt- @ Fhaee @ Limt- @ Fhase
[oms | g v T _|Lsteh | Enable _|Lsteh | Enable

I ufery= | I ave |

< Back | Mest » | Cancel |

Manually rotate the motor/encoder in either direction, the position reported should increment or
decrement accordingly. Refer to the Troubleshooting guide if the DCX does not report a change of
position.

Setting the Allowable Following Error

Following error is the difference between where an axis ‘is’ and where the controller has ‘calculated
it should be’. All servo systems require ‘some’ position error to generate motion. When a servo axis
is turned on, if a position error exists, the PID algorithm will cause a command voltage to be applied to
the servo to correct the error.

While an axis is executing a move, the following error will typically be between 20 and 100 encoder
counts. Very high performance systems can be ‘tightly tuned’ to maintain a following error within 5 to
10 encoder counts. Systems with low resolution encoders and/or high inertial loads will typically
maintain a following error between 150 and 500 encoder counts during a move.

The three conditions that will typically cause a following error are:

1) Improper servo tuning (Proportional gain too low)
2) Velocity profile that the system cannot execute (moving too fast)

3) The axis is reversed phased (positive command results in
negative motion)

The DCX supports ‘hard coded’ following error checking. If at anytime the difference between the
optimal position and the current position exceeds the user defined ‘allowable following error’, an error
condition will be indicated. The axis will be disabled (Amplifier Enable output turned off, output

72 Precision MicroControl

Motion Control

command signal set to 0.0V) and the axis status word will indicate that an error has occurred. The
MCEnableAxis() function is used to clear a following error condition. To disable ‘hard coded’
following error checking set the allowable following error to zero.

Axig 1 - MC200 Advanced DC Servo Module [analog output)
 Motion — Pasition —Rate
Acceleration [10000.000000 Current Pos. |-1504.000000 € Low
i = Med
Deceleration I'I 0000.000000 Hard Limits =

I ax. Welocity I‘IDDDD.DDDDDD B L e " High
Max. Torque I'ID.DDDDDD -
I™ |- Limit Enable Prafile

— FID Filter Livit Made 0t = ' Trapeznid

Proportional Gain ID.2DDDDD SLCuve
Integral Gain [0.010000 rSoftLimts——————— | ¢ Paahola

Integration Limit [50.000000 I+ Limit Enable M_
. MIEC
Derivative Gain [0.100000 Limit [0.000000

Define the allowable Deriv. Sampling |n_unu5uu I - Limit Enable ™ &mp Fault

Fallowing Errar far a | Following Error [1024.000000 Lirnit ID.DDDDDD

servo axis. The default

value is 1024, Yelocity Gain ID.DDDDDD Limit Mode Ifo 'I
Ok | Cancel |

I™ Rev. Phase

Selecting the Servo Loop Rate
The DCX supports three servo loop rates:

Axis 1 - MC200 Advanced DC Serve Module [analog output]
— Mation r— Paoszition —Rate
Acceleration [10000.000000 Current Pos. [-1504.000000 o L
Deceleration [10000 000000 » & Med j >et the loop rate of
—Hard Limits——————— a Serwn dxis,
aw. Yelocity IM ™+ Limit Enable " High J

Max. Torque I'I 0.000000 -
™ - Limit Enable ~ Prafile

—PID Fiter————————————————— Limit Mode Iﬂ ' Trapezoid
Froportional G ain ID.2DDDDD 5-Curve

Integral Gain W - Soft Limits———————— | ¢ paabols
Integration Limit IW I+ Limit Enable)
Dierivative G ain IW Limit ID' tooooo e
Dreriv. 5 ampling IW I - Limit Enable ™ Amp Fault

Follawing Error [1024.000000 Limit 5000000
Velacity Gain [0.000000 Limit Mode [0 -]

QK | Cancel |

™ Fev. Phase

Servo Loop Rate Setting

High 4 KHz servo loop rate (Integral Term ‘I’ not used)
Medium 2 KHz servo loop rate
Low 1 KHz servo loop rate

DCX-AT200 User’s Manual 73

Motion Control

Tuning the Servo

A servo motor motion system is a closed loop system with negative feedback. Servo tuning is the
process of adjusting the gains (proportional, derivative, and integral) of this axis controller to get the
best possible performance from the system. A servo motor and its load both have inertia, which the
servo amplifier must accelerate and decelerate while attempting to follow a change in the input (from
the motion controller). The presence of inertia will tend to result in over-correction, with the system
oscillating or "ringing" beyond either side of its target (under-damped response). This ringing must be
damped, but too much damping will cause the response to be sluggish (over-damped response).
Proper balancing will result in an ideal or critically-damped system.

Underdampened
Response

___Critical

Dampening

Overdampened
Response

The servo system is tuned by applying a command output or ‘step response’, plotting the resulting
motion, then adjusting parameters of the digital PID filter until an acceptable system response is
achieved. A step response is an output command by the motion controller to a specific position. A
typical step response distance used for tuning a servo is 100 encoder counts. If the system requires:

e Very short duration moves (less than 100 msec’s)
e Very small following error value (less than 20 encoder counts

Then a step response of 50 encoder counts is recommended. If the servo system is moving a high
inertial load (minimal friction) then the step response should be increased to 200 — 300 encoder
counts. There is a ‘loose’ relationship between the step response and the following error of the
system. The shorter the step response when tuning the servo, the lower the following error during
application motion.

Note — Using a short step response (5 — 20 counts) may result in an
& unstable system that oscillates during and after a commanded move.

74 Precision MicroControl

Motion Control

Prior to running PMC’s Servo Tuning Utility, WinControl must be closed. Open the Servo Tuning
Utility. From the menu bar select Setup and then Test Setup. Configure the Test Setup dialog as
shown (these settings will command a step response of 100 encoder counts displayed over 150

msec’s):

E Servo Tuning
File Setup Help

Tuning.exe

otor

Test

© _on | of|

Trajectory Generator

Q On

Step Plus | Step Minus
Clear Zera

= E3

Test Setup
tatioh
Distance |100.000000

Time (150000000 ms
Delay |0.000000 ms

Dizplay Persistence
" Sihgle Shot % |nfinite

Display
¥ Shaow Grid
v Flat Optirnal

Flotting
% Plat all data points
™ Plat every ather data point
™ Plat every fourth data point

0K | Eancel| Help |

From the menu bar select Setup and then Servo Setup. Configure the Servo Setup dialog as shown:

Servo Setup
Az 1 - MC200 Advanced DC Serva [analog autput]
b ation Pozition Fate
Acceleration |10000.000000 Current Pos. |0.000000 O Low
Not aptp"FahI; during Deceleration |10000.000000 Hard Limits i+ hed
servo tuning step Max. Welocity [10000.000000 . 1 High
response. [v + Limit Enable
bax. Torque [10.000000 :
[+ - Limit Enable Prafile
Fropoartional Gain |E|.EIEIEEIEIEI ~ _
Lirit Mode [Stop - Trapezoid
FICT Filter o E T
|ntegral Gain |0.000000 Soft Limits i Parabola
Integration Limit [50.000000 [+Limit Enable —_
. e
Desivative Gain [0.000000 Limit | 000000
Deriv. Sampling [0.000500 [- Limit Enable M Amp Faul
Lirmit |0.000000
Following Error |1024.000000 i
[Rev. Phase
elociky Gain |0.000000 Limit bMode | OFf -
QE. | Cancel
DCX-AT200 User’s Manual 75

Motion Control

While setting proportional and derivative gain, the step response should occur with the Trajectory
Generator disabled. This will result in the magnitude of the output signal being determined only by a
PD filter, the controller will not apply a maximum velocity or ramping (acceleration/deceleration).

Setting Proportional Gain

Proportional gain controls the responsiveness of a servo system. Set the ‘soft’ slide controls for ‘I’
(Integral gain) and ‘D’ (Derivative gain) to 0%. Set the slide control for ‘P’ for 5%. Turn the Motor On.
Make sure the Trajectory Generator is off. Press the Step Plus button, the motor should move and a
position versus time plot will be displayed.

FSewn Tuning
Fil= Setup Help
o |
Position 105
Motor On
—Motor
— Jn (i
Trajectory - —I —I
Generator Off Trajectary Generatar
—) On | j] |
—Test
Press Step Plus to Step Plus | Step Minusl
move the motor
100 encoder Clear | fern |
counts
p | b
ol =] -]
1
- I - -
o, o, 0,
g Um O 75 90 105 120 135 150

Setto 5% Setto0%

If no plotted position path is shown:
o |fthe Motor On LED is still on, the proportional gain is to low. Increase ‘P’ by 100%.

o |Ifthe Motor On LED is off an error has occurred. The most likely cause is a following error
has occurred which would indicate that the servo is reversed phased. Open the Servo Setup
dialog box and select the Reverse Phase option or ‘swap’ the phase A and B connections from
the encoder to the DCX servo module. Turn the motor back on and proceed with the tuning
process. If a position path plot is still not displayed refer to the Troubleshooting chapter of this
manual.

76 Precision MicroControl

Motion Control

E Servo Tuning

hotor

(0] On Off
Trajectory Generatar

(8] Qn

Test
Step Plus | Step Minus|

Clear | Zero |
P | D
=l =1 _=l

|
= Z‘ -

Porportional gain (P control) @ 10%

Proportional gain (P control) @ 7%

Proportional gain (P control) & 2%

75 90 105 120 135 150

Continue to increase the ‘P’ term until the position versus time plot crosses the target three times (as

shown below).

E Servo Tuning

Position

Moatar

o On Off
Trajectory Generator

() On
Test

Step Plus | Step Minus|

Clear | Lem |

P | b

- -] -]
|

- | - -

21% 0% 0%

IS[= E3

90 105 120 135 150

DCX-AT200 User’s Manual

77

Motion Control

Setting Derivative Gain

Derivative gain acts as a dampening factor for the servo system. Begin to add Derivative gain by
increasing the percentage of the ‘D’ slide control. The amount of overshoot present in the preceding
graphic above will decrease with each new step response. The goal is to:

Limit overshoot to 25% (typical applications)

Limit over shoot to 10% (high performance applications: high velocity and/or short duration moves)

F Servo Tuning
File Setup Help

e | R
~Motor—————————
(9] On | Off |
~Trajectory Generatar
Q On | IEIff |
lest
Step Plus | Step Minusl
Clear | fero |
P | D
= [= [=
—1 [
L= Zl =n
21% 0% 13%

In some high inertia (heavy load with minimal friction) applications, the default setting for the
derivative sampling period (.0005 seconds) may be insufficient for achieving acceptable servo
performance. If the derivative gain setting is three to five times greater than the proportional gain
setting yet the axis is still significantly under dampened or is oscillating;

1) Double or triple the derivative sampling period setting in the Servo Setup dialog.
2) Reduce the derivative gain by 75%
3) Repeat the step response/gain adjustment process until acceptable performance is achieved

A buzzing or grinding noise is another indication of a system that requires an increase in the
derivative sampling period.

Setting the Integral Gain

Due to friction, ‘sticktion’, amplifier offset, etc... most servo systems are unable to settle at the target if
using only proportional and derivative gain. Integral gain provides a restoring force that increases with
time. It is used to correct a static position error of a servo system. If the servo is unable to repeatedly

position within +/- one encoder count of the target Integral Gain will, in most cases, position the servo

at the target.

To configure the Servo Tuning utility for setting the integral gain:

78 Precision MicroControl

Motion Control

Enable the trajectory generator.

o Define trajectory parameters (max. velocity, acceleration, and deceleration) in the Servo Setup
dialog

¢ Define a typical application move distance and duration in the Test Setup dialog

For this example:

Maximum velocity = 100,000 counts per second

Acceleration and deceleration = 100,000 counts per second per second
Move distance = 3,000 counts
Plot window time = 700 msecC’s

With the trajectory generator enabled, a step response will cause two plot traces to be displayed by
the tuning utility. The green trace is a plot of the actual positions of the servo. The yellow trace is a
plot of the calculated (or optimal) positions of the servo. The optimal positions are the result of
calculations by the DCX based on the trajectory parameters (max. velocity, acceleration, and

deceleration) defined in the Servo Setup dialog. Prior to setting an integral gain value the system
response would be:

E Servo Tuning =1

File Setup Help

Axiz short
.;.:»Irz,-sg:: mfyy | Position 2984

Ilotor
o On Ot
Trajectory Generator
Trajectory
Senerator On -*' o 4 ﬂ

Test
Step Plus ‘ Step Minus|

Clear ‘ fern |

F I]

« | o] s
1

70 140 210 280 3b0 420 490 G560 630 700

DCX-AT200 User’s Manual 79

Motion Control

Without executing another move, slowly increase the integral gain (I slide control) until the position
readout indicates that the axis has reached the target position of the move.

E= Servo Tuning [_ O]

File Setup Help

Fuosition 3000

hatar
© on | of |
Trajectory Generatar
O | off |
Test
otep Plus | =tep h-'1in|_|5|
Clear | Zerg |
F I O
| o] _af
il -

8% 24% 17 %

70 140 210 280 350 420 4390 560 630

If the ‘I’ control has reached 50% and the axis has not reached the target

either:
e The Integral Limit is too low, limiting the restoring force that the
ﬂ integral gain can apply. Double the value in the Servo Setup
dialog

o The Integral gain slide control range needs to be increased. In
the PID setup dialog double the value for the integral gain upper
limit

Once the position readout indicates that the axis is at the target execute another move (Step Plus). If
the axis stops and settles within one encoder count of the target the servo has been successfully
tuned.

80 Precision MicroControl

Motion Control

If the position readout indicates that the servo is unable to settle, reduce the setting of the integral
gain (I term). Execute additional moves until the axis settles at the target.

Saving the Tuning Parameters

When servo tuning is complete, closing the tuning utility will prompt this message about saving the
Auto Initialize settings, selecting Yes will store all settings for all installed axes in the MCAPLINI file (in
the Widows folder). Selecting No will cause all settings to be discarded.

E |
Do pou wizh to zave changes made ko
oLy Auto [nitialize settings?

ez | Hao |

Electing to save the Auto Initialize settings causes the Servo Tuning
utility to call the MCAPI Common Dialog function MCDLG_SaveAxis. All
servo parameters (PID, Trajectory, Limits, etc...) will be saved in the

& dialog

To define these servo parameters from a user’s application program, call
the MCAPI Common Dialog function MCDLG_RestoreAxis.

Changing the Scale of the Slide Controls

At the bottom of each slide control is a value showing the current setting as a percentage of the
current maximum setting. To change the range of one or more slide controls, using the Setup Menu,
open the PID Setup dialog box (Setup — PID Setup).

PID Setup E

— P - Proportional Gain

Upper Limit IU.3DDDDD

Laower Lirnit ID.DDDDDD

| - Integral Gain———————
Upper Limnit |2.DDDDDD

Lower Lirnit ID.DDDDDD
D - Derivative Gain

Lipper Limit IB.DDDDDD

Lawer Limit ID.DDDDDD

QK | Cancell Help |

Tuning Velocity Mode Amplifier Servo Systems

A velocity mode amplifier incorporates an analog tachometer to provide the feedback for the velocity
loop which is closed within the amplifier. The velocity loop is considered the primary or ‘inner’ loop of
this type of servo system. The DCX, which is a position controller, will close the secondary or ‘outer’

DCX-AT200 User’s Manual 81

Motion Control

position loop of the servo system. Combining a velocity mode amplifier with a position loop controller
results in what is known as a dual loop system. When this type of system is to be used, it is
recommended that the encoder not be directly coupled to the motor. The encoder should be mounted
on the external mechanics, as closely coupled as possible to the load or ‘end effector’. Typically in a
dual loop system, a linear scale (encoder) will be mounted on the slides of each axis.

The most important step of tuning a servo that uses a velocity mode
amplifier is to follow the amplifier manufacturers setup instructions to the

& letter. Since the amplifier provides the primary servo control, if it is not
setup correctly there is no possibility of attaining acceptable servo
system performance.

There are significant differences when tuning servo systems that close the velocity loop external to
the DCX (position loop) controller. The digital PID filter of the DCX becomes a secondary component
in the generation of the output signal that is applied to the velocity mode amplifier. The primary
component that the DCX will use to generate the servo command signal is the Feed Forward term.

commands the velocity mode amplifier to rotate the motor at a specific

0 Feed Forward defines a voltage level output from the DCX, which in turn
velocity.

Prior to tuning the servo system the velocity feed forward term must be determined. The following
example describes how to calculate and set velocity feed forward of a servo axis:

Setting the Velocity Feed Forward

The main component required to set the velocity feed forward of a DCX servo axis is to determine the
output level of the tachometer at a specific motor velocity. For this example, a typical tachometer
specification would state:

Output Range 0.0 to +10V
Tach Output @ 1K RPM 1.0 volt

The specification describes a tachometer with an output range of 0 — 10V. The tachometer output
ratio is 1.0V per 1,000 RPM'’s. The resolution of the linear scale encoder is 2000 encoder counts per
inch, and the maximum velocity of the axis is 50 inches per second. Note: the servo amplifier may
require scaling adjustments for the RPM/Tachometer voltage output ratio. The velocity feed forward is
calculated as follows:

DCX output = Velocity (encoder counts/sec) X Feed forward term (encoder counts/volt/sec.)
10 volts = 100,000 counts/sec. X Feed forward term (encoder counts * volt/sec.)
Feed forward = 10 volts / 100,000 counts per sec.

0.0001 =10 volts / 100,000 counts per sec.

82 Precision MicroControl

Motion Control

1VG0.0001 ;set velocity gain (velocity feed

;forward) with MCCL command

// set velocity gain (velocity feed forward) using MCAPI function

//

MCGetFilterConfig(hCtrlr, iAxis, &Filter);
Filter.VelocityGain = (hCtlr, 1, 0.0001);
MCSetFilterConfig(hCtrlr, iAxis, &Filter);

Tuning the Servo

After setting the velocity feed forward (velocity gain) as shown above, open the Servo Tuning Utility.
Configure the utility as follows:

1) From the Setup menu, select Servo Setup and define the trajectory parameters (velocity,
acceleration, and deceleration) to match the application requirements.

2) From the Test Setup menu define a typical application move distance and duration. For this

example, the move distance is set to 2000 encoder counts. The move duration is set to 420
milliseconds.

3) Set the Proportional (P), Integral (1), and Derivative (D) slide controls to 0%.
4) Turn on the Trajectory generator
5) Turn the motor on

6) Press the Step Plus pushbutton

A response similar to the following graphic should be observed:

FServu Tuning
File Setup Help

Position 1401

Matar

’7 o On Off
Trajectory Generator

’7 O i Off

~Test——————

Step Plusl Step Miﬂusl
Clear | Zern |

d

d

P

= =

0% 0% 0% 126 168 210 25h2 294 336 378 42

DCX-AT200 User’s Manual 83

Motion Control

Increase the ‘P’ term 1-2 % at a time until the position display indicates that the axis is within +/- 2
counts of the target.

=] g

Help.

= ing

e Help

Positian 1985 Position 1999
Motor Mot
© _oOn off o _m off
Trajectory Generator Trajectary Generator
o |NEH oft o o off
Test———————————— P —
Step Plus | Step Minus Step Plus | Step Minus
Clear oo Clear Zero
P |] P ! D
= = =] = = =]
-]
=]
=l j z‘ E T
2% 0% 0% E

Increase the “I” term 1% at a time until the axis repeatedly positions to the target. If increasing the
Integral setting causes the axis becomes unstable:

1) Reduce the Integral Limit setting (Setup — Servo Setup)

2) Reduce the scale of the ‘I’ term slide control (Setup — PID setup)

Saving the Tuning Parameters

When servo tuning is complete, closing the tuning utility will prompt this message about saving the
Auto Initialize setting, selecting Yes will store all settings for all installed axes. Selecting No will cause
all settings to be discarded.

E |
Do pou wizh to zave changes made ko
oLy Auto [nitialize settings?

ez | Hao |

Acceleration and Deceleration Feed Forward

For most applications velocity feed forward is sufficient for accurately positioning the axis. However
for applications that require a very high rate of change, acceleration and deceleration gain must be
used to reduce the following error at the beginning and end of a move.

Acceleration and deceleration feed forward values are calculated using a similar algorithm as used for
velocity gain. The one difference is the velocity is expressed as encoder counts per second, while
acceleration and deceleration are expressed as encoder counts per second per second.

DCX output = Accel./Decel. (encoder counts/sec/sec.) X Feed forward term (encoder counts * volt/sec./sec.)

84 Precision MicroControl

Motion Control

Acceleration and deceleration feed forward values should be set prior to
0 using the Servo Tuning Utility to set the proportional and integral gain.

Systems with Electrical or Mechanical Dead Band

Some servo systems may demonstrate significant dead band due to friction, sticktion, or insufficient
amplifier drive power. This will typically be indicated when the output command to the servo is
relatively high but the axis does not move.

Systems of this type can be very difficult to ‘tune’. To overcome the limitations of the system and get
the axis moving, the proportional gain would need to be set very high. This will tend to make the
system become unstable, causing the axis to ‘oscillate’ at the end of a move. The define an Output
dead band (aODn) command is used to compensate for the electrical and or mechanical dead band
in a system by modifying the calculated output signal, allowing the module to simulate a ‘frictionless’
system. The deadband value will be added to a positive output and subtracted from a negative output.

Programming an Output Offset

Both the MC200 and MC210 servo modules have output offset adjustment potentiometers for
manually setting the zero point of the servo command output. The Output Offset command allows the
user to enter a programmable output offset ranging from —10V to +10V (MC200) and 0 to 100% duty
cycle (MC210).

Moving an Axis

Once the servo is tuned, the axis is ready to perform velocity profile moves. The demo programs
(Cwdemo is shown below) allow the user to execute absolute, relative, and cycle move sequences,
monitor position and status of the axis. By selecting Configure Axis from the Setup menu the user
can; set velocity parameters (maximum velocity, acceleration, and deceleration), set velocity profile
(Trapezoidal, S curve, or Parabolic), and enable motion limits.

Motion Control API 'C* Sample Axis 1 - MC200 Advanced DC Servo Module [analog output]
Setup Help ~Motian Position ~Ral

Acceleration ’V Current Pos. [1249.000000 © Low

Achual Position 1249 On O Errar ° Deceleration ITUUUUU.UUUUUU erd Linits * Med

) : Max. elncity [100000.000000 ; High

. - Tra Lim + ™+ Limit Enable
Uptimal Position 1250 0 © Max, Torque [10.000000 -
Dir- @ Lim - @ I™ - Limit Enable | Prafie
T arget Position 1250 Home @ Arp @ PIDFiter————— Livit Made l—_lm = ¥ Trapezoid
Proportional Gain |0.177000 € 5-Curve
Following Ermar _ Index @ | | Phase @ Integral Gain [0.000000 - Seft Limite | Pl
Iteqration Limit [5.000000 I+ Linit Enaie "
[~ Misc
Dist l—1 50 Derivative Gain [0 720000 Lirit 0.000000
Iztance -
Deiiv. Sampling [0.000500 I™" - Limit Enable I~ fnp Fault
" Absolte @ Relative ¢ Cycle Fellowing Errar [0.000000 Limic |0.000000 B i i
Velacity Gain [0.000000 LinitMode [0f =]
Az Number IAxis 1 'l |
oK Cancel |

By turning on the Trajectory Generator while in the Servo Tuning Ultility, its plotting capabilities can be
used to display the performance of the axis during a velocity profile move. In this mode two sets of

DCX-AT200 User’s Manual 85

Motion Control

points are plotted. The yellow trace is the optimal position (as calculated by the DCX), the green trace
is the actual position of the axis. The difference between the two plots is the following error.

E Servo Tuning

Position 8000

hlotor
o on | of |
Trajectory Generator
o o | _of |
Test
otep Plus | step h-'1inL|5|
Clear | faro |
F I O
al -] -]
[
|

59% 1% 12%

70

M[=] E3

140 210 280 350 420 490 G560 630 700

86

Precision MicroControl

Motion Control

DCX Stepper Basics

The DCX motion control system supports both open loop and closed loop stepper motion.

Open Loop Stepper Motion
As long as the performance of the selected stepper motor matches the applications requirements for:

Torque vs. load

Maximum velocity

Step size/positioning resolution
Required rate of change

the motion control system will not require position or velocity feedback to accurately position an axis.
Commanding motion of a motor with no position or velocity feedback is known as 'Open Loop'. To
successfully complete the commanded move, the DCX controller counts each step pulse issued to the
stepper motor driver. When the position of an axis is queried (by issuing the function MCGetPosition
() or MCCL Tell Position (aTP) command), the number of pulses issued to the stepper driver is
reported. Since there is no position (or velocity) feedback there is no need to 'tune' the axis. However,
the axis module must be configured (Trajectory parameters, Velocity Profile, Limits etc...). Please
refer to the following stepper setup dialog:

Axiz 1 - MC260 Advanced Stepper Module E
— Mation — Position
Acceleration |1 00000000000 Current |D-DE"JDDD
Dieceleration 100000000000 —
Define the velocity parameters — FEEiEE "f-'n I —Hard Limits—————————
b am. Welocity |125|JEIEI.DEIDDDD o
fin. elocity |25EI.EIEIEIDEIEI -
Set the Step range: ¥ - Limit Enable
Ll:lw_= 15 - 19.5K stepsisec. —Rate Limit Made [tap -
Medium = 125 - 156K steps/sec. — |~ | g & Med " High
High=" 1K - 1M stepsisec. it Linite — Define the Limit Mode
— Profile + Lini Enabi
+ Limit Enable
¥ Trapezoid -
Define the velocity profile 5Cuve Limi: [11030000
 Parabola ™ - Limit Enable
Lirnit IEI.EIEIEIDEIEI
— Mizcellaneous -
¥ HalfStep W Low Cumrent Limit Mode ID” j‘

OF. | Cancel |

The default value is 1,000 steps per second. The recommended setting

ﬂ The minimum velocity of a stepper axis must be set to a non zero value.
of the minimum velocity is from 1% to 10% of the maximum velocity.

DCX-AT200 User’s Manual 87

Motion Control

Closed Loop Steppers

The advancements in stepper motor/micro stepping driver technology have allowed many machine
builders to maintain ‘servo like’ performance while reducing costs by moving to closed loop stepper
systems. While closed loop steppers are still be susceptible to ‘stalling’, they are not plagued with the
familiar open loop stepper system problem of loosing steps due to encountering friction (mechanical
binding) or system resonance.

For high accuracy stepper applications, the DCX supports closed loop control of stepper motors using
quadrature incremental encoders for position feedback. The stepper axis will be controlled as if it is a

closed loop servo, the quantity and frequency of step pulses applied to the stepper driver is based on

the trajectory parameters of the move and the position error of the axis. Prior to addressing the closed
loop operation, the stepper axis must be installed and configured as described in the previous section
(Open Loop Stepper Motion).

Connect the stepper's encoder to the module, the DCX should report the position of the encoder each
time the report the position of the Auxiliary encoder (AT) command is issued. If the encoder is
manually turned in either direction, the position reported should increment or decrement accordingly.

[winControl32 M=l E3

File Edit Help
O & & R -l e

Tell the position of axis #1

Rotate the shaft of the motor / encoder, verify that
the reported position changed accordingly

Rotate the shaft of the motor / encdoer, verify that
the reported position changed accordingly

The current release of the Motion Control API (2.20.0000) does not
provide high level function calls for configuring the DCX controller for
closed loop stepper motion.

ﬂ Any of the MCCL commands used in the following description can be
issued to the controller via the MCAPI OEM low level function calls
pmccmdex() and pmcrpyex().

Future releases of the MCAPI will resolve this lack of support.

88 Precision MicroControl

Motion Control

To enable Closed loop stepper mode issue the Input Mode (alMn) command with parameter n equal
to 1. The MCAPI functions MCGetPosition() and MCGetAuxEncPosEx() will now report the same
value, which is the number of encoder counts decoded by the DCX since the axis was last homed.

Configuring an axis for closed loop stepper motion requires the user to define the velocity gain of the
axis. The algorithm for calculating the velocity gain of a closed loop stepper axis:

Step motor pulses per rotation

Closed loop Velocity Gain = MC260 Calibration Constant X
Encoder counts per rotation

The MC260 calibration constant is a value generated by self test diagnostics upon power/reset. This
calibration value is defined as the default velocity gain of the axis and can be retrieved using the
MCGetFilterConfig() function.

Closed loop stepper example

An incremental encoder coupled to the shaft of a stepper motor. The encoder has 4000 counts per
rotation (1000 lines). The stepper motor is connected to a micro stepping driver configured for 50,000
steps per motor rotation. The required maximum step rate of the axis is 625,000 or (750 RPM). This
step rate requires the axis to be configured for High Speed step range using the function
MCSetMotionConfig(). After the step rate range is defined, the calibration constant is retrieved using
the Tell Konstant (aTKn) command:

1HS
1TK.3 ;report the calibration constant of
;axis #1

the controller responds with the value:

01 0.746

The Velocity Gain is calculated as follows:

Step motor pulses per rotation

Closed loop Velocity Gain = MC260 Calibration Constant X

Encoder counts per rotation

50,000
Closed loop Velocity Gain = 0.746 X

4,000
Closed loop Velocity Gain = 0.746 X 12.5
Closed loop Velocity Gain = 9.325

Filter.VelocityGain = 9.325

For some closed loop stepper applications, setting the velocity gain of the axis is the only ‘tuning’ the
axis will require. Most applications will require that the proportional gain be used to:

Minimize the following error while moving

DCX-AT200 User’s Manual 89

Motion Control

Eliminate slow speed slewing of the axis near the end of the move.

Currently there are no MCAPI software utilities available for tuning the proportional gain of a closed
loop servo. The following MCCL command sequences is used to determine the correct setting for
proportional gain (MCSetGain()).

1SG1 ;set the proportional gain to a
;minimum value
1MR100000 ;execute a 2 second move

WA.5,1TF,WA.25,1TF,WA.25,1TF,WA.25,1TF ;report the following error

01 -62 ;reported following error @ time .5 sec
01 -195 ;reported following error @ time .75 sec
01 -369 ;reported following error @ time 1.0 sec
01 -542 ;reported following error @ time 1.25 sec

increase the proportional gain until the following error value stops increasing

1SG10 ;increase proportional gain to 10

01 -57 ;reported following error @ time .5 sec
01 -168 ;reported following error @ time .75 sec
01 -287 ;reported following error @ time 1.0 sec
01 -375 ;reported following error @ time 1.25 sec
1SG50 ;increase proportional gain to 50

01 -39 ;reported following error @ time .5 sec
01 -86 ;reported following error @ time .75 sec
01 -117 ;reported following error @ time 1.0 sec
01 -124 ;reported following error @ time 1.25 sec
1SG100 ;increase proportional gain to 50

01 -24 ;reported following error @ time .5 sec
01 -55 ;reported following error @ time .75 sec
01 -62 ;reported following error @ time 1.0 sec
01 -62 ;reported following error @ time 1.25 sec

A proportional gain setting of 100 will result in acceptable stepper performance. The following
command sequence will configure and operate stepper axis number one in closed loop mode:

1HS ;Select Stepper speed range

1TK.3 ;Report the current calibrated
;jvelocity gain

01 0.746 ;Controller will report the MC260
jcalibrated gain

1VG9.25 ;Set the velocity gain (1VG9.25)

;Multiply the calibrated gain by the
;ratio of step pulses per rotation to
;encoder counts per rotation.

1IM1 ;Enable closed loop stepper mode
1AH ;Zero the position of the encoder

90 Precision MicroControl

Motion Control

1MN

1s8v75000,1SA100000,1DS100000

1MV200

1SE500

18G100,18SD0,1SI0

1MR200000

;Turn on the axis. The target and optimal
;positions will be initialized to the current
;position of the encoder.

;Set maximum velocity, acceleration, and
;deceleration in units of encoder counts
;Set the minimum velocity so the motor
;reaches the target position with some
;non-zero velocity. Typically between 5% -
;10% of the maximum velocity.

;Warning: The minimum velocity must be less
;than the maximum velocity.

;Set the allowable maximum following error
;in encoder counts.

;Set the proportional gain, derivative gain,
;integral gain, and integration limit for
;best motor speed stability.

;Issue moves in units of encoder counts.
;Watch the axis error LED's on the DCX
;motherboard for indication a motor
;error which can be caused by the axis
;exceeding the maximum following error
;or being reversed phased.

Be aware that if the stepper is reverse phased, issuing a move command will cause the motor to 'take
off' in the wrong direction at full torque or speed. In this case, once the position error exceeds the
value entered using the Stop on Error command (default = 1024) a motor error will occur and the axis
will stop. If this happens, the phasing can be changed by issuing the PHase (aPHn) command to the
axis with a parameter of 1, or reverse the encoder phase A and B connections to the MC360 module.
If the motor is properly phased, it should resist movement away from its current position.

When the MCWaitForStop() function is issued to a closed loop stepper,
ﬂ additional MCAPI function execution will be delayed until the motor has
reached the target position of the move.

DCX-AT200 User’s Manual

91

Motion Control

Moving Motors with PMC demo’s

After defining the step output mode and the step range the axis is ready to execute motion. The demo
programs (CWDemo32 is shown below) allow the user to execute absolute, relative, and cycle move
sequences, monitor position and status of the axis. By selecting Configure Axis from the Setup
menu the user can; set velocity parameters (maximum velocity, acceleration, and deceleration), set

velocity profile (Trapezoidal, S curve, or Parabolic), and enable motion limits.

Moton Control APIC Somple S|
setup Help Axis 1 - MC260 Advanced Stepper Module
Actual Fosition m On O Errar & | Matien | Festien
; i Acceleration IM Current |-5700.000000
Optimal Position m Tra © Lim + @ .
Dir- O Lim - © Deceleration |1 0000, coaaad Hard Limits
Target Pozition m Home @ Amp © b ax. Welacity Im W - L Ereke
Following Enor n Index @ Phasze Min. Yelocity |1 00.000000 |- LinitEnatis
faget [5100 on | on | ‘F‘;fELDW et Limit Mode [0 ~
* Absolute © Fielative € Cycle Move + | Mo - | : — Soft Limits
Stop | Abort | P F'mfller- : [+ Limit Enable
+ Trapezaid
Bz Number Im Hars | Zero | 5o Lo IW
¢ Parabola ™ - Limit Enable
Limit [0.000000
— Miscellaneous
W HalfStep ™ Lows Curent Limit ode II:”f jv

DKl

Cancel |

92

Precision MicroControl

Motion Control

Defining the Characteristics of a Move

Prior to executing any move, the user should define the parameters of the move. The components
that make up a move are:

// Set axis 1 maximum velocity

// Set axis 1 acceleration

// Set axis 1 deceleration

// Set profile as Trapezoidal

// Set Position mode

// Set target (10000), begin move

MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 100000.0);
MCSetVelocity(hCtlr, 1, 100000.0);

MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOID) ;
MCSetOperatingMode (hCtlr, 1, 0, MC_MODE_ POSITION) ;
MCMoveRelative (hCtlr, 1, 100000.0);

The parameters defined in the program example above specify a move to position 100,000. During
the move the velocity will not exceed 10,000 encoder counts per second. A trapezoidal velocity profile
will be calculated by the DCX. The rate of change (acceleration and deceleration) will be 100,000
encoder counts per second/per second, there by reaching the maximum velocity (10,000 counts per
second) in 100 msec’s. The resulting velocity and acceleration profiles follow:

Velocity
(encoder counts per second)

10000

7500

5000

2500

100 200 300 400 500 600 700 800 900 1000

Time (msec's)

DCX-AT200 User’s Manual 93

Motion Control

Acceleration / Deceleration
(encoder counts per sec / sec)

100000

Time (msec's)

100000

Velocity Profiles

The user can select one of three different velocity profiles that the DCX will then use to calculate the
trajectory of a move.

DCX Velocity Profiles

Max. Velocity
10,000 counts / sec.

Time Time Time

Trapezoidal Profile Parabolic Profile S curve Profile

DCX Accel / Decel Profiles

Accel
100,000 counts
sec. / sec.

Decel
100,000 counts
sec. / sec.

Trapezoidal Profile Parabolic Profile S curve Profile

94 Precision MicroControl

Motion Control

Trapezoidal Profile — (servo & steppers) McSetProfile(hCtlr, 1, MC PROF_TRAPEZOID) ;
Shortest time to target when using the same trajectory parameters
Profile most likely to result ‘jerk’ and/or oscillation
Supports ‘on the fly’ target changes

Parabolic Profile — (stepper only) MCSetProfile (hCtlr, 1, MC_PROF_PARABOLIC) ;
Slow ‘roll off’ minimizes lost steps at high velocity
Initial linear rate of change eliminates ‘cogging’
On the fly changes will cause the axis to first decelerate to a stop

S curve Profile — (servo only) MCSetProfile(hCtlr, 1, MC PROF_SCURVE) ;
‘True sine’ rate of change effectively eliminates ‘jerk’ and/or oscillation
Longest time to target when using the same trajectory parameters
On the fly changes will cause the axis to first decelerate to a stop

Point to Point Motion

To perform point to point motion of a servo or stepper motor, the following steps are required:

// Enable the axis

// Enable Position mode

// Define the velocity profile (trapezoidal, S curve, or parabolic)
// define maximum velocity

// define acceleration

// define deceleration

// execute the move

MCEnableAxis (hCtlr, 1, TRUE) ;

MCSetOperatingMode (hCtlr, 1, 0, MC_MODE POSITION) ;
MCSetProfile(hCtlr, 1, MC_ PROF_ TRAPEZOIDAL) ;
MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 25000.0);
MCSetDeceleration(hCtlr, 1, 50000.0);
MCMoveRelative (hCtlr, 1, 122.5);

Constant Velocity Motion

To move a servo or stepper at a continuous velocity until commanded to stop:
// Enable the axis
// Enable Velocity mode
// Define the velocity profile (trapezoidal, S curve, or parabolic)
// define maximum velocity
// define acceleration
// define deceleration
// define the direction (positive or negative) of the move
// begin motion of axis 1
// wait for digital I/O #4 to be true
// reduce velocity
// wait for digital I/O #2 to be true
// stop the motion of axis 1

DCX-AT200 User’s Manual

95

Motion Control

MCEnableAxis(hCtlr, 1, TRUE);
MCSetOperatingMode (hCtlr, 1, 0, MC_MODE_VELOCITY) ;
MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOIDAL) ;
MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 100000.0);
MCSetDeceleration(hCtlr, 1, 100000.0);
MCSetDirection(hCtlr, 1, POSITIVE) ;

MCGo (hCtlr, 3);

MCWait For DigitalIO(hCtlr, 4, TRUE);
MCSetVelocity(hCtlr, 1, 5000.0);

MCWait For DigitalIO(hCtlr, 2, TRUE);
MCStop(hCtlr, 1);

Velocity
(encoder counts per seconds)

10000

7500

5000

2500

- —— e et

1 2 3 4 5 6

Time in seconds
= e - Digital input #4 'turned on"

Digital input #2 'turned on"

Contour Motion (arcs and lines)

The DCX supports Linear Interpolated motion with any combination of two to six axes and Circular
Contouring on as many as three groups of two axes. Executing a multi axis contour move requires:

Turn the axes on

Define the axes in the contour group and the controlling axis

Define the trajectory (Vector Velocity, Vector Acceleration and Vector Deceleration)
Define the type of contour move (Linear, Circular, user defined) and the move targets
Loading the Contour Buffer for Continuous Path Contouring

Defining the contour group

The MCSetOperatingMode() command is used to define the axes in a contour group. Issue this
command to each of the axes in the contour group. The parameter wMaster should be set to the
lowest axis number of the servo or stepper motor that will be moving on the contour. This axis will
then be defined as the 'controlling' axis for the contour group. The following example configures axis
1, 2, and 3 for contour motion with axis #1 defined as the controlling axis.

96 Precision MicroControl

Motion Control

MCSetOperatingMode (hCtlr, 1, 1, MC_MODE_CONTOUR) ;
MCSetOperatingMode (hCtlr, 2, 1, MC_MODE_CONTOUR) ;
MCSetOperatingMode (hCtlr, 3, 1, MC_MODE_ CONTOUR) ;

Define the trajectory parameters

The MCGetContourConfig(), MCSetContourConfig(), and MCContour data structure are used to
define the trajectory parameters of a contour motion. The default units of the vector velocity are
encoder counts or steps per second. The default units of vector acceleration and vector deceleration
are encoder counts or steps per second per second. The default units of velocity override is a
percentage the setting for vector velocity.

// Motion settings (GetDlgItemDouble() is a helper function defined
// elsewhere)

//

case IDOK:
MCGetContourConfig(hCtrlr, iAxis, &Motion);
Contour.Vector.Accel = GetDlgItemDouble(hDlg, IDC TXT ACCEL);
Contour.VectorDecel = GetDlgItemDouble(hDlg, IDC_TXT DECEL) ;
Contour.VectorVelocity = GetDlgItemDouble(hDlg, IDC TXT VELOCITY) ;
Contour.VelocityOverride = GetDlgItemDouble(hDlg, IDC_TXT MAX TORQUE) ;

MCSetContourConfig(hCtrlr, iAxis, &Motion);

Define the type of contour move
The nMode parameter of the MCBlockBegin() function is used to define the type of contour move to
be executed. The following types of contour motion are supported:

nMode parameter Contour move type

MC_BLOCK_CONTR_USER | User defined, 1 to 6 axes | Specifies that this block is a user
defined contour path motion. INum
should be set to the controlling axis

number.
MC_BLOCK_CONTR_LIN Linear interpolated move, | Specifies that this block is a linear
1to 6 axes contour path motion. INum should be
set to the controlling axis number.
MC_BLOCK_CONTR_CW Clockwise arc, 2 axes Specifies that this block is a clockwise

arc contour path motion. INum should be
set to the controlling axis number.
MC_BLOCK_CONTR_CCW Counter Clockwise arc, 2 | Specifies that this block is a counter-
axes clockwise arc contour path motion. INum
should be set to the controlling axis
number.

Examples of a linear move and a clockwise arc follow:

DCX-AT200 User’s Manual 97

Motion Control

// Linear move

//

MCBlockBegin(hCtlr, MC BLOCK CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 10000.0);
MCMoveAbsolute(hCtlr, 2, 20000.0);
MCMoveRelative (hCtlr, 3, -5000.0);

MCBlockEnd(hCtlr, NULL) ;

// Clockwise arc move

//

MCBlockBegin(hCtlr, MC BLOCK CONTR _CW, 1);
MCArcCenter (hCtlr, 1, MC_CENTER ABS, 20000.0);
MCArcCenter (hCtlr, 2, MC_CENTER _ABS, 0.0) ;
MCMoveAbsolute(hCtlr, 1, 40000.0);
MCMoveAbsolute(hCtlr, 2, 0.0);

MCBlockEnd (hCtlr, NULL) ;

Loading the Contour Buffer for Continuous Path Contouring

The DCX Contour Buffer is used to support Continuous Path Contouring. When a single contour move
is executed, the axes will decelerate (at the specified vector velocity) and stop at the target. If multiple
contour move commands are issued, the contour buffer allows moves to smoothly transition from one
to the other. The vector motion will not decelerate and stop until the contour buffer is empty or an
error condition (max following error exceeded, limit sensor ‘trip’, etc...) occurs.

When axis 1 is the controlling axis, up to 256 linear or 128 arc motions (an arc move takes up twice as
much buffer space) can be queued up in the Contouring Buffer. If one of the other five axes is the
controlling axis, only 16 motions can be queued up. The MCGetContouringCount() command will
report how many contour moves have been executed since the axes were last configured for contour
motion with MCSetOperatingMode(). The contouring count is stored as a 32 bit value, which means
that 2,147,483,647 contour moves can be executed before the contour count will ‘roll over’.

To delay starting contour motion until the contour buffer has been loaded use the MCEnableSynch()
command. This command should be issued to the controlling axis before issuing any contour moves.
Moves issued after the MCEnableSynch() command will be queued into the contour buffer. To begin
executing the moves in the buffer, issue the MCGoEx() command to the controlling axis . To return to
normal operation (immediate execution of contour move commands), issue MCEnableSynch() to
the controlling axis with the state = FALSE.

Multi Axis Linear Interpolated moves

An example of three linear interpolated moves is shown below. Once the first compound move
command is issued, motion of the three axes will start immediately (at the specified vector velocity).
The other two compound commands are queued into the contouring buffer. As long as additional
contour moves reside in the contour buffer continuous path contour motion will occur. In this example,
smooth vector motion will continue (without stopping) until all three linear moves have been
completed (the contour buffer has been emptied). At this time the axes will simultaneously decelerate
and stop.

MCSetOperatingMode (hCtlr, 1, 1, MC_MODE_ CONTOUR) ;
MCSetOperatingMode (hCtlr, 2, 1, MC_MODE CONTOUR) ;
MCSetOperatingMode (hCtlr, 3, 1, MC_MODE_CONTOUR) ;

98 Precision MicroControl

Motion Control

// Motion settings (GetDlgItemDouble() is a helper function defined
// elsewhere)

//

case IDOK:
MCGetContourConfig(hCtrlr, iAxis, &Motion);
Contour.Vector.Accel = GetDlgItemDouble(hDlg, IDC_TXT ACCEL) ;
Contour.VectorDecel = GetDlgItemDouble(hDlg, IDC TXT DECEL) ;
Contour.VectorVelocity = GetDlgItemDouble(hDlg, IDC_TXT VELOCITY) ;
Contour.VelocityOverride = GetDlgItemDouble(hDlg, IDC TXT MAX TORQUE) ;

MCSetContourConfig(hCtrlr, iAxis, &Motion);

// Linear move #1

//

MCBlockBegin(hCtlr, MC BLOCK CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 85000.0);
MCMoveRelative (hCtlr, 2, 12000.0);
MCMoveAbsolute (hCtlr, 3, -33000.0);

MCBlockEnd(hCtlr, NULL) ;

// Linear move #2

//

MCBlockBegin(hCtlr, MC BLOCK CONTR_LIN, 1) ;
MCMoveAbsolute (hCtlr, 1, 0.0);
MCMoveAbsolute (hCtlr, 2, 0.0);
MCMoveAbsolute(hCtlr, 3, 0.0);

MCBlockEnd(hCtlr, NULL) ;

// Linear move #3

//

MCBlockBegin(hCtlr, MC BLOCK CONTR_LIN, 1);
MCMoveAbsolute (hCtlr, 1, 5000.0);
MCMoveRelative (hCtlr, 2, 23000.0);
MCMoveAbsolute (hCtlr, 3, -16000.0);

MCBlockEnd (hCtlr, NULL) ;

Arc Motion
The DCX supports specifying an arc motion in two axes in any of three different ways:

Specify center and end point
Specify radius and end point (not supported by MCAPI)
Specify center and ending angle (not supported by MCAPI)

When the first arc motion is issued, motion of the two axes will start immediately (at the specified
vector velocity). Additional contour motions will be queued into the contouring buffer. As long as
additional contour moves reside in the contour buffer continuous path contour motion will occur. In this
example, smooth vector motion will continue (without stopping) until all both arc motions have been
completed (the contour buffer has been emptied). At this time the axes will simultaneously decelerate
and stop.

Arc motions by specifying the center point and end point

The MCArcEnter() command is used to specify the center position of the arc. This command also
defines which two axes will perform the arc motion. The MCMoveAbsolute() or MCMoveRelative()
commands are used to specify the end point of the arc. A spiral motion will be performed if the

DCX-AT200 User’s Manual 99

Motion Control

distance from the starting point to center point is different than the distance from the center point to
end point. An example of two arc motions is shown below:

MCSetOperatingMode (hCtlr, 1, 1, MC_MODE_CONTOUR) ;

MCSetOperatingMode (hCtlr, 2, 1, MC_MODE_ CONTOUR) ;

MCSetOperatingMode (hCtlr, 3, 1, MC_MODE_CONTOUR) ;

// Motion settings (GetDlgItemDouble() is a helper function defined

// elsewhere)

//

case IDOK:
MCGetContourConfig(hCtrlr, iAxis, &Motion);
Contour.Vector.Accel = GetDlgItemDouble(hDlg, IDC_TXT ACCEL) ;
Contour.VectorDecel = GetDlgItemDouble(hDlg, IDC TXT DECEL) ;
Contour.VectorVelocity = GetDlgItemDouble(hDlg, IDC_TXT VELOCITY) ;
Contour.VelocityOverride = GetDlgItemDouble(hDlg, IDC TXT MAX TORQUE) ;
MCSetContourConfig(hCtrlr, iAxis, &Motion);

// Clockwise arc move #1

//

MCBlockBegin(hCtlr, MC BLOCK CONTR CW, 1);

MCArcCenter (hCtlr, 1, MC_CENTER _ABS, 10000.0) ;
MCArcCenter (hCtlr, 2, MC_CENTER ABS, 0.0);
MCMoveAbsolute (hCtlr, 1, 20000.0);
MCMoveAbsolute(hCtlr, 2, 0.0);

MCBlockEnd (hCtlr, NULL) ;

// Clockwise arc move #2

//

MCBlockBegin(hCtlr, MC BLOCK CONTR _CCW, 1);
MCArcCenter (hCtlr, 1, MC_CENTER REL, -10000.0) ;
MCArcCenter (hCtlr, 2, MC_CENTER REL, 0.0);
MCMoveRelative (hCtlr, 1, -20000.0);
MCMoveRelative (hCtlr, 2, 0.0);

MCBlockEnd (hCtlr, NULL) ;

Arc motions by specifying the radius and end point

The define the Radius of an arc (aRRn) command is used to execute an arc move by specifying the
radius of an arc. The axis specifier a should be the controlling axis for the contour move. The
parameter n should equal the radius of the arc. If the arc is greater than 180 degrees, the parameter

must be expressed as a negative number.

1CM1, 2CM1
1CP2,1MR10000,2MR10000,1RR10000
1CpP2,1MR-10000,2MR-10000,1RR-10000

;define axis 1 as controlling axis
;90° radius = 10000
;270° degree arc, radius = 10000,
;jnegative radius parameter indicates

clockwise arc,

;arc greater than 180°

100

Precision MicroControl

Motion Control

Y End point of
first arc
10,000
=
N
Radius = 10,000
—4 00— X
Starting 10,000
point
v
[\
L
<
-10,000 S

1st move - 90 degree clockwise arc
2nd move - 270 degree clockwise arc

Arc motions by specifying the center point and ending angle

The define the Ending angle (absolute) of an arc (aEAn) and define the Ending angle (relative)
of an arc (aERn) commands can be used in conjunction with the define the Center (absolute) of an
arc (CA) and define the Center (relative) of an arc (CR) commands to execute an arc motion. When
using this method to specify an arc, the move absolute and move relative commands are not used.
The center point commands define the radius of the arc. The ending arc angle commands define the
end point of the arc as an angle relative to the X axis.

1CP2,1CA10000,2CA0, 1EAQ ;Clockwise arc motion in X & Y
1CP2,1CR-10000,2CR0O, 1ER180 ;Clockwise arc motion in X & Y

DCX-AT200 User’s Manual 101

Motion Control

Y
(90 degrees) End point of
first arc

10,000

L x

N
(180 degrees) \ Starting 10,000 (0 degrees)
point
N y
- L
\
-10,000 e
270 d-;(grees) 1st move - 180 degree clockwise arc

2nd move - 180 degree clockwise arc

Changing the velocity ‘on the fly’

‘On the fly’ velocity changes during contour mode motion are accomplished by using the
VelocityOverride member of the MCContour data structure. Issue the command (to the controlling
axis) to scale the vector velocity of a linear or arc motion. The rate of change is defined by the current
settings for vector acceleration and vector deceleration.

Changing the velocity of a contour group using Velocity Override
0 is not supported for S-curve and/or Parabolic velocity profiles.

Cubic Spline Interpolation of linear moves

To have the DCX perform ‘curve fitting’ (cubic spline interpolation) on a series of linear moves, issue
the MCEnableSynch() command to the controlling axis. Next issue linear contour path commands to
points on the curve. After loading the desired number of into the contour buffer, issue a MCGOEX()
command with the value Param set to 1. Motion will continue from the first to the last point in the
contour buffer. To return to normal operation, issue the MCEnableSynch() command with parameter
pState = FALSE.

Note that when performing cubic spline interpolation, only 128 motions
can be queued up if axis 1 is the controlling axis. If the controlling axis
is not axis one, only 16 motions can be queued up in the controller.

102 Precision MicroControl

Motion Control

User Defined Contour path

For applications where orthogonal geometry is not applicable, the DCX allows the user to define a
custom contour distance. In a typical X, Y, and Z axis linear move, the DCX controller will calculate
the total length of the contour distance as follows:

Beginning position: X=0, Y=0, Z=0
Target position: X=10,000, Y=10,000, Z=1000

Calculated Contour distance = V(X + Y2 + Z?)
=+(10,000% + 10,000% + 57)
=+/(100,000,000 + 100,000,000 + 1,000,000)
=+/201,000,000
= 14177 .44

The DCX would then use the settings for vector velocity, vector acceleration, and vector deceleration
to calculate the trajectory of the move. When a User Defined Contour Path is selected
(MCBIlockBegin with parameter nMode set to MC_BLOCK_CONTR_USER), the
MCContourDistance() command is used to enter the non-orthogonal contour distance.

Special case: setting the Maximum Velocity of an Axis

When executing simple point to point or velocity mode motions the maximum velocity of each axis is
set individually. When executing multi axis contour moves, the maximum velocity is typically
expressed as the velocity of the ‘end effector’ of the contour group. In a cutting application the ‘end
effector’ would be the tool doing the cutting (torch, laser, knife, etc...). Setting the maximum velocity of
an axis in the contoured group is not typically supported.

By combining a user define contour path (MCBlockBegin with parameter nMode set to
MC_BLOCK_CONTR_USER) with the MCContourDistance() command with parameter Distance =
0, the user can execute multi axis contour moves and limit the maximum velocity of an individual axis.
In this mode of operation the MCVectorVelocity() command is not used to set the velocity of the
contour group. The axis with the longest move time will define the total time for the contour move. For
moves of sufficient distance where the axis has enough time to fully accelerate, this one axis will
move at its preset maximum velocity. All other axes will move at velocities lower than their specified
maximum. The velocity profiles of the other axes in the contour group will be set such that all axes
start and stop at the same time. In the following example, axes one and two are commanded to move
the same distance but the maximum velocity for axis two is 1/3 that of axis one. Since both axes are
moving the same distance, they will also travel at matching velocities.

MCSetVelocity(hCtlr, 1, 300.0);
MCSetAcceleration(hCtlr, 1, 1000.0);
MCSetDeceleration(hCtlr, 1, 1000.0);

MCSetVelocity(hCtlr, 2, 100.0);

MCSetAcceleration(hCtlr, 2, 1000.0);
MCSetDeceleration(hCtlr, 2, 1000.0);

MCSetOperatingMode (hCtlr, 1, 1, MC_MODE CONTOUR) ;
MCSetOperatingMode (hCtlr, 2, 1, MC_MODE_CONTOUR) ;

MCContourdistance(hCtlr, 1, 0.0);

DCX-AT200 User’s Manual 103

Motion Control

MCBlockBegin(hCtlr, MC BLOCK CONTR_USER, 1);
MCMoveAbsolute(hCtlr, 1, 1000.0);
MCMoveRelative (hCtlr, 2, 1000.0);

MCBlockEnd (hCtlr, NULL) ;

If the commanded move distance of axis one was 2000 counts it would move at a higher velocity than
axis two, but it would not reach its maximum velocity as set by the MCSetVelocity() command.

Electronic Gearing

The DCX supports slaving any axis or axes to a master. Moving the master axis will cause the slave
to move based on the specified slave ratio. The optimal position of the slave axis is calculated by
multiplying the optimal position of the master by the gearing ratio of the slave. The slave's optimal
position is maintained proportional to the master's position. This can be used in applications where
multiple motors drive the same load. Gearing supports both servo and stepper axes, with the master
axis operating in jogging, position, velocity or contouring mode. If a following error or limit error occurs
on any of the geared axes (master or slaves) all axes in the geared group will stop.

Electronic gearing does not support S-curve or Parabolic velocity
< 5 profiles

The MCAPI function MCEnableGearing() configures and initiates gearing. The DCX supports ratios
(Ratio) ranging from —65535 to +65536. If the slave ratio is a positive value, a move in the positive
direction of the master will cause a move in the positive direction of the slave. If the slave ratio is a
negative value, a move in the positive direction of the master will cause a move in the negative
direction of the slave. The following program example configures axes 2, 3, and 4 as slaves of axis 1.

// Enable gearing of axis 2, 3, and 4

// Move axis 1 (master), slaves (axes 2, 3, and 4) will move at define ratio
MCEnableGearing(hCtlr, 2, 1, 0.5, TRUE);

MCEnableGearing(hCtlr, 3, 1, 12.87, TRUE) ;

MCEnableGearing(hCtlr, 4, 1, -125, TRUE);

MCMoveRelative (hCtlr, 1, 215.0);

// disable gearing

MCEnableGearing(hCtlr, 2, 1, 0.5, FALSE);
MCEnableGearing(hCtlr, 3, 1, 12.87, FALSE);
MCEnableGearing(hCtlr, 4, 1, -125, FALSE);

Note — if the slave axes are servo’s, the PID parameters for each axis
& must be defined prior to beginning master/slave operation.

Note — Changing the slave ratio ‘on the fly’ may cause the mechanical
& system to ‘jerk’ or the DCX to ‘error out’ (following error).

104 Precision MicroControl

Motion Control

Jogging

In some applications it may be necessary to have a means of manually positioning the motors. Since
the DCX is able to control the motion of servos and steppers with precision at both low and high
speeds, all that is required is a manual command input. A joystick provides such an input with natural
hand to motion coordination. It can be used for jogging both servo (DCX-MC200, DCX-MC210) and
stepper (DCX-MC260) motors on the DCX. The rest of this section describes how to implement
joystick control.

Typical joysticks have 2 potentiometers, one for each axis of motion. Each 'pot' of a joystick can be
connected to one servo or stepper module. Pots with a total resistance between 10K and 100K ohms
are suitable for use with the DCX motor modules. By connecting the end taps of one pot to pins 3
(+5V supply) and 4 (Ground) of a motor module's J4 connector, and the center tap to pin 1, the
module is able to read the pot's position.

Joystick

X axis

AN

A

>

Y axis

To test the connection of the joystick to a module's analog input, from WinControl use the Read Float
and Tell Register commands as in the following example:

1RV200, TR ;load the A/D reading of axis #1 into
;the accumulator, report the A/D value

The value that is reported by the Tell Register command is the voltage level at the module's analog
input in units of volts. With the joystick at its center position, the reading should be 2.5 VDC. Most
joysticks have centering adjustments to correct this reading if necessary. As the joystick is moved
from one extreme to the other, the analog input reading should range from 0 to +5.0.

Jogging on the DCX is implemented using the MCAPI Data Structure MCJOG. For additional
information on the MCAPI and Data Structures please refer to the MCAPI on-line help.

DCX-AT200 User’s Manual 105

Motion Control

When jogging is enabled on an axis of the DCX with the function MCEnableJog(), the readings from
the analog input, multiplied by the Jog.Gain setting , will cause the servo or stepper to move. Given
the desired maximum velocity when the joystick is pushed to the extreme, the appropriate Jog Gain
can be calculated by the following equation:

Jog Gain = Desired Velocity/2.5

For example, if the desired maximum velocity is 1000 counts per second, the Jog Gain should be set
to 1000/2.5 = 400.

During jogging, the servo or stepper will accelerate and decelerate at the rate specified using the data
structure member Jog.Acceleration. For closed loop servos, this value is typically set high to provide
quick response to the joystick. For stepper motors, the acceleration must be set to a value low enough
that the motor will not stall during acceleration. For stepper motors, the Jog.MinVelocity data
structure member will enhance the response of the motor to the joystick. This command will have no
effect on servo motors.

Jogging of the axes is enabled using the MCEnableJog data structure member. After calling this
function the axes will move with a velocity proportional to the amount the joystick is deviated from its
center position. To increase or decrease the maximum velocity, the Jog Gain can be adjusted up or
down at any time. Depressing the joystick in the opposite direction should cause the servo or stepper
to reverse direction. To change the direction that a servo or stepper moves in response to the joystick,
set the Jog Gain to a negative value.

Because of mechanical and electrical variations, the joystick reading may ‘bounce’. This will cause
undesirable drifting of the axes when the joystick is enabled. The Jog.Deadband data structure
member is used to define a voltage range that will not cause the axis to move. Any ‘signal bounce’
that falls within the range of the jog deadband setting will be ignored and no motion will occur. Any
voltage level that exceeds the dead band range, whether due to a change of position of the joystick or
signal noise, will cause the axes to move.

Most joysticks have adjustments for setting the center position/voltage. The DCX also has a
parameter for adjusting the center position of the joystick. The Jog.Offset data structure member can
be used to redefine the null (no motion) voltage level of a joystick. This value defaults to 2.5 volts.
Changing the Jog Offset to a different value will provide an increased velocity range in one direction,
but a reduced range in the opposite direction.

MCJOG Jog; // declare a JOG data structure
Jog.Gain = 400; // define the jog gain
Jog.Acceleration = 10000; // define the jog acceleration
Jog.MinVelocity = 150; // define the jog minimum velocity
Jog.Deadband = 0.20; // define a voltage dead band
Jog.Offset = 2.01JF; // define ‘null’ position as 2.0V
MCSetJogConfig (hCtlr, 1, &JOG) ; // set jog parameters
MCEnableJog (hCtlr, 1, TRUE) ; // start jogging

106 Precision MicroControl

Motion Control

Defining Motion Limits

The DCX Motion Controller implements two types of motion limits error checking. End of travel or
'Hard' limit switch/sensor inputs and 'soft' user programmable position limits.

Lead screw

Servo or stepper
motor

i

Negative Limit
sensor

Hard Limits

Positive Limit

sensor

The Limit + /- inputs of all MC2XX motion control modules default to TTL low true operation. When a
limit input signal is pulled low (> 0.7V), the DCX will indicate that the input is active. Use the Motion
Integrator Motion System Setup Test Panel to test the limit sensors, wiring, and MC2XX operation.

© Motion System Setup. Connect and Test Switches

File Help

AN

—&xiz 1 Stepper

) Home @) Coarse
2 Limit + {2 Error
D Limit - {2 Fhizse

_| Latch J Enable
I floweE: I

—Axiz 2 Servo
Q) Home O Amp Fault

() Limit + 1 8 Etrar

@ Limit - 4 @ Frioe
__|Lstch | Enable
n Hasiamn

Activate a Limit
sensorswitch and the
associated LED will turn
oh.

When limit error checking is enabled by the MCSetLimits() function, the
limit tripped flags (MC_STAT_PLIM_TRIP and MC_STAT_MLIM_TRIP)
indicate an error condition. For a normally closed limit switch, the
MC_LIMIT_INVERT parameter must be used to re-define the active level

of the limit circuit.

The limit LED’s of the Motion Integrator Test Panel display the current
state (MC_STAT_PLIM and MC_STAT_MLIM), not the ‘tripped’ flag
(MC_STAT_PLIM_TRIP and MC_STAT_MLIM_TRIP) of the limit inputs.
The Motion Integrator Test Panel will indicate that a normally closed limit
switch is active until the switch is opened.

DCX-AT200 User’s Manual

107

Motion Control

The DCX supports two levels of limit switch handling:

Auto axis disable
Simple monitoring

The MCAPI function MCSetLimits() allows the user to enable the Auto Axis Disable capability of the
DCX. This feature implements a hard coded operation that will stop motion of an axis when a limit
switch is active. This background operation requires no additional DCX processor time, and once
enabled, requires no intervention from the user’s application program. However it is recommended
that the user periodically check for a limit tripped error condition using the MCGetStatus(),
MCDecodeStatus() functions. The MCSetLimit() function provides the following limit flags:

MC LIMIT_PLUS Enables the Positive/High hard limit
MC_LIMIT_MINUS Enables the Negative/Low hard limit
MC_LIMIT_BOTH Enables the Positive and Negative hard limits
MC_LIMIT_OFF Turn off the axis when the hard limit input ‘goes’ active

MC_LIMIT_ABRUPT Stop the axis abruptly when the hard limit input goes active

MC_LIMIT_SMOOTH | Decelerate and stop the axis when the hard limit input goes active

MC_LIMIT_INVERT Invert the active level of the hard limit input to high true. Typically used
for normally closed limit sensors

When a limit event occurs, motion of that axis will stop and the error flags (MC_STAT_ERROR and
MC_STAT_PLIM_TRIP or MC_STAT_MLIM_TRIP) will remain set until the motor is turned back on
by MCEnable(). The axis must then be moved out of the limit region with a move command
(MCMoveAbsolute(), MCMoveRelative()).

// Set the both hard limits of axis 1 to stop smoothly when tripped, ignore
// soft limits:

//

MCSetLimits (hCtlr, 1, MC_LIMIT BOTH | MC LIMIT SMOOTH, 0, 0.0, 0.0);

// Set the positive hard limit of axis 2 to stop by turning the motor off.
// Because axis 2 uses normally closed limit switches we must also invert the
// polarity of the limit switch. Soft limits are ignored.

MCSetLimits (hCtlr, 2, MC_LIMIT PLUS | MC_LIMIT OFF | MC LIMIT INVERT, 0, 0.0,
0.0);

If the user does not want to use the Auto Axis Disable feature, the current state of the limit inputs can
be determined by polling the DCX using the MCGetStatus(), MCDecodeStatus() functions. The flag
for testing the state of the Limit + input is MC_STAT_INP_PLIM. The flag for testing the state of the
Limit - input is MC_STAT_INP_MLIM.

Soft Limits
Soft motion limits allow the user to define an area of travel that will cause a DCX error condition.
When enabled, if an axis is commanded to move to a position that is outside the range of motion

108 Precision MicroControl

Motion Control

defined by the MCSetLimit() function, an error condition is indicated and the axis will stop. The
MCSetLimit() function provides the following limit flags:

MC_LIMIT_PLUS Enables the High/Positive soft limit

MC_LIMIT_MINUS Enables the Low/Negative soft limit

MC _LIMIT BOTH Enables the High and Low soft limits

MC_LIMIT_OFF Turn off the axis when the hard limit input ‘goes’ active

MC_LIMIT_ABRUPT Stop the axis abruptly when the hard limit input goes active
MC_LIMIT_SMOOTH | Decelerate and stop the axis when the hard limit input goes active

When a soft limit error event occurs, the error flags (MC_STAT_ERROR and
MC_STAT_PSOFT_TRIP or MC_STAT_MSOFT_TRIP) will remain set until the motor is turned back
on by MCEnable(). The axis must then be moved back into the allowable motion region with a move
command (MCMoveAbsolute(), MCMoveRelative()).

// Assume axis 3 is a linear motion with 500 units of travel. Set the both
// hard limits of this axis to stop abruptly. Set up soft limits that will
// stop the motor smoothly 10 units from the end of travel (i.e. at 10

// and 490) .

MCSetLimits(hCtlr, 3, MC_LIMIT BOTH | MC_LIMIT ABRUPT, MC LIMIT BOTH |
MC_LIMIT SMOOTH, 10.0, 490.0);

Homing Axes

When power is applied or the DCX is reset, the current position of all servo and stepper axes are
initialized to zero. If they are subsequently moved, the controller will report their positions relative to
the position where they were last initialized. At any time the user can call the MCSetPosition()
function to re-define the position of an axis.

In most applications, there is some position/angle of the axis (or mechanical apparatus) that is
considered 'home'. Typical automated systems utilize electro-mechanical devices (switches and
sensors) to signal the controller when an axis has reached this position. The controller will then define
the current position of the axis to a value specified by the user. This procedure is called a homing
sequence. The DCX is not shipped from the factory programmed to perform a specific homing
operation. Instead, it has been designed to allow the user to define a custom homing sequence that is
specific to the system requirements. The DCX provides the user with two different options for homing
axes:

1) High level function calls using the MCAPI - Easy to program homing sequences using
MCAPI function calls.

2) MCCL Homing macro’s stored in on-board, non-volatile FLASH memory - When executed

as background tasks, MCCL homing macro’s allow the user to home multiple axes
simultaneously.

Verifying the operation of the Home Sensor

DCX-AT200 User’s Manual 109

Motion Control

Most motion applications will utilize a home sensor as a part of the homing sequence. Use Motion
Integrator’'s Connect Axis I/0O Wizard or Motion System Setup Test Panel to verify the proper
operation of the encoder index.

Connectiizisllf0Nizard < Motion System Setup, Connect and Test Encoders

Activate the signals and —Axis 1 Sero—— File Help

observe their status via the - =

indicatars at right. O Hame

Click Latch Events to cause : Wit Axis 1 Servo FAxis 2 Zervo

the indicators bo remain lit Lirnit - Home A Fault Home Ami Fautt

once the signals have been @ Amp Fault 0 ﬂ P ﬂ ﬂ @

active. Click Latch Events A .

Off#On ta clear and re-amn. _I Latch ﬂ Litmit + ﬂ EEtirar: ﬂ Limmit + ﬂ i

| Enable @ Limit - @) Fhizse @ Limit - @) Fhizse
_|Lstech |Enable _|Latch |Enable
I ffEwE | I [i[eji= |
< Back MNewt > | Cancel |

Verifying the operation of the Index Mark of an Encoder

Most servo applications will utilize the Index mark of the encoder to define the ‘home’ position of an
axis. Use Motion Integrator’s Connect Encoder Wizard to verify the proper operation of the encoder
index.

Connect Encoder Wizard Ed |

|ndex Test: Rotate encoder haft one complete
reseolution,

) Index Captured

|ndex Capture Position
m Current Position

Festart Test | Eipass |

Clizk Mest to continue.

¢ Back | Mewt = | Cancel

Homing a Rotary Stage (servo) with the Encoder Index

Many servo motor encoders generate an index pulse once per rotation. For a multi turn rotary stage,
where one rotation of the encoder equals one rotation of the stage, an index mark alone is sufficient
for homing the axis. When an axis need only be homed within 360 degrees no additional qualifying
sensors (coarse home) are required. The following MCAPI and MCCL command sequences will home
a multi turn rotary stage:

110 Precision MicroControl

Motion Control

// MCAPI rotary axis homing sequence

//

// Configure axis, start homing

//
MCSetOperatingMode (hCtlr, 1, 0, MC_MODE VELOCITY) ;

MCDirection(hCtlr, 1, MC DIR POSITIVE) ;
MCSetVelocity(hCtlr, 1, 5000.0);
MCGo (hCtlr, 3);

// Stop when index mark captured

//

MCFindIndex(hCtlr, 1, 0.0);
MCStop(hCtlr, 1);
MCWaitForStop(hCtlr, 1, 0.01);

// Move back to location of index mark

//
MCSetOperatingMode (hCtlr, 1, 0, MC_MODE_ POSITION) ;

MCEnableAxis(hCtlr, 1, TRUE)
MCMoveAbsolute (hCtlr, 1, 0.0
1

)
MCWaitForStop(hCtlr, 1, 0.01);

;MCCL homing sequence executed as a background task

GTO,1VM, 1DIO,1SV50000,1GO,1FI0O,1ST,1wWS.01,1PM, 1MN, 1MAO, 1WS.01

Homing a Servo Axis with Coarse Home and Encoder Index Inputs

A typical axis will incur multiple rotations of the motor/encoder over the full range of travel. This type of
system will typically utilize a coarse home sensor to qualify which of the index pulses is to be used to
home the axis. The Limit Switches (end of travel) provide a dual purpose:

1) Protect against damage of the mechanical components.
2) Provide a reference point during the initial move of the homing sequence

The following diagram depicts a typical linear stage.

Servo motor
and encoder

|

Lead screw

Negative Limit Coarse Home Positive Limit
sensor sensor sensor

When power is applied or the DCX is reset, the position of the stage is unknown. The following
MCAPI and MCCL homing samples will move the stage in the positive direction. If the coarse home
sensor ‘goes active’ before the positive limit sensor, the Find Index command will redefine the position
of the axis when the index mark is captured. If the positive limit sensor ‘goes active’, the stage will
change direction, until both the coarse home sensor and the encoder index are active, at which point
the position will be redefined.

DCX-AT200 User’s Manual 111

Motion Control

// MCAPI homing sequence (using positive limit, coarse home, and
// index mark)

//

// Enable limit switches, start velocity mode move

//

MCSetLimits(hCtlr, 1, MC_LIMIT SMOOTH | MC_LIMIT HIGH | MC_LIMIT LOW, 0, 0, O
)

MCSetOperatingMode (hCtlr, 1, 0, MC_MODE_ VELOCITY) ;
MCSetVelocity(hCtlr, 1, 10000.0);

MCDirection(hCtlr, 1, MC DIR POSITIVE) ;

MCGoEx(hCtlr, 1, 0.0));

//

// Wait for coarse home or positive limit inputs

dwStatus = MCGetStatus(hCtlr, 1);

while (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT INP HOME) ||
! MCDecodeStatus (hCtlr, dwStatus, MC_STAT PLIM TRIP)) {
dwStatus = MCGetStatus(hCtlr, 1);

// 1f positive limit switch active

//
dwStatus = MCGetStatus(hCtlr, 1);
if (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT PLIM TRIP)) {

MCEnableAxis(hCtlr, 1, TRUE);
MCDirection(hCtlr, 1, MC_DIR NEGATIVE) ;
MCSetVelocity(hCtlr, 1, 10000.0);
MCGoEx(hCtlr, 1, 0.0));

MCWaitForEdge (hCtlr, 1, TRUE) ;

MCStop(hCtlr, 1);

MCWaitForStop(hCtlr, 1, 0.1);

}

// Once within Coarse Home sensor range, reduce velocity
// Move until Coarse Home sensor is no longer active

//

MCDirection(hCtlr, 1, MC_DIR NEGATIVE) ;

MCSetVelocity(hCtlr, 1, 2000.0);

MCGoEx(hCtlr, 1, 0.0));

MCWaitForEdge (hCtlr, 1, FALSE);

MCStop(hCtlr, 1);

MCWaitForStop(hCtlr, 1, 0.1)

// When Coarse Home no longer is active, reduce velocity
// Move back towards until index mark is captured

//

MCDirection(hCtlr, 1, MC _DIR POSITIVE) ;

MCSetVelocity(hCtlr, 1, 1000.0);

MCGoEx(hCtlr, 1, 0.0));

MCWaitForEdge (hCtlr, 1, TRUE) ;

MCFindIndex(hCtlr, 1, 0.0);

MCStop(hCtlr, 1);

MCWaitForStop(hCtlr, 1, 0.1)

// Issue position mode move to location of index mark (position 0)
//

MCSetOperatingMode (hCtlr, 1, 0, MC_MODE POSITION) ;

MCEnableAxis(hCtlr, 1, TRUE);

MCMoveAbsolute(hCtlr, 1, 0.0);

MCWaitForStop(hCtlr, 1, 0.1);

112 Precision MicroControl

Motion Control

; MCCL homing sequence (using positive limit, coarse home, and index mark)

MD1,1LM2, 1LN3,MJ10 ;enable limits, call homing macro
MD10,1VM, 1SV10000,1DI0, 1GO, 1RL0O, IS25,MJ11,NO, IS17,MJ12,NO,JR-7
;start move, test for sensors (home
;and +1limit)
MD11,1ST,1wWwsS.01,1DI1,1GO,1WE1,1S8T,1Ws.1,1DI0,1G0O, 1WEO,1FI0,1ST,1WS.01,1PM, 1MN,

1MAO
;1f home sensor true, initialize on
;index pulse

MD12,1MN, 1DI1,1G0O,1WEO,MJ11 ;move negative until home true

An axis can be homed even if no index mark or coarse home sensor is
available. This method of homing utilizes one of the limit (end of travel)
sensors to also serve as a home reference. Please note that this method
is not recommended for applications that require high repeatability
and accuracy. To achieve the highest possible accuracy when using
this method, significantly reduce the velocity of the axis while polling for
the active state of the limit input.

The following MCAPI and MCCL sequences will home an axis at the position where the positive limit
sensor ‘goes active’:

// MCAPI homing sequence (using positive limit index mark)

//

// Enable limit switches, start velocity mode move

//

MCSetLimits(hCtlr, 1, MC_LIMIT SMOOTH | MC_LIMIT HIGH | MC_LIMIT LOW, 0, 0, O
) ;

MCSetOperatingMode (hCtlr, 1, 0, MC_MODE VELOCITY) ;

MCSetVelocity(hCtlr, 1, 10000.0);

MCDirection(hCtlr, 1, MC_DIR POSITIVE) ;

MCGoEx (hCtlr, 1, 0.0));

//

// Wait for positive limit inputs

dwStatus = MCGetStatus(hCtlr, 1);

while (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT PLIM TRIP)) {
dwStatus = MCGetStatus(hCtlr, 1);

}

// Once the positive limit switch is active, move negative until switch is inactive
//
MCEnableAxis(hCtlr, 1, TRUE);
MCDirection(hCtlr, 1, MC_DIR NEGATIVE) ;
MCSetVelocity(hCtlr, 1, 1000.0);
MCGoEx (hCtlr, 1, 0.0));
dwStatus = MCGetStatus(hCtlr, 1);
if (! MCDecodeStatus(hCtlr, dwStatus, MC STAT INP PLIM)) {
dwStatus = MCGetStatus(hCtlr, 1)
1

// Stop the axis and define the leading edge of the limit switch as position 0

//
MCAbort (hCtlr, 1);

DCX-AT200 User’s Manual 113

Motion Control

MCWaitForStop(hCtlr, 1, 0.1);
MCSetPosition(hCtlr, 1, O.) ;
MCSetOperatingMode (hCtlr, , 0, MC MODE POSITION) ;
MCEnableAxis(hCtlr, 1, TRUE);

MCMoveAbsolute(hCtlr, 1, -100.0);

o R

7

MD1,1LM2,1LN3,MJ10 ;call homing macro
MD10,1VM, 1DIO,1GO,1RL0O,IS17,MJ1l1l,NO,JR-4

MCCL homing sequence (using positive limit, coarse home, and index mark)

;move and poll the Limit + sensor

MD11, 1MN, 1DI1,1SV1000,1GO, 1RLO,IC17,MJ12,NO,RP-4

;move negative until limit + inactive

MD13,1AB,1WS.1,1DHO, 1PM, 1MN, 1IMA-100 ;stop when limit + not active,

define

;position as 0. Move to position -100.

Homing open loop steppers

Open loop steppers are typically homed based on the position of a home sensor. Unlike servos that
use a precision reference index mark, steppers are more prone to homing inaccuracies due the lower
repeatability of the sensor output. To achieve the highest possible repeatability; reduce the velocity of
the axis and always approach the home sensor from the same direction. Here is a typical linear axis
controlled by a stepper motor. A home sensor defines the home position of the axis. End of travel or

Limit Switches are used to protect against damage of the mechanical components.

Stepper motor

Lead screw

Negative Limit Home sensor Positive Limit

sensor sensor

When power is applied or the DCX is reset, the position of the stage is unknown. The following
command sequence will move the stage in the positive direction. If the home sensor ‘goes active’
before the positive limit sensor, the Find Edge command will redefine the reported position of the axis.
If the positive limit sensor ‘goes active’, the stage will change direction, until home sensor is located.

The Find Edge command is then used to redefine the position of the axis.

// MCAPI homing sequence (using the home and positive limit switches)

//

// Enable limit switches, start velocity mode move

//

MCSetLimits(hCtlr, 1, MC_LIMIT_SMOOTH | MC_LIMIT HIGH | MC_LIMIT LOW, 0, O, O);

MCSetOperatingMode (hCtlr, 1, 0, MC_MODE_ VELOCITY) ;
MCSetVelocity(hCtlr, 1, 10000.0);

MCDirection(hCtlr, 1, MC DIR POSITIVE) ;

MCGoEx(hCtlr, 1, 0.0));

//

// Wait for home or positive limit inputs

114 Precision MicroControl

Motion Control

dwStatus = MCGetStatus(hCtlr, 1);

while (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT INP_ HOME) ||
! MCDecodeStatus(hCtlr, dwStatus, MC_STAT PLIM TRIP)) {
dwStatus = MCGetStatus(hCtlr, 1);

}

// 1f positive limit switch active

//

dwStatus = MCGetStatus(hCtlr, 1);

if (!MCDecodeStatus(hCtlr, dwStatus, MC_STAT PLIM TRIP)) {
MCEnableAxis(hCtlr, 1, TRUE);
MCSetVelocity(hCtlr, 1, 10000.0);
MCDirection(hCtlr, 1, MC DIR NEGATIVE) ;
MCGoEx(hCtlr, 1, 0.0));
MCFindEdge (hCtlr, 1, 0.0);
MCStop(hCtlr, 1);
MCWaitForStop(hCtlr, 1, 0.1);
MCEnableAxis(hCtlr, 1, FALSE);
MCWait (hCtlr, 0.1);
MCEnableAxis(hCtlr, 1, TRUE);
MCDirection(hCtlr, 1, MC_DIR POSITIVE) ;
MCSetVelocity(hCtlr, 1, 5000.0);
MCGoEx(hCtlr, 1, 0.0));
while (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT INP HOME)) {
dwStatus = MCGetStatus(hCtlr, 1);
}
MCStop(hCtlr, 1);
MCWaitForStop(hCtlr, 1, 0.1);

// If Home sensor active

//

dwStatus = MCGetStatus(hCtlr, 1);

if (!MCDecodeStatus(hCtlr, dwStatus, MC_STAT INP_ HOME)) {
MCStop(hCtlr, 1);
MCWaitForStop(hCtlr, 1, 0.1)

}

MCDirection(hCtlr, 1, MC_DIR POSITIVE) ;

MCSetVelocity(hCtlr, 1, 5000.0);

MCGoEx(hCtlr, 1, 0.0));

while (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT INP HOME)) {
dwStatus = MCGetStatus(hCtlr, 1);

}

MCStop(hCtlr, 1);
MCWaitForStop(hCtlr, 1, 0.1);

// Find the leading edge of the Home sensor and define position 0
//

MCDirection(hCtlr, 1, MC DIR NEGATIVE) ;

MCSetVelocity(hCtlr, 1, 1000.0);

MCGoEx (hCtlr, 1, 0.0)

MCFindEdge (hCtlr, 1, O
MCStop(hCtlr, 1);
MCWaitForStop(hCtlr, 1, 0.1)

7

)
.0) ;

// Enable axis to re-initialize the position register. Issue position mode
move to location of index mark (position 0)

//

MCSetOperatingMode (hCtlr, 1, 0, MC_MODE POSITION) ;

MCEnableAxis(hCtlr, 1, TRUE);

MCMoveAbsolute(hCtlr, 1, 0.0);

MCWaitForStop(hCtlr, 1, 0.1);

DCX-AT200 User’s Manual 115

Motion Control

// MCCL homing sequence (using the home and positive limit switches)

MD1,1LM2,1LN3,MJ10 ;call homing macro
MD10,1VM, 1DIO,1SVvV10000,1GO,1RLO,IS24,MJ11,NO,IS17,MJ13,NO,JR-7
;test for sensors (home and +limit)
MD11,1ST,1wS.1,1DI0,1SV5000,1G0O,1RL0O,IC24,MJ12,NO,JR-4
;Move positive until home sensor off
MD12,1ST,1wWS.1,1DI1,18V5000,1GO,MJ15
;move back to the home sensor
MD13,1MN, 1DI1,1SV5000,1G0O,MJ15 ;move out of limit sensor range back
;toward the home sensor
MD14,1FEO, 1ST,1WS.1,1MF,WA.1,1MN, 1PM, 1MAO
;£ind the active edge of the home ;sensor. Stop axis,
initialize ;position, move to position 0.

An axis can be homed even if no home sensor is available. This method of homing utilizes one of the
limit (end of travel) sensors to also serve as a home reference. The following command sequences
will home an axis at the location where the positive limit sensor ‘goes active’:

// MCAPI homing sequence (using positive limit index mark)

//

// Enable limit switches, start velocity mode move

//

MCSetLimits(hCtlr, 1, MC_LIMIT SMOOTH | MC_LIMIT HIGH | MC_LIMIT LOW, 0, 0, 0);
MCSetOperatingMode (hCtlr, 1, 0, MC_MODE VELOCITY) ;

MCSetVelocity(hCtlr, 1, 10000.0);

MCDirection(hCtlr, 1, MC_DIR POSITIVE) ;

MCGoEx (hCtlr, 1, 0.0));

//

// Wait for positive limit inputs

dwStatus = MCGetStatus(hCtlr, 1);

while (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT PLIM TRIP)) ({
dwStatus = MCGetStatus(hCtlr, 1);

}

// Once the positive limit switch is active, move negative until switch is inactive
//
MCEnableAxis(hCtlr, 1, TRUE);
MCDirection(hCtlr, 1, MC_DIR NEGATIVE) ;
MCSetVelocity(hCtlr, 1, 1000.0);
MCGoEx(hCtlr, 1, 0.0));
dwStatus = MCGetStatus(hCtlr, 1);
if (! MCDecodeStatus(hCtlr, dwStatus, MC STAT INP PLIM)) {
dwStatus = MCGetStatus(hCtlr, 1)
}

// Stop the axis and define the leading edge of the limit switch as position 0
//

MCAbort (hCtlr, 1);
MCWaitForStop(hCtlr, 1, O.
MCSetPosition(hCtlr, 1, O. ;
MCSetOperatingMode (hCtlr, , 0, MC_MODE POSITION) ;
MCEnableAxis(hCtlr, 1, TRUE);

MCMoveAbsolute(hCtlr, 1, -100.0);

) ’
)

o R

; MCCL homing sequence (using positive limit, coarse home, and index mark)

116 Precision MicroControl

Motion Control

MD1,1LM2,1LN3,MJ10 ;call homing macro
MD10,1VM, 1DIO,1GO, 1RL0O,IS17,MJ11l,NO,JR-4
;move and poll the Limit + sensor
MD11,1MN, 1DI1,1SV1000,1GO, 1RL0O,IC17,MJ12,NO,RP-4
;move negative until limit + inactive
MD13,1AB,1WS.1,1DHO, 1PM, 1MN, 1IMA-100 ;stop when limit + not active, define
;position as 0. Move to position -100.

An axis can be homed even if no index mark or coarse home sensor is
available. This method of homing uses one of the limit (end of travel)
sensors to also serve as a home reference. Please note that this method
is not recommended for applications that require high repeatability
and accuracy. To achieve the highest possible accuracy when using
this method, significantly reduce the velocity of the axis while polling for
the active state of the limit input.

Homing closed loop steppers

Homing a closed loop stepper is similar to homing an axis with an auxiliary encoder , see the
description of Auxiliary Encoder in the Application Solutions chapter. The Index mark of the
encoder is connected to the Auxiliary Encoder Index — input pin (connector J3 pin 22). A Coarse
Home sensor is connected to the Auxiliary Encoder Coarse Home input (connector J3 pin 23). This
device is used to qualify which index mark pulse is to be used for homing.

MCBlockBegin(hCtlr, MC_BLOCK COMPOUND, 0);

// Enable the axis, place it in velocity mode, begin the move. After the Edge
// (Coarse Home Input), reduce the velocity and wait for the index mark to be
// captured. Move to the location of the index mark, set the position of the
// auxiliary encoder

//

MCEnableAxis(hCtlr, 1, TRUE);
MCSetOperatingMode (hCtlr, 1, 0, MC_MODE VELOCITY) ;
MCSetVelocity(hCtlr, 1, 1000.0);
MCDirection(hCtlr, 1, MC_DIR POSITIVE) ;
MCGo(hCtlr, 1);
MCWaitForEdge (hCtlr, TRUE)
MCSetVelocity(hCtlr, 1, 500.0);
MCFindAuxEncIndex(hCtlr, 1, 0.0);
dwStatus = MCGetStatus(hCtlr, 1);
while (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT INP AUX))
dwStatus = MCGetStatus(hCtlr, 1);
MCGetPositionEx(hCtlr, 1, &CapturedPosition) ;
MCStop(hCtlr, 1);
MCWaitForStop(hCtlr, 1, 0.1);
MCMoveAbsolute (hCtlr, 1, &CapturedPosition) ;
MCWaitForStop(hCtlr, 1, 0.1);
MCSetAuxEncPos(hCtlr, 1, 0.0);
MCBlockEnd (hCtlr, NULL) ;

DCX-AT200 User’s Manual 117

Motion Control

Motion Complete Indicators

When the DCX receives a move command, the Trajectory Generator calculates a velocity profile. This
profile is based on:

The target position (absolute or relative)
The user defined trajectory parameters (velocity, acceleration, and deceleration)

The velocity profile, as calculated by the DCX trajectory generator, is made up by a series of ‘Optimal
Positions’ that are evenly spaced along the motion path in increments of 4 msec’s. These 4 msec

optimal positions are passed to the DCX servo modules, which then performs a linear interpolation at
the selected servo loop rate.

Velocity
(encoder counts per second)
1000
750
500
Trajectory complete
(MC_STAT_TRAJ flag set)
250

Optimal position - Actual position = Following error

12 24 36 48 60 Time (msec's)

@ = Optimal positions

= Calculated trajectory

= Actual trajectory

When the optimal position of an axis is equal to the move target, the ‘digital trajectory’ of the move
has been completed and the MC_STAT_TRAJ status flag (MCCL status trajectory complete bit 3) will
be set. This status flag is the conditional component of the MCIsStopped() and MCWaitForStop()
functions. As shown above, a following error can cause MC_STAT_TRAJ to be set before the axis
has reached its target. Issuing MClsStopped() with a timeout value specified or MCWaitForStop()
with a Dwell time specified allows the user to delay execution move has been completed (following
error = 0). In the example below, the MCWaitForStop() command includes a Dwell of 5 msec’s,
allowing the axis to stop and settle.

MCMoveRelative (hCtlr, 2, 500.0); // move 500 counts
MCWaitForStop(hCtlr, 2, 0.005); // wait till MC_STAT TRAJ set plus
// 5 msec’s

Another method of indicating the end of a move is to use MCIsAtTarget() or MCWaitForTarget() .
To satisfy the conditions of MCIsAtTarget() and MCWaitForTarget() , the axis must be within the
Dead band range for the time specified by DeadbandDelay, both of which are defined within the
MCMotion data structure.

The Dead band and DeadbandDelay are used to define an acceptable ‘at target range’ for the axis.
The Dead band defines an ‘at target’ range (in encoder counts) of an axis. The DeadbandDelay
defines the amount of time that the axis must remain within the ‘at target’ range before the status flag

118 Precision MicroControl

Motion Control

MC_STAT_AT_TARGET bit will be set.

MCMoveRelative (hCtlr, 1, 1250.0); // move 1250 counts
MCWaitForTarget (hCtlr, 1, 0.005); // wait till MC_STAT TRAJ set plus
// msec’s

On the Fly changes

During a point to point or constant velocity move of one or more axes, the DCX supports ‘on the fly’
changes of:

Target

Maximum Velocity
Acceleration
Deceleration

Servo PID parameters

Changes made to any or all of these motion settings while an axis is moving will take affect within 4
msec’s.

Note — Changing the PID parameters (Proportional gain, Derivative gain,
& Integral gain) ‘on the fly’ may cause the axis to jump, oscillate, or ‘error
out’.

Note — S-curve and Parabolic velocity profiles do not support ‘on the fly’
0 changes of target, velocity, acceleration and/or deceleration .

If an “on the fly” target position change requires a change of direction the
axis will first decelerate to a stop. The axis will then move in the opposite
direction to the new target. This will occur if:

1) The new target position is in the opposite direction of the current
move
2) A ‘near target’ is defined. A near target is a condition where the
0 current deceleration rate will not allow the axis to stop at the
new target position. In this case the axis will decelerate to a stop at
the user define rate, which will result in an overshoot. The axis will
then move in the opposite direction to the new target.

If an on the fly change requires the axis to change direction, the DCX
command interpreter will stall, not accepting any additional commands,
until the change of direction has occurred (deceleration complete).

DCX-AT200 User’s Manual 119

Motion Control

While moving with Parabolic or S-curve profiles, on the fly changes will
0 cause the axis to first decelerate to a stop, then resume motion.

Feed Forward (Velocity, Acceleration, Deceleration)

Feed forward is a method in which the controller increases the command output to a servo in order to
reduce the following error of an axis. Traditionally feed forward is associated with servo systems that
use velocity mode amplifiers, but simple current mode amplifiers used for high velocity and high rate

of change applications can also benefit from the use of feed forward.

The basic concept of feed forward is to match the servo command voltage output of the controller to a
specific velocity of axis. This essentially adds a user defined offset to the digital PID filter, resulting in
more accurate motion by reducing the following error. For example:

The maximum velocity of an axis is 500,000 encoder counts per second. With a typical load applied,
the user determines that a servo command voltage of 8.25V will cause the motor to rotate at 500,000
encoder counts per second. The feed forward algorithm used by the DCX to generate the servo
command output is:

DCX output = Velocity (encoder counts/sec) X Feed forward term (encoder counts/volt/sec.)

with a velocity of 500,000 counts per second at a command input of 8.25V the algorithm will be:
8.25 volts =500,000 counts/sec. X Feed forward term (encoder counts * volt/sec.)
Feed forward =8.25V /500,000 counts per sec.

0.0000165 =10 volts / 100,000 counts per sec.

1VG0.0000165 ;set velocity gain (velocity feed
;forward) with MCCL command

// set velocity gain (velocity feed forward) using MCAPI function
//
MCGetFilterConfig(hCtrlr, iAxis, &Filter);
Filter.VelocityGain = (hCtlr, 1, 0.0000165) ;
MCSetFilterConfig(hCtrlr, iAxis, &Filter);

An axis that has been tuned without feed forward will need to be re-
0 tuned when the feed forward has been changed to a non zero value.

See the description of Tuning a Velocity Mode amplifier in the Tuning
the Servo section of the Motion Control chapter

120 Precision MicroControl

Motion Control

When feed forward is incorporated into the digital PID filter it becomes the primary component in
generating the servo command output voltage. Typically the setting of the other terms of the filter will
be:

Proportional gain — reduced by 25% to 50%
Integral gain — reduced by 5% to 25%
Derivative gain — set to zero, if the axis is too responsive reduce the gain of the amplifier

Acceleration and Deceleration Feed Forward

For most applications, velocity feed forward is sufficient for accurately positioning the axis. However
for applications that require a very high rate of change, acceleration and deceleration gain must be
used to reduce the following error at the beginning and end of a move.

Acceleration and deceleration feed forward values are calculated using a similar algorithm as used for
velocity gain. The one difference is the velocity is expressed as encoder counts per second, while
acceleration and deceleration are expressed as encoder counts per second per second.

DCX output = Accel./Decel. (encoder counts/sec/sec.) * Feed forward term (encoder counts * volt/sec./sec.)

Acceleration and deceleration feed forward values should be set prior to
0 using the Servo Tuning Utility to set the proportional and integral gain.

Save and Restore Axis Configuration

The MCAPI Motion Dialog library includes MCDLG_SaveAxis() and MCDLG_RestoreAxis().
These high level dialogs allow the programmer to easily maintain and update the settings for servo
and stepper axes.

MCDLG_SaveAxis() encodes the motion controller type and module type into a signature that is
saved with the axis settings. MCDLG_RestoreAxis() checks for a valid signature before restoring the
axis settings. If you make changes to your hardware configuration (i.e. change module types or
controller type) MCDLG_RestoreAxis() will refuse to restore those settings.

You may specify the constant MC_ALL_AXES for the wAxis parameter in order to save the
parameters for all axes installed on a motion controller with a single call to this function.

If a NULL pointer or a pointer to a zero length string is passed as the PrivatelniFile argument the
default file (MCAPI.INI) will be used. Most applications should use the default file so that configuration
data may be easily shared among applications. Acceptance of a pointer to a zero length string was
included to support programming languages that have difficulty with NULL pointers (e.g. Visual Basic).

DCX-AT200 User’s Manual 121

Application Solutions

Chapter Contents

Auxiliary Encoders

Backlash Compensation
Emergency Stop

Encoder Rollover

Flash Memory Firmware Upgrade
Laser Cutting
Learning/Teaching Points
Record and Display Motion Data
Manually Resetting the DCX
Tangential Knife Control
Threading Operations

Torque Mode Output Control
Defining User Units

DCX Watchdog

122

Precision MicroControl

Chapter

7

Application Solutions

Auxiliary Encoders

Servo systems typically use an encoder for position feedback. The encoder is usually mounted to the
motor housing and the glass scale of the encoder is coupled directly to the shaft of the motor. This
direct coupling provides the DCX with position feedback of the motor shaft, allowing the controller to
position the shaft of the motor independent of external mechanical inaccuracies (slipping belts, gear
backlash, lead screw runout).

However the ‘task at hand’ of most motion control applications is not to rotate the shaft of a motor, it is
to automate a manual operation. To accomplish this, the shaft of the motor is connected to the
external mechanics that will actually be doing the work. Take for example a pick and place machine
with axes X, Y, and Z. Due to a myriad of gears, pulleys, belts, and lead screws there may be no more
than a ‘loose’ association between the motor shaft of the X axis and the actual position of the X axis’
‘end effector’. This is where an auxiliary encoder can be used to significantly improve the positioning
accuracy of a servo or stepper system.

Servo Axes with Auxiliary Encoders
An auxiliary encoder is required when the user must reposition an axis to compensate for the
discontinuity between the motor shaft and the mechanics that position the ‘end effector’.

While similar in connections, the operation and configuration of a servo
and auxiliary encoder is significantly different from a Dual Loop Servo.
For a description, please refer to the Dual Loop Servo section of the
Motion Control chapter.

Typically an auxiliary encoder is added to a closed loop servo to allow the user to retrieve the position
of the ‘end effector’ at the end of a move. The position of the auxiliary encoder is not a component of

DCX-AT200 User’s Manual 123

Application Solutions

the servo command output as calculated by the digital PID filter. The auxiliary encoder is used to
determine whether or not the axis is properly positioned.

// After a move compare the target and auxiliary encoder position.
// If short of the target, execute a move = the difference of the target &
// encoder position

MCMoveAbsolute(hCtlr, 1, 1675.5);
MCWaitForStop(hCtlr, 1, 0.01);

if (MCGetTargetEx(hCtlr, 2, &Target) == MCERR NOERROR)
if (MCGetAuxEncPosEx(hCtlr, 1, &Position) == MCERR_NOERROR)
if (Position < 1674.0)
(Target - Position = AuxEncDiff)

MCMoveRelative (hCtlr, 1, AuxEncDiff);
MCWaitForStop(hCtlr, 1, 0.01);
if (MCGetAuxEncPosEx(hCtlr, 1, &Position) == MCERR NOERROR)
if (Position < 1675.0)
// print error message

Open Loop Stepper Axes with Auxiliary Encoders
An auxiliary encoder may be used in conjunction with a stepper motor to provide verification of a
move. The advantages of an open loop stepper over a closed loop axis are:

The output pulse train of an open loop system is much more stable
Easier to configure - open loop systems require no tuning

Typically an encoder is added to an open loop stepper to allow the user to retrieve the encoder
position at the end of a move. The reported position of the auxiliary encoder is used to determine
whether or not the axis is properly positioned.

// After a move compare the target and auxiliary encoder position.
// If short of the target, execute a move = the difference of the target &
// encoder position

MCMoveAbsolute(hCtlr, 1, 122.5);
MCWaitForStop(hCtlr, 1, 0.001);

if (MCGetTargetEx(hCtlr, 2, &Target) == MCERR_NOERROR)
if (MCGetAuxEncPosEx(hCtlr, 1, &Position) == MCERR NOERROR)
if (Position < 122.0)
(Target - Position = AuxEncDiff)

MCMoveRelative (hCtlr, 1, AuxEncDiff);
MCWaitForStop(hCtlr, 1, 0.001);
if (MCGetAuxEncPosEx(hCtlr, 1, &Position) == MCERR_NOERROR)
if (Position < 122.0)

// print error message

For additional information about closed loop stepper motion, please refer to the Closed Loop
Steppers and Homing Axes sections of the Motion Control chapter.

Homing the Auxiliary Encoder
The auxiliary encoder of a servo or stepper may be homed in one of two ways:

Home the encoder using the Auxiliary Encoder Index input
Re-define the position of the auxiliary encoder when the primary axis position is initialized

124 Precision MicroControl

Application Solutions

If the encoder includes an index mark output it is recommended that this signal be used to home the
reported position of the auxiliary encoder. The repeatability of a system homed using the index mark
will be significantly better than that of a system that uses a mechanical switch/electromechanical
sensor. The following programming example will initialize the reported position of the auxiliary
encoder at the location of the Index mark:

MCBlockBegin(hCtlr, MC_BLOCK COMPOUND, 0);

// Enable the axis, place it in velocity mode, begin the move. After the Edge
// (Coarse Home Input), wait for the index mark to be captured. Move to the
// location of the index mark, set the position of the auxiliary encoder
//

MCEnableAxis(hCtlr, 1, TRUE);

MCSetOperatingMode (hCtlr, 1, 0, MC_MODE_VELOCITY) ;

MCSetVelocity(hCtlr, 1, 1000.0);

MCDirection(hCtlr, 1, MC DIR POSITIVE) ;

MCGo (hCtlr, 1);

MCWaitForEdge (hCtlr, TRUE)

MCFindAuxEncIndex(hCtlr, 1, 0.0);

dwStatus = MCGetStatus(hCtlr, 1);

while (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT INP AUX))

dwStatus = MCGetStatus(hCtlr, 1);

MCGetPositionEx(hCtlr, 1, &CapturedPosition);

MCStop(hCtlr, 1);

MCWaitForStop(hCtlr, 1, 0.1);

MCMoveAbsolute (hCtlr, 1, &CapturedPosition) ;

MCWaitForStop(hCtlr, 1, 0.1);

MCSetAuxEncPos(hCtlr, 1, 0.0);
MCBlockEnd (hCtlr, NULL) ;

Unlike the MCFindindex() function, which re-defines the position
reported by a servos’ encoder, MCSetAuxEncPos() does not re-define

ﬂ the position of the auxiliary encoder. MCSetAuxEncPos() only arms the
capture of the encoder index mark, which is then indicated by the status
bit MC_STAT_INP_AUX being set.

If no encoder index mark output is available, the position of the auxiliary encoder can be redefined at
anytime using the MCAPI function MCSetAuxEncPos(). The following programming example will re-
define the position of the auxiliary encoder of a stepper axis when it is homed.

MCBlockBegin(hCtlr, MC_BLOCK COMPOUND, 0);

// Home a stepper axis and re-define the position of the auxiliary encoder
//
MCEnableAxis(hCtlr, 1, TRUE);
MCSetOperatingMode (hCtlr, 1, 0, MC_MODE_ VELOCITY) ;
MCSetVelocity(hCtlr, 1, 1000.0);
MCDirection(hCtlr, 1, MC DIR POSITIVE) ;
MCGo (hCtlr, 1);
MCFindEdge (hCtlr, 1, 0.0);
MCStop(hCtlr, 1);
MCWaitForStop(hCtlr, 1, 0.1);
MCMoveAbsolute(hCtlr, 1, 0.0);
MCWaitForStop(hCtlr, 1, 0.1);
MCSetAuxEncPos(hCtlr, 1, 0.0);
MCBlockEnd (hCtlr, NULL) ;

DCX-AT200 User’s Manual 125

Application Solutions

Auxiliary Encoder Connections
The two diagrams that follow illustrate the typical wiring connections required for interfacing DCX
motion control modules to an auxiliary encoder. For additional information please refer to the

Connectors, Jumpers, and Schematics chapter.

DCX-MC200 . -
/0 Connedtor J3 Closed Loop Sevo with Auxiliary Encoder
16 - Encoder Phase A+
_|__Encoder Phase A- (Differential only) Servo Motor

;g _1___Encoder Phase B+ QEad r?jture
20 Encoder Phase B- (Differential only) ncoder

8 - Encoder Index +
25 Encoder Index -

17 - Encoder Power (+5 / +12)
26 Ground
17 Encoder Power

21 | Auxiliary Encoder Phase A
22 | Auxiliary Encoder Phase B

_| Auxiliary Encoder Index + |
24

26 Ground

Linear Scale

(auxiliary encoder

1/0 Connector J3

Open Loop Stepper with
Auxiliary Encoder

DCX-MC260

18
19
20
21
22
26

Encoder Power (+5VDC)

_ 1 Auxiliary Encoder Phase A+
_1 Auxiliary Encoder Phase A-
_l _Auxiliary Encoder Phase B+
_| Auxiliary Encoder Phase B-
_1 Auxiliary Encoder Index-

Ground

’Linear Scale
(

auxiliary encoder)

126

Precision MicroControl

Application Solutions

Verifying the Operation of the Auxiliary Encoder

Use the WinControl MCCL command utility to verify the proper operation of the DCX module and the
auxiliary encoder. The example below details testing an encoder connected to axis number one. To
test a different axis, issue the Auxiliary encoder Tell position (aAT) command with the appropriate
prefix (where a = axis number).

[Z] winControl32 [(O] x|

File Edit Help
O & | & B -l e

Tell the position of axis #1

Rotate the shaft of the motor / encoder, verify that
the reported position changed accordingly

Rotate the shaft of the motor / encdoer, verify that
the reported position changed accordingly

Backlash Compensation

In applications where the mechanical system isn't directly connected to the motor, it may be required
that the motor move an extra amount to compensate for system backlash. When backlash
compensation is enabled, the DCX controller will offset the target position of a move by the user
defined backlash distance. This feature is only available for servos (MC200 MC210) at this time.

The function MCEnableBacklash() is used to initiate backlash compensation. The Backlash
parameter of this function sets the amount of compensation and should be equal to one half of the
amount the axis must move to take up the backlash when it changes direction. The units for this

command parameter are encoder counts, or the units established by the MCSetScale() command for
this axis.

When this feature is enabled, the controller will add or subtract the backlash distance from the motor's
commanded position during all subsequent moves. If the motor moves in a positive direction, the
distance will be added; if the motor moves in a negative direction, it will be subtracted. When the
motor finishes a move, it will remain in the compensated position until the next move.

Prior to enabling backlash compensation, the motor should be positioned halfway between the two
positions where it makes contact with the mechanical gearing. This will allow the controller to take up
the backlash when the first move in either direction is made, without "bumping" the mechanical
position.

While backlash compensation is enabled, the response to the MCGetPosition(), MCTellTarget()
and MCTellOptimal() commands will be adjusted to reflect the ideal positions as if no mechanical
backlash was present.

For the example below assume that the system has 200 encoder counts of backlash. This example
moves the system to the middle of the backlash range and enables compensation. Note that the

DCX-AT200 User’s Manual 127

Application Solutions

compensation value (in encoder counts) used with MCEnableBacklash() is half of the total amount of

backlash.
MCMoveRelative (hCtlr, 1, -100.0); // move to middle of backlash
MCWaitForStop(hCtlr, 1); // let motion finish
MCEnableBacklash(hCtlr, 1, 100.0, TRUE); // enable backlash compensation

Gear backlash

Emergency Stop

Many applications that use motion control systems must accommodate regulatory requirements for
immediate shut down due to emergency situations. Typically these requirements do not allow an
emergency shut down to be controlled by a programmable computing device. The drawing below
depicts an application where an emergency stop must be a completely ‘hard wired’ event.

Servo
Amplifier
H Motor
(_ 0 o E-stop Switch
S ! +5VDC
Computer Control ervo —
Panel Amplifier
— Motor
—/_H o Relay - NC
Amplifier
(—D O Power Supply w
N—Q—
Servo 0
Amplifier AC Power In
AC In Motor
T d

[—DEI

128 Precision MicroControl

Application Solutions

This ‘hard wired’ E-stop circuit uses a relay to disconnect power from the servo amplifiers. The motors
and amplifiers would certainly be disabled, but the motion controller and the application program will
have no indication that an error condition exists.

Wiring the E-Stop switch to the DCX
There are two ways to wire the DCX so that it can monitor the E-stop switch:

1) Connect the E-stop switch to one of the general purpose digital 1/0 lines
2) Connect all of the Amplifier Fault (MC200 & MC210) inputs to the E-stop switch

E-stop switch connected to DCX General Purpose Digital Input
Wire the E-stop switch to a general purpose digital I/O (channel #1). Each DCX digital channel has a
4.7K resistor pulled up to +5 volts. A background task is used to monitor the state of the input. If the
channel is configured for low ‘low true’ operation, the input will report its state as ‘off’ until the E-stop
switch is activated. The WaitForDigitallO function will stay active in background until the input ‘goes
true’.

E-stop Switch

e +5VDC

Amplifier Relay - NC
Power Supply M
e
DCX Digital I/O Channel #1 H

DCX-AT200 connector J3 pin 19

AC Power In~

if (MCBlockBegin (hCtlr,MC_BLOCK TASK, 0) ==MCERR NOERROR) {
MCSetRegister (hCtlr, 100, O, MC_TYPE LONG) ;
MCConfigureDigitalIO (hCtlr, 1, MC_DIO LOW);
MCWaitForDigitalIO (hCtlr, 1, TRUE);
MCSetRegister hCtlr, 100, 1, MC_TYPE LONG) ;
MCEnableAxes (hCtlr, MC_ALL AXES, FALSE) ;
MCBlockEnd (hCtlr, NULL) ;

// periodically poll the user register #100 for a value of 1. If true the user
// can jump to an E-stop handling routine.

MCGetUserRegister (hCtlr, 100, &Estop, MC TYPE LONG) ;

DCX-AT200 User’s Manual 129

Application Solutions

E-stop switch connected to Amplifier Fault servo module input

The Amplifier Fault input of MC200 and MC210 servo modules can be used to disable motion with no
user software action required. The E-stop switch is wired to the Amplifier Fault input (connector J3 pin
10) of each servo module. Auto shut down of motion upon activation of the Amplifier Fault input is
enabled by the MCMotion structure member EnableAmpFault. When the E-stop switch is activated:

1) The axis is disabled (PID loop terminated, Amplifier Enable output turned off)
2) The status flag MC_STAT_AMP_FAULT will be set for each axis
3) The status flag MC_STAT_ERROR will be set for each axis

When the E-stop condition has been cleared, motion can be resumed after issuing the
MCEnableAxis function with the parameter wAxis set to MC_ALL_AXES.

E-stop Switch

e +5VDC

DCX-MC200 connector J3 pin 10 - Relay _ NC
Amplifier

Power Supply ﬁm
i

AC Power In”

Encoder Rollover

The DCX motion controller provides 32 bit position resolution, resulting in a position range of
-2,147,483,647 to 2,147,483,647. For an application where the axis is moving at maximum velocity
(1million encoder counts/steps per second), the encoder would rollover in approximately 35.8
minutes. When the encoder rolls over, the reported position of the axis will change from a positive to a
negative value. For example, if the axis is at position 2,147,483,647 the next positive encoder count
will cause the DCX to report the position as —2,147,483,647.

If a user scaling other than 1:1 has been defined the DCX controller will report the position in user
units. The reported position at which the value will rollover is based on the user scaling. If user scaling
is set to 10,000 encoder counts to one position unit, the reported position will rollover at position
214,748.3647. The next positive encoder count will cause the DCX to report the position as
—214,748.3647.

Encoder rollover during Position Mode moves

The DCX does not support executing Position Mode moves when the encoder rolls over. No matter
what the commanded position, the axis will stop at the rollover position (2,147,483,647 or
—214,748.3647).

130 Precision MicroControl

Application Solutions

Encoder rollover during Velocity Mode moves
No disruption or unexpected motion will occur if a rollover occurs during a Velocity mode
(MCSetOperatingMode, MC_MODE_VELOCITY) move.

Prior to executing a velocity mode move in which the encoder position
may rollover the axis must be homed (MCFindindex or MCSetPosition)

& to position 0. Defining a offset to the home position will cause the axis to
pause at the rollover point.

Flash Memory Firmware Upgrade

The DCX firmware is stored in Non-Volatile FLASH memory. This allows the machine builder/user to
easily upgrade to the most current revision of code, available from the PMC web site
www.pmccorp.com/support/DCX-AT200.

There are two methods for upgrading the firmware. The PMC Flash Wizard requires no jumper
changes on the DCX and supports Windows 95/98 and NT. The batch file method requires jumper
changes but will upgrade the firmware even if the firmware has been corrupted. The batch file
upgrade supports DOS, Windows 3.X, 95/98 but does not support NT.

Flash Wizard
The eight Flash Wizard windows are shown below. Firmware revision 3.6A or higher is required for
Flash Wizard firmware upgrades. If this upgrade fails, the batch file upgrade procedure must be used.

Step Veriying frmware upgrade.

Progress: |

Batch file upgrade

Step 1) Change the jumper settings of the DCX-AT200:
JP2:1t02,3t04,and 5to 6 closed
JP3:1t02 open
JP4:1to2 closed

Step #2) Memory address switch SW1 must be set to position 0

Step #3) When power is applied, all red LED’s will be on. To begin the download run the firmware

DCX-AT200 User’s Manual 131

Application Solutions

download batch file: flash.bat

Step #4) When the following message is displayed enter carriage return:
Release the DCX-AT100 reset switch, press any key

Step #5) After the previous firmware version is erased (approximately 15 seconds) the file
download will begin. Axis #1 and Axis #2 error LED’s will strobe. Depending on the speed
of the PC computer the download will take about 20 seconds

The batch file upgrade does not support Windows NT systems. The DCX will need to be
reprogrammed in a Windows 3.X, 95/98 or DOS computer. The batch file upgrade does not support
reprogramming a DCX at addresses other than D000:0000.

Laser Cutting

For laser cutting applications, the DCX can directly control the power of a laser. While other DCX-
MC2XX motion control modules are controlling the motion along the desired path, an additional
MC200 module is used to generate the unipolar, TTL level, PWM output signal that controls the output
of the laser. In this mode of operation the Direction output of the MC200, available on connector J3
pin 7, is re-defined as PWM output. The signal defined as Analog Output (J3 pin 2) is used for the
direction signal.

To enable the PWM output, the MCSetOOutputMode() command is issued with the wMode
parameter set to MC_OM_UNI_PWM. The motor module will now output a PWM signal at a frequency
of 1.4648 KHz. The PWM characteristics that must be defined by the user are Minimum Duty Cycle
and Maximum Duty Cycle.

The current release of the Motion Control API (2.20.0000) does not
provide a high level function calls that defines the Output Deadband of
an axis. The following description uses the MCAPI OEM low level

0 function pmcemdex() to issue the MCCL command Output Deadband
(aODn) which is used to configure an axis for laser control.

Future releases of the MCAPI will resolve this lack of support.

Minimum duty cycle defines the least amount of power that will be applied to the laser during a
contour move. This value is typically specified as a percentage of the frequency of the PWM. The
Minimum Duty Cycle (MinDC) is programmed using the Output Dead band command (aODn) where a
is the axis number of the PWM module and n is the scaled percentage of the PWM frequency. The
following calculation is used to determine the value n for a minimum duty cycle of 10%:

n = PWM constant * desired minimum duty cycle

n=10*10%

n=10* .1

n="1
MinDC = aop1

Based on the PWM frequency of 1.4648 KHz, the Minimum Duty Cycle Period (MDCP) will be:

132 Precision MicroControl

Application Solutions

MDCP = (PWM Frequency/2) * 10%
= (1.4648/2) *10%
=732.4 usec. * 10%
=732.4 usec. * 1
= 73.24 usec.
MDCP = 73 usec. (rounded)

73 usec.I 660 usec. |

PWM output - 10% duty cycle

Selection of the Maximum Duty Cycle will be based on the specifications of the laser and the
application specifics (motors, mechanics, thickness of material to be cut, etc...). This setting will
determine the maximum power that will be applied to the laser. For this application example, the
maximum duty cycle will be 50%. The Maximum Duty Cycle (MaxDC) is set by combining the
Minimum Duty Cycle (MinDC) and the Remaining Duty Cycle (RDC).

MaxDC = MinDC + RDC
RDC = MaxDC — MinDC
RDC =50% - 10%

RDC = 40%

The VelocityGain member of the MCFilter data structure is used to define the Remaining Pulse
Period (RPP). For a 50% maximum duty cycle at a maximum vector velocity of 10,000 encoder counts
per second, the following calculation is used to determine the Velocity Gain parameter n :

n = (PWM Constant * RDC)/Maximum encoder Counts per second
n=(10 *40%)/10,000

n=(10*.4)/10,000

n =4/10000

avén = .0004

DCX-AT200 User’s Manual 133

Application Solutions

I— 732 usec. I 732 usec —|

PWM output - 50% duty cycle

In the following example, axes 1 and 2 are used to draw a triangle. Axis 3 is slaved to axis 1 (Contour
move profiling axis) and will generate the PWM output signal with a frequency of 1.464 KHz. The
resolution of the PWM is 16 bit. The PID loop gains (proportional, derivative, and integral) for axis 3
are set to 0. For this application the duty cycle of the PWM output must range from a minimum of 10%
to 50%. The maximum vector velocity of the X and Y axes motion is 10,000 encoder counts per
second.

MCSetOperatingMode (hCtlr, 1, 1, MC MODE_CONTOUR) ; // axis 1 contour mode
MCSetOperatingMode (hCtlr, 2, 1, MC_MODE_CONTOUR) ; // axis 2 contour mode

MCGetContourConfig(hCtlr, 1, &Contour);
Contour.VectorVelocity = 10000.0)
Contour.VectorAccel = 10000.0)
Contour.VectorDecel = 10000.0)
MCSetContourConfig(hCtlr, 1, &Contour);

MCSetModuleOutputMode (hCtlr, 3, MC _OM UNI PWM); //PWM output mode

MCSetGain(hCtlr, 3, 0.0);
MCGetFilterConfig(hCtrlr, 3, &Filter);

Filter.DerivativeGain = 0;
Filter.IntegralGain = 0;
Filter.FollowingError =0

MCSetFilterConfig(hCtrlr, 3, &Filter);

// Use the MCCL command Output Deadband to define the minimum duty cycle. For this
// calculation the value of Maximum Duty Cycle Constant = 10. 10% duty cycle
// 1is 10*10%=1.0. Header file MCAPI.H must be included

//
if (pmcrdy(hctlr))
arg = 1.0;
if (pmccmdex(hCtlr, 3, OD, &arg, MC_TYPE DOUBLE) == MCERR_NOERROR) {

}

// Use velocity gain + minimum duty cycle to define the maximum duty cycle.
//

MCGetFilterConfig(hCtrlr, 3, &Filter);

Filter.VelocityGain = 0.0004;

MCSetFilterConfig(hCtrlr, 3, &Filter);

MCEnableAxis(hCtlr, 3, TRUE) ;

134

Precision MicroControl

Application Solutions

// Set up axis 3 as slave to the controlling axis of the contour group

//
MCEnableGearing(hCtlr, 3, 1, 1.0, TRUE);

// Linear move, first side of triangle

//

MCBlockBegin(hCtlr, MC_ BLOCK CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 10000.0);
MCMoveAbsolute(hCtlr, 2, 10000.0);

MCBlockEnd (hCtlr, NULL) ;

// Linear move, second side of triangle

//

MCBlockBegin(hCtlr, MC BLOCK CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 200000.0);
MCMoveAbsolute(hCtlr, 2, 0.0);

MCBlockEnd (hCtlr, NULL) ;

// Linear move, third side of triangle

//

MCBlockBegin(hCtlr, MC_BLOCK CONTR_LIN, 1) ;
MCMoveAbsolute(hCtlr, 1, 0.0);
MCMoveAbsolute(hCtlr, 2, 0.0);

MCBlockEnd (hCtlr, NULL) ;

// Disable gearing of axis 3

//
MCEnableGearing(hCtlr, 3, 1, 1.0, FALSE);

MCEnableAxis(hCtlr, 3, FALSE);

Learning/Teaching Points

As many as 256 points can be stored for each axis in the DCX's point memory by using the
MCLearnPoint() function. A stored point can be either the actual position of an axis
(MC_LRN_POSITION) or the target position of an axis (MC_LRN_TARGET).

The value MC_LRN_POINT would typically be used in conjunction with jogging. The operator would
jog the axes along the desired path, issuing the MCLearnPoint() command at regular intervals. The
MCMovePoint() command would then be used to ‘play back’ the path traversed by the operator.

For applications where the target point data was previously recorded and stored in the PC, the value
MC_LRN_TARGET would be used to load the target points into the DCX. For some applications,
using MCLearnPoint() to load a series of moves may be ‘easier’ than issuing a series of contour
mode linear moves, even though the results would be the same.

Once all points have been stored, the axes are commanded to move to the stored positions with
MCMoveToPosition(). The parameter windex indicates to which stored point the axis should move.

// Move axis 1 and store position in consecutive point storage locations.

WORD wIndex;

MCEnableAxis (hCtlr, 1, TRUE) ; // motor on

MCGoHome (hCtlr, 1); // start from absolute zero
MCWaitForStop(hCtlr, 1, 0.100);

DCX-AT200 User’s Manual 135

Application Solutions

for (wIndex = 0; wIndex < 5; wIndex++) {
MCMoveRelative (hCtlr, 1, 1234.0); // move
MCWaitForStop(hCtlr, 1, 0.100); // are we there yet?
MCLearnPoint (hCtlr, 1, wIndex, MC _LRN POSITION) ;

// Store several positions for axis 4 without actually moving the axis. Note // that
axis is disabled with MCEnableAxis() prior to storing positions

WORD wIndex;

MCEnableAxis (hCtlr, 4, FALSE); // motor off
for (wIndex = 0; wIndex < 5; wIndex++) {
MCMoveRelative (hCtlr, 4, 2468.0); // nothing actually moves

MCLearnTarget (hCtlr, 4, wIndex, MC_LRN TARGET) ;

// This example moves to the stored positions, dwelling for 0.2 seconds at
// each point.

WORD wIndex;

MCEnableAxis (hCtlr, 4); // enable axis
for (wIndex = 0; wIndex < 5; wIndex++) {
MCMoveToPoint (hCtlr, 4, wIndex); // move to next point

MCWaitForStopped(hCtlr, 4, 0.2);

To cause the DCX to perform linear interpolated moves between the taught points, place each of the
axes in contour mode. Use the lowest axis number as the contour mode command parameters, this is
the controlling axis. Set the vector velocity and accelerations of the controlling axis. Issue a single
MCMoveToPoint() command to the controlling axis with the point numbers as the command
parameter. Note that when point memory is used with motors in contour mode, point 0 should not be
used. This example executes linearly interpolated moves through three stored points of axes 1, 2, and
3.

MCSetOperatingMode (hCtlr, 1, 1, MC_MODE_CONTOUR) ;
MCSetOperatingMode (hCtlr, 2, 1, MC_MODE_CONTOUR) ;
MCSetOperatingMode (hCtlr, 3, 1, MC_MODE_ CONTOUR) ;

// Linear interpolated move sequence through stored points

for (wIndex = 1; wIndex < 4; wIndex++) {
MCBlockBegin(hCtlr, MC BLOCK CONTR_LIN, 1);
MCMoveToPoint (hCtlr, 1, wIndex)
MCMoveToPoint (hCtlr, 1, wIndex) ;
MCMoveToPoint (hCtlr, 1, wIndex)
MCBlockEnd (hCtlr, NULL) ;

7

Record Motion Data

The DCX supports capturing and retrieving motion data for servo axes (MC200, MC210). Captured
position data is typically used to analyze servo motor performance and PID loop tuning parameters.
PMC's Servo Tuning utility uses this function to analyze servo performance. The MCAPI function
MCCaptureData() is used to acquire motion data for a servo axis. This function supports capturing:

136 Precision MicroControl

Application Solutions

Actual Position versus time

Optimal Position versus time

Following error versus time

DAC output versus time (DCX-MC200 only)

The time base (2 KHz, 1 KHz, 0.5 KHz) for captured data is set by Rate member of the MCMotion
data structure. The function MCGetCapturedData() is used to retrieve the captured data. This

example captures 1000 data points from axis 3, then reads the captured data into an array for further
processing.

double Datal[1000];

MCBlockBegin(hCtlr, MC_ BLOCK_COMPOUND, 0);
MCCaptureData(hCtlr, 3, 1000, 0.001, 0.0);
MCMoveRelative (hCtlr, 3, 1000.0);
MCWaitForStop(hCtlr, 3, 0.0);

MCBlockEnd(hCtrlr, NULL) ;

// Retrieve captured actual position data into local array

//

if (MCGetCaptureData(hCtlr, 3, MC DATA ACTUAL, 0, 1000, &Data) {
. // process data

Manually Resetting the DCX

The DCX supports using a switch to manually reset the card at anytime. Connect a normally open

switch to pins one and two of jumper J16. Activating the switch will assert the internal reset signal of
the DCX.

some

H7 ©2 @ @

Manual Reset

Switch T

(normally open)

DCX-AT200 User’s Manual 137

Application Solutions

In the event of a ‘system hang up’, even though the DCX controller has
been reset, the application program may fail to execute properly due to

& PC computer/DCX driver issues. If this is the case it will be necessary to
reboot the computer system.

Tangential Knife Control

A variation of Master/Slave mode supports using the position of two master axes to control the
position of a third axis. The slave's optimal position will equal the arctangent of the ratio of the master
axes' velocities. If the master axes are driving an X-Y table, the slave's position will equal the table's
direction of travel. This dual master capability can be used to control the knife in cutting applications.
This function is only available when the slave is a servo, and the two master axes, which can be
servos or steppers, are in contour mode.

The current release of the Motion Control API (2.20.0000) does not
provide a high level function call that enables tangential knife control.
The following description uses the MCAPI OEM low level function
pmccmdex() to issue the MCCL command Set Master (aSMn) with a
parameter n which configures the axis that controls the rotation of the
knife.

Future releases of the MCAPI will resolve this lack of support.

Set the scaling of the knife axis to one unit equals 360 degrees of rotation of the knife. Issue the Set
Master (aSMn) command to the slave axis with a parameter n that specifies the two master axes. The
value of the Set Master parameter should be calculated as follows:

parameter n = master 1 axis number + (master 2 axis number x 16)

With two master operation, the slave axis will begin to track the master axis's direction when the first
(and subsequent) contour mode move is issued. The blade of the knife will remain tangential to the
contour path. To terminate the master and slave connections between the axes, issue the Set Master
command to the slave axis with a parameter of 0, followed by either the Position Mode (PM) or the
Velocity Mode (VM) command. If a significant change in direction (like a corner) of the X and/or Y
axes occurs the knife will instantaneously. If this is undesirable, lift the blade, place the slave in
position mode, re-position the blade, and lower the blade.

The following example will cut a 5 inch square out of a piece of linoleum. Axes 1 and 2 (X and Y
respectively) are designated as the two master axes. Axis 3 will position the knife. Axis four (Z) is
used to lift the knife at a corner, where an instantaneous change of direction in X and/or Y would be
undesirable.

// define scaling of axis 3, 2000 encoder counts per revolution sets 1 unit to
// 1 ;revolution

//

MCGetScale(hCtlr, 3, &Scaling);

Scaling.Scale = 2000.0;

MCSetScale(hCtlr, 3, &Scaling);

138 Precision MicroControl

Application Solutions

// Use the MCCL command Set Master to configure axis 3 as a slave to axes 1 and 2.
// Header file MCAPI.H must be included

//
if (pmcrdy(hctlr))
arg = 33;
if (pmccmdex(hCtlr, 3, SM, &arg, MC_TYPE LONG) == MCERR_NOERROR) {

// turn on axes 1, 2, 3, & 4

//
MCEnableAxis(hCtlr, 1, MC_ALL AXES);

//Execute 1°° linear move

//
MCSetOperatingMode (hCtlr, 1, 1, MC_MODE_CONTOUR) ; // axis 1 contour mode

// Linear move, first side of triangle

//

MCBlockBegin(hCtlr, MC BLOCK CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 1000.0);
MCMoveAbsolute(hCtlr, 2, 0.0);

MCBlockEnd (hCtlr, NULL) ;

// wait for end of contour move, lift blade, rotate blade, lower blade
//

MCWaitForStop(hCtlr, 1, 0.1);

MCMoveRelative (hCtlr, 4, 1000.0);

MCWaitForStop(hCtlr, 4, 0.1);

MCMoveRelative (hCtlr, 3, 0.333);

MCWaitForStop(hCtlr, 3, 0.1);

MCMoveRelative (hCtlr, 4, -1000.0);

MCWaitForStop(hCtlr, 4, 0.1);

// Linear move, second side of triangle

//

MCBlockBegin(hCtlr, MC_BLOCK CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 500.0);
MCMoveAbsolute(hCtlr, 2, 1000.0);

MCBlockEnd (hCtlr, NULL) ;

// wait for end of contour move, lift blade, rotate blade, lower blade
//

MCWaitForStop(hCtlr, 1, 0.1);

MCMoveRelative (hCtlr, 4, 1000.0);

MCWaitForStop(hCtlr, 4, 0.1);

MCMoveRelative (hCtlr, 3, 0.333);

MCWaitForStop(hCtlr, 3, 0.1);

MCMoveRelative (hCtlr, 4, -1000.0);

MCWaitForStop(hCtlr, 4, 0.1);

// Linear move, third side of triangle

//

MCBlockBegin(hCtlr, MC BLOCK CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 0.0);
MCMoveAbsolute (hCtlr, 2, 0.0);

MCBlockEnd (hCtlr, NULL) ;

// wait for end of contour move, lift blade, rotate blade, lower blade

DCX-AT200 User’s Manual 139

Application Solutions

//

MCWaitForStop(hCtlr, 1, 0.1);
MCMoveRelative (hCtlr, 4, 1000.0);
MCWaitForStop(hCtlr, 4, 0.1);
MCMoveRelative (hCtlr, 3, 0.333);
MCWaitForStop(hCtlr, 3, 0.1);
MCMoveRelative (hCtlr, 4, -1000.0);
MCWaitForStop(hCtlr, 4, 0.1);

11l now disable tangential knife control !!!

Threading Operations

Threading operations require not only tight synchronization between the primary axes, but also the
ability to begin motion of the slave axis relative to a specific position of the master. The DCX
implementation of threading uses the encoder index mark of the master axis to trigger motion of the
slave.

The current release of the Motion Control API (2.20.0000) does not
provide a high level function call for enabling threading operations. The
following description uses the MCAPI OEM low level function

0 pmccmdex() to issue the MCCL command Set Master (aSMn) with a
parameter n which configures the DCX controller for threading.

Future releases of the MCAPI will resolve this lack of support.

To enable Master/Slave Threading mode, issue the Set Master (aSMn) command where:

a = the axis number of the slave
n = the axis number of the master + 2

A move absolute, move relative, or go home command can also be issued to the slave axis to set a
target position where the axis will be taken out of slave mode. The Index Arm or Find Index command
must be issued to the master axis after the Set Master command has been issued to the slave axis.
The slave will be synchronized to the master's position when its encoder index pulse occurs. In the
following example the spindle (master) is axis #2 and the thread cutting tool is positioned by axis #1
(slave).

// Set scaling of master axis. For the spindle, this would typically be set to
// the number of encoder counts per revolution.

//

MCGetScale(hCtlr, 2, &Scaling);
Scaling.Scale = 2000.0;
MCSetScale(hCtlr, 2, &Scaling);

140 Precision MicroControl

Application Solutions

//Set scaling of the slave axis
//

MCGetScale(hCtlr, 1, &Scaling);
Scaling.Scale = 4000.0;
MCSetScale(hCtlr, 1, &Scaling);

MCMoveAbsolute (hCtlr, 1, 0.0); // move slave to starting position

MCWaitForStop(hCtlr, 1, 0.1); // wait till we're there

// Set the slave ratio. This is the lead or pitch when cutting a thread.

//
MCEnableGearing(hCtlr, 1, 2, 0.1, TRUE);

// Use the MCCL command Set Master to configure axis 2 as a slave to axis 1.
// Enable threading by n = 2 + 256.Header file MCAPI.H must be included

//
if (pmcrdy(hctlr)) {
arg = 258;
if (pmccmdex(hCtlr, 3, SM, &arg, MC TYPE LONG) == MCERR_NOERROR) {

// Set the target position. This is the position at which slave mode is
// terminated and axis #1 will stop.

//
MCMoveAbsolute(hCtlr, 1, 1.0);

// Start master axis moving in torque mode.

//
MCSetTorque (hCtlr, 2, 3.0);

// Arm the index capture of the master axis. When the index pulse occurs, the
// slave will begin tracking the master axis until // the slave reaches its
// target position.

2IA

// This command sequence will repeat until auxiliary status bit 22 is clear,
// indicating that the slave has reached its target.

/7
1RL16,IS22,JR-2,NO, 25Q0

The following bits of the axis auxiliary status word are used for monitoring the status of the slave axis
during a threading operation:

Bit 22 = Axis is slaved to master's encoder position
Bit 23 = Axis is slaved and waiting for master's index mark

Torque Mode Output Control

The DCX servo modules (MC200 & MC210) provide two methods of directly and completely
controlling the Torque/Velocity of a axis. When executing closed loop servo motion in Position or
Velocity mode, the MCSetTorque() command allows the user to limit the output signal or duty cycle

DCX-AT200 User’s Manual 141

Application Solutions

to a specific level. The following graph depicts a simple position mode move of 1000 encoder counts
with the default torque setting of 10 volts (no limit).

Analog .
output Maximum voltage
output
+Hov +— — — — — — — - T
+7.5V +
+5.0V +
+2.5V +
I I I | | | | |
25 50 75 100 125 150 175 200 225
Time (msec's)

The graphic below depicts the same 1000 encoder count move, but the maximum voltage output has
been limited to 5.0 volts.

MCSetTorque (hCtlr, 1, 5.0);
MCMoveRelative(hCtlr, 1, 1000.0);

Analog
output

+10V —+

+7.5V +
Maximum voltage

+5.0V 1+ — output

+2.5V +

l l l l l l l l
25 50 75 100 125 150 175 200 225
Time (msec's)

Servo Modules as simple D/A or PWM output with encoder reader

Selecting Torque mode using the MCSetOperatingMode() function allows the user to directly write
values to the servo control DAC. This mode does not support closed loop servo control, but the user
can read the position of the encoder at any time.

MCSetOperatingMode (hCtlr, 1, 0, MC_MODE_VELOCITY) ;
MCSetTorque (hCtlr, 1, 2.5); ;axis 1 output to 2.5V (MC200)
MCSetTorque (hCtlr, 1, 7.5); ;set duty cycle to 75% (MC210)

142 Precision MicroControl

Application Solutions

Defining User Units

When power is applied or the DCX is reset, it defaults to encoder counts or stepper pulses as its units
for motion command parameters. If the user issues a move command to a servo with a target of 1000,
the DCX will move the servo 1000 encoder counts. If the user issues the same command to a stepper
motor, it will move 1000 motor steps.

In many applications there is a more convenient unit of measure than the encoder counts of the servo
or steps of the stepper motor. If there is a fixed ratio between the encoder counts or steps and the
desired 'user units', the DCX can be programmed with this ratio and it will perform conversions
implicitly during command execution.

Defining user units is accomplished with the function MCSetScale() which uses the MCSCALE data
structure. This function provides a way of setting all scaling parameters with a single function call
using an initialized MCSCALE structure. To change scaling, call MCGetScale(), update the
MCSCALE structure, and write the changes back using MCSetScale().

MCScale Data Structure

typedef struct ({

double Constant; // Define output constant

double Offset; // Define the work area zero

double Rate; // Define move (vel., accel, decel) time
units

double Scale; // Define encoder scaling

double Zero; // Define part zero

double Time; // Define time scale
} MCMOTION;

Setting Move (Encoder/Step) Units

The value of the Scale member is the number of encoder counts or steps per user unit. For example,
if the servo encoder on axis 1 has 1000 quadrature counts per rotation, and the mechanics move 1
inch per rotation of the servo, then to setup the controller for user units of inches:

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);
Scaling.Scale = 1000.0; // 1000 encoder counts/inch
MCSetScale(hCtlr, 3, &Scaling);

Prior to issuing the Scale member, the parameters to all motion commands for a particular axis are
rounded to the nearest integer. After setting a new encoder scale and calling MCEnableAxis() to
initialize the axis, motion targets are multiplied by the ratio prior to rounding to determine the correct
encoder position. Calling the MCGetPosition() will load the scaled encoder position.

Note — setting a user scale other than 1:1 will also scale trajectory
0 settings (Velocity, acceleration, and deceleration) but not PID settings.

DCX-AT200 User’s Manual 143

Application Solutions

Trajectory Time Base

The value of the Rate member sets the time unit for velocity, acceleration and deceleration values, to
a time unit selected by the user. If velocities are to be in units of inches per minute, the user time unit
is a minute. The value of the Rate member is the number of seconds per 'user time unit'. If the
velocity, acceleration and deceleration are to be specified in units of inches per minute and inches per
minute per minute for axis 1, then the Rate value should be set to 60 seconds/1 minute = 60 (1URG0).
The function MCEnableAxis() must be issued before the user rate will take effect.

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);
Scaling.Rate = 60.0; // set rate to inches per minute
MCSetScale(hCtlr, 3, &Scaling);

Typical Rate values

User Rate Conversion

second 1 (default)
minute 60
hour 3600

Defining the Time Base for Wait commands

For the MCWait(), WaitForStop() and WaitForTarget() functions, the default units are seconds. By
setting the member Time, these three commands can be issued with parameters in units of the user's
preference. The parameter to member is the number of 1 second periods in the user's unit of time. If
the user prefers time parameters in units of minutes, Time = 60 should be issued.

MCSCALE Scaling;

MCGetScale(hCtlr, &Scaling);
Scaling.Time = 60.0; // set Wait time unit to minutes
MCSetScale(hCtlr, &Scaling);

Defining a System/Machine zero

The member Offset allows the user to define a ‘work area’ zero position of the axis. The Offset value
should be the distance from the servo or stepper motor home position, to the machine zero position.
This offset distance must use the same units as currently defined by set User Scaling command.
Offset does not change the index or home position of the servo or stepper motor, it only establishes
an arbitrary zero position for the axis.

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);
Scaling.Offset = 12.25; // define offset to 12.25 inches
MCSetScale(hCtlr, 3, &Scaling);

Defining a Part Zero

The member Zero would typically be used in conjunction with Offset to define a ‘part zero’ position. A
PCB (Printed Circuit Board) pick and place operation is a good example of how this function would be
used. After a new PCB is loaded and clamped into place the X and Y axes would be homed. The
Offset member is used to define the ‘work area’ zero of the PCB. The Zero member is used to define

144 Precision MicroControl

Application Solutions

the ‘part program’ or ‘local’ zero position. This way a single ‘part placement program’ can be
developed for the PCB type, and a ‘step and repeat’ operation can be used to assemble multiple part

assemblies.
MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);

Scaling.Offset = 12.25; // define offset to 12.25 inches
Scaling.Zero = 1.25; // define ‘part zero’ to 1.25 inches
MCSetScale(hCtlr, 3, &Scaling);

XY Pick and Place Assembly

&

X &Y servo
motor home

Work area <>
zero Part program zero
(UserOffset) ___, (UserZero)

.
23
23
o
23
23
&3
23
o
o
.
.

- . -
UCOOOO0O0COUOCOCE . UOO000CCOCOOC

PCB clamp assembly

Defining the output constant for velocity gain

The member Constant allows the user to define the units to be used for setting the Velocity Gain
parameters. Please refer to the description of Using Velocity Gain in the Application Solutions
chapter of this user manual.

DCX Watchdog

The DCX incorporates a watchdog circuit to protect against improper CPU operation. If the DCX
processor fails to properly execute firmware code for a period of 100 msec's, the watchdog circuit will
'time out' and the on-board reset will be latched by the ‘watchdog reset relay’. This in turn will hold the
DCX modules in a constant state of reset. All motor outputs (+/- 10V, PWM, Step/Direction) will be
disabled. When the watchdog circuit has tripped, the two yellow LEDs (L2 and L3) will be turned on.
To clear the watchdog error either:

DCX-AT200 User’s Manual 145

Application Solutions

Cycle power to the computer (recommended)
Reset the computer
Manually reset the DCX

Note: If the watchdog trips while a MCAPI based application program is
& running, manually resetting the DCX will probably not allow the
application program to continue operation.

146 Precision MicroControl

Application Solutions

DCX-AT200 User’s Manual 147

General Purpose I/0

Chapter Contents

DCX Motherboard Digital I/O
Configuring the DCX Digital I/0
Using the DCX Digital /0

DCX Motherboard Analog Inputs
DCX Module Analog I/O

Using the Analog 1/O

Calibrating the MC500/MC520 +/- 10V Analog Outputs

148

Precision MicroControl

Chapter

8

General Purpose I/0

DCX Motherboard Digital I/0

The DCX-AT200 Motion Controller motherboard has 16 undedicated digital /0O channels. These
signals can be accessed on connector J3 of the motherboard. The DCX-AT200 section of the
Connectors, Jumpers, and Schematics chapter includes a pin-out for this connector. Each digital
channel is configured via software (input, output, high true, low true).

Interfacing to the ‘Outside World’
The TTL digital I/0 channels can be connected directly to external circuits if output loading (1ma
maximum sink/source) and input voltages (0.0V to +5.0V) are within acceptable limits.

The DCX Digital I/0 channels are not suitable for driving optical
6 isolators, relays solenoids, etc...

Alternatively, a DCX-BFO22 interface board can be used to connect the module's 1/0O to a relay rack in
order to provide optically isolated inputs and outputs.

The DCX-BFO22 interface board provides a convenient means of connecting the DCX-AT200 TTL
digital I/O channels to a 16 position relay rack available from two manufacturers, Opto22 (P/N PB16H)
and Grayhill (P/N 70RCK16-HL). These relay racks accept up to 16 optically isolated input or output
modules for interfacing with external electrical systems. Using one of these relay racks and a DCX-
BFO22, an optically isolated I/O module can be connected to each of the DCX's digital /0O channels.

DCX-AT200 User’s Manual 149

General Purpose I/0

- = IR
i I DCX-BF022 | | :

a v, an Py
RO AXETAXE TR A w

-
2 28
1 J3 25

H#o

As shown above, the DCX-BFO22 plugs directly into the relay rack's 50 pin header connector and
then connects to the DCX-AT200 via a 26 conductor ribbon cable. Note that the relays are numbered
sequentially starting from 0, while the DCX digital I/0O channels are numbered sequentially starting
with 1.

Although the relay rack has screw terminals for connecting a logic supply, it is not necessary to make
this connection. By installing a shorting block on jumper JP17 of the BFO22, the 5 volt supply of the
DCX will be supplied to the relay rack.

For detailed information on configuring the DCX-BF022, please refer to the schematic and jumper
table in the DCX-BF022 Appendix in this user manual.

Configuring the DCX Digital 1/0

The configuration of both the DCX-AT200 and the DCX-MC400 digital /0 channels is accomplished
using either PMC’s Motion Integrator software or the MCAPI function MCConfigureDigitallO(). The
screen shot that follows shows the Motion Integrator Digital I/O test panel. This tool is used to both
configure each I/O channel and then verify its operation. A comprehensive on-line help document is
provided.

150 Precision MicroControl

General Purpose I/0

0 Dugital 1/0 Test Panel M= E3
File “iew Help
Standard 10 II'-.-1u::duIe1 |
~Ch 11— Ch 2— Ch3— Chd4— Ch&— ChE— ~Ch?7— ~Ch 38—
N | N | EN | Bl EN | EE o J
3 B3 D D B B =
(et B | FCetet (P Ceter Al Catern | { eetet S| et =t
Test Test Test Test Test Test Test
ol ol loritioriie | o= o _|

~Ch 83— ~Ch 10—+ ~Ch 11— Ch 12— ~Ch 13— Ch 14— ~Ch 15— ~Ch 16—

Lo BN o B o B o B o B o BT o BEUEE o
3 @& [D L e L e
=i (I M=o | e | e o S Rz o | =i | e | e |

o]| e 2| [1]} @] e =]l {[@ =]} &= [@"=

Each channel is individually programmable as:

Input (MC_DIO_INPUT) or Output (MC_DIO_OUTPUT)
High true/Positive logic (MC_DIO_HIGH) or Low true/Negative logic (MC_DIO_LOW)

The 16 channels of the DCX-AT200 motherboard are defined as channels 1 — 16. If one or more
DCX-MC400 Digital 1/0 modules are installed, the additional /0O channels are assigned to
succeeding channel/numbers in blocks of 16 (e.g. 17-32, 33-48, etc.). All I/O channels accept the

same configuration, monitoring and control.

Note — If a BFO22 interface and relay rack are connected to the DCX
Digital /0, a MC_DIO_LOW command set to ALL_AXES should be

0 issued to the DCX. This will cause "normally open" relays to turn on
when the Channel oN command is issued, and off when the Channel oFf

command is issued.

This example configures all the digital I/O channels on a controller for output, then turns each channel
on (in order) for a half second.

DCX-AT200 User’s Manual 151

General Purpose I/0

MCPARAM Param;
MCGetMotionConfig(hCtlr, &Param) ;

for (i = 1; i <= Param.DigitalIO; i++) ({
MCConfigureDigitalIO(hCtlr, i, MC DIO OUPUT | MC_DIO HIGH) ;

for (i = 1; i <= Param.DigitalIO; i++) ({
MCEnableDigitalIO(hCtlr, i, TRUE) ;
MCWait (hCctlr, 0.5);
MCEnableDigitalIO(hCtlr, i, FALSE);

}

Using the DCX Digital 1/O

After configuring the Digital 1/0O channels, three MCAPI functions are available for activating and
monitoring the digital 1/O:

MCEnableDigitallO() set digital output channel state
MCGetDigitallO() get digital input channel state
MCWaitForDigitallO() wait for digital input channel to reach specific state

Enable Digital 10
Turns the specified digital 1/0 on or off, depending upon the value of bState.

TRUE Turns the channel on.
FALSE Turns the channel off.

The I/0O channel selected must have previously been configured for output using the
MCConfigureDigitallO() command. Note that depending upon how a channel has been configured
"on" (and conversely "off") may represent either a high or a low voltage level.

compatibility: MC400

see also: Configure Digital 10

C++ Function: void MCEnableDigitallO(HCTRLR hCtlr, WORD wChannel, short int bState);

Delphi Function: procedure MCEnableDigitallO(hCtlr: HCTRLR; wChannel: Word; bState: Smallint);

VB Function: Sub MCEnableDigitallO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)

MCCL command. CF,CN

Execute [T] -

Handle In E Handle Out
LabVIEW VI: Channel (1)
State [T]

MCEnableDigitallO.vi

Get Digital 10

152 Precision MicroControl

General Purpose I/0

Returns the current state of the specified digital I/O channel. This function will read the current state of
both input and output digital I/O channels. Note that this function simply reports if the channel is "on"
or "off"; depending upon how a channel has been configured "on" (and conversely "off") may
represent either a high or a low voltage level.

compatibility: MC400

see also:

C++ Function: short int MCGetDigitallO(HCTRLR hCtlr, WORD wChannel);

Delphi Function: function MCGetDigitallO(hCtlr: HCTRLR; wChannel: Word): Smallint;

VB Function: Function MCGetDigitallO (ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer

MCCL command: TC

EHECU[E [T]
Handle In Handle Out

LabVIEW VI. Channel (1) - Get i

MCGetDigitall0_vi

Wait for Digital 10

Waits for the specified digital /O channel to go on or off, depending upon the value of bState.

compatibility: MC400

see also: Wait for digital channel on

C++ Function: void MCWaitForDigitallO(HCTRLR hCtlr, WORD wChannel, short int bState);

Delphi Function: procedure MCWaitForDigitallO(hCtlr: HCTRLR; wChannel: Word; bState: Smallint);

VB Function: Sub MCWaitForDigitallO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)

MCCL command-: WF, WN

Execute [T] e
LabVIEW VI Handle In Handle Dut
]

State (T) — —=—
MCWw aitForDigitall 0.+

This example configures all the digital I/O channels on a controller for output, then turns each channel
on (in order) for a half second.

MCPARAM Param;
MCGetMotionConfig(hCtlr, &Param) ;

for (i = 1; i <= Param.DigitalIO; i++)
MCConfigureDigitalIO(hCtlr, i, MC DIO OUPUT | MC_DIO HIGH);

for (i = 1; i <= Param.DigitalIO; i++) ({
MCEnableDigitalIO(hCtlr, i, TRUE) ;
MCWait (hCtlr, 0.5);
MCEnableDigitalIO(hCtlr, i, FALSE);

}

DCX-AT200 User’s Manual 153

General Purpose I/0

//

// Next re-configure channel 3 for input, and put up a message
// box based on the input state

//

if (MCConfigureDigitalIO(hCtlr, 3, MC _DIO INPUT | MC DIO HIGH)) {
val = MCGetDigitalIO(hCtlr, 3);
if (val) // MessageBox is a Windows API function

MessageBox (hParent, "Channel 3 input voltage high (>2.4VDC)",
"MCAPI Sample", MB_ICONINFORMATION) ;
else

MessageBox (hParent, "Channel 3 input voltage low (<0.4VDC)",
"MCAPI Sample", MB_ICONINFORMATION) ;

DCX Motherboard Analog Inputs

The DCX-AT200 Motion Controller motherboard has 4 undedicated 8 bit analog input channels.
These signals can be accessed on connector J3 of the motherboard. Appendix B includes a pin-out
for this connector.

The analog input channels on the motherboard are numbered from 1 to 4. Each of these inputs can
accept an analog input signal from 0 to +5 volts. To prevent damage to the DCX circuitry, the input
signal must be limited to this range by external circuits.

A voltage level greater than 5.6 volts will damage DCX-AT200 analog

input channels. The schematic below is recommended to protect an
g analog input from damage due to an over voltage condition. This circuit

will limit the maximum voltage applied to the A/D converter to 5.6 VDC.

Analog Input Pratection Circuit

10k Analog Input
Ta E>dnazrnsuult " ——a (to connector J3
sEnzOF f] pins 2, 22, 4, andior 207
Y
7

TMS231 zener diode
AR or
SALLSOL TY'S (Gen. Semi)

The DCX includes an on-board 5.00 volt reference supply for the analog to digital converter. This
reference voltage will be used if a shorting block is installed on jumper JP1 of the DCX motherboard.
In this case, the reference voltage will also be connected to pin 23 of motherboard connector J3 and
can be used as an output to external components. Alternatively, an external reference voltage

154 Precision MicroControl

General Purpose I/0

between 0 and +5 volts can be connected to pin 23 of connector J3. In this case, the pins of jumper
JP1 should be left open.

The DCX will perform a ratiometric conversion of the four input channels periodically. The result of
each conversion will be a number between 0 and 255. If the on-board reference is used, the value will
be the ratio of the input voltage to 5.0 volts, times 255. If an external reference voltage is used, the
value will be the ratio of the input voltage to the reference voltage, times 255.

DCX Module Analog I/O

The DCX-MC500 Analog I/0 Module provides additional analog I/O capability to a DCX Motion
Controller. One or more of these modules can be installed in any available position on a DCX
motherboard. Analog input channels can be used to monitor signal levels from external sensors.
Output channels can be used to control external devices.

Three models of the DCX-MC500 are available:

Part Number

DCX-MC500 4 Inputs and 4 Outputs
DCX-MC510 4 Inputs
DCX-MC520 4 Outputs

On each DCX-MC500 Analog I/0O Module all analog input channels are numbered sequentially as a
group. Likewise, all analog output channels are numbered sequentially as a group. When installed in
the DCX-AT200, since there are already 4 analog input channels on the motherboard, the analog I/O
channels on the DCX-MC500s start with number 5.

Because the DCX controller board is implemented in digital electronics, all analog input signals must
be converted into a representative numerical value. This function is done by an Analog to Digital
Converter (ADC) on the DCX-MC500. Similarly, analog output signals originate on the DCX board as
numerical values. These numbers must be written to a Digital to Analog Converter (DAC) on the DCX-
MC500, which converts them to a corresponding analog output signal level.

The DCX-MC500 is designed to accurately measure voltage levels on the input channels. These
inputs are very high impedance with leakage currents less than 10 nano amps. The output channels
are designed to provide signals with accurate voltage levels. The current requirement from these
outputs should not exceed 10 milliamps.

Each of the analog input and analog output channels has 12 bits of resolution. This means that the
digital value read from the ADC, or the digital value written to DAC, must be in the range 0 to 4095.
For both inputs and outputs, a digital value of 0 translates to the lowest analog voltage. A digital value
of 4095 translates to the highest analog voltage.

Input signals on pins 1, 3, 5 and 7 of the module J3 connector are wired directly to the ADC. No
amplification or clamping to the input voltage range is provided on the module.

DCX-AT200 User’s Manual 155

General Purpose I/0

A voltage level greater than 5.6 volts will damage DCX-AT200 analog

input channels. The schematic below is recommended to protect an
Q analog input from damage due to an over voltage condition. This circuit

will limit the maximum voltage applied to the A/D converter to 5.6 VDC.

Analog Input Protection Circuit

10K
To external P Analog Input
sensar §pot (to connector J3
inz 1,3, 5, andfor 7
| [vy
—

15231 zener diode
LA or
SALAS0L TWS (Gen. Semil)

In some applications, the signals from a sensor may not be absolute voltage levels, but proportional to
some reference voltage. In these cases, it may be desirable to supply the reference signal to the ADC
on the module through pin 18 of the J3 connector (and setting jumper JP1 accordingly). This will result
in a "ratiometric" conversion of the input signal relative to the reference voltage.

The outputs from the DAC on the DCX-MC500 module are voltage levels in the range 0 to +5 volts.
These outputs have no gain or offset adjustment. These signals are available on pins 10, 12, 14 and
16 of the module J3 connector.

The outputs from the DAC are also connected to operational amplifiers on the module which offset
and amplify them to provide a +/-10 volt range. Each of these outputs has a 20 turn trim pot for offset
adjustment, and a single turn pot for gain adjustment. The offset pot provides a minimum 0.5 volt
adjustment, and the gain pot provides a nominal 2% range adjustment. These output signals are
available on pins 2, 4, 6 and 8 of the module J3 connector.

After reset the outputs of the DCX-MC500 will be initialized to their mid-scale point. For the 0 to +5
volt outputs, this will be 2.5 volts. For the -10 to +10 volt outputs, this will be 0.0 volts.

Using the Analog I/O

The configuration and operation of both the DCX-AT200 and the DCX-MC5X0 analog I/O channels is
accomplished using either PMC’s Motion Integrator program or the MCAPI functions MCSetAnalog()
, MCGetAnalog(). The screen capture that follows shows the Motion Integrator Analog I/O test panel.
This tool is used to both configure each I/O channel and then verify its operation. A comprehensive
on-line help document is provided.

156 Precision MicroControl

General Purpose I/0

© Analog Test Panel M=l E3
File Help

Standard 10 Mosule 1 |

—Reference Voltage—— ~ Select Installed Module Type
IMCSDD 4 Inputs and 4 Outputs j

—Analog Input & —Analog Input B Analag Input 7 Analog Input 8

+ 2496 V + 2512V + 2091V + 2530V
Setup | Setup I Setup | Setup |

Analog Cutput 1——— ~Analog Output 2——— ~Analog Output 3——— ~Analog Output 4 ———

+ 250V + 250V + 250V + 250V
Setup | Setup I Setup | Setup |

Two MCAPI functions are available for setting and monitoring the MC500 analog 1/O:

MCSetAnalog() set digital output channel state
MCGetAnaloglO() get digital input channel state

Get Analog

Reads the digitized input state of the specified input wChannel. The four 8-bit analog input channels
accessed on connectors J3 are numbered 1,2,3 and 4. For each of these channels, this function will
read a number between 0 and 255. These numbers are the ratio of the analog input voltage to the
reference input voltage multiplied by 256. The reference voltage for the first four channels must be
supplied to the DCX on the J3 connector pin 23, and can be any voltage between 0 and +5 volts DC.
The analog input channels on any installed MC500 modules will be numbered sequentially starting
with channel 5. See the description of Analog Inputs in the DCX General Purpose I/O chapter.

compatibility: MC500, MC510

see also: Set Analog

C++ Function: WORD MCGetAnalog(HCTRLR hCtlr, WORD wChannel);

Delphi Function: function MCGetAnalog(hCtlr: HCTRLR; wChannel: Word): Word;

VB Function: Function MCGetAnalog (ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer

MCCL command-: TA

Execute [T] -
Handle In Handle Out
Channel (1)~ |=%

Yalue

LabVIEW VI
MCGetAnalog. vi

DCX-AT200 User’s Manual 157

General Purpose I/0

Set Analog

Sets the output level of an analog channel. Analog output ports on MC500 and MC520 Analog
Modules accept values in the range of 0 to 4095 counts (12 bits). This range of values corresponds to
an output voltage of 0 to 5V or -10 to +10V, depending upon how the output is configured (See the
description of Analog Inputs in the DCX General Purpose 1/O chapter).

compatibility: MC500, MC520

see also: Get Analog

C++ Function: void MCSetAnalog(HCTRLR hCtlr, WORD wChannel, WORD wValue);

Delphi Function: procedure MCSetAnalog(hCtir: HCTRLR; wChannel, value: Word);

VB Function: Sub MCSetAnalog (ByVal hCtrir As Integer, ByVal channel As Integer, ByVal Value As Integer)

MCCL command-: OA

E xecute [T]

Handle In Handle Out
LabVIEW VI Channel [1] -

Value —

MCSetAnalog. i

Calibrating the MC500/MC520 +/- 10V Analog Outputs:

The analog inputs of the DCX-MC500 require no calibration, and the only option is use of the internal
+5, or an external, reference voltage. The analog outputs with the 0 to +5 volt range also have no
adjustments. The reference for the DAC is fixed to the internal reference voltage.

The four 0.0 to +5.0 analog outputs require no calibration. The four +10 to —10 volt analog outputs are
calibrated at the factory. There are four single turn trim pots which adjust the gain of each of the four
analog outputs. There are also four 20 turn trim pots for adjusting the offsets of each of the analog

outputs. It is strongly recommended that the +10 to —10 volt outputs be calibrated using the Motion
Integrator Calibration Wizard.

Analog Output Calibration Wizard 3 |l Analog Output Calibration, Step 1 | x|
FCE00 and MC520 modules are calibrated atthe facton
[fyou wish to continue you will need a calibrated ol —offzet Pots The selected channel's output has been
® volt meter and a small flat blade screwdriver. =i MCS00 setto 0.00V
® : e e MC§20 Caonnectwvolt meter leads to connector as
& If vou proceed to Step 1. the current channel's output NIl e
will be setto 0.00%. gooooooompong . . . |
lanzlog Sharting connectar pins will cause damage
m_ﬂ Prewview Gnd ltis safestto connectthe meter leads
: with power off.
Step 1 Connectwolt meter. o o0v P
N Step 20 Adjust Offset Fot ta attain zera output level ®
Step 3 Adjust Gain Pot to aftain +10% output level. ®
L
Step 4 Readjust Offset Potto zern Press (MNext] to continue
< Back Next > Cancel ¢ Back | Next > | Cancel

The analog outputs can also be calibrated using MCCL command sequences. For a description of
MCCL commands and the WinControl command interface utility please refer to the MCCL section

158 Precision MicroControl

General Purpose I/0

of the appendix at the end of this user manual. Refer to the module layout diagram in the
Connectors, Jumpers, and Schematics chapter of this user manual. Using the following command
sequence, and reading the analog output voltage level with a voltmeter, an analog output can be
calibrated to provide the specified -10 to +10 volt range:

ALO,OAn, WA2,AL2048,0An, WA2,AL4095, OAn, WA2, RP

where: n = channel number =1, 2, 3, 4, ...

This command sequence will cycle the specified analog output from the minus limit, to the mid-point,
to the positive limit. There is a 2 second delay at each voltage level, during which the voltmeter can
settle and display the current reading.

The first step in calibrating an analog output is to adjust the gain using the single turn pot to achieve a
20.00 volt "swing". This is the difference between the most positive level reading, and the most
negative level reading. It is not necessary for the two readings to be centered about 0 volts for this
step.

The second step is to adjust the offset using the 20 turn pot. This adjustment will place the mid-point
of analog output at the 0 volt level. When the output changes to the mid- point level turn the pot to
achieve a 0.000 volt reading.

After the second step of the calibration procedure, the output swing should still be 20.00 volts. If not,
repeat steps 1 and 2 again.

DCX-AT200 User’s Manual 159

Motion Control APl Function Reference

Chapter Contents

Introduction

Motion Control APl Function Quick Reference Tables
Setup Functions

Motion Functions

Reporting Functions

I/O Functions

Macros and Multi-Tasking Functions

MCAPI Driver Functions

160

Precision MicroControl

Chapter

9

Motion Control APl Function Reference

The Motion Control Application Programming Interface (API) implements a powerful set of high level
functions and data structures for programming motion control applications. An example function
description is shown below:

Set Acceleration

Set the maximum acceleration rate for an axis. The default units for the command parameter are
encoder counts (or steps) per second per second.

compatibility: MC200, MC210, MC260

see also: Set Deceleration, Set Velocity, Set Motion Config

C++ Function: void MCSetAcceleration(HCTRLR hCtlr, WORD wAxis, double Rate);

Delphi Function: procedure MCSetAcceleration(hCtlr: HCTRLR; wAxis: Word; Rate: Double);

VB Function: Sub MCSetAcceleration (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal rte As Double)

MCCL command.: SA

Execute [T] rm——

. Handle In ; Handle Out
LabVIEW VI. Agis In [1) T /T L Axis Dut
Acceleration [0.0] — ==

MCS5etAcceleration. vi

The description (Set Acceleration) is derived from the operation that it performs

The "compatibility" line will list which DCX plug-in modules for which the function is valid. This is
important since not all functions are supported on both servo and stepper axes. If a function isn't
intended to be used for a specific axis or module, the letters 'N/A' for "Not Applicable" will appear on
this line.

The "see also" line lists other MCAPI functions that have an association or similar purpose to the
function being described.

DCX-AT200 User’s Manual 161

Motion Control APl Function Reference

The “C++ Function:, Delphi Function:, and VB Function:* lines show the high level function
prototypes.

The "MCCL command ” line lists the associated low level MCCL command.

Within each section (Setup, Motion, etc...) all functions that use data structures are listed first and all
Data Structure members will be listed. The balance of the functions are listed alphabetically.

162 Precision MicroControl

Motion Control API Functions

Motion Control API Function Quick Reference Tables

Setup Functions

MCSetAcceleration set Acceleration for an axis
MCSetAuxEncPos set the position of the auxiliary encoder
MCSetContourConfig set contour configuration settings
MCSetDeceleration Deceleration Set

MCSetFilterConfig

MCSetGain set the proportional gain for a servo axis

MCSetLimits configure hard and soft limits for an axis
MCSetModuleOutputMode define the output type

MCSetMotionConfig set motion parameters (velocity, accel, step rate, dead band, etc...)
MCSetOperatingMode set the mode of motion (position, velocity, contour, torque)
MCSetPosition set the current position of an axis

MCSetProfile select a motion profile (trapezoidal, s-curve, parabolic)
MCSetRegister set general purpose user register
MCSetServoOutputPhase select normal or reverse phasing for a servo axis
MCSetScale set the scaling factors for an axis

MCSetTorque set output voltage limit for servo

MCSetVectorVelocity set the vector velocity of a contoured move
MCSetVelocity set the maximum velocity for a one axis move

Motion Functions

set the PID filter parameters

MCAbort abort the current motion for an axis

MCArcCenter sets the center point of an arc

MCArcEndAngle defines the ending angle of an arc

MCArcRadius defines the radius of an arc

MCCaptureData initiate real time capture of position and servo loop data

MCContourDistance

MCContourPath set the contour move type (linear, clockwise arc, counter clockwise arc)
MCDirection set travel direction for velocity mode move
MCEnableAxis turn axis on or off

MCEnableBacklashCompensation

MCEnableJogging

set the path distance for user defined contour motion

enable backlash compensation
enable/disable jogging

MCEnableGearing enable/disable gearing

MCEnableSynch enables cubic spline motion, synchronizes contour motion
MCFindAuxEncldx initialize the auxiliary encoder at the location of the index
MCFindEdge initialize a stepper motor at the location of the home input
MCFindIndex initialize a servo motor at the location of the encoder index input
MCGo start a velocity mode motion, begin cubic spline motion sequence
MCGoEx start a velocity mode motion, begin cubic spline motion sequence
MCGoHome move axis to absolute position 0

MCIndexArm arms encoder index capture

MCLearnPoint store position in point memory

MCMoveAbsolute move axis to absolute position

MCMoveRelative move axis to relative position

MCMoveToPoint move to position stored in point memory

MCReset perform a software reset of the controller

MCStop stop motion

MCWait wait for a variable time period

MCWaitForEdge wait for the home input

MCWaitForPosition wait for axis to reach position

MCWaitForStop wait for the calculated trajectory to be complete
MCWaitForTarget wait for axis to reach target position

DCX-AT200 User’s Manual

163

Motion Control APl Function Reference

Reporting Functions

MCDecodeStatus
MCErrorNotify
MCGetAccelerationEx
MCGetAuxEncldxEx
MCGetAuxEncPosEx
MCGetBreakpointEx
MCGetCapturedData
MCGetContourConfig
MCGetContouringCount
MCGetDecelerationEx
MCGetFilterConfig
MCGetError
MCGetFollowingError
MCGetGain
MCGetIindexEx
MCGetLimits
MCGetMotionConfig
MCGetOptimalEx
MCGetPositionEx
MCGetProfile
MCGetRegister
MCGetServoOutputPhase
MCGetScale
MCGetStatus
MCGetTargetEx
MCGetTorque
MCGetVectorVelocity
MCGetVelocityEx
MClsStopped
MClsAtTarget
MCTranslateError

1/0 Functions

axis status word decoding

enables/disables error messages for application window
get current programmed acceleration for axis

get last observed position of auxiliary encoder index pulse
get current position of auxiliary encoder

get the most recent breakpoint position

retrieve captured axis data (current position, optimal position, error)
get contour configuration settings

get current contour count

get current programmed deceleration for axis

get the PID parameters

returns the most recent controller error

get the current programmed following error

get the current proportional gain setting for an axis

get the last observed position of the primary encoder index pulse
get current hard and soft limit settings

get motion configuration

get the current optimal position of an axis

get the current position of an axis

get the current profile type (trapezoidal, s-curve, parabolic)
get the contents of a general purpose register

get the output phase (normal or reversed) of a servo

get the current programmed scaling factors for an axis
get the axis status word

get the current target of an axis

get the current torque setting of an axis

get the current programmed vector velocity of an axis

get the current programmed velocity of an axis

return value when trajectory is complete

return value when axis is at the target position

translate numeric error code to text message

MCConfigureDigitallO
MCEnableDigitallO
MCGetAnalog
MCGetDigitallO
MCGetDigitallOConfig
MCSetAnalog
MCWaitForDigitallO

configure digital I/O channels (input, output, high true, low true)
set the state of a digital output channel

read analog input channel value

get the state of a digital input channel

get digital 1/0 channel configuration

set the value of an analog output

wait for digital I/0O channel to reach a specific state

Macro’s and Multi-Tasking Functions

MCCancelTask cancel a background task

MCMacroCall call a MCCL macro

MCRepeat inserts a repeat command into a macro or task sequence

164 Precision MicroControl

Motion Control API Functions

MCAPI Driver Functions

MCBIlockBegin begin a compound commands (contour motion, macro’s, multi-tasking)
MCBIlockEnd end a compound commands (contour motion, macro’s, multi-tasking)
MCClose close a controller (free handle)

MCGetConfiguration obtain PMC controller hardware configuration

MCGetVersion get the version of the DLL and device driver

MCOpen open a controller (get handle)

MCReopen re-opens existing controller handle for a new mode

MCSetTimeoutEx set a timeout value for controller

DCX-AT200 User’s Manual 165

Motion Control APl Function Reference

Setup Commands

Set Motion Configuration

This function provides a way of setting all motion parameters for a given wAxis with a single function
call using an initialized MCMOTION structure. When you need to setup many parameters for an wAxis
it is easier to call MCGetMotionConfig(), update the MCMOTION structure, and write the changes
back using MCSetMotionConfig(), rather than using a Get/Set function call for each parameter. Note
that some less often used parameters will only be accessible from this function and from
MCGetMotionConfig() - they do not have individual Get/Set functions.

compatibility: MC200, MC210, MC260
see also: Set Filter Configuration
C++ Function: short int MCSetMotionConfig(HCTRLR hCtlr, WORD wAxis, MCMOTION far* IpMotion);
Delphi Function: function MCSetMotionConfig(hCtlr: HCTRLR; wAxis: Word; var IpMotion: MCMOTION): Smallint;
VB Function: Function MCSetMotionConfig (ByVal hCtrlr As Integer, ByVal axis As Integer, Motion As MCMotion) As
Integer
MCCL command. SA, DS, SV, MV, DI, SG, SQ, DB, DT, SF, SH, FC, HC, LF, LM, LN,FN, FF, HS, LS, MS
Handle I Handle Out

LabVIEW VI Ais [0 1]
Flags (0]
Title [Error

MCDLG_Configurefxiz_vi

Biz Out

y

MCMotion Data Structure

typedef struct ({

double Acceleration; // Acceleration rate for motion

double Deceleration; // Deceleration rate for motion

double Velocity; // Maximum velocity for motion

double MinVelocity; // Stepper motor jog minimum velocity

short int Direction; // Sets velocity mode direction of travel

double Gain; // Proportional gain value for motion

double Torque; // Sets the maximum output torque for servos.
// Default output units are volts.

double Dead band; // Sets the position dead band value

double DeadbandDelay; // Time limit axis must remain within dead band

short int StepSize; // Sets step size output for stepper motor

short int Current; // Full or reduced current stepper motor.

WORD HardLimitMode; // Enables hard (physical) limit switches

WORD SoftLimitMode; // Enables soft (software) limit switches

double SoftLimitLow; // Sets "position" of low soft limit

double SoftLimitHigh; // Sets "position" of high soft limit

short int EnableAmpFault; // Controls servo amplifier fault input

short int Rate; // Servo - set the feedback loop rate

// Stepper - sets max. pulse rate range

} MCMOTION;

166 Precision MicroControl

Motion Control API Functions

Set Filter Configuration
This function provides a way of setting all PID filter parameters for a given wAxis with a single function
call using an initialized MCFILTER structure. When you need to setup many parameters for an wAxis
it is easier to call MCGetFilter(), update the MCFILTER structure, and write the changes back using
MCSetFilterConfig(), rather than using a Get/Set function call for each parameter. Note that some
less often used parameters will only be accessible from this function and from MCGetFilterConfig() -
they do not have individual Get/Set functions.

compatibility:
see also:

C++ Function:
Delphi Function:
VB Function:
MCCL command.

LabVIEW ViI:

MC200, MC210

Set Motion Configuration

short int MCSetFilterConfig{ HCTRLR hCtlr, WORD wAxis, MCFILTER far* IpFilter);

function MCSetFilterConfig(hCtlr: HCTRLR; wAxis: Word; var IpFilter: MCFILTER): Smallint;
Function MCSetFilterConfig (ByVal hCtrlr As Integer, ByVal axis As Integer, Filter As MCFilter) As Integer
SD, FR, S, IL, VG, AG, DG, SE

E xecute [T]

Handle In —
Axig In [1] - Iﬁ'

Filter

Handle Out

L Axis Out

MCS5etFilterConfig.vi

MCFilter Data Structure

typedef struct ({

double

double

double

double

double

double

double
double

} MCFILTER;

DerivativeGain;
DerSamplePeriod;
IntegralGain;
IntegrationLimit;
VelocityGain;
AccelGain;

DecelGain;
FollowingError;

//
//
//
//
//
//
//
//
//
//
//
//
//

Gain setting for the derivative term of
the PID loop

Time interval, in seconds, between
derivative samples

Gain setting for the integral term of the
PID loop

Limits the power the integral gain can use
to reduce error to zero.

Gain setting for the feed-forward gain of
the PID loop

Feed-forward acceleration gain setting
Feed-forward deceleration gain setting
Maximum position error

DCX-AT200 User’s Manual

167

Motion Control APl Function Reference

Set Contour Configuration

This function provides a way of setting all motion parameters for a multi axis contour motion with a
single function call using an initialized MCCONTOUR structure. When you need to setup many
parameters for an wAxis, it is easier to call MCGetContourConfig(), update the MCCONTOUR
structure, and write the changes back using MCSetContourConfig(), rather than use a Get/Set
function call for each parameter. Note that some less often used parameters will only be accessible
from this function and from MCGetContourConfig() - they do not have individual Get/Set functions.

compatibility: MC200, MC210, MC260

see also: Set Motion Configuration

C++ Function: short int MCSetContourConfig(HCTRLR hCtlr, WORD wAxis, MCCONTOUR far* IpContour);

Delphi Function: function MCSetContourConfig(hCtlr: HCTRLR; wAxis: Word; var IpContour: MCCONTOUR): Smallint;

VB Function: Function MCSetContourConfig (ByVal hCtrir As Integer, ByVal axis As Integer, contour As MCContour) As
Integer

MCCL command: VA, VD, VV, VO

E“E':ute [T]
. Handle In — Handle Out
LabVIEW VI: Auis In 1) ~— ‘5° - Axis Out
Filter
MCS5etFilterConfig.vi

MCCONTOUR Data Structure

typedef struct ({

double VectorAccel; // Acceleration value for motion along a
// contour path

double VectorDecel; // Deceleration value for motion along a
// contour path

double VectorVelocity; // Maximum velocity for motion along a
// contour path

double VelocityOverride; // Proportional scaling factor for vector

//velocity, may be changed while axes are in
// motion

} MCCONTOUR ;

168 Precision MicroControl

Motion Control API Functions

Set Scale

Setting scaling factors allows application programs to talk to the controller in real world units, as
opposed to arbitrary "encoder counts". Scaling factors provide a consistent, easy method of relating
motion values to the actual physical system being controlled.

This function provides a way of setting all scaling parameters for an axis with a single function call
using an initialized MCSCALE structure. When you need to setup many parameters for an wAxis it is
easier to call MCGetScale(), update the MCSCALE structure, and write the changes back using
MCSetScale(), rather than use a Get/Set function call for each parameter. Note that some less often
used parameters will only be accessible from this function and from MCGetScale() - they do not have
individual Get/Set functions.

compatibility: MC200, MC210, MC260

see also: Set Motion Configuration

C++ Function: short int MCSetScale(HCTRLR hCtlr, WORD wAxis, MCSCALE far* IpScale);

Delphi Function: function MCSetScale(hCtlr: HCTRLR; wAxis: Word; var IpScale: MCSCALE): Smallint;

VB Function: Function MCSetScale (ByVal hCtrir As Integer, ByVal axis As Integer, scal As MCScale) As Integer

MCCL command.: UK, UO, UR, US, UT, UZ

E xecute [T]

LabVIEW VI: Handle In Handle Out
a Axis In [1] —'_I%I_‘—Axis Out
Filter —_

MCS5etFilterConfig. vi

MCSCALE Data Structure

typedef struct ({

double Constant; // Scale the analog output of a servo

double Offset; // Offset index position of the encoder

double Rate; // Change the base time unit for motion,
// default unit is seconds

double Scale; // Change from encoder counts to ‘real
// world’ units

double Zero; // Set a ‘soft’ zero position from axis
// zero (home)

double Time; // Time factor for Wait functions

} MCSCALE;

DCX-AT200 User’s Manual 169

Motion Control APl Function Reference

Set Jog

This function provides a way of setting all jogging parameters for an axis with a single function call
using an initialized MCJOG structure. When you need to setup many parameters for an wAxis it is
easier to call MCGetJog(), update the MCJOG structure, and write the changes back using
MCSetJog(), rather than use a Get/Set function call for each parameter. Note that some less often
used parameters will only be accessible from this function and from MCGetJog() - they do not have
individual Get/Set functions.

It is important to set the jog configuration before enabling jogging if you will be using non-default
parameters for the jog configuration.

compatibility: MC200, MC210, MC260

see also: Enable Jog

C++ Function: short int MCSetJogConfig(HCTRLR hCtlr, WORD wAxis, MCJOG far* IpJog);

Delphi Function: function MCSetJogConfig(hCtlr: HCTRLR; wAxis: Word; var IpJog: MCJOG): Smallint;

VB Function: Function MCSetJogConfig (ByVal hCtrir As Integer, ByVal axis As Integer, jog As MCJog) As Integer
MCCL command: JA M, JD, JG, JO

LabVIEW ViI: Not supported

MCJOG Data Structure

typedef struct ({

double Acceleration; // Jog acceleration rate

double MinVelocity; // Stepper minimum velocity

double Dead band; // Voltage threshold below which no
jog // motion will occur

double Gain; // Defines the jog maximum velocity

double Offset; // Specifies ‘null’ (no motion) of

//joystick in volts

} MCSCALE;

170 Precision MicroControl

Motion Control API Functions

Set Acceleration

Set the maximum acceleration rate for an axis. The default units for the command parameter are
encoder counts (or steps) per second per second.

compatibility: MC200, MC210, MC260

see also: Set Deceleration, Set Velocity, Set Motion Config

C++ Function: void MCSetAcceleration(HCTRLR hCtlr, WORD wAxis, double Rate);

Delphi Function: procedure MCSetAcceleration(hCtlr: HCTRLR; wAxis: Word; Rate: Double);

VB Function: Sub MCSetAcceleration (ByVal hCtrr As Integer, ByVal axis As Integer, ByVal rte As Double)

MCCL command.: SA

Execute [T] rm——

. Handle In — Handle Out
LabVIEW VI. Agis In [1) T /T L Axis Dut
Acceleration [0.0] — ==

MCS5etAcceleration. vi

Set Auxiliary Encoder Position

This command causes axis a auxiliary encoder position to be set to n. This encoder input is available
on both the MC200 and MC260 modules, and is used for loop closure when a MC260 is controlling a
closed loop stepper. The auxiliary encoder of a MC200 is used for position verification only, it cannot
be used for dual loop positioning. For defining the home position of the primary encoder, see the
Define Home command.

compatibility: MC200, MC210, MC260

see also: Set Position

C++ Function: void MCSetAuxEncPos(HCTRLR hCtlr, WORD wAXxis, double Position);

Delphi Function: procedure MCSetAuxEncPos(hCtlr: HCTRLR; wAxis: Word; Position: Double);

VB Function: Sub MCSetAuxEncPos (ByVal hCtrir As Integer, ByVal axis As Integer, ByVal position As Double)

MCCL command.: AH

E xecule [T] :

Handle In : Handle Out
Axiz In [1] - lﬁl L Axis Out
LabVIEW VI. Mew Position [0.0) —

MCSetAuxEncPos. vi

Set Deceleration

Defines the deceleration rate for an axis. The default units for the command parameter are encoder
counts (or steps) per second per second.

compatibility: MC200, MC210, MC260
see also: Set Motion Configuration, Set Acceleration, Set Velocity

DCX-AT200 User’s Manual 171

Motion Control APl Function Reference

C++ Function: void MCSetDeceleration(HCTRLR hCtlr, WORD wAxis, double Rate);
Delphi Function: procedure MCSetDeceleration(hCtlr: HCTRLR; wAxis: Word; Rate: Double);
VB Function: Sub MCSetDeceleration (ByVal hCrir As Integer, ByVal axis As Integer, ByVal rte As Double)

MCCL command.: DS

E xecute [T]

Handle In I Handle Out
LabVIEW VI AxisIn (1]~ - Axis Out
Deceleration [0.0] — ==

MC5etDeceleration. vi

Set Gain

This function is used to set the proportional gain of a servo's feedback loop. Increasing the
proportional gain has the effect of stiffening the force holding a servo in position. The parameter to
this command has default units of volts per encoder count. This command should not be used for
open loop stepper axes. See the description on Tuning the Servo section in the Motion Control
chapter.

compatibility: MC200, MC210

see also: Set Filter Configuration

C++ Function: long int MCSetGain(HCTRLR hCtlr, WORD wAxis, double Gain);

Delphi Function: function MCSetGain(hCtlr: HCTRLR; wAxis: Word; Gain: Double): Longint;

VB Function: Function MCSetGain (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal gain As Double) As Long

MCCL command.: SG

E xecute [T]

. Handle In Handle Out
LabVIEW VI Ao In [1) T 55— Axis Out
Filver —_

MCS5etFilterConfig. vi

Set Limits

This function is used to configure and enable both hard and soft limits. If a limit switch input goes
active after it has been enabled by this command, and the motor has been commanded to move in
the direction of that switch, the Motor Error and one of the Hard Limit Tripped Flags will be set in the
motor status. At the same time the motor will be turned off or stopped. If a soft motion limit is
enabled, and the respective axis goes beyond the motion limits set by the High motion Limit and the
Low motion Limit commands, the Motor Error and one of the Soft Limit Tripped Flags will be set. At
the same time, the motor will be turned off or stopped.

The error flags will remain set until the motor is turned back on with the Enable Axis function. Once
the motor is turned back on, it can be moved out of the limit region with any of the standard motion
functions. See the description on Motion Limits in the Motion Control chapter.

compatibility: MC200, MC210, MC260
see also: Set Motion Configuration

172 Precision MicroControl

Motion Control API Functions

C++ Function: long int MCSetLimits(HCTRLR hCtlr, WORD wAxis, short int HardLimitMode, short int SoftLimitMode,
double SoftLimitLow, double SoftLimitHigh);

Delphi Function: function MCSetLimits(hCtlr: HCTRLR; wAxis: Word; HardLimMode, SoftLimMode: Smallint; SoftLimLow,
SoftLimHigh: Double):

VB Function: Function MCSetLimits (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal HardLimitMode As Integer,
ByVal SoftLimitMode As Integer, ByVal SoftLimitLow As Double, ByVal SoftLimitHigh As Double) As Long

MCCL command: HL,LF,LL, LM, LN

LabVIEW VI: Exl-?cu:ﬁ ['I[] Mo Out
andie In - + andle u
H-'E"“ij II: [J] f_l Limits - Axis Out
ard Mode
Soft Mode mr

MCSetLimits_vi

Set Module Output Mode

This function is used to set a servo or stepper module's output mode. The available modes are listed
in the following tables.

MC200 Output Mode

Bipolar Analog output, -10V to +10V

Unipolar Analog output, OV to +10V, direction J3 pin 7

Bipolar PWM signal output on J3 pin 7, 0 - 50% duty cycle

Unipolar PWM signal output on J3 pin 7, 0 — 100% duty cycle, Direction on
Analog Output (J3 pin 2)

MC260 Output Mode
Pulse and Direction outputs (default)
CW and CCW Pulse Outputs

compatibility: MC200, MC210, MC260

see also:

C++ Function: void MCSetModuleOutputMode(HCTRLR hCtlr, WORD wAxis, WORD wMode);

Delphi Function: procedure MCSetModuleOutputMode(hCtlr: HCTRLR; wAxis, wMode: Word);

VB Function: Sub MCSetModuleOutputMode (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal mode As Integer)
MCCL command. aOMn a= Axis number n=integer0, 1,2, 0r3

LabVIEW VI. Not supported

Set Position

Defines the current position of a motor. From then on, all positions reported for that motor will be
relative to that point.

compatibility: MC200, MC210, MC260
see also: Get Position

DCX-AT200 User’s Manual 173

Motion Control APl Function Reference

C++ Function: void MCSetPosition(HCTRLR hCtlr, WORD wAxis, double Position);
Delphi Function: procedure MCSetPosition(hCtlr: HCTRLR; wAxis: Word; Position: Double);
VB Function: Sub MCSetPosition (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double)

MCCL command.: DH

E xecute [T]

Handle In EEL Handle Out
Axig In [1] - IEI L Axiz Out
LabVIEW VI. New Position (0.0) —

MCSetPosition_vi

Set Operation Mode

This function is used to define the mode of motion of an axis. The available mode are:

MC MODE_CONTOUR selects contouring mode (must also specify wMaster)
MC_MODE_GAIN selects gain mode of operation

MC MODE POSITION selects the position mode of operation (default)
MC _MODE_TORQUE selects torque mode operation

MC MODE VELOCITY selects the velocity mode.

For detailed description of these mode of motion please refer to the Motion Control chapter of this
user manual.

compatibility: MC200, MC210, MC260

see also:

C++ Function: void MCSetOperatingMode(HCTRLR hCtlr, WORD wAxis, WORD caxis, WORD mode);

Delphi Function: procedure MCSetOperatingMode(hCtir: HCTRLR; wAxis, wCaxis, wMode: Word);

VB Function: Sub MCSetOperatingMode (ByVal hCtrir As Integer, ByVal axis As Integer, ByVal caxis As Integer, ByVal

mode As Integer)
MCCL command: CM, GM, PM, QM, VM

Execute [T]

Handle In Handle Out
LabVIEW VI: Asis In [1) -1 Agis Dut

Master Axis (1) o
" Mods 2) —

MC5etOperatingMode. vi

Set Profile

This function is used to define the type of velocity profile that an axis will use for motion. The
supported velocity profiles are:

e Trapezoidal
e S-curve
e Parabolic

For a description of the performance when using different velocity profiles see the description of
Defining the Characteristics of a Move in the Motion Control chapter.

174 Precision MicroControl

Motion Control API Functions

compatibility:
see also:

C++ Function:
Delphi Function:

VB Function:
MCCL command.:

LabVIEW VI

Set Register

MC200, MC210, MC260
PS, PT

void MCSetProfile(HCTRLR hCtlr, WORD wAxis, WORD wMode);

procedure MCSetProfile(hCtlr: HCTRLR; wAxis, wMode: Word);

Sub MCSetProfile (ByVal hCtrir As Integer, ByVal axis As Integer, ByVal mode As Integer)
PP, PS, PT

Handle In Hardle Out
Bz In 1] - Lo Az Ot
Floge 1) ﬁ iz
Title [Error

MCDLG_ConfigureAxis_vi

Loads the specified DCX User Register (0 — 255) with a ‘long’ or ‘double’ value. This functional does
not support setting the value of a background task ‘private user register’. For more information on
background tasks and ‘private user registers’ please refer to the description of Multi-Tasking in the

Appendix.

compatibility:
see also:

C++ Function:
Delphi Function:
VB Function:

MCCL command-:

LabVIEW VI

N/A
Get Register

long int MCSetRegister(HCTRLR hCtlIr, long int nRegister, void far* Value, long int nType);
function MCSetRegister(hCtir: HCTRLR; nRegister: Longint; var Value: Pointer; nType: Longint): Longint;
Function MCSetRegister (ByVal hCtrlr As Integer, ByVal reg As Long, Value As Any, ByVal argtype As

Long) As Long
AL, AR
Execute [T] - Exectte [T] -
Handle In P Handle Out Handle I i Handle Out
Hegis{l?rl[ﬂ] - IITngl Hegisi?rl[n] B |m|
alue — alue
I— Error _l_— Errar

MC5etR egisterLong. vi MCSetRegisterDouble. i

Set Servo Output Phasing

This function is used to set a servo module's output phasing. The phase of the output will determine
whether the module drives the servo in a direction that reduces position error, or increases it.

compatibility:
see also:

C++ Function:
Delphi Function:
VB Function:
MCCL command.

MC200, MC210

void MCSetServoOutputPhase(HCTRLR hCtlr, WORD wAxis, WORD wPhase);

procedure MCSetServoOutputPhase(hCtlr: HCTRLR; wAxis, wPhase: Word);

Sub MCSetServoOutputPhase (ByVal hCtrir As Integer, ByVal axis As Integer, ByVal mode As Integer)
PH

DCX-AT200 User’s Manual 175

Motion Control APl Function Reference

LabVIEW VI A = i
Flage [0 ﬁ Sxis
Title [Error

MCDLG_ConfigureAxis_vi

Set Torque

Sets maximum output level for servos. When an axis is operating in torque mode, this command sets
the continuous output level. The default units for the command parameter are volts. See the
description of Torque Mode Output Control in the Applications Solutions chapter.

compatibility: MC200, MC210
see also:
C++ Function: long int MCSetTorque(HCTRLR hCtlr, WORD wAXxis, double Torque);
Delphi Function: function MCSetTorque(hCtir: HCTRLR; wAxis: Word; Torque: Double): Longint;
VB Function: Not supported
MCCL command: QM, SQ

Handle In Handle Out

Az 1n (1) _I_—' Biz Ot
LabVIEW VI. Flags (0] mj'“ T

Title [™'] Errar

MCDLG_ConfigureAxis_vi

Set Velocity

Set the maximum velocity for a given axis. The default units for the command parameter are encoder
counts (or steps) per second.

compatibility: MC200, MC210, MC260

see also: Set Acceleration, Set Deceleration, Set Motion Configuration

C++ Function: void MCSetVelocity(HCTRLR hCtir, WORD wAxis, double Rate);

Delphi Function: procedure MCSetVelocity(hCtlr: HCTRLR; wAxis: Word; Rate: Double);

VB Function: Sub MCSetVelocity (ByVal hCtrir As Integer, ByVal axis As Integer, ByVal rte As Double)

MCCL command-: SV

. Handle In Handle Out
LabVIEW VI. Agis In (1] = €5 L Asis Dut
Velocity [0.0) —

MCSetYelocity_vi

176 Precision MicroControl

Motion Control API Functions

Set Vector Velocity

This command specifies the maximum velocity for motion along a contour path. It should be issued to
the controlling axis prior to the first Contour Path command. When a Contour Path command is
issued, the current vector velocity will be stored with the move in the motion table. The Vector Velocity
command can also be issued to the controlling axis while motion is in progress, but it won't have any
effect on the contour path motions already issued. To adjust the velocity of motions already in
progress, use the Velocity Override command. See the description of Contour Motion (lines and
arcs) in the Motion Control chapter.

compatibility: MC200, MC210, MC260

see also: Set Contour Configuration

C++ Function: short int MCSetContourConfig(HCTRLR hCtlr, WORD wAxis, MCCONTOUR far* IpContour);

Delphi Function: function MCSetContourConfig(hCtlr: HCTRLR; wAxis: Word; var IpContour: MCCONTOUR): Smallint;

VB Function: Function MCSetContourConfig (ByVal hCtrir As Integer, ByVal axis As Integer, contour As MCContour) As
Integer

MCCL command: \W

LabVIEW VI. Not supported

DCX-AT200 User’s Manual 177

Motion Control APl Function Reference

Motion Functions
Abort

This function serves as an emergency stop. For a servo, motion stops abruptly but leaves the position
feedback loop (PID) and the amplifier enabled. For a stepper motor, the pulses from the module will
be disabled immediately. For both servos and stepper motors, the target position of the axis is set
equal to the present position. This function can be issued to a specific axis, or can be issued to all
axes simultaneously by using the wAxis set to MC_AII_Axes.

compatibility: MC200, MC210, MC260
see also: Stop
C++ Function: void MCAbort(HCTRLR hCtlr, WORD wAXxis);
Delphi Function: procedure MCAbort(hCtlr: HCTRLR; wAxis: Word);
VB Function: Sub MCAbort (ByVal hCtrlr As Integer, ByVal axis As Integer)
MCCL command: AB
5 Execute [T] -

LabVIEW VI Handle In 5 > Handle Out

Axis In [1] - Ahort L Axiz Out

MCAbort. vi

Arc Center

Specifies the center (absolute or relative) for wAxis of an arc for contour path motion. This function
sets the center of an arc for contour path motion. Since arc motion is performed by two axes, this
function should be called twice in a contour path block, once for each axis. The parameter to this
command specifies the center of the arc for the selected axis in user units. See the description of
Contour Motion in the Motion Control chapter.

compatibility: MC200, MC210, MC260

see also: Contour Path, Set Operating Mode

C++ Function: long int MCArcCenter(HCTRLR hCtlr, WORD wAxis, short int nType, double Position n);

Delphi Function: function MCArcCenter(hCtlr: HCTRLR; wAxis: Word; nType: Smalllnt; Position: Double): Longint;

VB Function: Function MCArcCenter (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal arctype As Integer, ByVal
position As Double) As Long

MCCL command. CA CR

LabVIEW VI. Not supported

Arc Ending Angle

Defines the ending angle (absolute or relative) for wAxis of an arc for contour path motion. See the
description of Contour Motion in the Motion Control chapter.

178 Precision MicroControl

Motion Control API Functions

Specifies the center (absolute or relative) for wAxis of an arc for contour path motion. This function
sets the center of an arc for contour path motion. Since arc motion is performed by two axes, this
function should be called twice in a contour path block, once for each axis. The parameter to this
command specifies the center of the arc for the selected axis in user units. See the description of
Contour Motion in the Motion Control chapter.

compatibility: MC200, MC210, MC260

see also: Contour Path, Set Operating Mode

C++ Function: long int MCArcEndAngle(HCTRLR hCtir, WORD wAxis, short int nType, double Angle);

Delphi Function: function MCArcEndAngle(hCtlr: HCTRLR; wAxis: Word; nType: Smalllnt; Anglen: Double): Longint;

VB Function: Function MCArcEndAngle (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal arctype As Integer, ByVal
anglen As Double) As Long

MCCL command: EAER

LabVIEW VI. Not supported

Arc Radius

Specifies the radius for wAxis of an arc for contour path motion. Since arc motion is performed by two
axes, this function should be called twice in a contour path block, once for each axis. For an arc of
less than 180 degrees the parameter Radius should be a positive value equal to the radius of the arc.
For an arc of greater than 180 degrees the parameter Radius should be a negative value equal to the
radius of the arc. See the description of Contour Motion in the Motion Control chapter.

compatibility: MC200, MC210, MC260

see also: Contour Path, Set Operating Mode

C++ Function: long int MCArcRadius(HCTRLR hCtlr, WORD wAxis, short int nType, double Radius);

Delphi Function: function MCArcRadiusr(hCtir: HCTRLR; wAxis: Word; nType: Smallint; Radius: Double): Longint;

VB Function: Function MCArcRadius(ByVal hCtrir As Integer, ByVal axis As Integer, ByVal arctype As Integer, ByVal
radius As Double) As Long

MCCL command. CA CR

LabVIEW VI. Not supported

Capture Data

Record motion data (actual position, optimal position, and DAC output) for an axis. See the
description of Record and display Motion Data in the Application Solutions chapter.

compatibility: MC200, MC210

see also:

C++ Function: long int MCCaptureData(HCTRLR hCtlr, WORD wAXxis, long int IPoints, double Period, double Delay);
Delphi Function: function MCCaptureData(hCtir: HCTRLR; wAxis: Word; IPoints: Longint; Period, Delay: Double): Longint;
VB Function: Function MCCaptureData (ByVal hCtrir As Integer, ByVal axis As Integer, ByVal points As Long, ByVal

period As Double, ByVal delay As Double) As Long
MCCL command: PR
LabVIEW VI. Not supported

DCX-AT200 User’s Manual 179

Motion Control APl Function Reference

Contour Distance

This function sets the distance for user defined contour path motions. The parameter specifies the
distance, as measured along the path, from the contour path starting point to the end of the next
motion. It is required for user defined contour path motions. See the description of Contour Motion
in the Motion Control chapter.

compatibility: MC200, MC210, MC260

see also: Contour Path, Set Operation Mode

C++ Function: long int MCContourDistance(HCTRLR hCtlr, WORD wAxis, double Distance);

Delphi Function: function MCContourDistance(hCtlr: HCTRLR; wAxis: Word; Distance: Double): Longint;

VB Function: Function MCContourDistance (ByVal hCtrir As Integer, ByVal axis As Integer, ByVal distance As Double)
As Long

MCCL command: CD

LabVIEW VI. Not supported

Direction

Sets the move direction of a motor when in velocity mode.

compatibility: MC200, MC210, MC260

see also: GO, enable Velocity mode

C++ Function: void MCDirection(HCTRLR hCtlr, WORD wAxis, WORD wDir);

Delphi Function: procedure MCDirection(hCtlr: HCTRLR; wAXxis, wDir: Word);

VB Function: Sub MCDirection (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal direc As Integer)

MCCL command-: DI

E xecute [T] :

Handle In : Handle Out
LabVIEW VI. Axis In (1) T ‘g |- Asis Out

Direction [1] —

MCDirection.vi

Enable Axis

Use this function to place one or all servos and stepper motors in the on state. If an axis is off when
this command is issued, the target and optimal (commanded) positions will be set to the motor's
current position. This can cause a change in the axis' reported position based on new user units. At
the same time, a servo module's Amplifier Enable or a stepper motor module's Drive Enable output
signal will go active. This has the effect of causing servo and stepper motors to hold their current
position. If an axis is already on when this command is issued, the position values will be set for the
current user units, but the commanded encoder or pulse position will not be changed.

180 Precision MicroControl

Motion Control API Functions

The selected wAxis will be turned on or off depending upon the value of bState. Note that an axis
must be enabled before any motion will take place. Issuing this command with wAxis set to
MC_ALL_AXES will enable or disable all axes installed on hCtlr. This function accepts any non-zero
value for bState as TRUE, and will work correctly with most programming languages, including those
that define TRUE as a non-zero value other than one (one is the Windows default value for TRUE).

compatibility: MC200, MC210, MC260

see also: turn the Motor on

C++ Function: void MCEnableAxis(HCTRLR hCtir, WORD wAxis, short int bState);

Delphi Function: procedure MCEnableAxis(hCtlr: HCTRLR; wAxis: Word; bState: Smallint);

VB Function: Sub MCEnableAxis (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer)

MCCL command. MF, MN

Exl-?cuzl? ['II'] H dl u :

. andie In andie Uu

LabVIEW VI. AvisIn (1) =g Axis Out
Enable (T] -

MCE nableAxiz_ w1

Enable Backlash

Use this command to set the distance required to nullify the effects of mechanical backlash in the
system. The parameter should be equal to one half of the amount the motor must move to take up
backlash when it changes direction. The units for this parameter are encoder counts, or the units
established by the User Scale command for the axis.

Once the backlash compensation distance is set, enabling backlash compensation will cause the
controller to add or subtract the distance from the motor's commanded position during all subsequent
moves. If the motor moves in a positive direction, the distance will be added; if the motor moves in a
negative direction, it will be subtracted. When the motor finishes a move, it will remain in the
compensated position until the next move. See the description on Backlash Compensation in the
Application Solutions chapter of this manual.

compatibility: MC200, MC210

see also:

C++ Function: long int MCEnableBacklash(HCTRLR hCtlr, WORD wAxis, double Backlash, short int bState);

Delphi Function: function MCEnableBacklash(hCtlr: HCTRLR; wAxis: Word; Backlash: Double; bState: Smallint): Longint;
VB Function: Function MCEnableBacklash (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal backlash As Double,

ByVal state As Integer) As Long
MCCL command: BD, BN, BF

Handle In fob, Handle Out
LabVIEW VI Az In 1) 7 28T - Auis Out

Backlash [0.0] —
Enabie (1]~ L Eor

MCEnableBacklash.vi

DCX-AT200 User’s Manual 181

Motion Control APl Function Reference

Enable Jog

This function enables/disables jogging of servo or stepper axes. See the description of Jogging in
the Motion Control chapter.

compatibility: MC200, MC210, MC260

see also: Set Jog Configuration

C++ Function: void MCEnableJog(HCTRLR hCtlr, WORD wAxis, short int bState);

Delphi Function: procedure MCEnableJog(hCtir: HCTRLR; wAxis: Word; bState: Smallint);

VB Function: Sub MCEnableJog (ByVal hCtrir As Integer, ByVal axis As Integer, ByVal state As Integer)
MCCL command: JF,N

LabVIEW VI. Not supported

Enable Gearing

This function enables/disables gearing and is used to specify the ratio at which the slave axis will
move relative to a change in encoder counts (or steps) of the master axis. When gearing is enabled,
the slave axis will begin tracking the master axis with the programmed ratio. The controller makes the
position calculations using the optimal positions of the master and slave axes when the Set Master
command was issued as the starting point. See the description of Master/Slave motion in the Motion
Control chapter.

compatibility: MC200, MC210

see also:

C++ Function: void MCEnableGearing(HCTRLR hCtlr, WORD wAxis, WORD wMaster, double ratio, short int bState);
Delphi Function: procedure MCEnableGearing(hCtir: HCTRLR; wAxis, wMaster: Word; Ratio: Double; bState: Smallint);
VB Function: Sub MCEnableGearing (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal maxis As Integer, ByVal ratio

As Double, ByVal state As Integer)
MCCL command: SM, SS
LabVIEW VI. Not supported

Enable Synchronization

This function enables or disables synchronized motion for contour path motion for the specified axis.
The MCEnableSync() function is issued to the controlling axis of a contour path motion, prior to
issuing any contour path motions, to inhibit any motion until a call to MCGo() is made. See the
description of Contour Motion in the Motion Control chapter.

compatibility: MC200, MC210, MC260

see also: Contour Path

C++ Function: void MCEnableSync(HCTRLR hCtlr, WORD wAXxis, short int bState);

Delphi Function: procedure MCEnableSync(hCtir: HCTRLR; wAxis: Word; bState: Smallint);

VB Function: Sub MCEnableSync (ByVal hCtrir As Integer, ByVal axis As Integer, ByVal state As Integer)

MCCL command-: NS, NS

182 Precision MicroControl

Motion Control API Functions

E:-:ECLItE [T] 3
. Handle In Hardle Out
LabVIEW VI mismm—'ﬁ%_'—msuut
Enable [T) - 2408

MCEnableSync._wi

Find the auxiliary encoder index mark

This function is used to initialize an auxiliary encoder at a given position. It will remain in effect until
the auxiliary encoder index pulse goes active. At that time the MC_STAT_INP_AUX flag will be set.
The current position of the primary axis is acquired (MCGetPosition), the axis stopped, moved back
to the location of the auxiliary encoder index, and the position of the auxiliary encoder defined using
the MCSetAuxEncPos.

This function will not start or stop any servo motions, it is up to the user to initiate motion prior to
issuing the find index command. Since an index pulse may occur at numerous points of a motor's
travel (once per revolution in rotary encoders), a typical application will require a coarse home signal
to ‘qualify’ the index pulse. See the description of Auxiliary Encoders in the Application Solutions
chapter.

The function remains pending until the auxiliary encoder index input
& of the module goes active. If the DCX does not ‘see’ the index input
go active the MCAPI will ‘lock up’.

compatibility: MC200, MC210, MC260

see also: Get position, Set auxiliary encoder position

C++ Function: long int MCFindAuxEncldx(HCTRLR hCtlr, WORD wAXxis);

Delphi Function: function MCFindAuxEncldx(hCtlr: HCTRLR; wAxis: Word): Longint;

VB Function: Function MCFindAuxEncldx (ByVal hCtrlr As Integer, ByVal axis As Integer) As Long
MCCL command: AF

LabVIEW VI. Not supported

Find Edge

This function is used to initialize a stepper motor at a given position. At that time the current position
of the axis will be set to the value of the Position parameter. This function does not cause any motion
to be started or stopped. It is up to the user to initiate motor motion before issuing the function, and to
stop any motion after it completes. See the description of Homing Axes in the Motion Control
chapter.

The function remains pending until the home input of the module
goes active. If the DCX does not ‘see’ the home input go active the

& MCAPI will ‘lock up’. MCReset() will ‘unlock’ the MCAPI but user will
need to redefine all parameters with MCDLG_RestoreAxis().

DCX-AT200 User’s Manual 183

Motion Control APl Function Reference

compatibility: MC260

see also: Find Index

C++ Function: long int MCFindEdge(HCTRLR hCtlr, WORD wAxis, double Position);

Delphi Function: function MCFindEdge(hCtlr: HCTRLR; wAxis: Word; Position: Double): Longint;

VB Function: Function MCFindEdge (ByVal hCtrir As Integer, ByVal axis As Integer, ByVal position As Double) As Long
MCCL command: FE

LabVIEW VI. Not supported

Find the index mark of the encoder (servo)

This function is used to initialize a servo's encoder at a given position. It will remain in effect until the
encoder index pulse goes active. At that time the current position of the servo will be defined to be =
Position. This function will not start or stop any servo motions, it is up to the user to initiate motion
prior to issuing the find index command. Since an index pulse may occur at numerous points of a
servo's travel (once per revolution in rotary encoders), a typical servo application will require a coarse
home signal to ‘qualify’ the index pulse. See the description of Homing Axes in the Motion Control
chapter.

The function remains pending until the encoder index input of the
& module goes active. If the DCX does not ‘see’ the index input go
active the MCAPI will ‘lock up’.

compatibility: MC200, MC210

see also: Wait for Edge

C++ Function: long int MCFindIndex(HCTRLR hCtlr, WORD wAxis, double Position);

Delphi Function: function MCFindIndex(hCtlr: HCTRLR; wAxis: Word; Position: Double): Longint;

VB Function: Function MCFindIndex (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double) As Long
MCCL command: Fl

LabVIEW VI. Not supported

Go

Causes one or all axes to begin motion in velocity or contour mode. In contour mode, synchronization
must be enabled.

compatibility: MC200, MC210, MC260

see also: Set Operation Mode

C++ Function: void MCGo(HCTRLR hCtlr, WORD wAxis);

Delphi Function: procedure MCGo(hCtir; HCTRLR; wAxis: Word);

VB Function: Sub MCGo (ByVal hCtrir As Integer, ByVal axis As Integer)

MCCL command-: GO

184 Precision MicroControl

Motion Control API Functions

Execute [T]
LabVIEW VI Handle In IR Handle Out
Axiz In [1] - o L Axiz Dut

MCGo. vi

GoEx

Causes one or all axes to begin motion in velocity or contour mode. To enable cubic splining while in
contour mode set the value of Param to 1.0.

compatibility: MC200, MC210, MC260

see also: Set Operation Mode

C++ Function: long int MCGoEx(HCTRLR hCtlr, WORD wAxis, double Param);

Delphi Function: function MCGoEx(hCtir: HCTRLR; wAxis: Word; Param: Double): Longint;

VB Function: Function MCGoEx (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal Param As Double) As Long
MCCL command: GO, SN

LabVIEW VI. Not supported

Go Home

Causes the specified axis to move to the position last defined as home. This is equivalent to a Move
Absolute command, where the destination is 0.0 or the offset of the home position.

compatibility: MC200, MC210, MC260

see also: Move absolute, Find Edge, Find Index

C++ Function: void MCGoHome(HCTRLR hCtlr, WORD wAXxis);

Delphi Function: procedure MCGoHome(hCtIr: HCTRLR; wAxis: Word);

VB Function: Sub MCGoHome (ByVal hCtrir As Integer, ByVal axis As Integer)

MCCL command-: GH

Execute [T] -
- Handle In _
LabVIEW VI Axiz In (1) T 723

Handle Out
L Axis Dut

MCGoHome. i

arm the Index mark capture (servo)

This function is used to arm the capturing of the index mark of a servo. After this function has been
called, the MC_STAT_INP_INDEX flag will be true when the encoder index mark is captured.

compatibility: MC200, MC210
see also: Wait for Index

DCX-AT200 User’s Manual 185

Motion Control APl Function Reference

C++ Function: long int MCIndexArm(HCTRLR hCtlr, WORD wAxis, double Position);

Delphi Function: function MCIndexArm(hCtlr: HCTRLR; wAxis: Word; Position: Double): Longint;

VB Function: Function MCIndexArm (ByVal hCtrir As Integer, ByVal axis As Integer, ByVal position As Double) As Long
MCCL command: |A,WI

LabVIEW VI. Not supported

Learn Point

Used for storing the current position or target position of one or all axes in the DCX's point memory.
Points stored in the point memory can be used by the Move Point function to repeat a stored motion
pattern. See the description of Learning/ Teaching Points in the Application Solutions chapter.

compatibility: MC200, MC210, MC260

see also: Learn the target, Move to point

C++ Function: long int MCLearnPoint(HCTRLR hCtlr, WORD wAxis, long int lIndex, WORD wMode);

Delphi Function: function MCLearnPoint(hCtlr: HCTRLR; wAxis: Word; lindex: Longint; wMode: Word): Longint;

VB Function: Function MCLearnPoint (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal index As Long, ByVal mode

As Integer) As Long
MCCL command: LP
LabVIEW VI. Not supported

Move Absolute

This function executes a motion to an absolute position. A motor number must be specified and that
motor must be enabled. If the motor is in the off state, only its internal target position will be changed.
See the description of Point to Point Motion in the Motion Control chapter.

compatibility: MC200, MC210, MC260

see also: Enable Axis, Move Relative, Set Operating Mode

C++ Function: void MCMoveAbsolute(HCTRLR hCtlr, WORD wAxis, double Position);

Delphi Function: procedure MCMoveAbsolute(hCtlr: HCTRLR; wAxis: Word; Position: Double);

VB Function: Sub MCMoveAbsolute (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double)

MCCL command: MA

Execute [T] p——

Handle In ' Handle Out
AxisIn [1] = fg’f L Axis Out
LabVIEW VI. Poszition [0.0] —

MCMHoveAbsolute_vi

Move to stored point

Used for moving one or more axes to a previously stored point. The parameter windex specifies which
entry in the DCX's point memory is to be used as the destination of the move. If the MP command is

186 Precision MicroControl

Motion Control API Functions

issued with an parameter windex MC_ALL_AXES all axes will move to the positions stored in the
point memory for that point. A specific axis is moved by setting the parameter windex = the desired
axis number. Points are stored in point memory with the Learn Point function. See the description of
Learning/ Teaching Points in the Application Solutions chapter.

compatibility: MC200, MC210, MC260

see also: Learn Point

C++ Function: long int MCMoveToPoint(HCTRLR hCtlr, WORD wAxis, long int lindex);

Delphi Function: function MCMoveToPoint(hCtir: HCTRLR; wAxis: Word; lindex: Longint): Longint;

VB Function: Function MCMoveToPoint (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal index As Long) As Long
MCCL command: aMPn a=Axis number n= integer >=0, <=1536

LabVIEW VI. Not supported

Move to relative position

This function executes a motion of a relative distance from the current position. A motor number must
be specified and that motor must be enabled. If the motor is in the off state, only its' internal target
position will be changed. See the description of Point to Point Motion in the Motion Control
chapter.

compatibility: MC200, MC210, MC260

see also: Enable Axis, Move Absolute, Set Operating Mode

C++ Function: void MCMoveRelative(HCTRLR hCtlr, WORD wAxis, double Distance);

Delphi Function: procedure MCMoveRelative(hCtir: HCTRLR; wAxis: Word; Distance: Double);

VB Function: Sub MCMoveRelative (ByVal hCtrir As Integer, ByVal axis As Integer, ByVal distance As Double)

MCCL command-: MR

Execute [T] -~ ,

Handle In : Handle Out
Avis In (1) T SEE— AL Dot
LabVIEW VI Distance [0.0] — —=

MCMoveRelative. vi

DCX Reset

The windex parameter specifies a reset of the entire controller or a specific axis.
When executed, all default conditions such as acceleration and velocity will be restored and the axes
will be placed in the "off" state.

compatibility: MC200, MC210, MC260, MC400, MC5X0
see also: Default Settings in the Appendix

C++ Function: void MCReset(HCTRLR hCtlr, WORD wAxis);

Delphi Function: procedure MCReset(hCtlr: HCTRLR; wAxis: Word);

VB Function: Sub MCReset (ByVal hCtrlr As Integer, ByVal axis As Integer)

MCCL command.: aRT a = Axis number

DCX-AT200 User’s Manual 187

Motion Control APl Function Reference

] Handle In 'y Handle Out
LabVIEW VI Awis In (1) Recet L axiz out
MCRezet. vi

Set Jog

Enables or disables jogging for the axis specified by wAxis. The selected wAxis should be configured
for jogging using the MCSetJogConfig() function before being enabled by this function.

compatibility: MC200, MC210, MC260

see also: Get Jog, Set Jog

C++ Function: short int MCSetJogConfig(HCTRLR hCtlr, WORD wAxis, MCJOG far* IpJog);

Delphi Function: function MCSetJogConfig(hCtlr: HCTRLR; wAxis: Word; var IpJog: MCJOG): Smallint;

VB Function: Function MCSetJogConfig (ByVal hCtrir As Integer, ByVal axis As Integer, jog As MCJog) As
Integer

MCCL command: JF, N

LabVIEW ViI: Not supported

Stop

Used to stop one or all motors. It differs from the Abort function in that motors will decelerate at their
preset rate, instead of stopping abruptly. This function can be issued to a specific axis, or can be
issued to all axes. See the description of Continuous Velocity Motion in the Motion Control
chapter.

compatibility: MC200, MC210, MC260

see also: Abort

C++ Function: void MCStop(HCTRLR hCtlr, WORD wAXxis);

Delphi Function: procedure MCStop(hCtir: HCTRLR; wAxis: Word);

VB Function: Sub MCStop (ByVal hCtrir As Integer, ByVal axis As Integer)

MCCL command-: aST a = Axis number n= none

Execute [T]
LabVIEW VI Handle In

Axiz In [1] - 0]

Handle Out
Axiz Out

MCStop.vi

Wait (a period of time)

Insert a wait period of seconds before going on to the function. If this command was issued from an
ASCII interface, it can be aborted by sending an Escape character.

188 Precision MicroControl

Motion Control API Functions

compatibility: N/A

see also: Set Scale, Wait for Stop, Wait for Target

C++ Function: void MCWait(HCTRLR hCtlr, double Period);

Delphi Function: procedure MCWait(hCtlr: HCTRLR,; Period: Double);

VB Function: Sub MCWait (ByVal hCtrIr As Integer, ByVal period As Double)

MCCL command-: WA

E xecute [T]

LabVIEW VI Handle In = Handle Out
Time [1.0] —— &
MCWw ait_wi

Wait for the Coarse Home input (servo and closed loop stepper)

This function is used to initialize a servo or closed loop stepper at a given position. Instruction
processing is paused until the coarse home input goes to the specified logic state.

compatibility: MC200, MC210, MC260

see also: Find Edge, Find Index, Wait for Index

C++ Function: long int MCWaitForEdge(HCTRLR hCtlr, WORD wAxis, short int bState);

Delphi Function: function MCWaitForEdge(hCtlr: HCTRLR; wAxis: Word; nState: Smallint): Longint;

VB Function: Function MCWaitForEdge (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer) As Long
MCCL command: WE

LabVIEW VI. Not supported

Wait for Position

This function is used to delay instruction processing until an axis has reached a specific position. The
position is specified as a relative distance from the axis zero position. When the specified position has
been reached, the DCX will set the breakpoint reached flag in the status word for that axis, and then
instruction processing will resume. The axis must be moving before issuing this instruction.

When this function is issued to a DCX-MC260 the position of the
& auxiliary encoder (not the step count) is used for completion of this
conditional operation.

compatibility: MC200, MC210

see also: Wait for Relative

C++ Function: void MCWaitForPosition(HCTRLR hCtlr, WORD wAxis, double Position);

Delphi Function: procedure MCWaitForPosition(hCtlr: HCTRLR; wAxis: Word; Position: Double);

VB Function: Sub MCWaitForPosition (ByVal hCtrir As Integer, ByVal axis As Integer, ByVal position As Double)
MCCL command: IP,WP

LabVIEW VI. Not supported

DCX-AT200 User’s Manual 189

Motion Control APl Function Reference

Wait for Relative

This function is used to delay instruction processing until an axis has reached a specific position. The
position is specified as a relative distance from the current position. When the specified position has
been reached, the DCX will set the breakpoint reached flag in the status word for that axis, and then
instruction processing will resume. The axis must be moving before issuing this instruction.

When this function is issued to a DCX-MC260 the position of the
& auxiliary encoder (not the step count) is used for completion of this
conditional operation.

compatibility: MC200, MC210, MC260
see also: Wait for Position

MCCL command: WRn n= integer or real

C++ Function: void MCWaitForRelative(HCTRLR hCtlr, WORD wAxis, double Distance);

Delphi Function: procedure MCWaitForRelative(hCtlr: HCTRLR; wAxis: Word; Distance: Double);

VB Function: Sub MCWaitForRelative (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal distance As Double)
LabVIEW VI. Not supported

Wait for Stop

Will delay instruction processing until the optimal position (calculated by the DCX trajectory generator)
of an axis is equal to the target position of a move. This function can be issued to one or all axes. An
optional dwell after the stop may be specified within this command to allow the mechanical system to
come to rest.

MCMoveAbsolute (hCtlr, 1, 1000.0); // move to position 1000
MCWaitForStop(hCtlr, 1, 0.005); // wait till we're there for 5 msec’s
MCMoveAbsolute (hCtlr, 1, 0.0); // move to position 0

comment. If the Wait For Stop function was not used in the above example, there would be no
motion of the axis. The reason being that the target position would simply be changed twice. The
computer would add 1000 counts to the target position then subtract the same amount. This would
take place far quicker than the axis could begin moving.

This provides the same capability as the MCWaitForStop without the

0 The function MCIsStopped was added to the MCAPI at version 2.20.
possibility of locking up the communication of the DCX.

190 Precision MicroControl

Motion Control API Functions

Note: Trajectory Complete is a digital event that occurs when the
Optimal Position (calculated by the DCX trajectory generator) equals the
Current Position. At this point the Trajectory Complete (bit 3) status bit
will be set. Any following error present during the move will cause the
Trajectory Complete status bit to be set before the axis has stopped
moving. The time parameter of the Wait For Stop function allows the
user to define the time required for the following error to equal 0

compatibility: MC200, MC210, MC260

see also: Wait, Wait For Target

C++ Function: void MCWaitForStop(HCTRLR hCtlr, WORD wAxis, double Period);

Delphi Function: procedure MCWaitForStop(hCtlr: HCTRLR; wAxis: Word; Period: Double);

VB Function: Sub MCWaitForStop (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal period As Double)

MCCL command-: WS

LabVIEW VI Handle In @ Handle Out
[i]

Axiz In[1] L Axis Out
Dwell [(D.D) —

MOCW aitForStop.vi

Wait For Target

For a servo axis to be considered "at target" it must remain within the Dead band region for the
DeadbandDelay period. Dead band and DeadbandDelay are specified in the MCMOTION
configuration structure. This function delay instruction processing until these conditions have been
met. This function can be issued to one or all axes. An optional dwell after the stop may be specified
within this command to allow the mechanical system to come to rest.

Note - Wait For Target should not be used for axes in contour mode.

MCMoveAbsolute(hCtlr, 1, 1000.0); // move to position 1000
MCWaitForTarget (hCtlr, 1, 0.0); // wait for target
MCMoveAbsolute (hCtlr, 1, 0.0); // move to position 0

comment. If the Wait For Target function was not used in the above example, there would be no
motion of the axis. The reason being that the target position would simply be changed twice. The
computer would add 1000 counts to the target position then subtract the same amount. This would
take place far quicker than the axis could begin moving.

compatibility: MC200, MC210, MC260

see also: Wait, Wait For Stop

C++ Function: void MCWaitForTarget(HCTRLR hCtlr, WORD wAxis, double Period);

Delphi Function: procedure MCWaitForTarget(hCtlr: HCTRLR; wAxis: Word; Period: Double);

VB Function: Sub MCWaitForTarget (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal period As Double)

DCX-AT200 User’s Manual 191

Motion Control APl Function Reference

MCCL command: WT
LabVIEW VI Not supported

192 Precision MicroControl

Motion Control API Functions

Reporting Functions

Get Configuration

This function allows the application to query the driver about installed controller hardware and
capabilities with a single function call using an initialized MCPARAM structure. Included are the
number and type of axes, digital and analog 10 channels, scaling, and contouring. Note that some
less often used parameters will only be accessible from this function and from MCGetJog() - they do
not have individual Get/Set functions.

compatibility: MC200, MC210, MC260, MC400, MC5X0

see also:

C++ Function: void MCGetConfiguration(HCTRLR hCtlr, MCPARAM far* IpParam);
Delphi Function: procedure MCGetConfiguration(hCtlr: HCTRLR; var IpParam: MCPARAM);
VB Function: Sub MCGetConfiguration (ByVal hCtrir As Integer, param As MCParam)
MCCL command: Not supported

LabVIEW VI: Not supported

MCPARAM Data Structure

typedef struct ({

short int ID; // ID number assigned during driver setup
short int Controller type; //

short int NumberAxes; // Number of axes

short int DigitallIO; // Number of digital channels
short int AnalogInput; // Number of analog inputs

short int AnalogOutput; // Number of analog outputs
short int AxisType(8) ; // Type of motor control modules
short int CanDoScaling; //

short int CanDoContouring; //

short int CanChangeProfile; //

short int CanChangeRates; //

short int SoftLimits; //

short int MultiTasking; //

short int AmpFault; //

} MCSCALE;

DCX-AT200 User’s Manual 193

Motion Control APl Function Reference

Get Motion Configuration

This function provides a way of initializing a MCMOTION structure with the current motion parameters
for the given wAxis. When you need to setup many of the parameters for an axis it is easier to call
MCGetMotionConfig(), update the MCMOTION structure, and write the changes back using
MCSetMotionConfig(), rather than using a Get/Set function call for each parameter. Note that some
less often used parameters will only be accessible from this function and from MCSetMotionConfig -
they do not have individual Get/Set functions. You may not set the wAxis parameter to
MC_ALL_AXES for this command.

compatibility: MC200, MC210, MC260

see also: Set Motion Configuration

C++ Function: short int MCGetMotionConfig(HCTRLR hCtlr, WORD wAxis, MCMOTION far* [pMotion);

Delphi Function: function MCGetMotionConfig(hCtir: HCTRLR; wAxis: Word; var IpMotion: MCMOTION): Smallint;

VB Function: Function MCGetMotionConfig (ByVal hCtrlr As Integer, ByVal axis As Integer, Motion As MCMotion) As
Integer

MCCL command: TA TD, TG, T, TL, TQ

LabVIEW VI. See the MC Dialog section

MCMotion Data Structure

typedef struct ({

double Acceleration; // Acceleration rate for motion

double Deceleration; // Deceleration rate for motion

double Velocity; // Maximum velocity for motion

double MinVelocity; // Stepper motor jog minimum velocity

short int Direction; // Sets velocity mode direction of travel

double Gain; // Proportional gain value for motion

double Torque; // Sets the maximum output torque for servos.
// Default output units are volts.

double Dead band; // Sets the position dead band value

double DeadbandDelay; // Time limit axis must remain within dead band

short int StepSize; // Sets step size output for stepper motor

short int Current; // Full or reduced current stepper motor.

WORD HardLimitMode; // Enables hard (physical) limit switches

WORD SoftLimitMode; // Enables soft (software) limit switches

double SoftLimitLow; // Sets "position" of low soft limit

double SoftLimitHigh; // Sets "position" of high soft limit

short int EnableAmpFault; // Controls servo amplifier fault input

short int Rate; // Servo - set the feedback loop rate

// Stepper - sets max. pulse rate range

} MCMOTION;

194 Precision MicroControl

Motion Control API Functions

Decode Status

Using this function to test the status word returned by MCGetStatus(). This function returns TRUE if
the selected bit is set, or FALSE if the bit is not set or the bit does not apply to this controller type.

Motor Status Word Constant Lookup Table

DMC STAT_ xxxx Constant

0 MC_STAT BUSY
1 MC_STAT _MTR_ENABLE
2 MC_STAT _MOD_VEL
3 MC_STAT _TRAJ
4 MC_STAT _DIR
5 MC_STAT_PHASE
6 MC_STAT_HOMED
7 MC_STAT_ERROR
8 MC_STAT LOOK INDEX
9 MC_STAT LOOK EDGE
10 MC_STAT FULL _STEP
11 MC_STAT HALF_STEP
12 MC_STAT BREAKPOINT
13 MC_STAT_JOGGING
14 MC_STAT_AMP_ENABLE
15 MC_STAT_AMP_FAULT
16 MC_STAT PLIM_ENAB
17 MC_STAT PLIM_TRIP
18 MC_STAT _MLIM_ENAB
19 MC_STAT_MLIM_TRIP
20 MC_STAT _PJOG_ENAB
21 MC_STAT PJOG_ON
22 MC_STAT _MJOG_ENAB
23 MC_STAT_MJOG_ON
24 MC_STAT_INP_INDEX
25 MC_STAT _INP_HOME
26 MC_STAT _INP_AMP
27 none
28 MC_STAT INP_PLIM
29 MC_STAT INP_MLIM
30 MC_STAT _INP_PJOG
31 MC_STAT _INP_MJOG
compatibility: MC200, MC210, MC260
see also: Get Status
C++ Function: long int MCDecodeStatus(HCTRLR hCtlr, DWORD dwStatus, long int IBit);
Delphi Function: function MCDecodeStatus(hCtir: HCTRLR; dwStatus, dwBit: Longint): Longint;
VB Function: Function MCDecodeStatus (ByVal hCtrir As Integer, ByVal status As Long, ByVal bit As Long) As Long
MCCL command: TS
Handle In e Handle Out
Status In [0] deod Status Out
LabVIEW VI. Flag Selector (11— 77 ‘- State

MCDecodeStatus_ vi

DCX-AT200 User’s Manual 195

Motion Control APl Function Reference

Error Notify

The MCErrorNotify() function registers with the MCAPI a specific window procedure that is to
receive message based notification of API errors for this controller handle. Only one window
procedure at a time may receive error messages for a controller handle. If another window procedure
attempts to hook the error messages for a handle that already has an error handler it will replace the
current error handler. In practice this is not a problem as applications have control of the handle and
can decide who to have hook the error notification mechanism.

compatibility: N/A

see also: Get Error, Translate Error

C++ Function: void MCErrorNotify(HWND hWnd, HCTRLR hCtlr, DWORD ErrorMask);

Delphi Function: procedure MCErrorNotify(hWnd: HWnd; hCtlr: HCTRLR; ErrorMask: Longint);

VB Function: Sub MCErrorNotify (ByVal hWnd As Integer, ByVal hCtrir As Integer, ByVal errormask As Long)
MCCL command: Not supported

LabVIEW VI. Not supported

Get Acceleration

These functions return the current programmed acceleration value for the given axis, in whatever
units the axis is configured for. The MCGetAcceleration() version returns the acceleration as the
function return value, while MCGetAccelerationEx() accepts a pointer to a double precision variable
for the acceleration result.

compatibility: MC200, MC210, MC260

see also: Set Acceleration, Set Motion Configuration

C++ Function: long int MCGetAccelerationEx(HCTRLR hCtlr, WORD wAxis, double far* Acceleration);

Delphi Function: function MCGetAccelerationEx(hCtlr: HCTRLR; wAxis: Word; var Acceleration: Double): Longint;

VB Function: Function MCGetAccelerationEx (ByVal hCtrlr As Integer, ByVal axis As Integer, accel As Double) As Long

MCCL command.
EHECU[E [T]
Handle In E Handle Out
. Axis In - Axis Out
LabVIEW VI Acceleration
Error

MCGetAccelerationEx_ v

Get Auxiliary Encoder Index

These functions return the position where the auxiliary encoder's index pulse was observed. The
MCGetAuxEncldx() version returns the position as the function return value, while
MCGetAuxEncldxEx() accepts a pointer to a double precision variable for the position result.

compatibility: MC200, MC210, MC260
see also:
C++ Function: long int MCGetAuxEncldxEx(HCTRLR hCtlr, WORD wAxis, double far* Index);

196 Precision MicroControl

Motion Control API Functions

Delphi Function: function MCGetAuxEncldxEx(hCtlr: HCTRLR; wAxis: Word; var Index: Double): Longint;

VB Function: Function MCGetAuxEncldxEx (ByVal hCtrlr As Integer, ByVal axis As Integer, index As Double) As Long
MCCL command: AZ
LabVIEW VI. Not supported

Get Auxiliary Encoder Position

These functions return the current position of the auxiliary encoder. The MCGetAuxEncPos() version
returns the position as the function return value, while MCGetAuxEncPosEXx() accepts a pointer to a
double precision variable for the position result.

compatibility: MC200, MC210, MC260

see also: Set Auxiliary Encoder Position

C++ Function: long int MCGetAuxEncPosEx(HCTRLR hCtlr, WORD wAxis, double far* Position);

Delphi Function: function MCGetAuxEncPosEx(hCtlr: HCTRLR; wAxis: Word; var Position: Double): Longint;

VB Function: Function MCGetAuxEncPosEx (ByVal hCtrlr As Integer, ByVal axis As Integer, pos As Double) As Long

MCCL command.: AT

E xecute [T] ;

Handle In Handle Out
LabVIEW VI. Awis In (1) T e - Asis Out
— Position
I— Error

MCGetAuxEncPosEx v

Get Breakpoint

These functions return the current breakpoint position as placed by the Wait For Position) or Wait
For Relative command. The Get Breakpoint version returns the breakpoint as the function return
value, while Get Breakpoint Ex accepts a pointer to a double precision variable for the breakpoint
result.

compatibility: MC200, MC210, MC260

see also: Wait For Position, Wait For Relative

C++ Function: long int MCGetBreakpointEx(HCTRLR hCtlr, WORD wAxis, double far* Breakpoint);

Delphi Function: function MCGetBreakpointEx(hCtlr: HCTRLR; wAxis: Word; var Breakpoint: Double): Longint;

VB Function: Function MCGetBreakpointEx (ByVal hCtrlr As Integer, ByVal axis As Integer, bpoint As Double) As Long

MCCL command. TB

Execute [T] - .

LabVIEW VI A

Handle Out
Axis Out
Breakpoint
Error

MCGetBreakpointEx vi

DCX-AT200 User’s Manual 197

Motion Control APl Function Reference

Get Captured Data

This command is used to retrieve the data collected by the most recent MCCaptureData function call.
The three types of position data include; actual position (MC_DATA_ACTUAL), Following error
(MC_DATA_ERROR), and optimal position (MC_DATA_OPTIMAL). See the description of Record
and display Motion Data in the Application Solutions chapter.

compatibility: MC200, MC210, MC260
see also: Capture Data
C++ Function: long int MCGetCaptureData(HCTRLR hCtlr, WORD wAxis, long int IType, long int IStart, long int IPoints,

double far* IpData);

Delphi Function: function MCGetCaptureData(hCtlr: HCTRLR; wAxis: Word; IType, IStart, IPoints: Longint; var IpData:
Double): Longint;

VB Function: Function MCGetCaptureData (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal mode, ByVal spoint As
Long, ByVal npoints As Long, dbuffer As Double) As Long

MCCL command: DR

LabVIEW VI. Not supported

Get Contour Configuration

Obtains the contouring configuration for the specified axis. This function allows the application to
query an axis about contouring configuration data. You may not set the wAxis parameter to
MC_ALL_AXES for this command.

compatibility: MC200, MC210, MC260

see also: Set Contour Configuration, Set Operating Mode

C++ Function: short int MCGetContourConfig(HCTRLR hCtlr, WORD wAxis, MCCONTOUR far* IpContour);

Delphi Function: function MCGetContourConfig(hCtlr: HCTRLR; wAxis: Word; var IpContour: MCCONTOUR): Smallint;

VB Function: Function MCGetContourConfig (ByVal hCtrir As Integer, ByVal axis As Integer, contour As MCContour) As
Integer

MCCL command: NA

LabVIEW VI. Not supported

Get Contouring Count

Reports the current contour path motion that an axis is performing. The wAxis parameter must be set
to the ‘controlling’ axis of the contour move. The contour count value reported by this function is reset
to zero when the Set Contour Configuration function is issued with contour mode enabled
(MC_MODE_CONTOUR).

For each Linear or User Defined Contour Path motion that the controller completes, the contouring
count will be incremented by one. For Arc Contour Path motions, the count will be incremented by 2.
By counting the number of Contour Path commands that have been issued to the controller (1 for
linear, 2 for arc), and comparing it to the response from the TX command, the user can determine on
what segment of a continuous path motion the motors are on. The contour count is stored as a 32 bit
value (2,147,483,647).

198 Precision MicroControl

Motion Control API Functions

compatibility:
see also:

C++ Function:
Delphi Function:
VB Function:
MCCL command.
LabVIEW VI

MC200, MC210, MC260
Set Contour Configuration, Set Operating Mode

long int MCGetContouringCount(HCTRLR hCtlr, WORD wAXxis);

function MCGetContouringCount(hCtlr; HCTRLR; wAxis: Word): Longint;

Function MCGetContouringCount (ByVal hCtrlr As Integer, ByVal axis As Integer) As Long
X

Not supported

Get Deceleration

These functions return the current programmed acceleration value for the given axis, in whatever
units the axis is configured for. The MCGetDeceleration() version returns the acceleration as the
function return value, while MCGetDecelerationEx() accepts a pointer to a double precision variable
for the acceleration result.

compatibility:
see also:

C++ Function:
Delphi Function:

VB Function:
MCCL command.:

LabVIEW VI

Get Error

MC200, MC210, MC260
Set Deceleration, Set Motion Configuration

long int MCGetDecelerationEx(HCTRLR hCtlr, WORD wAxis, double far* Deceleration);

function MCGetDecelerationEx(hCtlr: HCTRLR; wAxis: Word; var Deceleration: Double): Longint;
Function MCGetDecelerationEx (ByVal hCtrlr As Integer, ByVal axis As Integer, decel As Double) As Long
DS

E xecute [T]

Handle In) Handle Out
Axig In - E Axis Out
Acceleration
Error

MCGetAccelerationEx_vi

Returns the most recent error code for hCtlr. The return value is a numeric error code (or
MCERR_NOERROR if there is no error) for the most recent error detected for a specified controller.
The error is cleared (set equal to MCERR_NOERROR) after it has been read. Errors are maintained
on a per-handle basis, calls to MCGetError() only return errors that occurred during function calls that
used the same handle.

A more flexible way to detect errors is to use the MCErrorNotify(). This function delivers error
messages directly to the window procedure of your choice.

compatibility:
see also:

C++ Function:
Delphi Function:
VB Function:
MCCL command.
LabVIEW VI

N/A
Error Notify, Translate Error

short int MCGetError(HCTRLR hCtlr);

function MCGetError(hCtlr: HCTRLR): Smallint;
Function MCGetError (ByVal hCtrlr As Integer) As Integer
Not supported

Not supported

DCX-AT200 User’s Manual 199

Motion Control APl Function Reference

Get Filter Configuration

This function is used to obtain the current PID filter settings for an axis.

compatibility: MC200, MC210

see also: set Derivative gain

C++ Function: short int MCGetFilterConfig(HCTRLR hCtlr, WORD wAxis, MCFILTER far* IpFilter);

Delphi Function: function MCGetFilterConfig(hCtlr: HCTRLR; wAxis: Word; var IpFilter: MCFILTER): Smallint;

VB Function: Function MCGetFilterConfig (ByVal hCtrir As Integer, ByVal axis As Integer, Filter As MCFilter) As Integer

MCCL command: TD, TG, TI, TL

EHECU[E [T] ,_
LabVIEW VI Handle In [Handle Out
Axiz In [1] - PID Axis Out
Filter
MCGetFilterConfig.vi

Get Following Error

Returns the current following error (difference between the actual and the optimal positions) for the
specified axis.

Returns the current following error of a servo. This error is the difference between the optimal position
(calculated by the trajectory generator) and the current position (decoded encoder pulses).

compatibility: MC200, MC210

see also: stop when defined following error exceeded

C++ Function: long int MCGetFollowingError(HCTRLR hCtlr, WORD wAxis, double far* Error);

Delphi Function: function MCGetFollowingError(hCtlr: HCTRLR; wAxis: Word; var Error: Double): Longint;

VB Function: Function MCGetFollowingError (ByVal hCtrir As Integer, ByVal axis As Integer, Value As Double) As Long

MCCL command-: TF

Execute [T] -

Handle In 1234 Handle Out
LabVIEW VI. AxisIn (11— pFg, - f_}xils Out e
' Following Error
Error

MCGetFollowingE rror_vwi

Get Gain

This function returns the current PID filter proportional gain setting of an axis.

compatibility: MC200, MC210

see also: Set Gain

C++ Function: long int MCGetGain(HCTRLR hCtlr, WORD wAxis, double far* Gain);

Delphi Function: function MCGetGain(hCtlr: HCTRLR; wAxis: Word; var Gain: Double): Longint;

VB Function: Function MCGetGain (ByVal hCtrir As Integer, ByVal axis As Integer, gain As Double) As Long

200 Precision MicroControl

Motion Control API Functions

MCCL command.: TG

EIIE[:LI[E [T] :
Handle In
LabVIEW VI Axis In (1] -

Handle Out
Az Out
Gain

Error

MCGethain.vi

Get Encoder Index

These functions return the position where the encoder index pulse was observed for the specified
axis, in whatever units the axis is configured for. The MCGetindex() version returns the index
position as the function return value, while MCGetIndexEx() accepts a pointer to a double precision
variable for the index position result.

The position returned is relative to the encoder's position when the controller was last reset, the axis
was homed, or a position was redefined by the Set Position command.

compatibility: MC200, MC210

see also:

C++ Function: long int MCGetIndexEx(HCTRLR hCtlr, WORD wAxis, double far* Index);

Delphi Function: function MCGetindexEx(hCtlr: HCTRLR; wAxis: Word; var Index: Double): Longint;

VB Function: Function MCGetIndexEx (ByVal hCtrlr As Integer, ByVal axis As Integer, index As Double) As Long

MCCL command.: TZ

Execute [T] .

] Handle In 1234 Handle Out
LabVIEW VI. Asis In (1] - B — it
[ndes
Index
Error

MCGetindexEx. vi

Get Jog Configuration

Obtains the current jog configuration block for the specified axis. You may not set the wAxis
parameter to MC_ALL_AXES for this function.

compatibility: MC200, MC210, MC260

see also:

C++ Function: short int MCGetJogConfig(HCTRLR hCtlr, WORD wAxis, MCJOG far* IpJog);

Delphi Function: function MCGetJogConfig(hCtlr: HCTRLR; wAxis: Word; var IpJog: MCJOG): Smallint;

VB Function: Function MCGetJogConfig (ByVal hCtrir As Integer, ByVal axis As Integer, jog As MCJog) As Integer
MCCL command: Not supported

LabVIEW VI. Not supported

DCX-AT200 User’s Manual 201

Motion Control APl Function Reference

Get Limits

MCGetLimits() obtains the current hard and soft limit settings for the specified axis. The limit settings
are the same as those reported by the MCGetMotionConfig() function. This function provides a
short-hand method for obtaining just the limit settings. You may not set the wAxis parameter to
MC_ALL_AXES for this command.

compatibility: MC200, MC210, MC260
see also: Get Motion Configuration, Set Limits, Set Motion Configuration
C++ Function: long int MCGetLimits(HCTRLR hCtir, WORD wAxis, short int far* HardLimitMode, short int far*

SoftLimitMode, double far* SoftLimitLow, double far* SoftLimitHigh);

Delphi Function: function MCGetLimits(hCtlr: HCTRLR; wAxis: Word; var HardLimMode, SoftLimMode: Smalllnt; var
SoftLimLow, SoftLimHigh: Double): Longint;

VB Function: Function MCGetLimits (ByVal hCtrlr As Integer, ByVal axis As Integer, HardLimitMode As Integer,
SoftLimitMode As Integer, SoftLimitLow As Double, SoftLimitHigh As Double) As Long

MCCL command: TG

. Handle In s Handle Out
LabVIEW VI. Ais In (1) T L-*I:nj[; Axis Out
Hard Mode
Soft Mode

MCGetLimits._ vi

Get Optimal

The trajectory generator calculates an optimal position based upon an ideal (i.e. error free) motor. The
PID loop then compares the actual position to the optimal position to calculate a correction to the
actual trajectory. The maximum difference allowed between the optimal and actual positions is set
with the FollowingError member of an MCFILTER structure. You may not set the wAxis parameter to
MC_ALL_AXES for either of these functions.

compatibility: MC200, MC210, MC260

see also: Set Acceleration, Set Deceleration, Set Velocity

C++ Function: long int MCGetOptimalEx(HCTRLR hCtlr, WORD wAxis, double far* Optimal);

Delphi Function: function MCGetOptimalEx(hCtlr: HCTRLR; wAxis: Word; var Optimal: Double): Longint;

VB Function: Function MCGetOptimalEx (ByVal hCtrlr As Integer, ByVal axis As Integer, optimal As Double) As Long

MCCL command-: TO
EHEI::U[E [T]

Handle In Handle Out
LabVIEW V. Asis In (1) = ‘ot [Asis Out
1 Dptimal

Error

MCGetOptimalEx. vi

Get Position

These functions return the current position for the axis selected by wAxis specified axis, in whatever
units the axis is configured for. The MCGetPosition() version returns the position as the function

202 Precision MicroControl

Motion Control API Functions

return value, while MCGetPositionEx() accepts a pointer to a double precision variable for the
position result. You may not set the wAxis parameter to MC_ALL_AXES for either of these functions.

compatibility: MC200, MC210, MC260

see also: Set Position

C++ Function: long int MCGetPositionEx(HCTRLR hCtlr, WORD wAXxis, double far* Position);

Delphi Function: function MCGetPositionEx(hCtlr: HCTRLR; wAxis: Word; var Position: Double): Longint;

VB Function: Function MCGetPositionEx (ByVal hCtrlr As Integer, ByVal axis As Integer, position As Double) As Long

MCCL command.: TP

Execute [T] -

Handle In Handle Out
LabVIEW VI. AgizIn[1] T L Agis Out
— Position
I— Emor

MCGetPozitionEx.vi

Get Profile

This function returns the current acceleration/deceleration profile for the specified axis.

compatibility: MC200, MC210, MC260

see also:

C++ Function: long int MCGetProfile(HCTRLR hCtlr, WORD wAxis, WORD far* wProfile);

Delphi Function: function MCGetProfile(hCtir: HCTRLR; wAxis: Word; var wMode: Word): Longint;

VB Function: Function MCGetProfile (ByVal hCtrr As Integer, ByVal axis As Integer, profile As Integer) As Long
MCCL command: Not supported

LabVIEW VI. Not supported

Get Register

MCGetRegister() and MCSetRegister() allow you to read from and write to, respectively, the
general purpose registers on the motion controller. When the command parameter is set to 0 (or not
specified), this command reports the contents of User Register zero, which is the accumulator. This
command will accept a decimal point and a tenths digit appended to the register number in the
command parameter. This digit specifies the number of digits to the right of the decimal point that real
number values will be rounded to for display.

When running background tasks on a multitasking controller the only way to communicate with the
background tasks is to pass parameters via the general purpose registers. You cannot read from the
local registers (registers 0 - 9) of a background task. When you need to communicate with a
background task be sure to use one or more of the global registers (10 - 255). See the description of
Macros and Multi-Tasking in the DCX MCCL Commands chapter of this manual.

compatibility: N/A
see also: Set Register

DCX-AT200 User’s Manual 203

Motion Control APl Function Reference

C++ Function: long int MCGetRegister(HCTRLR hCtlr, long int nRegister, void far* Value, long int nType);
Delphi Function: function MCGetRegister(hCtlr: HCTRLR; nRegister: Longint; var Value: Pointer; nType: Longint): Longint;
VB Function: Function MCGetRegister (ByVal hCtrlr As Integer, ByVal reg As Long, Value As Any, ByVal argtype As
Long) As Long
MCCL command: 1R
EHECUtE [T] ey EHECUtE [T] 3
Handle In Handle Out Handle In Handle Out
LabVIEW VI Register (0] " | ong Value Register (0] Dbl Value
Errar Error
MCGetRegizterLong. vi MCGetHeqgisterD ouble_wi

Get Scale

Obtains the current scaling factors for the specified axis.

compatibility: MC200, MC210, MC260

see also: Set Motion Configuration, Set Scale

C++ Function: short int MCGetScale(HCTRLR hCtlr, WORD wAxis, MCSCALE far* IpScale);

Delphi Function: function MCGetScale(hCtlr: HCTRLR; wAxis: Word; var IpScale: MCSCALE): Smallint;

VB Function: Function MCGetScale (ByVal hCtrir As Integer, ByVal axis As Integer, scal As MCScale) As
Integer

MCCL command.: UK, UO, UR, US, UT, UZ

Execute [T]
LabVIEW VI: Handle In 133 Handle Out

Axiz In [1] - Ceale L Axiz Out
e Scahling

MCGet5Scale vi

Get Servo Output Phase

This function returns the current servo output phasing for the specified axis. You may not set the
wAXxis parameter to MC_ALL_AXES for this command.

compatibility: MC200, MC210

see also: Set Register

C++ Function: long int MCGetServoOutputPhase(HCTRLR hCtlr, WORD wAxis, WORD far* wPhase);

Delphi Function: function MCGetServoOutputPhase(hCtir: HCTRLR; wAxis: Word; var wPhase: Word): Longint;

VB Function: Function MCGetServoOutputPhase (ByVal hCtrir As Integer, ByVal axis As Integer, phase As Integer) As
Long

MCCL command: Not supported

LabVIEW VI. Not supported

204 Precision MicroControl

Motion Control API Functions

Get Status

Returns the 32 bit status word for the selected axis. The MCAPI function MCDecodeStatus()
provides a way to test the state of an individual status flag. You may not set the wAxis parameter to
MC_ALL_AXES for this command.

DCX-MC200, DCX-MC210, and DCX-MC260 Motor status

0 Busy (motor data being updated)
1 Motor On
2 At Target
3 Trajectory Complete (Optimal = Target)
4 Direction (0 = positive, 1 = negative)
5 Motor Jogging is Enabled
6 Motor homed
7 Motor Error (Limit +/- tripped, max. following error exceeded)
8 Looking For Index (FI, WI)
9 Looking For Edge (FE, WE)
10 Index found
11 Unused
12 Breakpoint Reached (IP, IR, WP, WR)
13 Exceeded Max. Following Error *
14 Amplifier Fault Enabled *
15 Amplifier Fault Tripped *
16 Hard Limit Positive Input Enabled
17 Hard Limit Positive Tripped
18 Hard Limit Negative Input Enabled
19 Hard Limit Negative Tripped
20 Soft Motion Limit High Enabled
21 Soft Motion Limit High Tripped
22 Soft Motion Limit Low Enabled
23 Soft Motion Limit Low Tripped
24 Encoder Index (MC200, MC210)/Stepper Home (MC260)
25 Coarse home (current state)
26 Amoplifier Fault *
27 Auxiliary Encoder Index
28 Limit Positive Input Active (current state)
29 Limit Negative Input Active
30 User Input 1 *
31 User Input 2 *
* not valid for stepper modules
compatibility: MC200, MC210, MC260
see also: Decode Status
C++ Function: DWORD MCGetStatus(HCTRLR hCtlr, WORD wAxis);
Delphi Function: function MCGetStatus(hCtir: HCTRLR; wAxis: Word): Longint;
VB Function: Function MCGetStatus (ByVal hCtrir As Integer, ByVal axis As Integer) As Long

MCCL command-: TS

DCX-AT200 User’s Manual 205

Motion Control APl Function Reference

Execute [T] - ;

LabVIEW VI H::_mdle In "‘ Ha_m:lle Out
Axisln 1] Siat _‘—g.:ust Out
L Status

MCGet5tatus. vi

Get Target position

The API move functions MCMoveAbsolute() and MCMoveRelative() update the target position for
an axis. The controller will then generate an optimal trajectory to the target position, and the PID loop
will seek to minimize the error (difference between actual and optimal trajectories).

The return value is the target position of the axis selected by wAxis for MCGetTarget(). For the
MCGetTargetEx() version the target position value is placed in the variable specified by the pointer
pTarget and MCERR_NOERROR is returned if there were no errors. If there was an error, one of the
MCERR _xxxx error codes is returned and the variable pointed to by pTarget is left unchanged. You
may not set the wAxis parameter to MC_ALL_AXES for either of these functions.

compatibility: MC200, MC210, MC260

see also: Move Absolute, Move Relative

C++ Function: long int MCGetTargetEx(HCTRLR hCtlr, WORD wAxis, double far* Target);

Delphi Function: function MCGetTargetEx(hCtir: HCTRLR; wAxis: Word; var Target: Double): Longint;

VB Function: Function MCGetTargetEx (ByVal hCtrlr As Integer, ByVal axis As Integer, target As Double) As Long

MCCL command: aTTp a=Axisnumber p= 0,.1,.2,.3, 4,5

E“ECU‘E [T]

. Handle In Handle Dut
LabVIEW VI Axis In (1) T Too L Axis Out

T Taroet

Error

MCGetT argetEx.vi

Get Torque

Reports the current DAC output of a servo module. See the description of the Torque Mode Output
Control in the Application Solutions chapter.

Places the current output setting of a servo in the variable specified by the pointer pTorque. You may
not set the wAxis parameter to MC_ALL_AXES for this command.

compatibility: MC200, MC210
see also: Set Torque, Set Operating Mode, Set Motion Configuration

MCCL command. TQ

C++ Function: long int MCGetTorque(HCTRLR hCtlr, WORD wAxis, double far* Torque);
Delphi Function: function MCGetTorque(hCtir: HCTRLR; wAxis: Word; var Torque: Double): Longint;
VB Function: Function MCGetTorque (ByVal hCtrlr As Integer, ByVal axis As Integer, torque As Double) As Long

206 Precision MicroControl

Motion Control API Functions

Execute [T] e

Handle In Handle Out
LabVIEW VI. Axis In (1) 7 Tom [- Asis Out
e |
—|—— orque

Error

MCGetT orque.vi

Get Vector Velocity

This function returns the current programmed vector velocity for the specified axis, in whatever units
the axis is configured for. The vector velocity value for a particular wAxis may also be obtained using
MCGetContourConfig(). MCGetVectorVelocity() provides a short-hand method for getting just the
vector velocity value and is most useful when updating vector velocity settings on the fly. You may not
set the wAxis parameter to MC_ALL_AXES for this command.

compatibility: MC200, MC210

see also: Set Vector Velocity, Set Contour Configuration, Get Contour Configuration
C++ Function: long int MCGetTorque(HCTRLR hCtlr, WORD wAxis, double far* Torque);

Delphi Function: function MCGetTorque(hCtir: HCTRLR; wAxis: Word; var Torque: Double): Longint;

VB Function: Function MCGetTorque (ByVal hCtrlr As Integer, ByVal axis As Integer, torque As Double) As Long
MCCL command: TQ

LabVIEW VI. Not supported

Get Velocity

These functions return the current programmed velocity for the specified axis, in whatever units the
axis is configured for. The MCGetVelocity() version returns the velocity value as the function return
value, while MCGetVelocityEx() accepts a pointer to a double precision variable for the velocity
value. The programmed velocity value for a particular wAxis may also be obtained using the
MCGetMotionConfig() function. MCGetVelocity() provides a short-hand method for getting just the
velocity value and is most useful when updating velocity settings on the fly in velocity mode.

compatibility: MC200, MC210, MC260

see also: Set Velocity, Set Motion Configuration, Get Motion Configuration

C++ Function: long int MCGetTorque(HCTRLR hCtlr, WORD wAXxis, double far* Torque);

Delphi Function: function MCGetTorque(hCtir: HCTRLR; wAxis: Word; var Torque: Double): Longint;

VB Function: Function MCGetTorque (ByVal hCtrlr As Integer, ByVal axis As Integer, torque As Double) As Long
MCCL command: TV

LabVIEW VI. Not supported

Is the axis At the Target

Returns the value True if the axis is at the target (MC_STAT_AT_TARGET) and False if it is not.
MC_STAT_AT_TARGET is true if the axis remains within the Dead band region for the time specified
by the DeadbandDelay period. Dead band and DeadbandDelay are specified in the MCMOTION

DCX-AT200 User’s Manual 207

Motion Control APl Function Reference

configuration structure. If a non zero value is defined for Timeout , application program processing is
suspended until either:

The axis is at target
MClisStopped has timed out

If Timeout = 0 the function returns the current state (complete = true, not complete = false) of the
trajectory for the specified axis. This function is similar to MCWaitForTarget except that it can only
suspend processing of the application program, it does not affect the operation of the DCX controller.
This function can be issued to one or all axes. For additional information please refer to the Motion
Complete Indications section of the Motion Control chapter.

compatibility: MC200, MC210, MC260

see also: Is Stopped, Wait for Stop, Wait for Target

C++ Function: void MClsAtTarget(HCTRLR hCtlr, WORD wAxis, double Timout);

Delphi Function: procedure MClsAtTarget(hCtir: HCTRLR; wAxis: Word; Timeout: Double);

VB Function: Sub MClsAtTarget (ByVal hCtrir As Integer, ByVal axis As Integer, ByVal timeout As Double)
MCCL command: NA

LabVIEW VI. Not supported

Is the axis Stopped

Returns the value True if the calculated motion (MC_STAT_TRAJ) of an axis is complete.
MC_STAT_TRAJ will be true when the optimal position (calculated by the DCX trajectory generator)
of an axis is equal to the target position of a move. If a non zero value is defined for Timeout ,
application program processing is suspended until either:

Trajectory has completed (optimal position = target position)
MClIsStopped has timed out

If Timeout = 0 the function returns the current state (complete = true, not complete = false) of the
trajectory for the specified axis.

This function is similar to MCWaitForStop except that it can only suspend processing of the
application program, it does not affect the operation of the DCX controller. This function can be issued
to one or all axes. An dwell after trajectory is complete is specified by using the function PC Sleep.

Note: Trajectory Complete is a digital event that occurs when the
Optimal Position (calculated by the DCX trajectory generator) equals the
Current Position. Any following error present during the move will cause
the trajectory to be complete before the axis has stopped moving. For
additional information please refer to the Motion Complete Indications
section of the Motion Control chapter.

compatibility: MC200, MC210, MC260
see also: Is at Target, Wait for Stop, Wait for Target

208 Precision MicroControl

Motion Control API Functions

C++ Function: void MClsStopped(HCTRLR hCtlr, WORD wAxis, double Timout);

Delphi Function: procedure MClsStopped(hCtlr: HCTRLR; wAxis: Word; Timeout: Double);

VB Function: Sub MClsStopped (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal timeout As Double)
MCCL command: NA

LabVIEW VI. Not supported

Translate Error

This function returns a far pointer to the ASCII error message corresponding to nError. If nError does
not correspond to a valid error message a NULL pointer is returned. It will work with errors returned
from MCGetError() and MCErrorNotify() error messages.

Beginning with version 2.1 of the MCAPI this function is included as a native MCAPI function
(previously it was contained in a separate module). Incorporating MCTranslateErrorEx() into the
MCAPI DLL will facilitate future updates, but has required changes from how It previously worked.
The string buffer and buffer length have been added to the argument list. These changes make it
possible to call MCTranslateErrorEx() from a much wider range of programming languages.

If you are using the native MCTranslateError() function from an earlier version of MCAPI you may
continue to do so, but it is recommended that you migrate to the new version when possible.

compatibility: N/A

see also: Error Notify, Get Error

C++ Function: long int MCTranslateErrorEx(short int nError, LPSTR szBuffer, long int nLength);

Delphi Function: function MCTranslateErrorEx(nError: Smallnt; szBuffer: PChar; nLength: Longint): Longint,

VB Function: Function MCTranslateErrorEx (ByVal errorcode As Integer, ByVal szBuffer As String, ByVal nLength As

Long) As Long
MCCL command: Not supported
LabVIEW VI. Not supported

DCX-AT200 User’s Manual 209

Motion Control APl Function Reference

1/0 Functions

Get Analog

Reads the digitized input state of the specified input wChannel. The four 8-bit analog input channels
accessed on connectors J3 are numbered 1,2,3 and 4. For each of these channels, this function will
read a number between 0 and 255. These numbers are the ratio of the analog input voltage to the
reference input voltage multiplied by 256. The reference for the first four channels must be supplied to
the DCX on connector J3, and can be any voltage between 0 and +5 volts DC. The analog input
channels on any installed MC500 modules will be numbered sequentially starting with channel 5. See
the description of Analog Inputs in the DCX General Purpose I/O chapter.

compatibility: MC500, MC510

see also: Set Analog

C++ Function: WORD MCGetAnalog(HCTRLR hCtlr, WORD wChannel);

Delphi Function: function MCGetAnalog(hCtlr: HCTRLR; wChannel: Word): Word;

VB Function: Function MCGetAnalog (ByVal hCtrIr As Integer, ByVal channel As Integer) As Integer

MCCL command.: TA

Execute [T] -
Handle In Handle Out
Channel (1)~ |=%

Yalue

LabVIEW VI
MCGetAnalog. vi

Configure Digital 1/O
Used to configure digital I/O channels as:

Input MC_DIO_OUTPUT
Output MC_DIO_OUTPUT
High True MC_DIO_HIGH
Low True MC_DIO_LOW

All digital 1/0 channels on the DCX default to inputs on power-on or reset. The state of a digital I/O
channel can be viewed with the Get Channel function.

compatibility: MC400

see also: Get Channel, Enable Channel

C++ Function: short int MCConfigureDigitallO(HCTRLR hCtir, WORD wChannel, WORD wMode);

Delphi Function: function MCConfigureDigitallO(hCtlr: HCTRLR; wChannel, wMode: Word): Smallnt;

VB Function: Function MCConfigureDigitallO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal mode As

Integer) As Integer
MCCL command: CH,CI, CL, CT

210 Precision MicroControl

Motion Control API Functions

Execute [T] «e

Handle In Handle Out
LabVIEW VI Channel (1) ﬁﬁg
Level (H] -~ ===

10 [uutput] O
MCConfigureDigitall0_vi

Enable Digital 10

Turns the specified digital 1/0 on or off, depending upon the value of bState.

TRUE Turns the channel on.
FALSE Turns the channel off.

The I/0O channel selected must have previously been configured for output using the
MCConfigureDigitallO() command. Note that depending upon how a channel has been configured
"on" (and conversely "off") may represent either a high or a low voltage level.

compatibility: MC400

see also: Configure Digital 10

C++ Function: void MCEnableDigitallO(HCTRLR hCtlr, WORD wChannel, short int bState);

Delphi Function: procedure MCEnableDigitallO(hCtlr: HCTRLR; wChannel: Word; bState: Smallint);

VB Function: Sub MCEnableDigitallO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)

MCCL command. CF,CN

Execute [T] - .

Handle In E Handle Out
LabVIEW VI Channel (1)
State [T] —+ —

MCEnableDigitallO.vi

Get Digital 10

Returns the current state of the specified digital /0O channel. This function will read the current state of
both input and output digital I/O channels. Note that this function simply reports if the channel is "on"
or "off"; depending upon how a channel has been configured "on" (and conversely "off") may
represent either a high or a low voltage level.

compatibility: MC400

see also:

C++ Function: short int MCGetDigitallO(HCTRLR hCtlr, WORD wChannel);

Delphi Function: function MCGetDigitallO(hCtlr: HCTRLR; wChannel: Word): Smallint;

VB Function: Function MCGetDigitallO (ByVal hCtrIr As Integer, ByVal channel As Integer) As Integer

MCCL command: TC

Execute [T] -

Handle In Handle Out
LabVIEW VI: Channel (1) —— ol Vol

MCGetDigitall0.vi

DCX-AT200 User’s Manual 211

Motion Control APl Function Reference

Get Digital 10 Configuration

This function returns the current configuration (in/out/high/low) of the specified digital I/O channel.
The configuration of the specified channel is returned as one or more of the MC_DIO_xxx constants
OR'ed together. This value is identical to the value you would create to configure the channel using
MCConfigureDigitallO().

compatibility: MC400

see also: Configure Digital 10

C++ Function: long int MCGetDigitallOConfig(HCTRLR hCtlr, WORD wChannel, WORD* wMode);

Delphi Function: function MCGetDigitallOConfig(hCtir: HCTRLR; wChannel: Word; var wMode: Word): Longlnt

VB Function: Function MCGetDigitallOConfig (ByVal hCtrir As Integer, ByVal channel As Integer, mode As Integer) As
Long

MCCL command : Not supported

LabVIEW VI. Not supported

Set Analog

Sets the output level of an analog channel. Analog output ports on MC500 and MC520 Analog
Modules accept values in the range of 0 to 4095 counts (12 bits). This range of values corresponds to
an output voltage of 0 to 5V or -10 to +10V, depending upon how the output is configured (See the
description of Analog Inputs in the DCX General Purpose 1/O chapter).

compatibility: MC500, MC520

see also: Get Analog

C++ Function: void MCSetAnalog(HCTRLR hCtlr, WORD wChannel, WORD wValue);

Delphi Function: procedure MCSetAnalog(hCtir: HCTRLR; wChannel, value: Word);

VB Function: Sub MCSetAnalog (ByVal hCtrir As Integer, ByVal channel As Integer, ByVal Value As Integer)

MCCL command-: OA

E:H:E:IZ:I.IIE [T]
Handle In
LabVIEW VI: Channel (1) -~ P

Yalue

Handle Out

MCS5etAnalog. vi

Wait for Digital 10

Waits for the specified digital /O channel to go on or off, depending upon the value of bState.

compatibility: MC400
see also: Wait for digital channel on
C++ Function: void MCWaitForDigitallO(HCTRLR hCtlr, WORD wChannel, short int bState);

Delphi Function: procedure MCWaitForDigitallO(hCtlr: HCTRLR; wChannel: Word; bState: Smallint);

212 Precision MicroControl

Motion Control API Functions

VB Function: Sub MCWaitForDigitallO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)
MCCL command: WF, WN

E xecute [T]
LabVIEW VI Handle In ' Handle Out
| —
State [T] -~

M Cw aitForDigitall0_vi

DCX-AT200 User’s Manual 213

Motion Control APl Function Reference

Macros and Multi-Tasking

Cancel Task

Cancels an executing background task. The task should have been previously started with an
MCBlockBegin() MCBlockEnd() pair. MCCancelTask() is the only way to stop tasks that are not
programmed to stop themselves (i.e. infinite loop tasks). See the description of MCBlockBegin(') and
Macro Commands in the Appendix.

compatibility: N/A

see also: Block Begin, Block End

C++ Function: long int MCCancelTask(HCTRLR hCllr, long int [TaskID);

Delphi Function: function MCCancelTask(hCtir: HCTRLR; ITaskID: Longint): Longint;

VB Function: Function MCCancelTask (ByVal hCtrir As Integer, ByVal taskid As Long) As Long
MCCL command: ET

LabVIEW VI. Not supported

Macro Call

Macros are normally downloaded using the pmcputs() ASCII interface command, using the DCX
macro command language (MCCL); or by converting MCAPI functions to a macro with the
MCBlockBegin()/MCBlockEnd() functions. These controller level macros are often the only efficient
way to implement hardware specific sequences, such as special homing routines, initializing encoder
positions, etc. See the description of Macro Commands in the Appendix.

compatibility: N/A

see also: Block Begin, Block End

C++ Function: void MCMacroCall(HCTRLR hCtlr, WORD wMacro);

Delphi Function: procedure MCMacroCall(hCtlr: HCTRLR; wMacro: Word);

VB Function: Sub MCMacroCall (ByVal hCtrlr As Integer, ByVal macro As Integer)

MCCL command-: MC

EHEEutE [T]
LabVIEW VI Handle It Handle Out

P acro Murnber (0] Macro

MCM acroCall_vi

Repeat

Inserts a repeat command into a block command - task, compound command, or macro. This function
may only be used within an MCBlockBegin()/MCBlockEnd() command pair. See the description of
MCBlockBegin() and Macro Commands in the Appendix.

compatibility: N/A
see also: Block Begin, Block End

214 Precision MicroControl

Motion Control API Functions

C++ Function: long int MCRepeat(HCTRLR hCtlr, long int ICount);

Delphi Function: function MCRepeat(hCtlr: HCTRLR; ICount: Longint): Longint;

VB Function: Function MCRepeat (ByVal hCtrir As Integer, ByVal count As Long) As Long
MCCL command: RP

LabVIEW VI. Not supported

DCX-AT200 User’s Manual 215

Motion Control APl Function Reference

MCAPI Driver Functions

Block Begin

Initiates a block command sequence. Block commands include compound commands, macro
definition commands, contour path motions, and multitasking. The MCBlockBegin() and
MCBIlockEnd() commands are used to bracket other API commands in order to affect how those
commands are executed. While the high level MCAPI is function based (as are most Windows APIs),
PMC's motion control cards are command based. They are capable of accepting single commands or
blocks of commands, depending upon the complexity of the motion. To provide the same block
functionality to the MCAPI the MCBlockBegin() and MCBlockEnd() functions where created. These
functions may be used to bracket one or more MCAPI function calls to create function blocks.

One use is to create a compound command block - where multiple commands are sent to the
controller as a single block. This is useful for data capture sequences, homing sequences, or
anywhere you want to synchronize a complex group of commands.

For multi-tasking controllers, the block commands can be used to group individual commands as
separate tasks. Multi-tasking permits multiple user programs to run in parallel on PMC's advanced
motion control cards.

A third use of the block commands is to store the bracketed command sequence as a macro. Macros
may be replayed at any time using the MCMacroCall() function. Please note that API commands that
read data from a controller, such as any of the MCGet... functions, should not be included in macros.
Macro memory may be reset (cleared) by calling MCBlockBegin() with nMode set to
MC_BLOCK_RESETM. To reset selected blocks of macros, set nNum to 1 for RAM-based macros or
2 for Flash memory macros.

All calls to MCBlockBegin(), except those with an nMode of MC_BLOCK_RESETM or
MC_BLOCK_CANCEL require a corresponding call to MCBlockEnd(). Calls to MCBlockBegin()
may not be nested, except that MCBlockBegin() calls with an nMode of MC_BLOCK_CANCEL may
be included within other MCBlockBegin() blocks (this call terminates the outer MCBlockBegin() ,
so no MCBlockEnd() is needed in this case).

In version 2.0 of the MCAPI, blocks are also used for multi-axis contouring. Contouring requires first
that the selected axes be placed in contouring mode and a controlling axis specified. This is done with
the MCSetOperatingMode() function. Then blocks of contour path moves are issued. Under the
MCAPI, these contour path blocks are specified by bracketing MCArcCenter(), MCGoHome(),
MCMoveAbsolute(), MCMoveRelative(), or MCSetVectorVelocity() with block commands that are
one of the MC_BLOCK_CONTR_xxx types.

Block commands may be canceled prior to issuing an MCBlockEnd() by calling MCBlockBegin()
with /Mode set to MC_BLOCK_CANCEL.

compatibility: N/A
see also: Open
C++ Function: long int MCBlockBegin(HCTRLR hCtlr, long int IMode, long int INum);

216 Precision MicroControl

Motion Control API Functions

Delphi Function: function MCBlockBegin(hCtlr: HCTRLR,; IMode, INum: Longint): Longint;

VB Function: Function MCBlockBegin (ByVal hCtrlr As Integer, ByVal mode As Long, ByVal num As Long) As Long
MCCL command: CP, MD, GT, ET

LabVIEW ViI. Not supported

Block End

Ends a block command and transmits the compound command, task, macro, or contour path to the
controller. The MCBlockBegin() and MCBlockEnd() commands are used to bracket other API
commands in order to affect how those commands are executed. See the description of
MCBlockBegin() for more information.

compatibility: N/A

see also: Open

C++ Function: long int MCBlockEnd(HCTRLR hCtlr, long int far* ITaskID);

Delphi Function: function MCBlockEnd(hCtlr: HCTRLR; var ITaskID: Longlnt): Longint;
VB Function: Function MCBlockEnd (ByVal hCtrr As Integer, TaskID As Long) As Long
MCCL command: CP, MD, GT, ET

LabVIEW VI. Not supported

Close

Closes the specified motion controller handle, and is typically called at the end of a program.
Following a call to MCClose(), no further calls should be made to the Motion Control API functions
with this handle. The exception being MCOpen(), which may be called to open or reopen the API at
any time.

By calling MCClose() you notify Windows that you are done with the controller and device driver.
After the last user has closed the driver, Windows is free to unload the driver from memory. Failure to
call close leaves the handle open, reducing the number of available controller handles for other
applications.

compatibility: N/A

see also: Open

C++ Function: short int MCClose(HCTRLR hCtlr);

Delphi Function: function MCClose(hCtlr: HCTRLR): Smalllnt;

VB Function: Function MCClose (ByVal hCtrir As Integer) As Integer

MCCL command: Not Applicable
Execute [T] - .

Cloze
LabVIEW VI- Handle In — gy |
MCClose_vi

DCX-AT200 User’s Manual 217

Motion Control APl Function Reference

Get Configuration

This function allows the application to query the driver about installed controller hardware and
capabilities. Included are the number and type of axes, digital and analog 10 channels, scaling, and
contouring.

compatibility: N/A

see also: Open, Close

C++ Function: void MCGetConfiguration(HCTRLR hCtlr, MCPARAM far* IpParam);
Delphi Function: procedure MCGetConfiguration(hCtlr: HCTRLR; var IpParam: MCPARAM);
VB Function: Sub MCGetConfiguration (ByVal hCtrlr As Integer, param As MCParam)
MCCL command: Not supported

LabVIEW VI. Not supported

Get Version

Returns version information about the MCAPI DLL and, optionally, about the device driver in use for a
particular controller. The return version number for the MCAPI DLL and, if hCtlr is not NULL, the
version number for the device driver in use for the controller. If hCtlr is NULL device driver version info
will be zero. The DLL version number is contained in the low order word of the return value. The major
version number is stored as the low order byte of this word, while the release number is multiplied by
10, added to the revision number, and stored as the high order byte.

If the controller handle is not NULL, the version information for the device driver that is associated
with this controller will be placed in the high order word of the return value, using the same format as
was used for the DLL version information.

compatibility: N/A

see also: Open, Close

C++ Function: DWORD MCGetVersion(HCTRLR hCltlr);

Delphi Function: function MCGetVersion(hCtlr: HCTRLR): Longint;

VB Function: Function MCGetVersion (ByVal hCtrir As Integer) As Long
MCCL command: VE

LabVIEW VI. Not supported

Open

This function returns handle to the specified controller for use in subsequent API calls. The handle will
be greater than zero if the open call succeeds, or less than zero if there is an error. Standard error
codes (see the file MCERR.H) will be multiplied by -1 to make their values negative and returned in
place of a handle if there is an error:

Always save the handle returned by MCOpen() and use that value in subsequent calls to the API.
MCOpen() must be called before any other API calls are attempted. If a call is made to any other API
function with a bad handle, a handle error message (MCERR_CONTROLLER) will be broadcast to all

218 Precision MicroControl

Motion Control API Functions

windows. Everyone is notified in the case of a bad handle because MCAPI normally uses the handle
to route error messages, and obviously can't do this if the handle is invalid.

compatibility: N/A

see also: Close

C++ Function: HCTRLR MCOpen(short int nID, WORD wMode, LPCSTR IpszName);

Delphi Function: function MCOpen(hCtlr: Smallint; wMode: Word; IpszZName: PChar): HCTRLR;

VB Function: Function MCOpen (ByVal id As Integer, ByVal mode As Integer, ByVal svcname As String) As Integer

MCCL command: Not Applicable

E recute [T] :

. Controller ID [0) — Open
LabVIEW VI. Mode (Binary) 3 Handle Out

MCOpen._vi

Reopen

MCReopen() may be used to change the mode of an existing handle. The most likely cause for
failure is that another open handle exists for the same controller. MCReopen() cannot change a
controllers open mode if there are multiple handles as there is no way to notify the owners of those
other handles that a mode switch has occurred. If you plan on using this function in an application, it is
suggested that you open the controller in exclusive mode to prevent any additional handles from
being opened.

compatibility: N/A

see also: Close, Open

C++ Function: long int MCReopen(HCTRLR hCtlr, WORD wNewMode);

Delphi Function: function MCReopen(hCtlr: HCTRLR; wNewMode: Word): Longint;

VB Function: Function MCReopen (ByVal hCtrir As Integer, ByVal mode As Integer) As Long
MCCL command: Not Applicable

LabVIEW VI. Not Applicable

Set Timeout

These functions set the timeout period for I/O to a particular controller. The MCSetTimeout() version
returns the old timeout setting as the function return value, while MCSetTimeoutEx() accepts a
pointer to a double precision variable for the old timeout setting.

The timeout period is the maximum amount of time, in seconds, that the MCAPI device driver will wait
to send a command and/or receive a reply. The default setting for timeout for all controllers is zero
seconds. A timeout setting of zero will cause the controller to wait forever (i.e. no timeout) for 1/0 to
complete.

Note that a timeout value that is acceptable for most functions may fail (i.e. timeout) if the controller is
asked to perform a lengthy operation (a long wait, a reset, etc.). One option in these cases is to
change the timeout value for the duration of the long operation, then change the timeout value back.

DCX-AT200 User’s Manual 219

Motion Control APl Function Reference

MCSetTimeout() is not available in 32-bit versions of the MCAPI (use MCSetTimeoutEx() instead).

compatibility: N/A

see also: Close, Open

C++ Function: long int MCSetTimeoutEx(HCTRLR hCtlr, double TimeOut, double far* OldTimeOut);

Delphi Function: function MCSetTimeoutEx(hCtir: HCTRLR; TimeOut: Double; var OldTimeOut: Double): Longint;

VB Function: Function MCSetTimeoutEx (ByVal hCtrir As Integer, ByVal timeout As Double, oldtimeout As Double) As
Long

MCCL command: Not Applicable

LabVIEW VI. Not Applicable

220 Precision MicroControl

Motion Control API Functions

DCX-AT200 User’s Manual 221

DCX Specifications

Chapter Contents

Motherboard: DCX-AT200

DCX-MC200 - +/- 10 Volt Analog Servo Motor Control Module
DCX-MC210 - PWM Motor Drive Servo Control Module
DCX-MC260 - Stepper Motor Control Module

DCX-MC400 - 16 channel Digital I/O Module

DCX-MC5XO0 - Analog I/O Module

DCX-MF300 - RS-232 Communications Interface Module

DCX-MF310 - IEEE-488 Communications Interface Module

222

Precision MicroControl

DCX Specifications

Chapter

10

Function
Installation
Configuration

Main Processor
Processor Clock
Code Memory
Data Memory

Processor Fault Detection
Status LED's
Standard Communication Interface

Optional Communication Interfaces

Undedicated Digital I/O Channels
Undedicated Analog Input Channels

Supply Voltages

Form Factor

Operating Temperature range
Weight

Motherboard: DCX-AT200

6 Axis Motion Controller
IBM-AT or Compatible or Standalone
6 User Installed Modules

Intel 960 RISC

16 MHz

128k x 16 bit Flash Memory

32k x 16 bit Fast Static RAM

32k x 16 bit Dual Ported Ram (with battery backup option)
Watchdog Circuit with Reset Relay

Power, Reset, Watch Dog, (6) Motor Error

ISA Bus (IBM-AT or Compatible)

4 Kilobytes dual ported memory in Memory Address Space
Jumper/rotary switch selection of base address

RS-232 Serial Port (Network capable)

IEEE-488 Bus

16 TTL (0 — 5 VDC), 1ma max. sink/source
4, 8 bit resolution (0 - 5 vdc)

+5,+12 and -12 vdc

Full Size PC card (4.3" x 13.6")

0 degrees C to 60 degrees C

10 oz + 1.2 oz per module (approx.)

DCX-AT200 User’s Manual

223

DCX Specifications

Function
Installation

Operating Modes
Filter Algorithm

Filter Update Rate
Trajectory Generator

Position Feedback
Position and Velocity Resolution
Output

Encoder and Index Inputs
Encoder Count Rate
Encoder Supply Voltage
Axis Inputs

Axis Outputs

Jog Control Input

General purpose inputs

Operating Temperature range

DCX-MC200 - +/- 10 Volt Analog Servo Motor Control Module

Closed Loop Servo Controller with Dual Encoder Inputs
DCX-AT200 Motion Control Motherboard

Position, Velocity, Contouring, Torque, Gain, and Joystick

PID with Velocity and Acceleration Feed-Forwards

1, 2 or 4 KHz, software selectable (no integral term for 4 KHz)
Trapezoidal, Parabolic or S-Curve

Independent Acceleration and Deceleration

Incremental Encoder with Index

32 bit

Analog Signal (+/- 10 vdc @ 10 ma, 12 bit)

Differential or single ended, -7 to +7 vdc max.
1,000,000 Quadrature Counts/Sec.
+5 or +12 vdc, jumper selectable

Limit+, Limit-, Coarse Home, Amplifier Fault (TTL compatible,
optical isolation available on BF100 interconnect board)
Amplifier Enable (TTL compatible)

Analog (0 to 5 volts)

2 User Inputs, TTL level

0 degrees C to 60 degrees C

224

Precision MicroControl

DCX Specifications

Function
Installation

Operating Modes
Filter Algorithm

Filter Update Rate
Trajectory Generator

Position Feedback
Position and Velocity Resolution
Output

Encoder and Index Inputs
Encoder Count Rate
Encoder Supply Voltage

Axis Inputs
Axis Outputs
Jog Control Input

General purpose inputs

Operating Temperature range

DCX-MC210 - PWM Motor Drive Servo Control Module

Closed Loop Servo Controller with Dual Encoder Inputs
DCX-AT200 Motion Control Motherboard

Position, Velocity, Contouring, Torque, Gain, and Joystick

PID with Velocity and Acceleration Feed-Forwards

1, 2 or 4 KHz, software selectable (no integral term for 4 KHz)
Trapezoidal, Parabolic or S-Curve

Independent Acceleration and Deceleration

Incremental Encoder with Index

32 bit

PWM (12 volt @ 1A), 23.4 KHz, 8 bit

Differential or single ended, -7 to +7 vdc max.
1,000,000 Quadrature Counts/Sec.
+5 or +12 vdc, jumper selectable

Limit+, Limit-, Coarse Home, Amplifier Fault (TTL compatible,
optical isolation available on BF100 interconnect board)
Amplifier Enable (TTL compatible)

Analog (0 to 5 volts)

2 User Inputs, TTL level

0 degrees C to 60 degrees C

DCX-AT200 User’s Manual

225

DCX Specifications

Function
Installation

Operating Modes
Trajectory Generator

Position Feedback
Position and Velocity Resolution

Step Outputs

Step Rates (Software Selectable)

Aux. Encoder and Index Inputs
Aux. Encoder Count Rate

Aux. Encoder Supply Voltage
Axis Inputs

Axis Outputs

Jog Control Input
General purpose inputs

Operating Temperature range

DCX-MC260 - Stepper Motor Control Module

Open or Closed Loop Stepper Controller
DCX-AT200 Motion Control Motherboard

Position, Velocity, Contouring, and Joystick
Trapezoidal, Parabolic or S-Curve

Independent Acceleration and Deceleration
Incremental Encoder with Index (closed loop only)
32 bit

Pulse/Direction — CW/CCW (software selectable),
open collector drivers

50% duty cycle

High Speed - 1.0K Steps/Sec. - 1.0M Steps/Sec.
Medium Speed - 125 Steps/Sec. - 156K Steps/Sec.
Low Speed - 15 Steps/Sec. - 19.5K Steps/Sec.

Differential or single ended, -7 to +7 vdc max.
1,000,000 Quadrature Counts/Sec.
+5 or +12 vdc, jumper selectable

Home, Limit+, Limit-, Null (TTL compatible, optical isolation
available on BF160 interconnect board)

Driver Enable, Full/Half Step, Full/Half Current, Stopped (TTL
compatible)

Analog (0 to 5 volts)

None

0 degrees C to 60 degrees C

226

Precision MicroControl

DCX Specifications

Function
Installation

Channels

Output low voltage (min)
Output high voltage (min)
Current sink

Current source

Input Low voltage

Input High voltage

Input termination

Relay rack interface

Operating Temperature range

Function

Installation

Inputs resolution
Input voltage range

Output resolution

Output voltage range

Output Offset Adjustment
Output Full Scale Adjustment

Operating Temperature range

DCX-MC400 - 16 channel Digital /0 Module

16 Channel Digital I/O module
DCX-AT200 Motion Control Motherboard

16, individually programmable as inputs or outputs

0.0 volt

2.4 volt

1 ma max.

1 ma max.

-0.3V min. to 0.8V max.
2.0V min. to 5.3V max.
4.7K ohm per channel
DCX-BF022

0 degrees C to 60 degrees C

DCX-MC5X0 - Analog I/0 Module

DCX-MC500 — 4 A/D channels, 4 D/A channels
DCX-MC510 — 4 A/D channels

DCX-MC520 — 4 D/A channels

DCX-AT200 Motion Control Motherboard

12 bit
0.0V to +5.0V

12 bit

0.0V to +5.0V (@ 5ma), -10V to +10V (@ 5ma)
20 turn trim pot

single turn trim pot

0 degrees C to 60 degrees C

DCX-AT200 User’s Manual

227

DCX Specifications

DCX-MC500 Electrical Specifications

-m-—

Input Resolution Bits
Input Conversion Rate 10 KHz
Input Zero Error
Using Internal Reference +/-3 LSB
Using External Reference +/-1/2 LSB
Input Full-Scale Error
Using Internal Reference +/- 15 LSB
Using External Reference +/-1/2 LSB
Input Zero Temp. Coefficient 0.5 ppm/C
Input Differential Nonlinearity +/- 1 LSB
Input Total Unadjusted Error
Using Internal Reference +/- 15
Using External Reference +/-1
Input Voltage Range
Using Internal Reference 0.0 5.0
Using External Reference 0.0 Vref
Input Capacitance 8
Input Leakage Current 100
External Reference Voltage 4.0 6.0

-m-—

Output Resolution Bits
Output Zero Code Error * LSB
Output Full Scale Error * LSB
Output Nonlinearity * LSB
Output Total Unadjusted Error * LSB
Output Voltage Range 0.0 5.0 \%
-10.0 +10.0 Vv

* These values are for 0 to +5.0 volt outputs

228 Precision MicroControl

DCX Specifications

DCX-MF300 - RS-232 Communications Interface Module

Function RS-232 Communications Interface module
Installation DCX-AT200 Motion Control Motherboard
Baud Rates 300 - 19,200

Handshake Protocol Hardware or XON-XOFF

Operating Temperature range 0 degrees C to 60 degrees C

DCX-MF310 - IEEE-488 Communications Interface Module

Function IEEE-488 Communications Interface module
Installation DCX-AT200 Motion Control Motherboard
Address Selection DIP switch on module

Data Bus Drivers Push-Pull or Open Collector

Operating Temperature range 0 degrees C to 60 degrees C

DCX-AT200 User’s Manual 229

Connectors, Jumpers, and Schematics

Chapter Contents

e DCX-AT200 Motion Control Motherboard

e DCX-MC200 +/- 10V Servo Motor Control Module

e DCX-MC210 PWM Motor Drive Servo Control Module
o DCX-MC260 Stepper Motor Control Module

e DCX-MC400 Digital I/O Module

¢ DCX-MC500/MC510/MC520 Analog I/0O Module

e DCX-MF300 — RS-232 Interface Module

e DCX-MF310 IEEE-488 Interface Module

e DCX-BF022 Relay Rack Interface

e DCX-BF100 Servo Module Interconnect Board

e DCX-BF160 Stepper Module Interconnect Board

230 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-AT200 Motion Control Motherboard

(Refer to diagram at the end of this appendix)

LED Status Indicators

Green +5V logic supply

Yellow DCX Reset active

Yellow Watchdog circuit tripped
Red Module #1 motor error (following error or limit tripped)
Red Module #2 motor error (following error or limit tripped)
Red | Module #3 motor error (following error or limit tripped)
Red | Module #4 motor error (following error or limit tripped)
Red Module #5 motor error (following error or limit tripped)
Red Module #6 motor error (following error or limit tripped)

O oO~NOOOTHAWN -

DCX-AT200 User’s Manual 231

Connectors, Jumpers, and Schematics

General Purpose I/O (Digital I/O and Analog inputs) Connector J3

| Pin# | Description

1 +5 VDC

2 ANALOG INPUT #1

3 DIGITAL 1/0, CHANNEL 16
4 ANALOG INPUT #3

5 DIGITAL 1/0, CHANNEL 15
6 DIGITAL /0, CHANNEL 14
7 DIGITAL /O, CHANNEL 13
8 DIGITAL 1/0, CHANNEL 12
9 DIGITAL 1/0, CHANNEL 11
10 DIGITAL /0, CHANNEL 10
11 DIGITAL /0, CHANNEL 09
12 DIGITAL /O, CHANNEL 08
13 DIGITAL 1/0, CHANNEL 07
14 DIGITAL 1/0, CHANNEL 06
15 DIGITAL /0, CHANNEL 05
16 DIGITAL /O, CHANNEL 04
17 DIGITAL 1/0, CHANNEL 03
18 DIGITAL 1/0, CHANNEL 02
19 DIGITAL 1/0, CHANNEL 01
20 ANALOG INPUT #4

21 +12 VDC

22 ANALOG INPUT #2

23 ANALOG REF. (input)

24 GROUND

25 12 VDC

26 GROUND

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N CA-261DS2-F-SPT or equivalent

External Reset Switch Connector — J16

| Pin# _ Description

1 Reset input (low active)
2 Ground

Battery Backup Input Connector — J17

| Pin# Description |

1 +5VDC output (from PC power supply) *
2 Battery voltage input (+3.0 VDC nominal)
3 No connect

4 Ground

* If battery is not used, J17 pins 1 and 2 must be connected together

232 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-AT200 Configuration Jumpers — configuration in bold type denotes
default factory shipping configuration

JP1 — A/D reference select

| Pins | Description

1to2 Select on-board 5.00 volt reference
open Use external reference (connected to J3 pin 23)

JP2 — DCX reset source select (one, two or all three)

| Pins__ Description |

1to2 Reserved for factory use
3to4 external manual reset from switch connected to connector J16
5to6 IBM-PC bus reset

JP3 — Watchdog circuit enable

| Pins __ Description |

1to 2 Enable watchdog circuit
open disable watchdog circuit

JP4 — Boot RAM enable

| Pins | Description

1to2 Boot code from static memory
open Boot code from FLASH devices

JP5 — FPGA Program enable

| Pins__ Description |

1to2 Enable in circuit programming of FPGA
open Normal DCX operation

JP6 — PC Interrupts — not supported

JP7 — Reserved for factory use

JP8 - IBM-PC Interface base memory address select

JP8 5to 6 JP8 3 to 4 JP8 1to 2

8000 hex connected connected connected
9000 hex connected connected open
A000 hex connected open connected
B0O0O hex connected open open
C000 hex open connected connected
D000 hex open connected open
EO000 hex open open connected
FOO00 hex open open open

DCX-AT200 User’s Manual

233

Connectors, Jumpers, and Schematics

DCX-AT200 Configuration Jumpers - continued

JP9 - JP15 - FLASH memory jumper configuration - settings for 1 Meg. FLASH memory
devices:

JP9 1-2
JP10 1-2
JP11 24
JP12 1-2
JP13 1-2
JP14 open
JP15 2-3

JP16 - U19 & U20 Memory type configuration - Factory setting for 32K RAMS:
JP16 1-2

DCX Memory Address Rotary Switch Setting

The 16 bit position rotary switch selects where the dual port RAM appears in the host computer's
memory map. In the table below, the X digit in the 'Host Address Range', is determined by the setting
of jumper JP8. The default factory setting of the switch is 0. If multiple boards are used in a single
host, no two boards should have the same switch setting.

Switch Setting Host Address Range

X0000h — XOFFFh
X1000h — X1FFFh
X2000h — X2FFFh
X3000h — X3FFFh
X4000h — X4FFFh
X5000h — X5FFFh
X6000h — X6FFFh
X7000h — X7FFFh
X8000h — X8FFFh
X9000h — X9FFFh
XA000h — XAFFFh
XB000h — XBFFFh
XCO000h — XCFFFh
XDO000h — XDFFFh
XEOOOh — XEFFFh
Not a valid address — used to clear macro memory

TMTMUOT>O©oNOOORAWN-O

234 Precision MicroControl

Connectors, Jumpers, and Schematics

IBM-PC Interface Edge Connectors A & B

Component Side

A01-NC

A02 - BUS DATA 7 (HIGH TRUE)
A03 - BUS DATA 6
A04 - BUS DATA 5
A0S - BUS DATA 4
A06 - BUS DATA 3
A07 - BUS DATA 2
A08 - BUS DATA 1
A09 - BUS DATAO

A10 — IORDY
A11-NC

A12 - BUS ADR.
A13 - BUS ADR.
A14 - BUS ADR.
A15 - BUS ADR.
A16 - BUS ADR.
A17 - BUS ADR.
A18 - BUS ADR.
A19 - BUS ADR.
A20 - BUS ADR.
A21 - BUS ADR.
A22 - BUS ADR.
A23 - BUS ADR.
A24 - BUS ADR.
A25 - BUS ADR.
A26 - BUS ADR.
A27 - BUS ADR.
A28 - BUS ADR.
A29 - BUS ADR.
A30 - BUS ADR.
A31 - BUS ADR.

19 (HIGH TRUE)
18
17
16
15
14
13
12
11
10
09
08
07
06
05
04
03
02
01
00

NC = No Connect

Solder Side

BO1 - GROUND (+5 VOLT RETURN)
B02 - RESET (HIGH TRUE)
BO3 - +5 VDC

BO4 - NC

BO5 - NC

B06 - NC

BO7 - -12 VDC

B08 - NC

BO9 - +12 VDC

B10 - GROUND(+,-,12 VOLT RET.)
B11 - SMEMW (LOW TRUE)
B12 - SMEMR (LOW TRUE)
B13-NC

B14 - NC

B15- NC

B16 - NC

B17 - NC

B18 - NC

B19 - NC

B20 - NC

B21 - NC

B22 - NC

B23 - IRQ5

B24 - NC

B25 - NC

B26 - NC

B27 - NC

B28 - BALE (HIGH TRUE)
B29 - +5 VDC

B30 - NC

B31 - GROUND

Note: For stand alone applications where the IBM interface is not used:

Connect B11 and B12 to +5V through 4.7K ohm resistor
Connect B2, A2 - A9 and A11 - A31 to ground

DCX-AT200 User’s Manual

235

Connectors, Jumpers, and Schematics

Auxiliary Connectors

Asynchronous Serial I/O connector J1

| Pin# | Description

O©OONOO AP WN=

-
o

Ground

Serial data input (TTL level)

Ground

Serial data output (TTL level)

Ground

Transmit enable (TTL level)

+5VDC
+12VDC
-12VDC
NC

Mating Connector:10-pin dual-row IDC female, Circuit Assembly P/N CA-10IDS2-F-SPT or equivalent

Auxiliary 1/0 connector J2

| Pin# | Description

PoNIo©ON A WN =

Reserved for factory use
Reserved for factory use
Ground

Reserved for factory use
Ground

Reserved for factory use
Ground

Reserved for factory use
+5 VDC

Reserved for factory use
Counter input

Reserved for factory use

Watchdog relay contact 1 (normally closed)
Watchdog relay contact 2 (normally closed

Mating Connector: 14-pin dual-row IDC female, Circuit Assembly P/N CA-14IDS2-F-SPT or

equivalent

236

Precision MicroControl

Connectors, Jumpers, and Schematics

®c1a0ldr @ ¢36dr

X

ol eoen|\dr

o
¥
(o))
(]
(o]
O
o
S
N
n
0
°
°
°
°
[
S
w
n
0
°
°
°
J

it
S

JPi7coe @ Ji18 Hnecooo o0

©e 20 0O NeNO 0eeee 0e0Ne
SE SuU S T m00 Smeee Smoue

— = Default jumpering

DCX-AT200 User’s Manual 237

Connectors, Jumpers, and Schematics

DCX-MC200 +/- 10V Servo Motor Control Module
SIGNAL DESCRIPTIONS:

Analog Command Return

connection point. J3 - pin 1

signal type: ground

notes:

explanation: Provides the signal ground for the modules Analog Command Signal output. This return
path is common to the ground plane of the DCX motherboard, but is connected in such a way as to
reduce digital noise. Typical servo amplifiers will have a connection for the analog command return
where this signal should be connected.

Analog Command Output

connection point. J3 - pin 2

signal type: +/- 10V analog, 12 bit

notes: connects to servo amplifier motor command input

explanation: This module output signal is used to control the servo amplifier's output. When
connected to the command input of a velocity mode amplifier, the voltage level on this signal should
cause the amplifier to drive the servo at a proportional velocity. For current mode amplifiers, the
voltage level should cause a proportional current to be supplied to the servo. In its default Bipolar
output mode, the module provides an analog signal that is in the range -10 to +10 volts, with 0 volts
being the null output level. Positive voltages indicate a desired velocity or current in one direction.
Negative voltages indicate velocity or current in the opposite direction. By using the Output Mode
command, the output can be changed to Unipolar, where the analog signal range is 0 to +10 volts,
and a separate signal is used to indicate the desired direction of velocity or current. The maximum
drive current of this signal is +/-10 milliamps.

Direction/PWM Output

connection point. J3-pin7

signal type: TTL output

notes:

explanation:

Direction - For servo drives requiring a Unipolar output. The velocity or current command input
consists of a magnitude signal and a separate direction signal . The magnitude signal is provided by
the modules Analog Command Signal (J3 pin 2) previously described, while this signal provides a
digital direction command. The voltage on this output is TTL compatible. This means that it will be
between 0 and 0.4 volts (low) to indicate one direction, and between 2.4 and 5.0 volts (high) for the
opposite direction. The maximum sink current for this signal when it is low is 4.0 mA, the maximum
source current when it is high is 1.0 mA.

PWM Output — For servo drives requiring a TTL level PWM command signal. The Analog Command
Output (J3 pin 2) is used as the direction signal. The frequency of the PWM is 1.4648 KHz. For a
description see the description of Laser Cutting Application Solutions chapter.

Coarse Home Input

connection point. J3 -pin9

signal type: TTL input

notes: 4.7K pull up resistor is connected to the +5V logic supply

238 Precision MicroControl

Connectors, Jumpers, and Schematics

explanation: This module input is used to determine the proper zero position of the servo. In servo
systems that use rotary encoders with index outputs, an index pulse is generated once per rotation of
the encoder. While this signal occurs at a very repeatable angular position on the encoder, it may
occur many times within the motion range of the servo. In these cases, a Coarse Home switch
connected to this module input can be used to qualify which index pulse is the true zero position of the
servo. By setting this switch to be activated near the end of travel of the servo, and using DCX motion
commands to position the servo within this region prior to searching for the index pulse, a unique zero
position for the servo can be determined.

Amplifier Fault Input

connection point. J3 - pin 10

signal type: TTL input

notes: 4.7K pull up resistor is connected to the +5V logic supply

explanation: - This module input is designed to be connected to the servo amplifiers Fault or Error
output signal. The state of this signal will appear as a status bit in the servo's status word. Using the
Fault oN command, this signal can be enabled to shut the axis off if the input goes active low. In this
condition, no further servo motion will occur until the fail signal is deactivated and the Motor oN
command is issued. The Fault oFf command can be used to disable this signal.

Amplifier Enable Output

connection point. J3 - pin 11

signal type: TTL output

notes: 2ma sink/source

explanation: - This module output signal should be connected to the enable input of the servo
amplifier. When the DCX is turned on or reset, this signal will immediately go to its' inactive high level.
When the Motor oN command is issued to the DCX, this signal will go to its' active low level. Anytime
there is an error on the respective servo axis, including exceeding the following error, a limit
switch input activated or the Amplifier Fault input activated, the Amplifier Enable signal will be
deactivated. This signal can also be deactivated by the Motor oFf command.

User Input 1 and User Input 2

connection point. J3 - pin 12 (User Input #1), J3 - pin 13 (User Input #2)

signal type: TTL input

notes: 4.7K pull up resistor is connected to the +5V logic supply

explanation: These module inputs can be connected to any digital logic signals that the DCX needs
to monitor. The state of these inputs (high or low) is recorded in the associated bits of the motor
status. These signals have no built in control function in the DCX. It is suggested that these inputs be
reserved for monitoring signals related to the respective servo axis.

Limit Positive and Limit Negative Inputs

connection point. J3 - pin 14 (Limit Positive), J3 - pin 15 (Limit Negative)

signal type: TTL input

notes: 4.7K pull up resistor is connected to the +5V logic supply

explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it
reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving
in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of
the direction it is moving if either limit switch is activated. There are three modes of stopping that can
be configured by the Limit Mode command. The limit switch inputs can be enabled and disabled with
the Limits oN and Limits oFf commands respectively. See the description of Motion Limits in the
Motion Control chapter.

Primary Encoder Inputs (Phase A+, Phase -, Phase B+, Phase B-, Index+, Index-)
connection point. see pin-out table

DCX-AT200 User’s Manual 239

Connectors, Jumpers, and Schematics

signal type: TTL or Differential driver output (-7V to +7V)

notes: The encoder power jumper JP3 sets the ‘mid point’ for the differential receiver
explanation: These input signals should be connected to an incremental quadrature encoder for
supplying position feedback information for the servo controller. The plus (+) and minus (-) signs refer
to the two sides of differential inputs. By setting jumpers JP1 and JP2 appropriately, the plus signal
inputs can be configured for single ended inputs.

Auxiliary Encoder Inputs (Phase A, Phase B, Index+, Index-)
connection point. see pin-out table

signal type: TTL or Differential driver output (-7V to +7V)
notes:

explanation: - These input signals can be used for an auxiliary encoder.

Encoder Power Output

connection point. J3 pin 17

signal type: +5 VDC PC power supply output or +12 VDC PC power supply output

notes: The encoder power jumper JP3 selects +5VDC or +12VDC

explanation: This module pin provides a convenient supply voltage connection for the encoders. The
jumper JP3 located on the module can be used to connect either the +5 or +12 volt supply to the
Encoder Power pin. The setting of this jumper also selects the threshold voltage for the module's
single ended phase and index encoder inputs. When JP1 is set for +5 volts, the threshold will be 2.5
volts, for +12 volts, the threshold will be +6 volts. The threshold voltage determines at what voltage
the input changes between on and off.

SUPPLY CONNECTIONS (+5, +12, -12, GROUND) - These module pins provide access
to the DCX supply voltages.

Joystick Input (A/D Channel, 8 bit)

connection point. J4 pin 1

signal type: 0.0 to +5V analog input

notes: used for joystick control

explanation: This input is used to implement manual jogging of the axis. See the description of
Jogging in the Motion Control chapter.

A/D +5 Volt Reference Output

connection point. J4 pin 3

signal type: precision +5V reference voltage

notes: used for joystick control

explanation: This input is used to implement manual jogging of the axis. See the description of
Jogging in the Motion Control chapter.

Analog Ground

connection point. J4 pin 4

signal type: analog ground for A/D conversion

notes: used for joystick control

explanation: This input is used to implement manual jogging of the axis. See the description of
Jogging in the Motion Control chapter.

240 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC200 Module connectors

J3 connector pin-out (Motor command, encoders, and axis 1/0)

| Pin# | Description |

1 Analog Command return (analog ground)

2 Analog Command output (output, +/-10 V)

3 +12 VDC

4 -12VDC

5 Ground

6 +5VDC

7 Direction/PWM Output (TTL level)**

8 Primary Encoder Index + (input, active high)

9 Coarse Home (input, active low, with 4.7K ohm pull-up to +5V)
10 Amplifier Fault (input, active low, with 4.7K ohm pull-up to +5V)
11 Amplifier Enable (output, active low, TTL level)**

12 User input 1 (input, active low, with 4.7K ohm pull-up to +5V)
13 User input 2 (input, active low, with 4.7K ohm pull-up to +5V)
14 Limit Positive (input, active low, with 4.7K ohm pull-up to +5V)
15 Limit Negative (input, active low, with 4.7K ohm pull-up to +5V)
16 Primary Encoder Phase A+ (input)*

17 Encoder Power (+5VDC or +12VDC, see jumper JP3)

18 Auxiliary Encoder Index - (input, active low)

19 Primary Encoder Phase A- (input)

20 Primary Encoder Phase B- (input)

21 Auxiliary Encoder Phase A

22 Auxiliary Encoder Phase B

23 Primary Encoder Phase B+ (input)*

24 Auxiliary Encoder Index+ (input, active high)

25 Primary Encoder Index- (input, active low)

26 Ground

* Use A+ and B+ for single-ended ENCODER INPUTS
** These signals are not suitable for directly driving optically isolated inputs.

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N CA-261DS2-F-SPT or equivalent

J4 connector pin-out (A/D channels for jogging)
| Pin# | Description
Analog Input #1
Analog Input #2
+5 volt reference output
Analog ground

A ODN -

DCX-AT200 User’s Manual 241

Connectors, Jumpers, and Schematics

DCX-MC200 Module Configuration Jumpers - configuration in bold type
denotes default factory shipping configuration

JP1 - Encoder type (single ended or differential)

| Pins | Description
1to2t0o 3 Single ended encoder, A, B, Z (three pin jumper provided)
open Differential encoder, A+, A-, B+, B-

JP2 — Encoder Index Active Level Select)

| Pins ___ Description

1t02 Single ended Index, Z+ (Active high)
2to 3 Single ended Index, Z- (active low)
open Differential Index, Z+ and Z-

JP3 — Encoder Power Select (+5VDC or +12 VDC)

| Pins | Description |

1to 2 +5 VDC encoder supply on J3 pin 17
2t03 +12 VDC encoder supply on J3 pin 17

DCX-MC200 Module Output Offset Potentiometers
This multi-turn trimming potentiometer can be used to add an offset to the module's analog output.
The range of this adjustment is approximately +/-1.0 volts.

DCX-MC200 Module Layout

B

EENE M
JP1 C 1Jm JP2 JP3
[]

J4

-

242 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC210 PWM Motor Drive Servo Control Module
SIGNAL DESCRIPTIONS:

Motor Drive Outputs

connection point. J3 - pin 1 (Motor Drive +), J3 — pin 6 (Motor Drive -)

signal type: TTL output

notes:

explanation: These module outputs provide the PWM drive signal for a DC servo motor. The PWM
frequency is 31.25 KHz. The resolution of the PWM is a full eight bits, resulting in .0390625 volts per
DAC unit. Rotational direction is determined by connecting the Motor Drive signals (Motor - and Motor
+) to the appropriate terminals on the DC servo motor.

Coarse Home Input

connection point. J3-pin 9

signal type: TTL input

notes: 4.7K pull up resistor is connected to the +5V logic supply

explanation: This module input is used to determine the proper zero position of the servo. In servo
systems that use rotary encoders with index outputs, an index pulse is generated once per rotation of
the encoder. While this signal occurs at a very repeatable angular position on the encoder, it may
occur many times within the motion range of the servo. In these cases, a Coarse Home switch
connected to this module input can be used to qualify which index pulse is the true zero position of the
servo. By setting this switch to be activated near the end of travel of the servo, and using DCX motion
commands to position the servo within this region prior to searching for the index pulse, a unique zero
position for the servo can be determined.

Amplifier Fault Input

connection point. J3 - pin 10

signal type: TTL input

notes: 4.7K pull up resistor is connected to the +5V logic supply

explanation: - This module input is designed to be connected to the servo amplifiers Fault or Error
output signal. The state of this signal will appear as a status bit in the servo's status word. Using the
Fault oN command, this signal can be enabled to shut the axis off if the input goes active low. In this
condition, no further servo motion will occur until the fail signal is deactivated and the Motor oN
command is issued. The Fault oFf command can be used to disable this signal.

Amplifier Enable Output

connection point. J3 - pin 11

signal type: TTL output

notes: 2ma sink/source

explanation: - This module output signal should be connected to the enable input of the servo
amplifier. When the DCX is turned on or reset, this signal will immediately go to its inactive high level.
When the Motor oN command is issued to the DCX, this signal will go to its active low level. Anytime
there is an error on the respective servo axis, including exceeding the following error, a limit
switch input activated or the Amplifier Fault input activated, the Amplifier Enable signal will be
deactivated. This signal can also be deactivated by the Motor oFf command.

Limit Positive and Limit Negative Inputs
connection point. J3 - pin 14 (Limit Positive), J3 - pin 15 (Limit Negative)
signal type: TTL input

DCX-AT200 User’s Manual 243

Connectors, Jumpers, and Schematics

notes: 4.7K pull up resistor is connected to the +5V logic supply

explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it
reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving
in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of
the direction it is moving if either limit switch is activated. There are three modes of stopping that can
be configured by the Limit Mode command. The limit switch inputs can be enabled and disabled with
the Limits oN and Limits oFf commands respectively. See the description of Motion Limits in the
Motion Control chapter.

Primary Encoder Inputs (Phase A+, Phase -, Phase B+, Phase B-, Index+, Index-)

connection point. see pin-out table

signal type: TTL or Differential driver output (-7V to +7V)

notes: The encoder power jumper JP3 sets the ‘mid point’ for the differential receiver
explanation: These input signals should be connected to an incremental quadrature encoder for
supplying position feedback information for the servo controller. The plus (+) and minus (-) signs refer
to the two sides of differential inputs. By setting jumpers JP1 and JP2 appropriately, the plus signal
inputs can be configured for single ended inputs.

Auxiliary Encoder Inputs (Phase A, Phase B, Index+, Index-)
connection point. see pin-out table

signal type: TTL or Differential driver output (-7V to +7V)
notes:

explanation: - These input signals can be used for an auxiliary encoder.

Encoder Power Output

connection point. J3 pin 17

signal type: +5 VDC PC power supply output or +12 VDC PC power supply output

notes: The encoder power jumper JP3 selects +5VDC or +12VDC

explanation: This module pin provides a convenient supply voltage connection for the encoders. The
jumper JP3 located on the module can be used to connect either the +5 or +12 volt supply to the
Encoder Power pin. The setting of this jumper also selects the threshold voltage for the module's
single ended phase and index encoder inputs. When JP1 is set for +5 volts, the threshold will be 2.5
volts, for +12 volts, the threshold will be +6 volts. The threshold voltage determines at what voltage
the input changes between on and off.

SUPPLY CONNECTIONS (+5, +12, -12, GROUND) - These module pins provide access
to the DCX supply voltages.

Joystick Input (A/D Channel, 8 bit)

connection point. J4 pin 1

signal type: 0.0 to +5V analog input

notes: used for joystick control

explanation: This input is used to implement manual jogging of the axis. See the description of
Jogging in the Motion Control chapter.

A/D +5 Volt Reference Output

connection point. J4 pin 3

signal type: precision +5V reference voltage
notes: used for joystick control

244 Precision MicroControl

Connectors, Jumpers, and Schematics

explanation: This input is used to implement manual jogging of the axis. See the description of
Jogging in the Motion Control chapter.

Analog Ground

connection point. J4 pin4

signal type: analog ground for A/D conversion

notes: used for joystick control

explanation: This input is used to implement manual jogging of the axis. See the description of
Jogging in the Motion Control chapter.

DCX-AT200 User’s Manual 245

Connectors, Jumpers, and Schematics

DCX-MC210 Module connectors

J3 connector pin-out (Motor command, encoders, and axis 1/0)

| Pin# | Description |

1 PWM Motor Drive + (output, 500ma max.)
2 Encoder Power (+5VDC or +12VDC, see jumper JP3)
3 Primary Encoder Phase B+ (input)*
4 Primary Encoder Phase A+ (input)*
5 Ground
6 PWM Motor Drive - (output, 500ma max.)
7 Ext. Motor Power + (optional) ****
8 Primary Encoder Index + (input, active high)/ ***
Ext. Motor Power - (optional) ****
9 Coarse Home (input, active low, with 4.7K ohm pull-up to +5V)
10 Amplifier Fault (input, active low, with 4.7K ohm pull-up to +5V)
11 Amplifier Enable (output, active low, TTL level)**
12 Reserved
13 Reserved
14 Limit Positive (input, active low, with 4.7K ohm pull-up to +5V)
15 Limit Negative (input, active low, with 4.7K ohm pull-up to +5V)
16 Primary Encoder Phase A+ (input)*
17 Encoder Power (+5VDC or +12VDC, see jumper JP3)
18 Auxiliary Encoder Index - (input, active low)
19 Primary Encoder Phase A- (input)
20 Primary Encoder Phase B- (input)
21 Auxiliary Encoder Phase A
22 Auxiliary Encoder Phase B
23 Primary Encoder Phase B+ (input)*
24 Auxiliary Encoder Index+ (input, active high)
25 Primary Encoder Index- (input, active low)
26 Ground

* Use A+ and B+ for single-ended Encoder inputs

** These signals are not suitable for directly driving optically isolated inputs.

*** Selected by JP5

**** For use when +12VDC supplied to DCX motherboard is not used for motor supply

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N CA-261DS2-F-SPT or equivalent

J4 connector pin-out (A/D channels for jogging)
| Pin# | Description
Analog Input #1
Analog Input #2
+5 volt reference output
Analog ground

AOWON -

246 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC210 Module Configuration Jumpers - configuration in bold type
denotes default factory shipping configuration

JP1 - Encoder type (single ended or differential)

| Pins | Description
1to2t0o 3 Single ended encoder, A, B, Z (three pin jumper provided)
open Differential encoder, A+, A-, B+, B-

JP2 — Encoder Index Active Level Select)

| Pins ___ Description

1t02 Single ended Index, Z+ (Active high)
2to 3 Single ended Index, Z- (active low)
open Differential Index, Z+ and Z-

JP3 — Encoder Power Select (+5VDC or +12 VDC)

| Pins | Description |

1to 2 +5 VDC encoder supply on J3 pin 17
2t03 +12 VDC encoder supply on J3 pin 17

JP4 — Motor Supply + (+12 VDC PC Power supply or external + supply)

Description
1to 2 +5 VDC encoder supply on J3 pin 17
2t03 Use external supply voltage (connected to J3 pin 7)

cut trace JP4 1 to 2
(bottom side)

JP5 — Motor Supply - (PC Ground or external supply -)

1to 2 PC ground

2t0 3 Use external supply voltage — (connected to J3 pin 8)
cut traces

JP51to 2

JP53to4

(bottom side)

DCX-AT200 User’s Manual 247

Connectors, Jumpers, and Schematics

DCX-MC210 Module Layout

JP3C O N
1

EEENJ

248 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC260 Stepper Motor Control Module
SIGNAL DESCRIPTIONS:

Pulse and Direction Outputs

connection point. J3 - pin 3 (Direction/CW), J3 — pin 4 (Pulse/CCW)

signal type: open collector driver

notes: external pull-up required

explanation: In the control of a stepper motor, the two primary control signals are Pulse and
Direction (or CW Pulse and CCW Pulse). These signals are connected to the external stepper motor
driver that supplies current to the motor windings. In order for the stepper module to move the motor
one step, a pulse is generated on one of these signals.

The motor driver should advance the motor by one increment for each pulse. The motor may
advance a full step, a half step, or a micro step. This is determined by the mode of the stepper motor
driver. The Pulse signal is normally high, and goes low at the beginning of a step. It stays low for one
half the step period (ie. the time before the next pulse), and then goes back high. When it is time for
the next step, the signal will go low again. The Direction signal selects which direction the motor will
move. When this signal is high, the stepper controller will decrement the current position for every
step taken, and when the signal is low, it will increment the current position for every step taken. Both
of these signals have high current open collector drivers on the module and are suitable for direct
connection to optically isolated inputs commonly found on stepper motor drivers. Because of the
characteristics of open collector drivers, no voltages will be present on these output signals unless
pull-up resistors are connected to them.

The Output Mode command can be used to change the operation of these signals to CW and CCW
Pulse. In this mode, pulses will be generated on the CW Pulse output

when the current position is increasing, and on the CCW Pulse output when the current position is
decreasing.

Stopped (motion complete) Output

connection point. J3-pin7

signal type: TTL output

notes:

explanation: The Stopped signal is a status output from the stepper module, indicating when the
motor is stepping. At the beginning of a motion, the Stopped signal is brought high. It will continue to
stay high for the duration of that motion. At the end of the motion, the Stopped signal is brought low
again. The high to low transition on Stopped indicates when the motion is over, and the low level
indicates that the motor is no longer moving.

The Stopped signal may be used as a motion complete indication, it may also control the power
selection for the stepper motor power driver, switching automatically between a high current while
stepping, and low current while stopped. This will reduce power dissipation of the motor when it isn't
moving.

Limit Positive and Limit Negative Inputs

connection point. J3 - pin 8 (Limit Positive), J3 - pin 9 (Limit Negative)
signal type: TTL input

notes: 4.7K pull up resistor is connected to the +5V logic supply

DCX-AT200 User’s Manual 249

Connectors, Jumpers, and Schematics

explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it
reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving
in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of
the direction it is moving if either limit switch is activated. There are three modes of stopping that can
be configured by the Limit Mode command. The limit switch inputs can be enabled and disabled with
the Limits oN and Limits oFf commands respectively. See the description of Motion Limits in the
Motion Control chapter.

Home Input

connection point. J3 - pin 13

signal type: TTL input

notes: 4.7K pull up resistor is connected to the +5V logic supply

explanation: This input is used to set the stepper motors zero position. It is typically connected to a
switch that is activated at a fixed position in the motor’s range of motion.

Full/Half Step Output

connection point. J3 - pin 14

signal type: TTL output

notes: 2ma sink/source

explanation: If the motor driver that this module is controlling has a digital input to select between full
and half step modes, this module output is used to select between the modes. This output will be set
low by the Step Full (SF) command or high by the Step Half (SH) commands.

Full/Half Current Output

connection point. J3 - pin 15

signal type: TTL output

notes: 2ma sink/source

explanation: If the motor driver that the module is controlling has a digital current control signal input,
this module output can be used to control the motor drivers output current. This output will be set low
by the Full Current (FC) command or high by the Half Current (HC) commands. Normally a stepper
motor driver will be set for full current while it is moving and half current while stationary, to reduce
motor heating.

Motor On Output

connection point. J3 - pin 16

signal type: TTL output

notes: 2ma sink/source

explanation: This module output will go low when the Motor oN (MN) command is issued. It will go
high when the Motor oFf (MF) command is issued, the controller is reset, or a limit switch input
is activated. This signal can be connected to the enable signal input of the stepper driver so that it
can be disabled by issuing commands to the DCX.

Null Input

connection point. J3 - pin 17

signal type: TTL input

notes: 4.7K pull up resistor is connected to the +5V logic supply

explanation: In order to switch from micro stepping to full stepping without the motor shifting
position, the motor should be micro stepped to the "Null" Position. This is the position where the
output of the amplifier will not change if it is switched between full and micro stepping. If the stepper
amplifier provides an output signal that indicates when the motor is at a null position, the DCX can
monitor this signal on the Null Position input of the module.

250 Precision MicroControl

Connectors, Jumpers, and Schematics

Auxiliary Encoder Inputs (Phase A & A+, Phase B & B+, Index-)
connection point. see pin-out table

signal type: TTL or Differential driver output (-7V to +7V)
notes:

explanation: - These input signals can be used for an auxiliary encoder.

Encoder Coarse Home Input

connection point. J3 - pin 23

signal type: TTL input

notes: 4.7K pull up resistor is connected to the +5V logic supply

explanation: This input is used to ‘home’ the auxiliary encoder by qualifying the index mark. It is
typically connected to a switch that is activated at a fixed position in the motors motion range. See the
description of Homing an Axis in the Motion Control chapter.

SUPPLY CONNECTIONS (+5, +12, -12, GROUND) - These module pins provide access
to the DCX supply voltages.

Joystick Input (A/D Channel, 8 bit)

connection point. J4 pin 1

signal type: 0.0 to +5V analog input

notes: used for joystick control

explanation: This input is used to implement manual jogging of the axis. This signal is also available
on connector J3 pin 10. See the description of Jogging in the Motion Control chapter.

A/D +5 Volt Reference Output

connection point. J4 pin 3

signal type: precision +5V reference voltage

notes: used for joystick control

explanation: This input is used to implement manual jogging of the axis. See the description of
Jogging in the Motion Control chapter.

Analog Ground

connection point. J4 pin 4

signal type: analog ground for A/D conversion

notes: used for joystick control

explanation: This input is used to implement manual jogging of the axis. See the description of
Jogging in the Motion Control chapter.

DCX-AT200 User’s Manual 251

Connectors, Jumpers, and Schematics

DCX-MC260 Module connectors

J3 connector pin-out (Motor command, encoders, and axis 1/0)

| Pin# | Description |

1 Ground

2 +5VDC

3 Direction or CW Pulse (output, active low, open collector driver, 100 ma max.)*
4 Pulse or CCW Pulse (output, active low, open collector driver, 100 ma max.)*
5 Reserved

6 Reserved

7 Stopped (output, high while moving, TTL level)**

8 Limit Positive (input, active low, with 4.7K ohm pull-up to +5V)

9 Limit Negative (input, active low, with 4.7K ohm pull-up to +5V)

10 Jog Input (connected to J4 pin 1)

11 Reserved

12 Reserved

13 Home (input, active low, with 4.7K ohm pull-up to +5V)

14 Full/Half Step (output, low when full stepping, TTL level)**

15 Full/Half Current (output, low when moving, TTL level)**

16 Motor On (output, low when motor on, TTL level)**

17 Null Position (input, active low, with 4.7K ohm pull-up to +5V)

18 Auxiliary Encoder Phase A+ (input)

19 Auxiliary Encoder Phase A- (input)

20 Auxiliary Encoder Phase B+ (input)

21 Auxiliary Encoder Phase B- (input)

22 Auxiliary Encoder Index- (input, active low)

23 Auxiliary Encoder Coarse Home (input, active low, with 4.7K ohm pull-up to +5V)
24 +12 VDC

25 -12VDC

26 Ground

* These signals default to DIRECTION and PULSE, use Output Mode command to change to CW
and CCW PULSE.
** These signals are not suitable for directly driving optically isolated inputs.

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N CA-261DS2-F-SPT or equivalent

J4 connector pin-out (A/D channels for jogging)
| Pin# | Description
Analog Input #1
Analog Input #2
+5 volt reference output
Analog ground

AOON -

252 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC260 Module Configuration Jumpers - configuration in bold type
denotes default factory shipping configuration

JP1 - Encoder type (single ended or differential)

| Pins | Description
1to2t0o 3 Single ended encoder, A, B, Z (three pin jumper provided)
open Differential encoder, A+, A-, B+, B-

DCX-MC260 Module Layout

DCX-AT200 User’s Manual 253

Connectors, Jumpers, and Schematics

DCX-MC400 Digital I/O Module

DCX-MC400 Electrical Specifications

mz-
Digital Input — High voltage
Digital Input — Low voltage -0.3 0 8 V
Digital Output — High voltage 2.4 V (current source 0.25ma)
Digital Output — Low voltage 0.4 V (current source 2.0ma)
Input leakage +/- 10.0 uA

J3 connector pin-out

| Pin# | Description |

1 Digital I/O channel #1
2 Digital I/O channel #1
3 Digital /0 channel #1
4 Digital /0 channel #1
5 Digital I/O channel #1
6 Digital I/O channel #1
7 Digital /0 channel #1
8 Digital /0 channel #1
9 Digital /0 channel #1
10 Digital I/O channel #1
11 Digital I/O channel #1
12 Digital /0 channel #1
13 Digital /0 channel #1
14 Digital I/O channel #1
15 Digital I/O channel #1
16 Digital I/O channel #1
17 Reserved

18 Reserved

19 Reserved

20 +5VDC

21 Ground

22 Reserved

23 Reserved

24 Reserved

25 Reserved

26 Ground

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N CA-261DS2-F-SPT or equivalent

254 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC400 Module layout

N

5

DCX-AT200 User’s Manual 255

Connectors, Jumpers, and Schematics

DCX-MC500/510/520 Analog I/O Module

J3 connector pin-out

| Pin# | Description |

1 Channel 1 Input (0 to +5 volts)

2 Channel 1 Output (-10 to +10 volts)
3 Channel 2 Input (0 to +5 volts)

4 Channel 2 Output (-10 to +10 volts)
5 Channel 3 Input (0 to +5 volts)

6 Channel 3 Output (-10 to +10 volts)
7 Channel 4 Input (0 to +5 volts)

8 Channel 4 Output (-10 to +10 volts)
9 Reserved

10 Channel 1 Output (0 to +5 volts)

11 Reserved

12 Channel 2 Output (0 to +5 volts)

13 Reserved

14 Channel 3 Output (0 to +5 volts)

15 Reserved

16 Channel 4 Output (0 to +5 volts)

17 Analog Ground

18 External A/D reference input (see jumper JP1)
19 +12 VDC

20 -12VvDC

21 No connect

22 No connect

23 +5VDC

24 +5VDC

25 Digital Ground

26 Digital Ground

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N CA-261DS2-F-SPT or equivalent

DCX-MC500/510/520 Module Configuration Jumpers - configuration in bold
type denotes default factory shipping configuration

JP1 - A/D reference select (external reference or on board +5 VDC reference)

| Pins ___ Description

1to2 Use external reference (supplied by user on J3 pin 18)
2to 3 Use the on board +5 VDC reference

256 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC500 Module layout

1

EEE JP POT1
. : POT2
| |
i 1 - POT3
| |
I 1y - POT4
- ;! i POT5
I 1 - POT6
| 1y 1
- 1 [POT?
| 1y i
| |
2 g ! I POT8

DCX-AT200 User’s Manual 257

Connectors, Jumpers, and Schematics

DCX-MF300 — RS-232 Interface Module

J3 connector pin-out

| Pin# | Description |

1 *

2 *

3 Receive (Maps to DB25 pin 2)

4 *

5 Transmit (Maps to DB25 pin 3)

6 *

7 Clear to Send (Maps to DB25 pin 4)

8 *

9 Request to Send (Maps to DB25 pin 5)
10 *

11 Data Set Ready (Maps to DB25 pin 6)
12 *

13 Ground (Maps to DB25 pin 7)

14 Data Terminal Ready (Maps to DB25 pin 20)
15 Data Carrier Detect (Maps to DB25 pin 8)
16 *

17 *

18 *

19 *

20 *

21 *

22 *

23 *

24 *

25 *

26 *

* No connect
Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N CA-261DS2-F-SPT or equivalent

DCE/DTE (jumpers JP3 — JP10) configuration

DCE (factory default) DTE
JP3-1t02 JP3-2t03
JP4-1to2 JP4-2t03
JP6-1to 2 JP5-2t03
JP7-2to 3 JP8-2t03
JP9-1to2 JP10-1to 2
JP10-1to 2
JP5-1t02 or JP6-2t03 or
JP8-1to0 2 JP7-2t03 or
JP9-2t03

258 Precision MicroControl

Connectors, Jumpers, and Schematics

(See the layout diagram at end of this appendix)
DCX-MF300 Module Configuration Jumpers - configuration in bold type
denotes default factory shipping configuration

JP1 — Baud Rate select

| Pins | Description |

1to0 2 300 baud

3to4 1200 baud
5to6 2400 baud
7t08 4800 baud

9to 10 9600 baud
11to 12 19200 baud
13 to 14 Enable network

JP2 — Handshake/Network Select

| Pins _____| Description |

1t03,2to 4 Hardware handshaking
1t02,3to4 Networking (multiple devices on a serial line)

JP3 — Receive pin select

| Pins ____ Description _

1to 2 Data input on J3 pin 3
2t03 Data input on J3 pin 3

JP4 — Transmit pin select

| Pins | Description |

1to 2 Data output on J3 pin 5
2t03 Data input on J3 pin 3

JP5 - Pin 7 select

| Pins | Description |

1to 2 DCE
2t03 DTE

JP6 — Pin 9 select

| Pins ___ Description

1to 2 DCE
2t03 DTE

DCX-AT200 User’s Manual 259

Connectors, Jumpers, and Schematics

JP7 — Pin 11 select

| Pins | Description |

1to02 DTE
2to3 DCE

DCX-MF300 Module Configuration Jumpers (cont.) - configuration in bold
type denotes default factory shipping configuration

JP8 — Pin 14 select

| Pins ___ Description

1to 2 DCE
2t03 DTE

JP9 — Pin 15 select

| Pins | Description |

1to2 DCE
2t03 DTE

JP10 — Ready select

| Pins ___ Description

1to 2 DCX Ready signal
2t03 100 ohm pull-up to +12V (This signal goes to JP5-3, JP6-1, JP7-1, JP8-3, JP9-1)

DCX-MF300 Module layout

& & N B 5N N N |
I I I B D S e -
(nl EelN el Eale
SN -
EE N EEEN

3

260 Precision MicroControl

Connectors, Jumpers, and Schematics

i VA 7 4
J3
i
2
] 3 [a]
7
) 5
FOR DCE FOR DTE G
_ 7
JP3 i-2 JP3 2-1 JES g
Jpa iz JPs 2-4 (DB25 PIN4) = Lo
JP6 1-2 IP5 2-3 i
| JPY? i—2 JPE Z2-3 . 3 |
JP9 i—Z 4
JP6 2-3 JFB3 {2
IPS i-2 OR (DB25 PINS) = L L
OR IP7 2-3 g
‘ JP8 1-2 OR 79 ‘
" P 2-3 JP7 72 !
Jr4 3 23
3 _ Z 73
. (DB25 PING) -
(TRANSHIT) f ! ﬁz
JP8
|| 2 vee 3 ||
‘ 2
I Ui JPEL} (DB25 PIN2@) !
LT1639 (RECEIVE) f
S 1p9
+ — > 3
C %Z oM/ OFF 5 (DB25 PINS) f C
C | LoT1 RINT
1S 1 iim2 ROT2 2
19 o073 RIN3 [2
B LInag ROT4 f;
LOTS RINS
U] Crwe ROTG |8 QJPﬁL%i
o~ ° JPig L
[‘ - f2 ; fPi3
+12 2 w2 JPi3]
o . i0p .,
< i T o 3j 1,—’1_‘
e = vee JPiZ
2 1
D Title b
JPii RS2372 MODULE SCHEM.
L 2 Size NMumber Revision
= na DCX—ME30D A
Date: 25-MAR 1553 [Cheet 1 of 1
File: RS523210/1% [Drawn Byg:
1 z 3 \ 4

DCX-AT200 User’s Manual

261

Connectors, Jumpers, and Schematics

DCX-MF310 IEEE-488 Interface Module

J3 connector pin-out - The signals are arranged so that the connection to a standard IEEE-488
connector will be straight through a ribbon cable.

| Pin# | Description

1 IEEE-488: D101

2 IEEE-488: D105
3 IEEE-488: D102
4 IEEE-488: D106
5 IEEE-488: D103
6 IEEE-488: D107
7 IEEE-488: D104
8 IEEE-488: D108
9 IEEE-488: EO1

10 IEEE-488: REN
11 IEEE-488: DAV
12 IEEE-488: Ground
13 IEEE-488: NRFD
14 IEEE-488: Ground
15 IEEE-488: NDAC
16 IEEE-488: Ground
17 IEEE-488: IFC

18 IEEE-488: Ground
19 IEEE-488: SRQ
20 IEEE-488: Ground
21 IEEE-488: ATN
22 IEEE-488: Ground
23 IEEE-488: Shield
24 IEEE-488: GND
25 IEEE-488: Not used
26 IEEE-488: Not used

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N CA-261DS2-F-SPT or equivalent

262 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MF310 Module Configuration Jumpers - configuration in bold type
denotes default factory shipping configuration

JP1 — Baud Rate select
| Pins____ Description
1to 2 Open collector drivers
open Push —Pull drivers
Note: Push-pull used for high speed bus operation

JP2 - Select cable shield to ground
| Pins____ Description ...
1to 2 Tie cable shield to DCX ground
open
Note: Cable shield should only be grounded at one point

DCX-AT200 User’s Manual 263

Connectors, Jumpers, and Schematics

IEEE-488 Bus Address Selection

______-

Off Off “(20h) “ (40h)
Off Off Off Off Off On ““21h) “A“(41h)
Off Off Off Off On Off @« (22h) “B* (42h)
Off Off Off Off On On “#°(23h) “C* (43h)
Off Off Off On Off Off “$“ (24h) “D" (44h)
Off Off Off On Off On “%" (25h) “E* (45h)
Off Off Off On On Off “8“(26h) “F* (46h)

Off Off Off On On On “ (27h) “G* (47h)
Off Off On Off Off Off ““(28h) “H* (48h)
Off Off On Off Off On “¥(29h) “I“ (49h)

Off Off On Off On Off “ (QAh) “J* (4Ah)

Off Off On Off On On “+(2Bh) “K“ (4Bh)
Off Off On On Off Off ““(2Ch) “L* (4Ch)
Off Off On On Off On ““(2Dh) “M* (4Dh)
Off Off On On On Off ““(2Eh) “N (4Eh)
Off Off On On On On “/(2Fh) “O" (4Fh)
Off On Off Off Off Off 0°(30h) “P*(50h)
Off On Off Off Off On “9”(31th) “Q“(51h)
Off On Off Off On Off “2¢(32h) “R*(52h)
Off On Off Off On On “3“(33h) “S*(53h)
Off On Off On Off Off “4“(34h) “T*(54h)
Off On Off On Off On 5(35h) “U* (55h)
Off On Off On On Off 6" (36h) “V* (56h)
Off On Off On On On “7(37h) “W* (57h)
Off On On Off Off Off “8“(38h) “X* (58h)
Off On On Off Off On “9” (39h) “Y* (59h)
Off On On Off On Off ““(3Ah) “Z*(5Ah)
Off On On Off On On ““(3Bh) ‘I (5Bh)

Off On On On Off Off “<* (3Ch) “\“ (5Ch)

Off On On On Off On “=*(3Dh) ‘] (5Dh)

Off On On On On Off “>* (3Eh) “ (5Eh)

Off On On On On On “»(3Fh) ““(5Fh)

264 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MF310 Module layout

DCX-AT200 User’s Manual 265

Connectors, Jumpers, and Schematics

DCX-BF022 Relay Rack Interface

J1 connector pin-out - The signals are arranged to interface the DCX-MC400 directly to an OPTO
22 relay rack.

| Pin# | Description |

1 Digital /0 channel #1
2 Digital /0 channel #2
3 Digital I/O channel #3
4 Digital I/O channel #4
5 Digital /0 channel #5
6 Digital /0 channel #6
7 Digital I/0 channel #7
8 Digital I/O channel #8
9 Digital I/O channel #9
10 Digital I/0 channel #10
11 Digital I/0 channel #11
12 Digital I/O channel #12
13 Digital I/O channel #13
14 Digital I/O channel #14
15 Digital I/0 channel #15
16 Digital I/0 channel #16
17 No connect

18 No connect

19 No connect

20 +5VDC

21 Ground

22 No connect

23 No connect

24 No connect

25 No connect

26 Ground

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N CA-261DS2-F-SPT or equivalent

266 Precision MicroControl

Connectors, Jumpers, and Schematics

J2 connector pin-out - The signals are arranged to interface the DCX-AT200 General Purpose 1/0
(connector J3) directly to an OPTO 22 relay rack.

| Pin# | Description

1 +5VDC

2 No connect

3 Digital I/O channel #16
4 No connect

5 Digital I/O channel #15
6 Digital I/0O channel #14
7 Digital I/0 channel #13
8 Digital I/O channel #12
9 Digital I/O channel #11
10 Digital I/0 channel #10
11 Digital /0 channel #9
12 Digital /0 channel #8
13 Digital I/O channel #7
14 Digital I/O channel #6
15 Digital /0 channel #5
16 Digital /0 channel #4
17 Digital I/O channel #3
18 Digital I/O channel #2
19 Digital I/O channel #1
20 No connect

21 No connect

22 No connect

23 No connect

24 Ground

25 No connect

26 Ground

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N CA-261DS2-F-SPT or equivalent

DCX-AT200 User’s Manual 267

Connectors, Jumpers, and Schematics

DCX-BF022 Configuration Jumpers - configuration in bold type denotes
default factory shipping configuration

JP1 — JP16 Configure Digital channel as Input or Output

| Pins ___ Description

1to 2 Configure channel as Output
2t03 Configure channel as an Input

JP17 — Select Relay Rack supply source

| Pins ___ Description

1to 2 DCX provides +5 VDC Relay Rack supply
2t03 Relay Rack has separate +5 VDC supply

DCX-BF022 Interface layout

0.25"

2.90"

J1 TO DCX-MC400

2.50"

[X X J
[N X J
[X X J
[X N J
[N X J
[X X J
[N X J
[X X J
[N X J
L N J
C NN J
LN J
C NN J
(X N J
(NN J
(N N J

0.75"

0.25" 2.50" 0.35" 0.0"

268 Precision MicroControl

Connectors, Jumpers, and Schematics

i 2 3 4 5 6 7 8
3])
0PTOG 0PTOL 0PTO02 OPTO3
cc J3
SAPIN
L 1 L
2
e 3
= ua:H . H H g
Hie 74L5541 74L5541 74LS541 74LS541 JP17 vee ©
mic 2 7
H T g
B s B
12 10
Fit T1
1o 12
i 3
B 7
H? 15
He)
| HS 0PTOS oPTO6 OPTO? OPTO1S 7 -
e 18
H3 OPTO14 15
2 20
HL OPTO13 21
22
OPTO12 23
N 24 .
¢ L . OPTOI1 25 ¢
74L5541 74L5541 74LS541 2
0PTO1G 27
28
OPTOS 25
= 3
0PTO8 31
— PULL PUL2 DPTO? 33 —
32
Uz:na OPTO6 32
- - 7407 ot - e
0PTO8 0PTO9 JPii 0PTO01® OPTOLL 0PTOS 37
38
OPTO4 35
D 46 D
OPTO3 a1
az
OPTO2
Us:H . 0PTO1 22
74L5541 74L5541 74L5541 74LS541 L iz
= 0PTOG a7
48
L = L
15 50
18
T —
16 PU13 PUL4 PULS PULE
15
4
E 13 - = E
i2 OPTO(2 0PTOL3 JPi5 7407 OPTOL4 DPTOLS
1 CH 1 T T
16 CHio
S CHL1
8 CHi2
7 CH13
¢ CHid
- 5 CHIS Us: D us:C Us: B us:a -
5 CHie 74L5541 74L5541 74L5541 74LS541
[z vce -
T RP1 RPZ RP3
18K vee 10K vee 1@K vee] a.
ST i T ol T ol uz: o ua:o =
PUZ 3 PU7 3 PUL2 3 Title
N\ N\ N\ ™ T] =y
¥ PU3 CHAVN PUg EHEVN PUT 51N . ; . ; DCKX—BFB2Z2Z SCHEN. ¥
U4 ERANAN U9 ERINAN Ui4 EEAAN PUL? s 8 PULB S 8
PUS PUID UL5 Size |Number Revision
N | = N
PUG 2 PUTL 2 Uie 2
T of 1
By: BGR
i 2 3 4 ‘ s ‘ 6 ‘ 8

DCX-AT200 User’s Manual

269

Connectors, Jumpers, and Schematics

DCX-BF100 Servo Module Interconnect Board

1 \ 2 \ 3 \ 4 5 6
JUMPER ASSIGNMENTS INPUT OPTIONS (TYPICAL)
A LIMIT POSITIVE JP1 Nz JP3 - o™ A
555 BOARD LAYOUT
LIMIT NEGATIVE | JP4 JP5 JP6 Fe) TTL INPUT
ACTIVE LOW @ F 6560606000000 P
USER INPUT 1 JP7 JP8 JP9 g|o W s W et J%E?SZ
D2 MC110
03| [C) R}
 — D4| c2 1
USER INPUT 2 | JP10 JP11 - o
me | g4y Sﬁﬂ ﬁ ﬁ i
D D
COARSE HOME | UP13 JP14 JP15 TTL INPUT LI NN NN N Y TR 1
gm ACTIVE HIGH Hﬁﬂ@@@vﬁ
AMP. FAULT JP16 JP17 JP18 [oJ[][] EEESEELEEAEELEEEEEE5E 1D
: ojalg) 5
- PG
E ;gg o\l |0l
el
(o] nlinlinllslis]inlisl{slislis)/=]izlz)is!
g—AMP. ENABLE ACTIVE HIGH (MC1XX) g O| OPTOISOLATED INPUT s s s aeniiiare
I =1— AMP. ENABLE ACTIVE LOW (MC2XX) m USE CURRENT SINK SWITCH TS
. I+ == INPUT ACTIVE WHEN SWITCH CLOSED m
@|0|0|0|0|0|0|0|B|C|||b|o
S N nl[nlin][u]is]inlin]|slislis)|s]izls)is!
o Rt §) 236587 891011121314
3 [e][e] OPTO ISOLATED INPUT 5 @199D\cP>§;EGFN1}?c0RO CONTROL CORP.
— ENCODER INDEX NORMAL m
C o USE CURRENT SINK SWITCH o @ D o C
= — ENCODER INDEX INVERTED
) ==|o) INPUT ACTIVE WHEN SWITCH OPEN L [
& — N ™M
o o o o
el D T T
— g — SINGLE ENDED INDEX INPUT 000 OPTO ISOLATED INPUT —
I =1— DIFFERENTIAL INDEX INPUT Mﬂﬁ USE CURRENT SOURCE SWITCH
[s] | K R INPUT ACTIVE WHEN SWITCH CLOSED
oo
JP22 Lo
D — PRECISION MICROCONTROL CORP. D
g —VCC ON J1—6 (MC100/200) 0|0 m OPTO ISOLATED INPUT Tile DCX—BF 100 CONFIGURATION
121 vee ON J1—2 (MC110/210) mm: USE CURRENT SOURCE SWITCH Size TNumber Reviion
a) Lilli]Es) INPUT ACTIVE WHEN SWITCH OPEN
Date 5-8-92 [Drawn By BGR
File BF10@.CFG \Sheet 1 of 1
1 2 \ 3 4 5 \ 6

270 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-BF100 to DCX-MC200 Connections:

Connector J1
| Pin | Description |
Analog Ground
Analog Command output
+12 VDC
-12 VDC
Ground
+5VDC
No connect
No connect
Coarse Home
10 Amplifier Fault
11 Amplifier Enable
12 User Input #1
13 User Input #2
14 Limit +
15 Limit -
16 Prim. Encoder Phase A+
17 Encoder Power
18 Aux. Encoder Index-
19 Prim. Encoder Phase A-
20 Prim. Encoder Phase B-
21 Aux. Encoder Phase A
22 Aux. Encoder Phase B
23 Prim. Encoder Phase B+
24 Aux. Encoder Index+
25 Prim. Encoder Index-
26 Ground

O oO~NOOOOPS~WN-=-

Connector J2

| Pin | Description |

O©oO~NOOOS~WN-

Analog Ground

+12 VDC

Ground

Opto Supply

Coarse Home

Amplifier Enable

User Input #2

Limit -

Encoder Power

Prim. Encoder Phase A-
Aux. Encoder Phase A
Prim. Encoder Phase B+
Prim. Encoder Index-
Analog Command output
-12 VDC

+5VDC

Prim. Encoder Index+
Amplifier Fault

User Input #1

Limit +

Prim. Encoder Phase A+
Aux. Encoder Index-
Prim. Encoder Phase B-
Aux. Encoder Phase B
Aux. Encoder Index+

Note: Set MC200 module for single ended encoder index input (ie. connect jumper JP2 pins 2 and 3)

Terminal strip TS1
| Pin | Description |
Shield
Analog Ground
Analog Command output
+5VDC
+5VDC
Amplifier Enable
Coarse Home
Amplifier Fault
User Input #1
10 User Input #2
11 Limit +
12 Limit -
13 Opto Supply
14 Ground

O oO~NOOOTHA,WN -

Terminal strip TS2

| Pin | Description |

O©oONOOOOR~WN -

Shield

Encoder Power

Prim. Encoder Phase A+
Prim. Encoder Phase A-
Prim. Encoder Phase B+
Prim. Encoder Phase B-
Prim. Encoder Index+
Prim. Encoder Index-
Aux. Encoder Phase A
Aux. Encoder Phase A
Aux. Encoder Index+
Aux. Encoder Index-
+5VDC

Ground

DCX-AT200 User’s Manual

271

Connectors, Jumpers, and Schematics

DCX-BF100 to DCX-MC210 Connections:

Connector J1

| Pin_| Description |

O oO~NOOOOPS~WN-=-

PWM Motor Drive +
Encoder Power

Prim. Encoder Phase B+
Prim. Encoder Phase A+
Ground

PWM Motor Drive -

Ext. Motor Power +
Prim. Enc. Index+/Ext -
Coarse Home

Amplifier Fault

Amplifier Enable
Reserved

Reserved

Limit +

Limit -

Prim. Encoder Phase A+
Encoder Power

Aux. Encoder Index-
Prim. Encoder Phase A-
Prim. Encoder Phase B-
Aux. Encoder Phase A
Aux. Encoder Phase B
Prim. Encoder Phase B+
Aux. Encoder Index+
Prim. Encoder Index-
Ground

Connector J2

| Pin | Description |

O©oONOOOAAPS~WN-=-

PWM Motor Drive +
Prim. Encoder Phase B+
Ground

Opto Supply

Coarse Home

Amplifier Enable

No connect

Limit -

Encoder Power

Prim. Encoder Phase A-
Aux. Encoder Phase A
Prim. Encoder Phase B+
Prim. Encoder Index-
Encoder Power

Prim. Encoder Phase A+
PWM Motor Drive +
Prim. Encoder Index+
Amplifier Fault

No connect

Limit +

Prim. Encoder Phase A+
Aux. Encoder Index-
Prim. Encoder Phase B-
Aux. Encoder Phase B
Aux. Encoder Index+

Note: Set MC210 module for single ended encoder index input (ie. connect jumper JP2 pins 2 and 3)

Terminal strip TS1

| Pin | Description |

Terminal strip TS2

| Pin | Description |

1 Shield 1 Shield

2 PWM Motor Drive + 2 Encoder Power

3 Encoder Power 3 Prim. Encoder Phase A+
4 +5VDC 4 Prim. Encoder Phase A-
5 PWM Motor Drive - 5 Prim. Encoder Phase B+
6 Amplifier Enable 6 Prim. Encoder Phase B-
7 Coarse Home 7 Prim. Encoder Index+

8 Amplifier Fault 8 Prim. Encoder Index-

9 No connect 9 Aux. Encoder Phase A
10 No connect 10 Aux. Encoder Phase A
11 Limit + 11 Aux. Encoder Index+

12 Limit - 12 Aux. Encoder Index-

13 Opto Supply 13 +5 VDC

14 Ground 14 Ground

272 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-BF100 Interface layout

3.50"0.25"

0.25" 0.0"

P I DCX-BF100 I T

475" ——

273

DCX-AT200 User’s Manual

Connectors, Jumpers, and Schematics

o 7 8
B 3 [4 5 3 [
g TS1i
D3 o b PN
12 (R[D]M RP2-6 aM29 . 1. 8K RP2-8 i e R
: JB3 . vee [sve m—
Q}E7F POLPU 1 \\}J SZ 2 JP2 JP1 z z
uaec 7 . j/ B i 1 ILIMITH R1BS I]
:] I
PaLsBe, L - 27K < AnPEN ;
_ RP1- 5 APFL
” HLIMITH) 8 /7 o B suppPLY , 74Ls86 T‘}i ai USERT S
Z6P IN 0@\ ie o~ 2N3964 TUSERZ T -
4 . 74Ls 5
[- uz:d LHE\T tﬁ
2 L
3 .3 D2 xx U6 WD [
< 5 4'> 2__(REDI}g RP2-7 4M2d 1
C 3 Ui:n N e "
H— 7407 poLpy J 5 \NA EZ 3H‘FIZNZ
[— U3: B 4 j/ ILIMIT- Iz ;
PaLSBe, L BTl -
- 6 " RPi-8 J—CZ i_\l(;i
ALttt . 63@5] IB“M74'7U(
wz:C | 7alsia = J: TS2
= L4PTIN
U 5 R3
3 ooy - U L. oK
11 16 CYELLOUDG RP2-4
;i Ui:E N ipa & L A
Z 7487 pLopy 1 5 \N’J S:Z P8 P ¢
. 3 i 1 1USER!
5 gfﬁsge . j/ 2 % g
6 3
[2e- 5 = s
— *USERL E] L RP1-4 SuPPLY 1
1 40@ 3 5
Wz: B [7alsia 3 L
R4
D4 xw ug
4'> S (YELLOUNG —RP2-5 an2s . 1. 6K
Ui B JP12
uee 4. 7 74®7poLpy s ‘N,J 2 JP11 JP10 Jz D
POLPU . \}/ 3 1 L 1USER2 D825
AN U3:p 41 A 7 7 L1 1
241586 5 7
2 = :
P1- 3
wUSER2 | 11 /7 o P ST SuPPLy = 2
U Ip)
UZ2:E [74ls1a D -
RP1 u)P%; ‘ﬁ L
ENCLIZF
41/7 2 - DGrr :) 5 COARSE
N 43 = s[wELLouM RP2-3 4N29 . 1\/\@/\< RB \JPZl N H
N = :“ﬂ’@ JPi5 Encpur 8K 7 SER1 T
N = P . necpur 08 USERL
V= - 7487 oo py 1 \\}J EZ 2 JPi4 JPi3 \/\/j Bl Cinii+r 2
A = Ua:a 4 j/ 3 1 1 1C0ARSE _LR9 i E
" T ot.ek 11 z
L= 74Ls86 s o 5 5 Wit ENCPUR
wCOARSEL 3 /7 , | p—ReL=2 SUPPLY U4:cC 75146 —— - g
S 7
RP2Z uz:a | 7elsie [1 ey 2
e - ' i le T : |
v = RG 21N- 25
v = D7 xR ui . =
N\ - £l 8 uz[mu‘.ﬂ RP2-2 . 4N29 . 1-\@/\< =
: ~
< = ui:p JPi8 - <z
NV - 7497poLry S ‘? IP17 116 T
(| . a 3 1 AMPFLT T — p— — —
iisse Wt : : " DCX—BF1@® SCHEMATIC|F
HAMPFLT t1 12 - RP1-3 SUPPLY Size |[Number Revision
gui B
. 74Ls14 T SETAFR 1594 [Sheet 1 of 1
uziE | R TAAVA ‘ [Drawn By: BGR
8
c ® [7
. 1 4 5
i z ‘ 3 ‘

274

Precision MicroControl

DCX-BF160 Stepper Module Interconnect Board

Connectors, Jumpers, and Schematics

3

\ 4

JUMPER ASSIGNMENTS

INPUT OPTIONS (TYPICAL)

A LIMIT POSITIVE | ypy Jpo P3
BOARD LAYOUT
LIMIT NEGATIVE| JP4 JP5 JP6 TTL INPUT
ACTIVE LOW
NULL POSITION| JP7 JP8 JP9
] HOME JP10 JP1 JP1o ERNINS
5359
COARSE HOME | JP13 JP14 JP15 M TTL INPUT
ACTIVE HIGH
UNUSED JP16 JP17 JP18 o/olo
5 [@/a/o)
‘O;J — N M
g 555
g — MOTOR ON ACTIVE HIGH o OPTO ISOLATED INPUT
 OTOR ON ACTIVE LOW USE CURRENT SINK SWITCH
—] INPUT ACTIVE WHEN SWITCH CLOSED
[ratalioiiotollolioiialioliollvlioli)
S .] [} |] e} et et et e e e]]
o Lo 1234567 891011121314
6 [e][e] s degcpégc\gowmg%c%o CE%I;:T\R/dLéORP
. o| — ENCODER INDEX NORMAL é“w OPTO ISOLATED INPUT 92 ©
O] CCODER INDEX INVERTED USE CURRENT SINK SWITCH @ ®
g [EE=|0) INPUT ACTIVE WHEN SWITCH OPEN — I
a — N M
o o o o
) D T T
— g — SINGLE ENDED INDEX INPUT 000 OPTO ISOLATED INPUT
12 DIFFERENTIAL INDEX INPUT W USE CURRENT SOURCE SWITCH
[] L] INPUT ACTIVE WHEN SWITCH CLOSED
— N M
oo o
D I PRECISION MICROCONTROL CORP.
O OM OPTO ISOLATED INPUT e DOX_BF160 CONFIGURATION
W USE CURRENT SOURCE SWITCH T o
ol & o INPUT ACTIVE WHEN SWITCH OPEN A
Date 4—26-94 [Drawn By BGR
File BF160.CFG ‘Shee(1 of 1
1 4 5 | 6

DCX-AT200 User’s Manual

275

Connectors, Jumpers, and Schematics

DCX-BF160 to DCX-MC260 Connections:

Connector J1 Connector J2

| Pin | Description | | Pin | Description |
1 Ground 1 Ground
2 +5VDC 2 Direction/CW Pulse
3 Direction/CW Pulse 3 Reserved
4 Pulse/CCW Pulse 4 Stopped
5 Reserved 5 Limit -
6 Reserved 6 Opto Supply
7 Stopped 7 Home
8 Limit + 8 Full/Half Current
9 Limit - 9 Null Position
10 Jog 10 Aux. Encoder Phase A-
11 No connect 11 Aux. Encoder Phase B-
12 No connect 12 Aux. Enc. Coarse Home
13 Home 13 -12 VDC
14 Full/Half Step 14 +5VDC
15 Full/Half Current 15 Pulse/CCW Pulse
16 Motor On 16 Reserved
17 Null Position 17 Limit +
18 Aux. Encoder Phase A+ 18 Jog
19 Aux. Encoder Phase A- 19 Aux. Encoder Index+
20 Aux. Encoder Phase B+ 20 Full/Half Step
21 Aux. Encoder Phase B- 21 Motor On
22 Aux. Encoder Index 22 Aux. Encoder Phase A+
23 Aux. Enc. Coarse Home 23 Aux. Encoder Phase B+
24 +12 VDC 24 Aux. Encoder Index-
25 -12 VDC 25 +12 VDC
26 Ground
Terminal strip TS1 Terminal strip TS2

| Pin | Description | | Pin_| Description |
1 Shield 1 Shield
2 Direction/CW Pulse 2 +12 VDC
3 Pulse/CCW Pulse 3 -12VDC
4 Reserved 4 Aux. Encoder Phase A-
5 Reserved 5 Jog
6 Motor On 6 Aux. Encoder Phase B+
7 Stopped 7 Aux. Encoder Index+
8 Null Position 8 Aux. Encoder Index-
9 Full/Half Step 9 Aux. Encoder Phase B-
10 Full/Half current 10 Aux. Enc. Coarse Home
11 Limit + 11 Home
12 Limit - 12 Aux. Encoder Phase A+
13 Opto Supply 13 +5VDC
14 Ground 14 Ground

276 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-BF160 Interface layout

3.50"0.25"

0.25" 0.0"

P I DCX-BF160 I T

475" ——

277

DCX-AT200 User’s Manual

Connectors, Jumpers, and Schematics

i [z [3 [5 6 [7 8
us Ri
[RLD] RP2-6 aMN29 1. 8K Q
> M 3 5 1 P RP2-8 \TH‘
T JP3 TEL
fa =c ?4(4? POLPU 5[SZ 2 . R/CU 2 A
@. 1uf 2 Jrz JP1 L/CcU 3
uz:c 4 J 3 1 1 ILIMIT+ LPUL 4
= 7aLsse 2 L I s
- #LIHIT+ RP{-7 U4:B TOPPED 7
J1 /7 9 SUPPLY 74LS86 L ULPO [£]
26PIN U . HIMTRON 4 Qi IFULSTP 5
L 1 G uz:p 7atsia 6 S 2N3504 _WFULCRT 7 -
VCC [,[1[1'% \}
5 DIR/CU JPiY TLiniT- 12
7 PUL/CCU D2 == U6 RZ POLPU SUPPLY i3
S TTLPUL 2 CRED) |l RP2-7 aMN29 1. 8K 1 GND 14
& TTLDIR a) . L S =
7 WGSTOPPED J
8 alinMiTr M‘”Puu)u 1 5| SZ 2 - = B
B 5 wLIMiT- 7 JPS JP4
16710 U3: B 4 y 3 1 1 ILIMIT-
T1 74Ls86 [z
1z =
[13 #LIHIT= /7 RP1-6
] s SUPPLY
z i
2 UZCOQ 74LS14
— 17 E E—
T £ TS2
9 ¢ u? 3
20 E 1@[VELLDUL?%\H RP2-4 aMN29 L 1. 8K
21 E B-
22 «ENCIDX [E JP3 i
o cE ”‘”Puu)u 1 5| S 2 Ire i
. 24 2] J ¢
¢ 25 U3:a 4 y 3 1 1 INULPOS
26 74L586 § §
#NULPOS /7 ; " RPi-4 .
o@ _ SUPPLY
uz: B 74L514
‘ R4
> 4WELLouM RP2-5 4M29 . 1. 6K
R7 yi-® JPi2 sZ VA
uee 4.7k PaLPU_ 1 s 2
POLPU . JP11 JP1® ~)
D NN u3: D a4l 3 1 1 [HOME BITDZZb D
74LSB(: 2 2 B25
= = 3 3 GND IO
*HOME i RP1-5 UCC e
\%Q 1t SuPPLY RS —
RP1 Uz2:E raLste H:E%E 3
vece 4.7 L
1 2 RPi-2 _ WSTOPPED _ 4]
] . Pi-5 D 5 RE TENCZ [LTALT: 7] —
A 3 Pi= 6 (YELLOW RP2-3 429 1. 6K [LiniT-
AR B ,é 4'> p ¢ 1 RB JPZ21 J0G 8 ﬁo
RIS P1-6 ui:c JPiYS b vee) 1 SUPPLY ©
o~ S 7467 5| SZ 2 T oLex)
N JP14 JP13 Y THOME
4| 3 1 1 ICOARSE RG +FULSTP .
E 2 2 = 03 WFULCRT
= 3 3 - OITTRON 2
#COARSE " RP1-2 i Uit [NULPOS
3<} L SupPPLY ua:c 75146 THNCAT 72
RP2 . 741586 i 8 ENCA-
vee uz:na raLste s 2 T Ne 7 ENCBY 73
1 4\7/M 2 RP 2 WENCIDX B rouT LIN vCC ENCB— él
E] P < < 20UT 2ine & T TENCZ-
N P D7xx 18 [) - [COARSE 1
NS P s 8 (RED)|g RP2-2 4M29 1. oK ! 1 z
NS P Ui:D IP1B 5 < L v =
N8B _RP: 7407 poLpy 1 s | 2 2
‘ JP17 JP16
— al 3 1 1 (1SPARE) =
Title _ — R -
¥ = El E DCR—BF160 SCHEMATIC|F
(wSPARE) . RP1-3 = o = =
SUPPLY ize Mumber evision
741514 B .190.nA A
Date: 15-AU6 1594 [Sheet 1 of 1
File: BFi16bB/1 [Drawn By: BGR
i 2 [3 [6 [7 [

278

Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-AT200 User’s Manual 279

DCX MCCL Commands

Chapter Contents

Introduction to MCCL (low level command set)
MCCL Command Quick Reference Tables
Building MCCL Macro Sequences

MCCL Multi-Tasking

Downloading MCCL Text Files

Single Stepping MCCL Programs

Outputting Formatted Messages Strings

PLC I/O Control using MCCL Sequence Commands
PLC Control and DCX Analog I/O

DCX User Registers

Reading Data from DCX Memory

DCX Scratch Pad Memory

MCCL Command Set Description

280

Precision MicroControl

DCX MCCL Commands

Introduction to MCCL (low level command set)

The low level platform of all DCX operations is the DCX command set named MCCL (Motion Control
Command Language). These board level commands are equivalent to the instruction set of a micro
controller. These low level commands provide the user access to all DCX operations.

All DCX MCCL commands are made up of two character mnemonic. The characters that make the
mnemonic are selected from the command description so that the command has a direct correlation
to the operation to be performed. For example, the MCCL command that is used to move an axis to
an absolute position is:

MA (Move Absolute).
Any MCCL command that references an axis is preceded by an axis specifier a (aMA). To issue a
move absolute to axis #1:

TMA (axis #1 Move Absolute)
Most DCX commands will also include a parameter value following the two character mnemonic. This
parameter is identified as n (aMAn). To move axis #1 to absolute position 10.25:

1MA10.25 (axis #1 Move Absolute to position 10.25)

Included with PMC’s MCAPI is the Windows based MCCL command interface utility WinControl. This
utility allows the user to communicate directly with the DCX in its native language. Any characters

DCX-AT200 User’s Manual 281

DCX MCCL Commands

typed by the user on the keyboard will be passed to the DCX input character buffer. The WinControl
file menu allows the user to download MCCL text files.

E[WinControl32

File Edit Help
O 4 B2 -l e
i

DCH-AT200 Motion Controller

Hardware: 256K Dual Port RAM. 256K Private RAM, 1024K Flash Memory
System Firmware Yer. PM1 Rev. 3.ba
Copyright [c] 1994-1999 Precision MicroControl Corporation

All rights reserved.
>

A typical MCCL command description is shown below:

Move Absolute

MCCL command: aMRn a = Axis number n = integer or real >= 0

compatibility: MC200, MC210, MC260

see also: MR, PM

This command generates a motion to an absolute position n. A motor number must be specified and
that motor must be in the ‘on’ state for any motion to occur. If the motor is in the off state, only its
internal target position will be changed. See the description of Point to Point Motion in the Motion

Control chapter.
The MCCL command line shown the command syntax and parameter type and/or range
The compatibility line list the DCX modules that support the command

The see also line list associated MCCL commands

282 Precision MicroControl

DCX MCCL Commands

MCCL Command Quick Reference Tables

Setup Commands

AG E2h set Acceleration feed-forward Gain
AH EAh Auxiliary encoder define Home
BD DOh Backlash compensation Distance
DB 76h set position DeadBand
DG E3h set Deceleration feed-forward Gain
DH 23h Define Home

DI 24h Dlrection

DS 75h Deceleration Set

DT C5h Delay at Target

FC 40h Full Current

FF 33h amplifier Fault input ofF
FN 32h amplifier Fault input oN
FR 27h set derivative sampling period
HC 41h Half Current

HL D3h set motion High Limit

HS E8h set High Speed

IL 28h set Integration Limit

JA 38h Jog Acceleration

JB DFh Jog deadBand

JG DCh Jog proportional Gain

JO DEh Jog Offset

JV 37h Jog Velocity

LF 36h motion Limits ofF

LL D2h set motion Low Limit

LM 34h Limit Mode

LN 35h motion Limits oN

LS 36h set Low Speed

MS E7h set Medium Speed

MV C4h set Minimum Velocity
(0]6) CBh set the Output Offset

OM D8h set Output Mode

PH 73h set servo output PHase
SA 2Bh Set Acceleration

SD 2Ch Set Derivative gain

SE 19h Stop on Error

SF 3Eh Step Full

SG 2Dh Set prop. Gain of motor
SH 3Fh Step Half

Si 2Eh Set Integral gain

SQ 74h Set TorQue

SS Set Slave ratio

SV 2Fh Set Velocity

UK D7h set User output constant
UA 9Ch Use as default Axis

uo B3h set User Offset

UR B1h set User Rate conversion
upP 9Dh Use Physical axis

us AFh set User Scale

uT B2h set User Time conversion
uz BOh set User Zero

VA ADh set Vector Acceleration
VD AEh set Vector Deceleration
VG 77h set Velocity Gain

VO EOh set Velocity Override

A% ACh set Vector Velocity

Mode Commands
MCCL

GM
M

PM
SM
TQ
VM

8h
72h
17h

9H
18h

enable Contour Mode (arcs and lines)
enable Gain Mode (no velocity profile)
Input Mode (closed loop stepper)
enable Position Mode

enable Master/Slave mode

enable TorQue mode

enable Velocity Mode

Motion Commands

McCL

AB
AF
BF
BN
CA
CcD
CcP
CR
EA
FE
FI
GH
GO
HO
IA
JF
JN
LP
LT
MA
MF
MN
MP
MR
NS
PP
PR
PS
PT
RC
RR
sc
SN
ST

Ah

EBh
CFh
CEh
B4h
C1h
COh
B5h

Bh
Ch
Dh
Eh
Fh
5Dh
3Ah
39h
70h
71h
10h
11h
13h
14h
15h
ABh
EDh

EEh
EFh
115h

114h
AAh
16h

ABort

Auxiliary encoder arm/Find index
Backlash compensation oFf
Backlash compensation oN
arc Center Absolute
Contour Distance

Contour Path

arc Center Relative

arc Ending Angle absolute
Find Edge

Find Index

Go Home

GO

HOme

Index Arm

Jogging ofF

Jogging oN

Learn Position

Learn Target

Move Absolute

Motor ofF

Motor oN

Move to Point

Move to Point

No Synchronization
Profile Parabolic

Recode motion data
Profile S-curve

Profile Trapezoidal
Restore Configuration
aRc Radius

Save Configuration
Synchronization oN

STop

DCX-AT200 User’s Manual

283

DCX MCCL Commands

Register Commands

mMcCL

AA
AC
AD
AE
AL
AM
AN
AO
AR
AS
AV
GA
GD
GU
GX
OA
RA
RB
RD
RL
RV
RW
SL
SR
TR
WB
WD
WL
wWv
wWw

85h
8Ch
88h
8Fh
82h
87h
8Dh
83h
84h
86h
8Bh
F8h

89h
F7h
F9h
83h
96h
93h
98h
92h
97h
90h
91h
57h
99h
95h
9Bh
94h
9Ah

Accumulator Add

Accumulator Complement
Accumulator Divide
Accumulator logical Exclusive or
Accumulator Load
Accumulator Multiply
Accumulator logical aNd with n,
Accumulator logical Or with n
copy Accumulator to Register n
Accumulator Subtract
Accumulator eValuate

Get Analog value

Get module ID

Get the default axis

Get auXiliary encoder position
Output Analog value

copy Register to Accumulator
Read Byte into accumulator
Read Double into accumulator
Read Long into accumulator
Read float into accumulator
Read into accumulator

Shift Left accumulator n bits
Shift Right accumulator n bits
Tell contents of Register n
Write accumulator Byte to n
Write accumulator double to n
Write accumulator Long to n
Write accumulator float to n
Write accumulator Word to n

Macro Commands

Reporting Commands

McCL

AT
AZ
DO
DQ
DR
TA
B
TC
D
TE
TF
TG
Tl
TK
TL
™
TO
TP
TR
TQ
TS
T
Y
>
TZ
VE

E9h
ECh

49h
5Bh
4Ah
4Bh

4Dh
4Eh
4Fh
5Ch
50h
51h
59h
52h
57h
D1h
53h
54h
55h
58h
5Ah
56h

Auxiliary encoder Tell position
Auxiliary encoder tell index
Display recorded optimal position
Display recorded DAC output
Display recorded actual position
Tell Analog to digital converter
Tell Breakpoint position

Tell Channel

Tell Derivative gain

Tell command interface Error
Tell Following error

Tell position Gain

Tell Integral gain

Tell velocity constant

Tell integration Limit

Tell stored Macros

Tell Optimal

Tell Position

Tell Register n

Tell torQue

Tell Status

Tell Target

Tell Velocity

Tell contouring count

Tell index position

tell VErsion

Sequence Commands

mMcCL

DF 6B Do if channel ofF
DN 6A Do if channel oN
T 1B A5 If Below do next command
IC A1l If C|ear’ do next command
BK 79h BreaK IE A2 If Equals do next command
ET FBh Escape Task IF 6D If channel ofF do next command
GT FAh Generate Task IG A4 If accumulator is Greater do next
MC 2h Macro Call IN 6C If channel oN do next command
MD 3h Macro Definition IP 60 Interrupt on absolute Position
MJ sh Macro Jump IR 61 Interrupt on Relative position
RM 4h Reset Macros IS A0 If bit Set do next command
™ 51h Tell Macros v A3 If Unequal do next command
JP 6 JumP to command absolute
JR 7 Jump to command Relative
RP 64 RePeat
WA 65 WALt (time)
WE 66 Wait for Edge
WF 67 Wait for channel ofF
Wi 5E Wait for Index
WN 68 Wait for channel oN
WP 62 Wait for absolute Position
WR 63 Wait for Relative position
WS 63 Wait for Stop
WT C6 Wait for Stop
284 Precision MicroControl

DCX MCCL Commands

/0 Commands

MCCL

CF
CH
Cl

CL
CN
CT
TA
TC

1Fh
42h
20h
43h
21h
22h
49h
4Ah

Channel ofF

Channel High true logic
Channel In

Channel Low true logic
Channel oN

Channel ouT

Tell the value of Analog input
Tell state of digital Channel

Miscellaneous Commands

McCL

BR
DM
EF

EN
FM
HE
HF
HM
HN
ME
NO
PC
RT
XF

XN

1Eh
3Ch
25h
26h
10Dh
48h
30h
3Dh
31h
10Ch
78h
80h
2Ah
7Eh
7Dh

Baud Rate

Decimal Mode

Echo ofF

Echo oN

Free Memory

HEIp

Handshake ofF
Hexadecimal Mode
Handshake oN
MEmory allocate

No Operation

set Prompt Character
ReseT system
Xon/Xoff Protocol oFF
Xon/Xoff Protocol oN

File Commands

McCL

DL
FO
LO
RF
TY

10Fh
10Eh
112h
111h
110h

Directory Listing
FOrmat file system
LOad file

Remove File

TYpe file

Plotting Commands

mcCL

PA
PD
PE
PF
PI

PQ
PU
PV
PX
PY
SP
X0
XS
YO
YS

121h
125h
119h
118h
123h
122h
124h
120h
11Ah
11Bh
126h
11Eh
11Ch
11Fh
11Dh

Plotter Acceleration
Pen Down macro
Plotting Enable

Plot File

Plotter Initialize macro
Plotter Quick velocity
Pen Up macro
Plotter Velocity
Plotter X axis

Plotter Y axis

Select Pen macro
plotter X Offset
plotter X Scale
plotter Y Offset
plotter Y Scale

DCX-AT200 User’s Manual

285

DCX MCCL Commands

Building MCCL Macro Sequences

A powerful feature of the DCX is the ability to define MCCL sequences as macros. This simply means
giving a short name to a sequence of commands to form a new command defined by the user. For
example:

1MR1000,WS0.25,MR-1000,WS0.25

will cause the motor attached to axis 1 to move 1000 counts in the positive direction, wait one quarter
second after it has reached the destination, then move back to the original position followed by a
similar delay. If this sequence were to represent a frequently desired motion for the system, it could
be defined as a macro command. This is done by inserting a Macro Define (MD) command as the first
command in the command string. For example:

MD3,1MR1000,WS0.25,MR-1000,WS0.25

will define macro #3. Whenever it is desired to perform this motion sequence, issue the command
Macro Call (MC3). To command the DCX to display the contents of a macro, issue the Tell Macro
(TMn) command with parameter ‘n’ = the number of the macro to be displayed. To display the
contents of all stored macro’s issue the Tell macro command with parameter ‘n’ = -1.

(7] winControl32 =]

Fil= Edit Help
O & & B2 -l

> md3, Tmr1000,ws0.25, mr-1000 w25

» mc3

> tm-1

MC3 1TMR1000,1W50.250000,1MR-1000,1WS0.25000
Available macro memory

RAM: 4096

FLASH: 126638 bytes
>

Once a macro operation has begun, the host will not be able to
& communicate with the DCX until the macro has terminated.

The DCX can store up to 1100 user defined macros. Each macro can include as many as 255 bytes.
Depending on the type of command and type of parameter, a command can range from 2 bytes (a
command with no parameter) to 10 bytes (a command with a 64 bit floating point parameter).

Macro numbers 0 through 9, and 256 through 1099 are stored in the on-board Flash memory. These
macros will be retained when power to the board is turned off. However, once a macro that is stored
in Flash memory is defined, it can't be redefined, only undefined by the Reset Stored macros (RM)

286 Precision MicroControl

DCX MCCL Commands

command. Macro numbers 10 through 255 are stored in on-board RAM memory. These macros will
not be retained when the power is off. The macros in RAM can be redefined or undefined as long as
memory is available. The Reset Macro (RMn) command can be used to erase the macros stored in

RAM memory, in Flash memory, or in both, by using the appropriate command parameter.

Since the DCX provides no protection against overflowing the macro storage space, it is suggested
that the user monitor the amount of memory available for macro storage. The Tell Macro (TMn)
command can be used to display the amount of Flash and RAM memory available for macros storage
at any give time.

Another feature of the DCX is that macro 0 will be executed on power up or reset. A common use for
this feature is to have the motors automatically configured when the board is powered up. To
accomplish this: define a set of macros that contain commands to set the motor parameters. These
macros should be located in flash memory so they are preserved when the power is turned off. Now
define macro 0 to call these setup macros. Each time the DCX is powered up or reset, macro 0 will
execute which will configure the motors. The graphic below shows using macro 0 to call macro’s 300
(define PID parameters) and 301 (define trajectory parameters and turn on the motor).

[Tl wWinControl32 =] E3

File Edt Help
D= & B el
> md0,mc300,mc301

> md300,1sq.3,18d.1.1,1si.01,1il5
> 1sv100000,15a25000,1ds25000,1mn

Warning: If macro 0 contains a command sequence that runs
indefinitely, the command interface will be busy while the macro is
executing. This will cause all MCAPI programs and utilities to be
unable to communicate with the DCX. If this happens and MCAPI is
unable to communicate with the DCX:

1) Turn off power to the computer
2) Remove the DCX, set the memory offset rotary switch (SW1) to
Q position F
3) Install the DCX in the PC, turn on power for 10 seconds
4) Turn off power to the computer
) Reset the memory offset rotary switch (SW1) to its original
position
6) Reinstall the DCX into the computer, turn on the power
7) All macro’s should have been deleted. Communication with
MCAPI should be restored.

DCX-AT200 User’s Manual 287

DCX MCCL Commands

To terminate the execution of any macro that was started from WinControl press the escape key.

To start a macro that runs indefinitely without ‘locking up’ communication with the host, start the
macro’s with the generate a Background task (GT) command instead of the Call macro command
(MC). This will allow the operations called by macro 0 to execute as a background task. Please refer
to the next section Multi-Tasking.

MCCL Multi-Tasking

The DCX command interpreter is designed to accept commands from the user and execute them
immediately. With the addition of sequencing commands, the user is able to create sophisticated
command sequences that run continuously, performing repetitive monitoring and control tasks. The
drawback of running a continuous command sequence is that the command interpreter is not able to
accept other commands from the user.

Once a macro operation has begun, the host will not be able to
& communicate with the DCX until the macro has terminated.

The DCX supports Multi-tasking, which allows the DCX to execute continuous monitoring or control
sequences while still communicating with the ‘host’.

With the exception of reporting commands (Tell Position, Tell Status, etc...), any MCCL commands
can be executed in a background task. Prior to executing a command sequence/macro as a
background task, the user should always test the macro by first executing it as a foreground
task. When the user is satisfied with the operation of the macro, it can be run as a background task
by issuing the Generate Task (GTn)command, specifying the macro number as the command
parameter. After the execution of the Generate Task command, the accumulator (register 0) will
contain an identifier for the background task. Within a few milliseconds, the DCX will begin running the
macro as a background task in parallel with the foreground command interpreter. The DCX will be
free to accept new commands from the user.

Note: Immediately after ‘spawning’ the background task (with the GTn
command), the value in the accumulator (task identifier) should be
stored in a user register. This value will be required to terminate
execution of the background task.

Another way to create a background task is to place the Generate Task command as the first
command in a command line, using a parameter of 0. This instructs the command interpreter to take
all the commands that follow the Generate Task command and cause them to run as a background
task. The commands will run identically to commands placed in a macro and generated as a task.

Within the background task, the commands can move motors, wait for events, or perform operations
on the registers, totally independent of any commands issued in the foreground. However, the user

288 Precision MicroControl

DCX MCCL Commands

must be careful that they do not conflict with each other. For example, if a background task issues a
move command to cause a motor to move to absolute position +1000, and the user issues a
command at the same time to move the motor to -1000, it is unpredictable whether the motor will go
to plus or minus 1000.

In order to prevent conflicts over the registers, the background task has its own set of registers 0
through 9 (register 0 is the accumulator). These are private to the background task and are referred to
as its 'local' registers. The balance of the registers, 10 through 255, are shared by the background
task and foreground command interpreter, they are referred to as 'global' registers. If the user wishes
to pass information to or from the background task, this can be done by placing values in the global
register. Note that when a task is created, an identifier for the task is stored in register 0 of both the
parent and child tasks.

The DCX is able to run multiple background tasks, each with their own set of registers, but can only
have one foreground command interpreter. The maximum number of background tasks is 10. Each
background task and the foreground command interpreter get an equal share of the DCX processor's
time. When one or more background tasks are active the DCX Task Handler will begin issuing local
DCX interrupts every 2 msec’s. Each time the task handler interrupt is asserted, the DCX will switch
from executing one task to the next. For example if three background tasks are active, plus the
foreground task (always active), each of the four tasks will receive 2 msec’s of processor time every 8
msec’s.

Background task #3 - -
Background task #2 - -
Background task #1 - -

Foreground task - -

1. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

. DCX CPU Processing
- Active task (msec's)

While a background task executes a Wait command, that task no longer receives any processor time.
For tasks that perform monitoring functions in an endless loop, the command throughput of the DCX
can be improved by executing a Wait command at the end of the loop until the task needs to run
again.

A common way for a background task to be terminated, is when the command sequence of the task
finishes execution. This will occur at the end of the macro or if a BreaK command is executed. When
a task is terminated, the resources it required are made available to run other background tasks.
Alternatively, the Escape Task command can be used to force a background task to terminate. The
parameter to this command must be the value that was placed in accumulator (register 0) of the
parent task, when the Generate Task command was issued.

As an example, the graphic below depicts a background task where the action of axis one will depend
on the state of three digital inputs. If digital input #5 is on, axis one will move 1.5 inches in the positive
direction and then dwell for 100 msec’s. If digital input #6 is on, axis one will move 1.5 inches in the
negative direction and then dwell for 100 msec’s. In foreground, a command loop will monitor the
state of digital input 2, if at anytime this channel goes true, the background task will be terminated.

DCX-AT200 User’s Manual 289

DCX MCCL Commands

Downloading MCCL Text Files

Motion Control Command Language (MCCL) command sequences can be downloaded as text files to
the DCX-AT200. If these command sequences are not defined as macro’s (MDn) then the commands
will be executed as they are received by the card. If the command sequences are defined as macro’s
they will be stored in the memory of the DCX-AT200 for execution at a later time.

While most applications will utilize the high level language (C++, VB, Delphi, LabVIEW, etc..) function
calls to program the operation of the machine, downloaded MCCL text files are typically used for initial
system integration, defining homing routines, and programming background tasks.

The graphic below is a screen capture of PMC’s WinControl . This utility provides the user with a
direct interface to the DCX., A MCCL text file (init.at2) containing servo parameters and a homing
routine have been downloaded to the DCX using the File — Open menu options.

El WinControl32

ST
Dlﬁ;| 3’ g|gud Lookjn:laf-‘«Uutils j@lﬁl

Init.at2
Read.atZ

>sd.72
>1frb
>1si.05,1i12.0
>1se1024
>1fn

>1sql10 File name: |=atz Open |

>1sv100000,15a100000,1ds100000

>1Im2,1In3 Files of type: | DCx-AT 200 Files (~.a12) =l Cancel |/
A

>

md1,1vm,1rl0,is25.mj10.n0,1di0,15v2500,1g0,1we0,15t.1ws.05.mj10 :homing macro, is the home sensor active?
>md10,1vm,1di1,1sv1000,1go,Twel.15t,1ws.05,1vm,1di0,15v500,1go,1fiD}
1st.1ws.0b,1pm,1mn,wa.1,1mal,1ws.1,1s+100000 ;move, home sensor inactive, find index

Note: Any characters that are preceded by a semicolon are treated as documenting commands.
These documenting character strings are displayed by WinControl but they are ‘stripped’ from the file
and are not be passed to the DCX.

Single Stepping MCCL Programs

While the DCX is executing any Motion Control Command Language (MCCL) macro program, the
user can enable single step mode by entering <ctrl> . Each time this keyboard sequence is

290 Precision MicroControl

DCX MCCL Commands

entered, the next MCCL command in the program sequence will be executed. The following macro
program will be used for this example of single stepping:

MD10,WAl1,1MR1000,1WS.1,1TP,1MR-1000,1WS.1,1TP,RP

This sample program will: wait for 1 second, move 1000 encoder counts, report the position 100
msec’s after the calculated trajectory is complete, move -1000 encoder counts, report the position 100
msec’s after the calculated trajectory is complete, repeat the command sequence.

This command sequence can be entered directly into the memory of the DCX by typing the command
sequence in the terminal interface program WinCtl32.exe or by downloading a text file via
WinControl's file menu.

To begin single step execution of the above example macro enter MC10 (call macro #10) then <ctrl>
 the following will be displayed:

{C1,MC10} 1MR1000 <

The display format of single step mode is: {Command #,Macro #} Next command to be executed

[winControl32 H=]

Fil= Edit Help
O = w O af

-

MD10,WwA1,1MR1000,1WS.1,1TP,1MR-1000,1WS.1,1TP,RP

MCi10 =ctrl> {<ctrl> is a keyboard action that will not he echoed on the screen)

{C1,M10} 1MR1000 <ctrl>
{C2,M10} 1WS0.100000 <ctrl>
{C3,M10} 1TPO1 1000 <ctrl>
{C4,M10} 1MR-1000 <ctrl>
{C5,M10} 1WS0.10000 <ctrl>
{C6,M10} 1TPO1 O <ctrl>
{C7,M10} RP [REPEAT} <ctrl>
{CO,M10} WA1

-

To end single stepping and return to immediate MCCL command execution press <Enter>. To abort
the MCCL program enter <Escape>. Single step mode is not supported for a MCCL sequence that is
executing as a background task.

ﬂ Note: Firmware revision 3.5b or higher is required for single step mode

DCX-AT200 User’s Manual 291

DCX MCCL Commands

Outputting Formatted Message Strings

The DCX supports the outputting of formatted text strings from the ASCII interface using the Output
Text commands. The two commands supported are:

Output Text with integer values (OT”)
Output text with Double values (OD”)

The syntax of these two commands are patterned after standard ‘C’ function ‘printf’. For specific
‘printf’ description please refer to the Microtech Research Inc. MCC960 compiler documentation. The
message to be displayed should be delimited by double quotes. Please refer to the examples below:

OT”The Saftey gate is open, machine operation has stopped \n”
;output simple text message,
; \n = line feed

_'l WinControl32
Filz Edit Help

R - =

>

>0T"The Saftey gate is open, machine operation has stopped'n™
The Saftey gate is open, machine operation has stopped

>

As with typical implementations of ‘C’ print statements, the DCX supports variables. Prior to executing
the output text command, load the accumulator with the data to be included as a variable. In the
following example, the Output Double (OD” “) command is used to report the current position of axis
one as a floating point value. The % character indicates that a variable stored in the accumulator will
be included in the text message. The ‘f indicates that the variable is a floating point value. The ‘\r’
calls for a carriage return at the end of the message.

1RD20,0D”The current position of Axis #1 %f \r”
;load the accumulator with the
;position of axis #1. Output a text
;message displaying the position of
;axis #1 (floating point value),
;carriage return

PLC I/O Control using MCCL Sequence Commands

PLC control and DCX Digital 1/0

The following graphic depicts a fluid dispensing system. A liquid adhesive is applied to a gasket. Two
linear axes are mounted to the table top (see the slides with bellows) and are slaved together to move
the dispensing head back and forth. The fluid dispensing head is moved left and right by a third axis.

292 Precision MicroControl

DCX MCCL Commands

For this application there is no Z (up and down) axis motion, the operator manually positions the
dispense head for the proper height. The following Digital /0O are used dispensing the liquid:

Inputs: Outputs:

Fluid reservoir empty (dig. 1/0 #1) Turn on the dispense valve air supply (dig. 1/0 #4)

Dispense valve empty (dig. /0 #2) Dispense liquid — turn on Archimedes motor (dig 1/0 #5)

Valve busy being primed (dig. I/O #3) Stop dispense — reverse Archimedes motor (dig /O #6)
Prime the valve (dig /O #7)

Fluid reservoir

A ‘PC based’ application program is used by the operator to initialize and operate the dispensing
system. The ‘Fluid Reservoir’ and ‘Dispense Valve” sensors are monitored by MCCL macro’s
executing as background tasks. If either of these sensors ‘goes active’, a DCX User Register flag will
be set, The application program will then notify the operator to remedy the error condition. The
following macro sequence will monitor the state of the two sensors:

DCX-AT200 User’s Manual 293

DCX MCCL Commands

MD300,IF1,MJ301,NO,IF2,MJ302,NO,WA.1,JR-7

;pole sensors for error condition
MD301,1VO0,ALl1,AR201,0T”"The fluid reservoir level is low, add fluid and prime
the dispense valve \n” ;stop the motion (Velocity

;Override =0), set Input Sensor Error

;Flag, output ASCII error messade
MD302,1V00,AL2,AR201,0T”"The dispense valve fluid level is low, add fluid and
prime the dispense valve \n” ;jstop the motion (Velocity

;Override =0), set Input Sensor Error

;flag, output ASCII error messade

GT300,AR200 ;execute sensor monitoring macros as a
;background task. Load the task ID in
;jregister #200.

ALO,AR201,1V0100,GT300,AR200 ;after error condition cleared, resume
;operation

Prior to initiating a dispensing operation:

Move the axes to the starting position (handled by the “PC based’ application program)
Verify that no error conditions exist

Begin fluid output operation

Begin motion (handled by the “PC based’ application program)

A sequence of DCX macro’s control the dispensing of fluid.

MD400,AL@201,IE1,MJ401,NO, IE2,NO,MJg402,MJ403
;check for input sensors active (error
;condition)

MD401,0T”The fluid reservoir level is low /n”

MD402,0T”The dispense valve fluid is low /n”

MD403,CN4,WA.150, CN5 ;begin fluid dispense

MD404,CF5,CF6,WA.150,CF4 ;terminate fluid dispense

The following commands are used to program conditional (If/Then) command execution based on the
state of a digital channel:

Do if channel oFf

MCCL command: DFx x= Channel number

Used for conditional execution of commands. If the specified digital 1/0 channel is "off", commands
that follow on the command line or in the macro will be executed. Otherwise the rest of the command
line or macro will be skipped. See the description of Digital I/0 in the DCX General Purpose 1/O
chapter.

DF2,1MR1000 ;If channel 2 is off move 1000

Do if channel ‘X’ is oN
MCCL command.: DNx x = Channel number

294 Precision MicroControl

DCX MCCL Commands

Used for conditional execution of commands. If the specified digital I/O channel is "on", commands
that follow on the command line or in the macro will be executed. Otherwise the rest of the command
line or macro will be skipped. See the description of Digital I/0 in the DCX General Purpose 1/O
chapter.

DN2,1MR1000 ;If channel 2 is off move 1000

If channel oFf do next command, else skip 2 commands

MCCL command: IFx x= Channel number

Used for conditional execution of commands. If the specified digital I/O channel is "off", command
execution will continue with the command following the IF command. Otherwise the two commands
following the IF command will be skipped, and command execution will continue from the third
command. See the description of Digital 1/0 in the DCX General Purpose /O chapter.

IF5,MJ10,NO,MJ11 ;If digital input #5 is off jump to
;macro 10, otherwise jump to macro 11

If channel ’ oN do next command, else skip 2 commands

MCCL command: INx x= Channel number

Used for conditional execution of commands. If the specified digital I/O channel is "on", command
execution will continue with the command following the IN command. Otherwise the two commands
following the IN command will be skipped, and command execution will continue from the third
command. See the description of Digital 1/0 in the DCX General Purpose /O chapter.

IN5,MJ10,NO,MJ11 ;If digital input #5 is on jump to
;macro 10, otherwise jump to macro 11

Wait for digital channel oFf

MCCL command: WFxx= Channel number

compatibility: MC400

see also: WN

Wait until digital I/0 channel x is "off" before continuing to the next command on the command line or
in the macro. If this command was issued from an ASCII interface, it can be aborted by sending an
Escape character.

Wait for digital channel oN

MCCL command: WNxx = Channel number

compatibility: MC400

see also: WF

Wait until digital I/O channel x is "on" before continuing to the next command on the command line or
in the macro. If this command was issued from an ASCII interface, it can be aborted by sending an
Escape character.

DCX-AT200 User’s Manual 295

DCX MCCL Commands

PLC Control and DCX Analog I/O

Remote operation of a automobile provides a simple example analog 1/0O control. Two Proportional
Pneumatic valves are used to control the velocity and the braking. One valve is positioned to depress
the ‘gas pedal’ to control the vehicle speed. The other is positioned to depress the ‘brake pedal’. An
analog tachometer is connected to the drive train to provide the vehicle speed feedback. A linear
potentiometer is mounted to the back side of the brake pedal to provide the feedback of the
position/force of the braking action.

Linear
potentiometer

¢ | Brake pedal

Gas pedal

Vehicle Speed Control

An analog output of 0.0V will cause the proportional valve that depresses the gas pedal to be fully
retracted (no velocity). An analog output of +5.0V causes the valve to fully extend (pedal to the metal).
The user defines a ‘look up table’ that is used to equate a DAC value to the speed of the vehicle. The
user’s application program then writes the appropriate DAC (speed) value into DCX User Register
#100 and sets the new speed command flag (register 102). For the purposes of this example, if the
difference between the commanded speed and the actual speed of the vehicle is greater than 5%,
the DAC output will be adjusted accordingly. The following DCX User Registers are used to store and
manipulate data for this application:

User Register 100 ;current speed command

User Register 101 ;A/D conversion of the output of the tachometer

User Register 102 ;new programmed ‘speed command’ flag

User Register 103 ;difference between the speed command and the tachometer
;feedback (signed value)

User Register 104 ;difference between the speed command and the tachometer
;feedback (unsigned value)

User Register 105 ;+/- speed command tolerance (5%)

296 Precision MicroControl

DCX MCCL Commands

The following macro commands will output the user’s ‘speed command’ and adjust the vehicle
velocity:

MD10,AL@100,0A1,MJ11 ;joutput the DAC value

MD11,WA.10,GA5,AR101,MJ12 ;wait 100 msec’s, load the output of
;the tachometer

MD12,AL@100,AS@101,AR103,AE3,AR104,MJ13 ;find the signed and unsigned value of
;the difference between the ‘speed
;command’ and the tachometer feedback

MD13,AL@100,AM.05,AR105,MJ14 ;calculate 5% of the ‘speed command’

MD14,AL@104,IB@105,MJ10,NO,MJ15 ;is vehicle speed within 5% of
;commanded speed?

MD15,AL@103,IB0,MJ16,NO, IGO0, MJ17 ;is vehicle velocity too fast or too
;slow?

MD16,AL@100,AS@104,AL@100,ALO,AR102,MJ10

;decrease ‘speed command ‘' by 5%
MD17,AL@100,AA@104,AL@100,ALO,AR102,MJ10

;increase ‘speed command ' by 5%

GT10,AR200 ;execute the ‘speed control’ macro
;sequence as a background task, store
;Task ID# in user register 200

Braking Control

An analog output of 0.0V will cause the proportional valve that depresses the gas pedal to be fully
retracted (no brake pedal pressure). An analog output of +5.0V causes the valve to fully extend (full
brake pressure). The user defines a ‘look up table’ that is used to equate a DAC value to the brake
pedal pressure. The user’s application program then writes the appropriate DAC (brake) value into
DCX User Register #111 and sets the braking flag (register 101). For the purposes of this example, if
the difference between the commanded brake pressure and the brake pedal position feedback is
greater than 5%, the DAC output will be adjusted accordingly. The following DCX User Registers are
used to store and manipulate data for this application:

User Register 110 ;"Braking’ flag register, 1=braking

User Register 111 ;eurrent DAC braking command

User Register 113 ;Brake pedal linear potentiometer feedback

User Register 114 ;difference between the brake command and the linear potentiometer
;feedback (signed value)

User Register 115 ;difference between the brake command and the linear potentiometer
;feedback (unsigned value)

User Register 116 ;+/- brake command tolerance (20%, 10%, or 5%)

The following macro commands will output the user’s ‘brake command’ and adjust the brake pedal

position:
MD20,AL@110,IE1,MJ21,NO,WA.1,RP ;braking flag set?
MD21,AL@111,0A2,MJ22 ;output DAC ‘brake command’
MD22,WA.1,GA6,AR113,MJ23 ;wait 100 msec’s, load the A/D linear
;potentiometer value
MD23,AL@111,AS113,AR114,AE3,AR115,MJ24 ;find the signed and unsigned value of
;the difference between the ‘brake
;jcommand’ and the brake pedal
;potentiometer feedback
MD24,AL@111,AM.05,AR116,MJ25 ;jcalculate 5% of the ‘speed command’
MD25,AL@115, IB@116,MJ32,N0O,MJ26 ;is brake pedal within 5% of command
;position?
MD26,AL@114,IB0,MJ28,NO,IG0O,MJ27 ;1s brake pedal pressure too much or

;too little?

DCX-AT200 User’s Manual 297

DCX MCCL Commands

MD27,AL@111,AS@115,AL@110,MJ20 ;decrease ‘brake pedal pressure’ by 5%
MD28,AL@l1l1,AA@1115,AL@110,MJ20 ;increase ‘brake pedal pressure’ by 5%
GT20,AR201 ;execute the ‘braking’ macro sequence

;as a background task. Store the Task
;ID# in user register 201

DCX User Registers

The DCX contains 256 general purpose global registers that can be used for; storing command
parameters, performing math computations and controlling command execution. The registers are
numbered 0 through 255, with register 0 being the 'accumulator'. The accumulator (register 0) is used
by all commands that manipulate register data.

Each register can hold a 32 bit integer, a 32 bit single precision floating point number, or a 64 bit
double precision floating point number. A register will be loaded with the double precision floating
point number if the Accumulator Load (ALn) command is issued with a parameter containing a
decimal point. Otherwise, the register will be loaded with a 32 bit integer. When executing commands
that perform math operations on the accumulator (AA, AD, AM, ...), the result will have the same
precision as the command parameter or the accumulator (prior to the command), whichever is more
precise. Since the 32 bit integer is considered to be the least precise, multiplying an integer by a
floating point number will always result in a floating point number. If a floating point indirect parameter
is used for a command that does not support floating point parameters (eg. CN, LM, PC,...), the
register contents will be rounded to the nearest integer prior to use.

Typically the user issues commands with 'immediate' parameters (ie: the parameter ‘n’ is a constant).
The user can also issue commands, specifying that the parameter is the contents of a register. This is
done by replacing the command parameter with the register number preceded with an'@' sign. For
example, the command "1IMR@10" will cause the DCX to move axis 1 by the number stored in
register 10. The use of a register specifier can be used in any command as the parameter. The DCX
does not support the use of the '@' sign in front of an axis number. The following commands are
available for working with the registers:

MCCL Command

AAN Accumulator Add (ACC = ACC + n)

ACn Accumulator Complement, bit wise (ACC =!ACC)

ADn Accumulator Divide (ACC = ACC/n)

AEn Accumulator logical Exclusive or with n, bit wise (ACC = ACC eor n)

ALn Accumulator Load with constantn (ACC = n)

AMn Accumulator Multiply(ACC = ACC x n)

ANn Accumulator logical aNd with n, bit wise (ACC = ACC and n)

AOn Accumulator logical Or with n, bit wise (ACC = ACC or n)

ARn copy Accumulator to Register n (REGn = ACCn)

ASn Accumulator Subtract (ACC = ACC - n)

GAX Get Analog value (ACC = channel x)

aGX Get auXiliary encoder position (ACC = axis a auxiliary encoder)

IBn If accumulator is Below (>) n, do next command, else skip 2 commands

ICn If bit n of accumulator is Clear, do next command, else skip 2 commands
IEn If accumulator Equals constant n, do next command, else skip 2 commands
IGn If accumulator is Greater than ‘n’, do next command, else skip 2 commands
OAXx Output Analog value (channel x = ACC)

298 Precision MicroControl

DCX MCCL Commands

ISn If bit n of accumulator is Set, do next command, else skip 2 commands
IlUn If accumulator is Unequal to ‘n’, do next command, else skip 2 commands
RAN copy Register n to Accumulator (ACC = REGn)

SLn Shift Left accumulator n bits (ACC = ACC << n)

SRn Shift Right accumulator n bits (ACC = ACC >>n)

TRn.p Tell contents of Register n

TR.p Tell contents of accumulator (register 0)

Reading Data from DCX Memory

A group of read commands are available for accessing the DCX's internal memory. These commands
provide an easy method of moving motor data in and out of the Accumulator (user register 0). To use
a read command for this purpose, it should include an axis specifier ‘a’ and a parameter ‘n’ selected
from the motor table offsets listed below. The type of command to use (byte, double, long, float or
word), is determined by the type of data to be accessed and is listed below.

Examples of using the read commands to access the motor tables are shown below.
To load the status of axis 2 into the accumulator, issue the following command:

2RLO ;load the status of axis #2 into the accumulator

To load the position of axis 3 the accumulator, issue the following command:

3RD20 ;load the position of axis #3 into the accumulator

Memory read/write commands:

aRBn Read Byte (8 bit) at memory location n into accumulator (ACC = (n))
aRDn Read Double at memory location n into accumulator (ACC = (n))
aRLn Read Long (32 bit) at memory location n into accumulator (ACC = (n))
aRVn Read float at memory location n into accumulator (ACC = (n))

aRWn Read Word (16 bit) at memory location n into accumulator (ACC = (n))

Motor Table Entries — 32 bit integer (long)

Motor Table Entry Description
decimal

Motor Status 0
Position Count 4
Optimal Count 8
Index Count 12
Auxiliary Status 16
Module Base Address 252

Motor Table Entries — 64 bit floating point (double)

Motor Table Entry Description
decimal

Position 20

DCX-AT200 User’s Manual 299

DCX MCCL Commands

Target

Optimal Position

Breakpoint Position

Position Dead band

Maximum Following Error
Soft Motion Limit Setting (low)
Soft Motion Limit Setting (high)
User Scale

User Zero

User Offset

User Rate Conversion

User Output Constant
Programmed Velocity
Programmed Acceleration
Programmed Deceleration
Minimum Velocity

Minimum Velocity

Jog Acceleration

Jog Minimum Velocity

Motor Table Entries — 32 bit floating point (float)

Motor Table Entry Description | Offset
(decimal)

Velocity Gain
Acceleration Gain
Deceleration Gain
Velocity Override
Torque Limit
Proportional Gain
Derivative Gain
Integral Gain
Integration Limit
Module Analog Input 1
Module Analog Input 2
Jog Gain

Jog Offset

Jog Dead band

Motor Table Entries — 16 bit integer (word)

Motor Table Entry Description | Offset
(decimal)

Wait Stop Timer
Wait Target Timer
Sampling Frequency
Master Axis

Module Status

Axis Number
Module Position

28
36
44
52
60
68
76
84
92
100
108
116
124
132
140
148
156
220
228

164
168
172
176
180
184
188
192
196
200
204
208
212
216

236
238
240
242
244
246
248

300

Precision MicroControl

DCX MCCL Commands

Module Type 250

DCX-AT200 User’s Manual 301

DCX MCCL Commands

DCX Scratch Pad Memory

Over and above what is available by using the User Registers, the DCX also provides an 8KB space
allocated for user scratch pad memory. The allocate Memory (MEn) command is used to format the
memory space for user operations. The parameter n defines the number of bytes to be allocated for
use.

Upon executing the memory allocate command, the accumulator will be loaded with the address of
the first byte of allocated memory. The following commands are used to write data from the
accumulator into the allocated memory locations:

WBn Write accumulator low Byte (8 bit) to memory location n ((n) = ACC)
WDn Write accumulator Double to absolute memory location n ((n) = ACC)
WLn Write accumulator Long (32 bit) to memory location n ((n) = ACC)
WVn Write accumulator float to absolute memory location n ((n) = ACC)
WWn Write accumulator low Word (16 bit) to memory location n ((n) = ACC)

The following commands are used to read data from the allocated memory into the accumulator:

RBn Read Byte (8 bit) at memory location n into accumulator (ACC = (n))
RDn Read Double at memory location n into accumulator (ACC = (n))

RLn Read Long (32 bit) at memory location n into accumulator (ACC = (n))
RVn Read float at memory location n into accumulator (ACC = (n))

RWn Read Word (16 bit) at memory location n into accumulator (ACC = (n))

The Free Memory (FMn) command returns previously allocated memory and returns it to the ‘heap
from which it was allocated. The parameter n of this command must be the same as the value that
was loaded into the accumulator upon issuing the memory allocated (ME) command.

302 Precision MicroControl

DCX MCCL Commands

MCCL Command Set Description

Setup Commands

Acceleration Gain

MCCL command: aAGn a=Axisnumber n=integer orreal >=0

compatibility: MC200, MC210

see also: DG, VG

This command sets the acceleration feed-forward gain for a servo. The product of this gain and the
motor's calculated acceleration will be summed into the controller's DAC output. The acceleration gain
is only applied while a motor is accelerating, when it decelerates the deceleration gain term is used
(see DG command).

comment. Acceleration and deceleration feed-forwards are not calculated when a motor is in
contour mode.

1AG10.0 ;Sets Acceleration gain for axis 1 to
;10.0

Auxiliary encoder define Home

MCCL command: aAHn a=Axisnumber n=integer or real >= 0

compatibility: MC200, MC210, MC260

see also: DH

This command causes axis a auxiliary encoder position to be set to n. This encoder input is available
on both the MC200 and MC260 modules, and is used for loop closure when a MC260 is controlling a
closed loop stepper. The auxiliary encoder of a MC200 is used for position verification only, it cannot
be used for dual loop positioning. For defining the home position of the primary encoder, see the
Define Home command.

Backlash compensation Distance

MCCL command: aBDn a=Axisnumber n=integer orreal >=0

compatibility: MC200, MC210, MC260

see also: BF, BN

Use this command to set the distance required to nullify the effects of mechanical backlash in the
system. The command parameter should be equal to half the amount the motor must move to take up
backlash when it changes direction. The units for this command parameter are encoder counts, or the
units established by the User Scale command for the axis.

Once the backlash compensation distance is set, issuing the Backlash compensation oN command
will cause the controller to add or subtract the distance from the motor's commanded position during
all subsequent moves. If the motor moves in a positive direction, the distance will be added; if the
motor moves in a negative direction, it will be subtracted. When the motor finishes a move, it will
remain in the compensated position until the next move. See the description on backlash
compensation in the Application Solutions chapter of this manual.

DCX-AT200 User’s Manual 303

DCX MCCL Commands

set position DeadBand

MCCL command: aDBn a=Axisnumber n=integer orreal >= 0

compatibility: MC200, MC210

see also: DT

This command sets the position dead band that is used by the controller to determine when a servo
axis is 'At Target'. In order for the At Target flag in the motor status to be set, a servo must remain
within the specified dead band of the current target position for a period of time specified with the
Delay at Target (aDTn) command.

Define Home

MCCL command: aDHn a=Axisnumber n=integerorreal >=0

compatibility: MC200, MC210, MC260

see also: Fl, 1A, WI

Defines the current position of a motor to be n. From then on, all positions reported for that motor will
be relative to that point.

Deceleration Set

MCCL command: aDSn a=Axisnumber n=integerorreal >=0

compatibility: MC200, MC210, MC260

see also: SA, SV

Defines the deceleration rate for an axis. The default units for the command parameter are encoder
counts (or steps) per second per second.

Dlrection

MCCL command: aDIn a=Axisnumber n=integerorreal >=0
compatibility: MC200, MC210, MC260

see also: GO, VM

Sets the move direction of a motor when in velocity mode. A parameter value of 0 results in motion in
the positive direction, a value of 1 causes motion in the negative direction.

amplifier Fault oFf

MCCL command: aFFn a=Axis number n=none

compatibility: MC200

see also: FF

Disables the Amplifier Fault input of a servo module. See description of amplifier Fault input oN
command (FN), for further details.

amplifier Fault oN

MCCL command: aFNn a=Axisnumber n=none

compatibility: MC200

see also: FF

Enables the Amplifier Fault input of a servo module. If the input goes active after this command is
executed, the motor will be turned off and the ampilifier fault tripped flag in servo status will be set. The
tripped flag will remain set until the motor is turned back on with the MN command. This command
has no effect on stepper motors.

304 Precision MicroControl

DCX MCCL Commands

Deceleration Gain

MCCL command: aDGn a=Axisnumber n=integerorreal >=0

compatibility: MC200, MC210

see also: AG, VG

This command sets the deceleration feed-forward gain for a servo. The product of this gain and the
motor's calculated deceleration will be summed into the controller's DAC output. The deceleration
gain is only applied while a motor is decelerating. When it accelerates the acceleration gain term is
used (see AG command).

comment. Acceleration and deceleration feed-forwards are not calculated when a motor is in
contour mode.

example: 1DG10.0 ;Sets Deceleration gain for axis 1 to
;10.0
Delay at Target
MCCL command: aDTn a=Axisnumber n= integer orreal >= 0
compatibility: MC200, MC210
see also: DB

This command sets the time period during which a servo must remain within the position dead band of
the target for the 'At Target' flag in the motor status to be set.

set the derivative sampling period

MCCL command: aFRn a=Axisnumber n=integer>=0

compatibility: MC200, MC210

see also: SD, SG

Helps tune servo loop to the inertial characteristics of system. High inertial loads normally require a
longer period and low inertial loads a shorter period. The default value is zero. For a value of n, the
sampling period will be (n +1) * (sample period). See the High Speed command for a discussion of the
sample period on servos. See Tuning the Servo section in the Motion Control chapter.

Full Current

MCCL command: aFC a = Axis number

compatibility: MC260

see also: HC

Causes Full/Half Current output signal of a stepper module to go low.

Jog Acceleration

MCCL command: aJAn a=Axisnumber n=integeror real >=0

compatibility: MC200, MC210, MC260

see also: JN, JG

Sets jogging acceleration. See the description of Jogging in the Motion Control chapter.

Jog deadBand

MCCL command: aJBn a=Axisnumber n=integeror real >=0

DCX-AT200 User’s Manual 305

DCX MCCL Commands

compatibility: MC200, MC210, MC260
see also: JN, JF
Sets jogging joystick input dead band. See the description of Jogging in the Motion Control chapter.

Jog proportional Gain

MCCL command: alGn a=Axisnumber n=integeror real >=0

compatibility: MC200, MC210, MC260

see also: JF, JN

Sets jogging joystick proportional gain. See the description of Jogging in the Motion Control
chapter.

Jog Offset

MCCL command: alOn a=Axisnumber n=integeror real >=0
compatibility: MC200, MC210, MC260

see also: JF, JN

Sets jogging joystick input offset. See the description of Jogging in the Motion Control chapter.

Jog minimum Velocity

MCCL command: alVn a=Axisnumber n=integeror real >=0

compatibility: MC260

see also: JN, JG

Sets jogging minimum velocity for stepper motors. See the description of Jogging in the Motion
Control chapter.

Half Current

MCCL command: aHC a=Axis number

compatibility: MC260

see also: FC

Causes Full/Half Current output signal of a stepper module to go high.

High motion soft Limit

MCCL command: aHLn a=Axis number n=integer or real

compatibility: MC200, MC210, MC260

see also: LF, LL, LM, LN

This command sets the high limit for motion. After this command is issued, and the motion limit is
enabled with the Limit oN (aLNn) command, the command parameter is used as a 'soft' limit for all
motion of the axis. If the desired or true position of the axis is greater than this limit, and the axis is
being commanded to move in the positive direction, the Soft Motion Limit High and the Motor Error
flags in the motor status will be set. The axis will also be turned off, stopped abruptly, or stopped
smoothly, depending upon the mode set by the Limit Mode command. Please refer to the Motion
Limits description in the Motion Control chapter.

comment. When the axis is in contouring mode, this limit will be tripped anytime the desired or true
position is greater than the limit regardless of commanded direction. Thus, to move an axis out of the
limit region, it must be placed in a non-contour mode. When one or more axes are moving in contour

306 Precision MicroControl

DCX MCCL Commands

mode, and one of the axes experiences a limit trip, all axes associated with the motion will be turned
off or stopped.

High speed

MCCL command. aHSn a=Axisnumber n=none
compatibility: MC200, MC210, MC260
see also: LS, MS

This command has a different effect depending on whether it is issued to a servo or stepper motor
axis. For a servo axis, it sets the servo feedback loop to 4 KHz update rate (with no integral term).
For a stepper motor axis, it sets the maximum pulse rate to 1.25 Million Pulses/Sec.

Integration Limit

MCCL command: alln a=Axis number n=integer orreal >=0

compatibility: MC200, MC210

see also: SI, SG

Limits level of power that integral gain can use to reduce the position error. The default units for the
command parameter are (encoder counts) * (sample interval). See the description of Tuning the
Servo section in the Motion Control chapter.

motion Limits oFf

MCCL command: alFn a=Axisnumber n=0-15

compatibility: MC200, MC210, MC260

see also: LN, LM

Disables one or more 'hard' limit switch inputs or 'soft' position limits for an axis. The parameter to this
command determines which limits will be disabled. The coding of the parameter is the same as for the
motion Limits oN command (LN). See the description on Motion Limits in the Motion Control
chapter.

Low motion soft Limit

MCCL command: alln a=Axisnumber n=integeror real

compatibility: MC200, MC210, MC260

see also: LF, LH, LM, LN

This command sets the low limit for motion. After this command is issued, and the motion limit is
enabled with the Limit oN (aLNn) command, the command parameter is used as a 'soft' limit for all
motion of the axis. If the desired or true position of the axis is less than this limit, and the axis is being
commanded to move in the negative direction, the Soft Motion Limit Low and the Motor Error flags in
the motor status will be set. The axis will also be turned off, stopped abruptly, or stopped smoothly,
depending upon the mode set by the Limit Mode command. See the description of Motion Limits in
the Motion Control chapter.

comment. When the axis is in contouring mode, this limit will be tripped anytime the desired or true
position is less than the limit regardless of commanded direction. Thus, to move an axis out of the
limit region, it must be placed in a non-contour mode. When one or more axes are moving in contour
mode, and one of the axes experiences a limit trip, all axes associated with the motion will be turned
off or stopped.

DCX-AT200 User’s Manual 307

DCX MCCL Commands

Limit Mode

MCCL command: alMn a=Axisnumber n=integer0-15
compatibility: MC200, MC210, MC260

see also: LF, LN

This command is used to select how the DCX will react when a 'hard' limit switch or a 'soft' position
limit is tripped on an axis. The command parameter should be formed by adding a value of 0, 1, or 2
for the hard limit switch mode, to a value of 0, 4 or 8 for the soft position limit mode. In all cases the
Motor Error and one of Limit Tripped flags in the status word will be set. This will prevent the DCX
from moving the motor until a Motor oN command is issued. See the description of Motion Limits in
the Motion Control chapter.

Limits oN

MCCL command. aLlNn a=Axisnumber n=0-15
compatibility: MC200, MC210, MC260

see also: LF, LM

This command is used to enable the 'hard' limit switch inputs and/or the 'soft' position limits of an axis.
If a limit switch input goes active after it has been enabled by this command, and the motor has been
commanded to move in the direction of that switch, the Motor Error and one of the Hard Limit Tripped
Flags will be set in the motor status. At the same time the motor will be turned off or stopped. If a soft
motion limit is enabled, and the respective axis goes beyond the motion limits set by the High motion
Limit and the Low motion Limit commands, the Motor Error and one of the Soft Limit Tripped Flags will
be set. At the same time the motor will be turned off or stopped. The flags will remain set until the
motor is turned back on with the MN command. Once the motor is turned back on, it can be moved
out of the limit region with any of the standard motion commands. The parameter to this command
determines which of the hard and soft limits will be enabled. See the description of Motion Limits in
the Motion Control chapter.

Low Speed

MCCL command.: aLSn a=Axisnumber n=none
compatibility: MC200, MC210, MC260
see also: HS, MS

This command has a different effect depending on whether it is issued to a servo or stepper motor
axis. For a servo axis, it sets the feedback loop to 1 KHz update rate. For a stepper motor axis, it sets
the maximum pulse rate to 19.5 Thousand Pulses/Sec.

Medium Speed

MCCL command: aMSn a=Axis number n=none

compatibility: MC200, MC210, MC260

see also: HS, LS

This command has a different effect depending on whether it is issued to a servo or stepper motor
axis. For a servo axis, it sets the feedback loop to 2 KHz update rate. For a stepper motor axis, it sets
the maximum pulse rate to 156 Thousand Pulses/Sec.

set Minimum Velocity

MCCL command: aMVn a=Axisnumber n= integer orreal >= 0
compatibility: MC260

see also: SV

308 Precision MicroControl

DCX MCCL Commands

Sets the minimum velocity for a given stepper motor axis. The purpose of this command is to set an
initial and final velocity for motion of stepper motors. Below this velocity a full stepping motor is
'cogging' between steps. The default units for the command parameter are steps per second. This
command will have no effect on servos.

Output Dead band

MCCL command: aODn a=Axis number n =integer or real > 0, <=10

compatibility: MC200, MC210

see also: (0]0)

This command can be used to simulate a ‘frictionless servo system’. The value n defines a voltage
dead band range in the output of a MC200 and MC210 servo module. Parameter n modifies the
commanded analog (MC200) or motor drive (MC210) output to a servo. The value n is added to a
positive output and subtracted from a negative output.

Output Mode

MCCL command: aOMn a=Axis number n=integer0,1,2,0r3

compatibility: MC200, MC210, MC260

see also:

This command is used to set a servo or stepper module's output mode. The available modes are
listed in the following tables.

(n | MC200 Output Mode

Bipolar Analog output, -10V to +10V

Unipolar Analog output, OV to +10V, direction J3 pin 7

Bipolar PWM signal output on J3 pin 7, 0 - 50% duty cycle

Unipolar PWM signal output on J3 pin 7, 0 — 100% duty cycle, Direction on
Analog Output (J3 pin 2)

WN -0

(n | MC260 Output Mode

0 Pulse and Direction outputs (default)

1 CW and CCW Pulse Outputs

Output Offset

MCCL command: aOOn a=Axisnumber n=integer or real >=-10, <= +10
compatibility: MC200, MC210

see also: oD

This command is used to provide software programmability of the zero point of a servo output. Similar
to adjusting an offset potentiometer, the parameter n will redefine the ‘no commanded motion’ output
level.

set the servo output PHasing

MCCL command. aPHn a=Axisnumber n= 0Qor1

compatibility: MC200, MC210

see also: (0])Y/

This command is used to set a servo module's output phasing. The phase of the output will determine
whether the module drives the servo in a direction that reduces position error, or increases it. The

DCX-AT200 User’s Manual 309

DCX MCCL Commands

module defaults to standard phasing, which is the same as issuing this command with a parameter of
0. The module output can be set to reverse phase by issuing this command with a parameter of 1.

Set Acceleration

MCCL command: aSAn a=Axisnumber n=integer or real >= 0

compatibility: MC200, MC210, MC260

see also: DS, SV

Set the maximum acceleration rate for a given axis. The default units for the command parameter are
encoder counts (or steps) per second per second.

Set Derivative gain

MCCL command: aSDn a=Axisnumber n=integer or real >=0

compatibility: MC200, MC210

see also: FR, IL, SI, SG

This command is used to set the derivative gain of a servo's feedback loop. Increasing the derivative
gain has the effect of dampening oscillations. See the description of Tuning the Servo in the Motion
Control chapter.

Stop on following Error

MCCL command: aSEn a=Axisnumber n=integeror real, 0 to disable

compatibility: MC200, MC210

see also:

Used to set the maximum following or position error for a servo. Once this command is issued and the
motor is on, if the servo position error exceeds the specified value the motor error flag in servo status
will be set, and the servo will be turned off. The error flag will remain set until the motor is turned back
on with the MN command. Issuing this command with a parameter of 0 will disable errors on
excessive following errors.

Step Full

MCCL command. aSF a=Axis number n= none
compatibility: MC260

see also: SH

Causes Full/Half Step output signal of a stepper module to go low. This command is typically used to
disable ‘micro stepping’ of a stepper driver.

Step Half

MCCL command. aSH a=Axis number n= none
compatibility: MC260

see also: SF

Causes Full/Half Step output signal of stepper module to go high. This command is typically used to
enable ‘micro stepping’ of a stepper driver.

Set the Integral gain
MCCL command : aSin a=Axisnumber n=integer or real >= 0
compatibility: MC200, MC210

310 Precision MicroControl

DCX MCCL Commands

see also: SI, SG

The integral term accumulates the position error for servos and generates an output signal to reduce
the position error to zero. The integral gain determines the magnitude of this term. The default value is
zero. Note that Integration Limit (IL) command must be set to a nonzero value before integral gain will
have any effect. See the description of Tuning the Servo in the Motion Control chapter.

set Proportional gain

MCCL command: aSGn a=Axisnumber n=integer or real >= 0.000153, <=10

compatibility: MC200, MC210

see also: IL, SI, SD

This command is used to set the proportional gain of a servo's feedback loop. Increasing the
proportional gain has the effect of stiffening the force holding a servo in position. The parameter to
this command has default units of volts per encoder count. This command should not be used for
open loop stepper axes. See the description of Tuning the Servo in the Motion Control chapter.

Set torQue

MCCL command: aSQn a=Axisnumber n= integer or real >= -10, <= 10
compatibility: MC200, MC210

see also: QM, PM, VM

Sets maximum output level for servos. When an axis is placed in torque mode, this command sets the
continuous output level. The default units for the command parameter are volts. See the description of
Torque Mode Output Control in the Applications Solutions chapter.

Set the ratio of Slave

MCCL command: aSSn a=Axisnumber n= integer or real > 0

compatibility: MC200, MC210

see also: SM

This command specifies the ratio at which the slave axis (designated by a) will move relative to a
changed in encoder counts (or steps) of the master axis. As soon as the Set Master command is
issued, the slave axis will begin tracking the master axis with the programmed ratio. The controller
makes the position calculations using the optimal positions of the master and slave axes when the Set
Master command was issued as the starting point. See the description of Master/Slave motion in the
Motion Control chapter.

Set Velocity

MCCL command: aSVn a=Axisnumber n= integerorreal >=0
compatibility: MC200, MC210, MC260

see also: SA, DS

Set the maximum velocity for a given axis. The default units for the command parameter are encoder
counts (or steps) per second.

set the defaUlt Axis

MCCL command: aUAn a=Axisnumber n= integer>0,<6
compatibility: MC200, MC210, MC260

see also:

DCX-AT200 User’s Manual 311

DCX MCCL Commands

This command is used to define a default axis. After issuing this command, any commanded move,
setup, etc.. command that utilizes an axis designator (a) will execute the command to the axis
specified by parameter n.

MD10,MR1000 ;Macro 10 will execute a relative move
;0of 1000 counts to the default axis
; (defined by the User Axis command) .
;Note that the move command does not
;include the axis designator a.

UAl,MC10 ;Define axis #1 as the default axis,
;call macro ten to move 1000 counts
UA2,MC10 ;Define axis #2 as the default axis,

;call macro ten to move 1000 counts

User Konstant

MCCL command: aUKn a=Axisnumber n= integer or real >=0

compatibility: MC200, MC210

see also:

This command is used to configure an axis for commands in user units. The default setting is 1.0. See
the description of Setting User Units in the Application Solutions chapter.

User Offfset

MCCL command: aUOn a=Axisnumber n= integer or real >=0
compatibility: MC200, MC210, MC260

see also:

This command is used to configure an axis for commands in user units. The default setting is 1.0. See
the description of Setting User Units in the Application Solutions chapter.

Use Physical axis addressing

MCCL command: aUPn a=Axisnumber n= integer>0,<6

compatibility: MC200, MC210, MC260

see also:

This command is used to reassign the axis designator of a motor module. The value a should equal
the new axis designator. The parameter n should equal the current physical location of the motor
module. See the description of Physical Assignment of Axes Numbers in the Appendix.

User Rate

MCCL command: aURn a=Axisnumber n= integer orreal >=0
compatibility: MC200, MC210, MC260

see also:

This command is used to configure an axis for commands in user units. The default setting is 1.0. See
the description of Setting User Units in the Application Solutions chapter.

User Scale

MCCL command: aUSn a=Axisnumber n= integer orreal >=0
compatibility: MC200, MC210, MC260

see also:

312 Precision MicroControl

DCX MCCL Commands

This command is used to configure an axis for commands in user units. The default setting is 1.0. See
the description of Setting User Units in the Application Solutions chapter.

User Time

MCCL command: aUTn a=Axisnumber n= integer orreal >=0
compatibility: MC200, MC210, MC260

see also:

This command is used to configure an axis for commands in user units. The default setting is 1.0. See
the description of Setting User Units in the Application Solutions chapter.

set the User zero position

MCCL command: aUZn a=Axisnumber n= integer orreal >=0

compatibility: MC200, MC210, MC260

see also:

This command is used to configure an axis for commands in user units. The default setting is 1.0. See
the description of Setting User Units in the Application Solutions chapter.

Vector Acceleration

MCCL command: aVAn a=Axisnumber n= integer orreal >=0

compatibility: MC200, MC210, MC260

see also: CP, VD, VV

This command specifies the acceleration rate for motion along a contour path. It should be issued to
the controlling axis prior to the first Contour Path command. It can also be issued to the controlling
axis while motion is in progress, but it will take effect immediately, and be used for all succeeding
motion. See the description of Contour Motion (lines and arcs) in the Motion Control chapter.

Vector Deceleration

MCCL command: aVDn a=Axisnumber n= integer orreal >=0

compatibility: MC200, MC210, MC260

see also: CP, VA, VWV

This command specifies the deceleration rate for motion along a contour path. It should be issued to
the controlling axis prior to the first Contour Path command. It can also be issued to the controlling
axis while motion is in progress, but it will take effect immediately, and be used for all succeeding
motion. See the description of Contour Motion (lines and arcs) in the Motion Control chapter.

Velocity Override

MCCL command: aVOn a=Axisnumber n= integer orreal >=0

compatibility: MC200, MC210, MC260

see also: CP, VWV

Sets a multiplying factor that will be applied to the velocity of both servo and stepper motors. This
command does not support jogging. For contour moves (linear, circular) the axis identified ‘a’ should
the axis number of the ‘controlling’ axis. See the description of Contour Motion (lines and arcs) in
the Motion Control chapter.

DCX-AT200 User’s Manual 313

DCX MCCL Commands

Vector Velocity

MCCL command: aVWn a=Axisnumber n= integerorreal >=0

compatibility: MC200, MC210, MC260

see also: CP, VA, VD

This command specifies the maximum velocity for motion along a contour path. It should be issued to
the controlling axis prior to the first Contour Path command. When a Contour Path command is
issued, the current vector velocity will be stored with the move in the motion table. The Vector Velocity
command can also be issued to the controlling axis while motion is in progress, but it won't have any
effect on the contour path motions already issued. To adjust the velocity of motions already in
progress, use the Velocity Override command. See the description of Contour Motion (lines and
arcs) in the Motion Control chapter.

Velocity gain

MCCL command: aVGn a=Axisnumber n=integerorreal>=0
compatibility: MC200, MC210, MC260

see also: AG, DG

Sets the feed forward gain of the servo PID-FF loop. The default units for the parameter to this
command are volts per encoder counts per second. For example, if the Velocity gain of a servo is set
to 0.0001, the feed forward component of the modules output will be 1 volt at a speed of 10000
encoder counts per second (0.0001 * 10000 = 1). The parameter to this command can be a positive
or negative number. This command should not be used for open loop stepper motors.

314 Precision MicroControl

DCX MCCL Commands

Mode Commands

Contour Mode

MCCL command: aCMn a=Axis number n= integer >0, <6

compatibility: MC200, MC210, MC260

see also: CP

This command places a servo or stepper motor in the Contour Mode of operation. The parameter to
this command specifies the controlling axis for a group of axes to be included in contour path
commands. The controlling axis should be the lowest numbered axis in the group. Contour Mode is
terminated by issuing a Position (aPM) or Velocity Mode (aVMn) command to all axes in the group.
The controlling axis should be taken out of contour mode last. See the description of Contour
Motion (lines and arcs) in the Motion Control chapter.

enable Gain mode

MCCL command: aGMn a=Axisnumber n= none

compatibility: MC200, MC210

see also: IL, SD, SG, SI

This command places a servo in the Gain Mode of operation. In this mode, the servo can be
commanded to execute moves to specific positions. However, no velocity profile (maximum velocity,
acceleration, or deceleration) will be calculated. The servo will be driven to the new target based only
upon the output of the PID loop.

Input Mode

MCCL command. aMn a=Axisnumber n=0or1
compatibility: MC260

see also:

The Input Mode command issued with a parameter of 1 enables closed loop stepper motion. Issued
with n = 0 disables closed loop motion. See the description of DCX Stepper Basics in the Motion
Control chapter.

Master/Slave mode

MCCL command: aSMn a=Axis number n= integer> 0, <= 101

compatibility: MC200, MC210, MC260

see also: SS

This command will cause axis ‘a’ to be "slaved" to a "master" axis n with a ratio specified by the Set
Slave ratio command. Alternatively, this command can slave one axis to two master axes for
tangential knife control in cutter applications. In this case the command parameter is determined by
the following algorithm:

parameter = master 1 axis number + (master 2 axis number x 16)
Issuing this command with a parameter of zero to the slave axis, will terminate the connection to the

master axis. See the Master/Slave Motion section of this manual for further details. See the
description of Master/Slave Motion and Tangential Knife Control in the Motion Control chapter.

DCX-AT200 User’s Manual 315

DCX MCCL Commands

Position Mode

MCCL command: aGMn a=Axisnumber n= none

compatibility: MC200, MC210, MC260

see also: MA, MR

This command places a servo or stepper motor in the Position Mode of operation. In this mode, it can
be commanded to execute moves to specific positions. The moves will be carried out using a
trapezoidal, parabolic or S-curve velocity profile. When in the Position Mode with trapezoidal velocity
profile selected, servos can change the move destination while the move is in progress. With stepper
motors, the destination can be changed as long as it doesn't require the motors direction to change. If
it is necessary to change the direction of a stepper motor, it must first be stopped and a new move
command issued. Upon start up, or after a Reset, motors will be placed in the Position

Mode. See the description of Point to Point Motion in the Motion Control chapter.

torQue Mode

MCCL command: aQMn a=Axisnumber n= none

compatibility: MC200, MC210

see also: SQ

This command places a servo (not valid for steppers) in the Torque Mode of operation. This command
does not imply that the torque generated by or current across the motor is monitored or controlled by
the DCX controller. In this mode, the output drive signal to the motor will hold a constant level as
specified with Set TorQue command. The parameter to this command has default units of volts. In this
mode of operation, the servo motor control module (MC200, MC210) is ‘turned into’ programmable
power supply. As such, the change of position as indicated by the encoder of an axis, while still
recorded by the servo module, will have no affect on the operation of the controller. See the
description of Torque Mode Output Control in the Applications Solutions chapter.

Velocity Mode

MCCL command: aVMn a=Axisnumber n= none

compatibility: MC200, MC210, MC260

see also: DI

This command places a motor in the Velocity Mode of operation. In this mode, the motor can be
commanded to move in either direction at a given velocity. The motor will move in that direction until
commanded to stop. In Velocity Mode the user can specify the direction for the motor to move using
the Dlrection (DI) command. While a motor is moving, the user can issue new direction or velocity
commands. The acceleration or deceleration rate at which the motor velocity will change is
determined by the Set Acceleration (SA) and Deceleration Set (DS) commands. See the description
of Continuous Velocity Motion in the Motion Control chapter.

316 Precision MicroControl

DCX MCCL Commands

Motion Commands

ABort motion

MCCL command.: aAB a = Axis number n= none
compatibility: MC200, MC210, MC260

see also: ST

This command serves as an emergency stop. For a servo, motion stops abruptly but leaves the
position feedback loop (PID) and the amplifier enabled. For a stepper motor, the pulses from the
module will be disabled immediately. For both servos and stepper motors, the target position of the
axis is set equal to the present position. This command can be issued to a specific axis, or can be
issued to all axes simultaneously by using an axis specifier of 0.

example: 2AB ;causes the motion of axis 2 to be
;aborted

Auxiliary encoder find index mark

MCCL command: aAFn a=Axisnumber n= integer orreal >=0

compatibility: MC200, MC210, MC260

see also: AH

This command is used to initialize a motor's auxiliary encoder at a given position. It will remain in
effect until the auxiliary encoder's index pulse goes active. At that time the current position of the
auxiliary encoder will be set to n. See the description of Homing Axes in the Motion Control chapter.

Backlash compensation oFf

MCCL command: aBFn a=Axisnumber n= integerorreal >=0

compatibility: MC200, MC210

see also: BD, BN

Use this command to disable backlash compensation. As soon as this command is executed, the
motor will move to its uncompensated position. See the description of Backlash Compensation in
the Application Solutions chapter.

Backlash compensation oN

MCCL command: aBN a=Axis number n= none

compatibility: MC200, MC210

see also: BD, BF

Use this command to enable backlash compensation. It should be issued after the backlash
compensation distance has set been with the BD command. Prior to issuing the Backlash
Compensation On command, the motor should be positioned halfway between the two positions
where it makes contact with the mechanical gearing. This will allow the controller to take up the
backlash (when the first move in either direction is made) without ‘bumping’ the mechanical position.

While backlash compensation is enabled, the response to the Tell Position, Tell Target and Tell
Optimal commands will be adjusted to reflect the ideal positions (as if no mechanical backlash were
present). See the description of Backlash Compensation in the Application Solutions chapter.

DCX-AT200 User’s Manual 317

DCX MCCL Commands

arc Center Absolute

MCCL command: aCAn a=Axisnumber n= integer or real >=0

compatibility: MC200, MC210, MC260

see also: CM, CP

This command is used to specify the center of an arc for a Contour Path motion. Since the arc motion
is performed by two axes, this command (or the arc Center Relative command) should occur twice in
a Contour Path command that initiates the arc motion. The parameter to this command specifies the
center of the arc for the selected axis in absolute user units. See the description of Contour Motion
in the Motion Control chapter.

arc Center Relative

MCCL command: aCRn a=Axisnumber n= integer or real >= 0

compatibility: MC200, MC210, MC260

see also: CM, CP

This command is used to specify the center of an arc for a Contour Path motion. Since the arc motion
is performed by two axes, this command (or the arc Center Absolute command) should occur twice in
a Contour Path command that initiates the arc motion. The parameter to this command specifies the
center of the arc for the selected axis in user units, relative to its' target position prior to beginning the
arc motion. See the description of Contour Motion in the Motion Control chapter.

arc Ending Angle absolute

MCCL command: aEAn a=Axisnumber n= integer or real >=0

compatibility: MC200, MC210, MC260

see also: CM, CP

This command is used to specify the ending angle (end point) of a contour arc move. The parameter
n is expressed as an absolute angle relative to when the axes where last homed. This command
would be used in conjunction with the Center Absolute, Center Relative, or aRc Radius commands.
See the description of Contour Motion in the Motion Control chapter.

arc Ending Angle relative

MCCL command: aERn a=Axisnumber n= integer or real >= 0

compatibility: MC200, MC210, MC260

see also: CM, CP

This command is used to specify the ending angle (end point) of a contour arc move. The parameter
n is expressed as an angle relative to when the axes where last homed. This command would be
used in conjunction with the Center Absolute, Center Relative, or aRc Radius commands. See the
description of Contour Motion in the Motion Control chapter.

Radius of aRc

MCCL command: aRRn a=Axisnumber n= integer or real >= 0

compatibility: MC200, MC210, MC260

see also: CM, CP

This command specifies the radius of a contour mode arc. For an arc of less than 180 degrees the
parameter n should be a positive value equal to the radius of the arc. For an arc of greater than 180

318 Precision MicroControl

DCX MCCL Commands

degrees the parameter n should be a negative value equal to the radius of the arc. See the
description of Contour Motion in the Motion Control chapter.

Contour Distance

MCCL command: aCDn a= Axis number of the controlling axis n = integer or real >= 0

compatibility: MC200, MC210, MC260

see also: CM, CP

For user defined contour moves, this command is used to specify the distance as measured along the
path from the contour path starting point to the end of the next motion. For typical orthogonal (X, Y, Z)
geometry, the DCX calculates the contour move distance (VX?+Y?+Z?) based on the target positions
specified by the move absolute and/or move relative commands. Parameter n of the Contour Distance
command allows the user to enter a custom contour distance to be used for trajectory generation. The
value n is used as an ending point for the contour path motion and to determine the proper velocity
over the motion segment. See the description of Contour Motion in the Motion Control chapter.

define the Contour Path

MCCL command: aCPn a=Axisnumber n= integer 0,1,2,0r3

compatibility: MC200, MC210, MC260

see also: CM

This command is used to form a 'compound' command that specifies a multi axis motion. The
compound command must begin with the Contour Path command, followed by a variable number of
other motion commands. The axis number used with the Contour Path command must be the
controlling axis in a group of motors that have been previously placed in Contour Mode. The
parameter to the Contour Path command selects either a linear, arc or 'user defined' motion. The
table below list the type of motion each parameter value specifies, and the acceptable commands that
can be include in the compound command. See the description of Contour Motion in the Motion
Control chapter.

1CP1, 1GH, 2GH, 3GH, 1VV60000
1CP1,1MA10000,2MA20000,3MR-5000,1VV30000
1CP1, 1GH, 2GH, 3GH
1CP2,1CA20000,2CA0,1MA40000, 2MAO
1CP3,1CR-20000,2CR0O,1MR-40000, 2MRO

Motion Type Compatible Commands

0 User defined CD,GH,MA,MR,VV

1 Linear GH,MA,MR,VV

2 Clockwise arc CA,CR,GH,MA MR,VV
3 Counter-Clockwise arc CA,CR,GH,MA MR,VV
Find Edge

MCCL command: aFEn a=Axisnumber n= integer orreal >= 0

compatibility: MC260

see also: Fl

This command is used to initialize a stepper motor at a given position. The command will remain in
effect until the home input of the module goes active. At that time an internal position register of the
MC260 module will be set to the current position. The position of the axis (where the index mark was
captured) will not be defined to position n until after the Motor Off / Motor oN (aMNn) command
sequence has been issued. This command will not cause any motor motion to be started or stopped.

DCX-AT200 User’s Manual 319

DCX MCCL Commands

It is up to the user to initiate motor motion before issuing the command, and to stop any motion after it
completes. See the description of Homing Axes in the Motion Control chapter.

Note: The status bit associated with the Find Edge command is bit 24 (stepper Home). The Find Edge
command causes this bit to be latched after the index mark has been captured. To clear the latched
status bit, issue the Motor Off and Motor oN sequence.

MD1,1LM2,1LN3,MJ10 ;call homing macro
MD10,1VM, 1DIO,1SVvV10000,1GO, 1RLO,IS24,MJ11,NO,IS17,MJ13,NO,JR-7
;test for sensors (home and +limit)
MD11,1ST,1wS.1,1DI0,1SV5000,1G0O,1RL0O,IC24,MJ12,NO,JR-4
;Move positive until home sensor off
MD12,1ST,1wWS.1,1DI1,1SV5000,1GO,MJ15
;move back to the home sensor
MD13,1MN, 1DI1,1SV5000,1G0O,MJ15 ;move out of limit sensor range back
;toward the home sensor
MD14,1FEO,1ST,1WS.1,1MF,WA.1,1MN, 1PM, 1MAO
;find the active edge of the home
;sensor. Stop axis, initialize
;position, move to position 0.

Find Index

MCCL command: aFln a=Axisnumber n= integer or real >= 0

compatibility: MC200, MC210

see also: DH, FE

This command is used to initialize a servo's encoder at a given position. It will remain in effect until the
encoder index pulse goes active. At that time the current position of the servo will be set to n. This
command will not start or stop any servo motions, it is up to the user to initiate motion prior to issuing
the find index command. Since an index pulse may occur at numerous points of a servo's travel (once
per revolution in rotary encoders), a typical servo application will require a coarse home signal to
"qualify" the index pulse.

MD1,1LM2,1LN3,MJ10 ;call homing macro

MD10,1VM, 1DIO0,1GO, 1RLO, IS25,MJ11,NO,IS17,MJ12,NO,JR-7
;test for sensors (home and +limit)

MD11,1ST,1ws.01,1DI1,1GO,1WE1,18T,1DI0,1G0O,1WEO,1FIO,1 ST,1WS.01,1PM, 1MN, 1MAO
;1f home sensor true, initialize on
;index

MD12,1MN, 1DI1,1G0O,1WEO,MJ11 ;move negative until home true

See the description of Homing Axes in the Motion Control chapter.

Go Home

MCCL command. aGH a=Axis number n= none
compatibility: MC200, MC210, MC260

see also: MA, MC, MD

Causes the specified axis or axes to move to the offset position that was specified when the last DH,
Fl or FE command was issued. This is equivalent to a Move Absolute command, where the
destination is 0 or the offset of the home position.

GO

MCCL command: aGOn a=Axisnumber n= integer 0 or 1

320 Precision MicroControl

DCX MCCL Commands

compatibility: MC200, MC210, MC260

see also: CM, VM

Causes one or all axes to begin motion in velocity or contour mode. In contour mode, synchronization
must be on. The parameter to this command is only used for contour mode, and determines whether
the motions will be linearly interpolated (n = 0), or a cubic spline (n = 1).

HOme

MCCL command. aHO a=Axis number n= none
compatibility: MC200, MC210, MC260

see also: MC, MD

This command will cause a user defined macro to be executed. It is up to the user to define the macro
to carry out the appropriate homing sequence for that motor (see Find Edge and Find Index
commands). Issuing 1HO will cause macro 1 to be executed, issuing 2HO will cause macro 2 to be
executed, and so on. Issuing this command with no motor specified will cause macro 9 to be
executed. See the description of Homing Axes in the Motion Control chapter.

Index Arm

MCCL command: alAn a=Axisnumber n= integer orreal >=0
compatibility: MC200, MC210

see also: Fl, WI

This command is used to arm the index capture function of a servo axis. It has a similar function to
Find Index, but does not wait for the index pulse to occur. After the Index Arm command is issued,
and the index pulse occurs, the location where the index pulse occurred will be defined captured.
After the index pulse has occurred (indicated by status bit 24 = 1), the Wait for Index and Motor oN
commands are issued to define the location of the index pulse as position n.

Jogging oFf

MCCL command. aJF a=Axis number n= none
compatibility: MC200, MC210, MC260

see also: JN

Disables jogging of a servo or stepper motor. See the description of Jogging in the Motion Control
chapter.

Jogging oN

MCCL command. aN a=Axis number n= none
compatibility: MC200, MC210, MC260

see also: JF

Enables jogging of a servo or stepper motor. See the description of Jogging in the Motion Control
chapter.

Learn Position

MCCL command: alPn a=Axisnumber n= integer >=0, <=1536
compatibility: MC200, MC210, MC260

see also: LT, MP

DCX-AT200 User’s Manual 321

DCX MCCL Commands

Used for storing the current position of one or more axes in the DCX's point memory. Positions stored
in the point memory can be used by the Move to Point command to repeat a stored motion pattern.
The command parameter n specifies the entry in the point memory where the position will be stored.

If the LP command is issued with an axis specifier of 0, the positions of all axes on the DCX board will
be stored in the point memory. If the command is issued with a non-zero axis specifier, only the
position of that axis will be stored in the point memory. No other positions in the point memory will be
changed. See the description of Learning/ Teaching Points in the Application Solutions chapter.

Learn Target

MCCL command: alTn a=Axisnumber n= integer >=0, <=1536

compatibility: MC200, MC210, MC260

see also: LP, MP

Similar to the LP command, but stores the axes' target position (versus actual position). Motion of an
axis is not required for storing target positions. This makes it possible to download coordinates from a
host computer or CAD system.

Turn off the motor drive outputs with the MF command, then send motion commands prior to the LT
command. Targets stored in the point memory can be used by the Move to Point command to repeat
a stored motion pattern. The command parameter n specifies the entry in the point memory where the
position will be stored. If the LT command is issued with an axis specifier of 0, the targets of all axes
on the DCX board will be stored in the point memory. If the command is issued with a non-zero axis
specifier, only the target of that axis will be stored in the point memory. No other targets in the point
memory will be changed. See the description of Learning/ Teaching Points in the Application
Solutions chapter.

Motor oFf

MCCL command : aMF a=Axis number n= none
compatibility: MC200, MC210, MC260

see also: MN

Issuing this command will place one or all servos and stepper motors in the "off" state. For servos, the
Analog Signal will go to the null level, the servo loop (PID) will terminate, and the Amplifier Enable
output will go inactive. For stepper motors, the Motor On output will go inactive. This command can be
used to prevent unwanted motion or to allow manual positioning of the servo or stepper motor.

Motor oN

MCCL command: aMN a = Axis number n= none
compatibility: MC200, MC210, MC260

see also: MF

Use this command to place one or all servos and stepper motors in the on state. If an axis is off when
this command is issued, the target and optimal (commanded) positions will be set to the motor's
current position. This can cause a change in the axis' reported position based on new user units. At
the same time, a servo module's Amplifier Enable or a stepper motor module's drive enable output
signal will go active. This has the effect of causing servo and stepper motors to hold their current
position. If an axis is already on when this command is issued, the position values will be set for the
current user units, but the commanded encoder or pulse position will not be changed.

322 Precision MicroControl

DCX MCCL Commands

Move to Point

MCCL command: aMPn a=Axisnumber n= integer >=0, <=1536

compatibility: MC200, MC210, MC260

see also: LP, LT

Used for moving one or more axes to a previously stored point. The command parameter n specifies
which entry in the DCX's point memory is to be used as the destination of the move. If the MP
command is issued with an axis specifier of 0, all axes will move to the positions stored in the point
memory for that point. If the command is issued with a non-zero axis specifier, only that axis will move
to the position in the point memory. No other axes will be commanded to move. Points can be stored
in the point memory with the Learn Point (LP) and Learn Target LT) commands. See the description
of Learning/ Teaching Points in the Application Solutions chapter.

Move Relative

MCCL command: aMRn a=Axisnumber n= integer orreal >=0

compatibility: MC200, MC210, MC260

see also: MA, PM

This command generates a motion of relative distance n. A motor number must be specified and that
motor must be in the ‘on’ state for any motion to occur. If the motor is in the off state, only its' internal
target position will be changed. See the description of Point to Point Motion in the Motion Control
chapter.

Parabolic Profile

MCCL command: aPP a=Axis number n= none

compatibility: MC260

see also: PS, PT

This command causes the respective stepper motor to perform point to point motions with a
triangular acceleration profile. The resulting velocity profile is parabolic. Motion with this profile is
limited to position and contour mode moves, where the acceleration, deceleration, , velocity, and
destination don‘t change during the move. See the description of Defining the Characteristics of
a Move in the Motion Control chapter.

Record axis data

MCCL command: aPRn a=Axisnumber n= integer>0, <=512

compatibility: MC200, MC210

see also:

This command is used to begin the recording of motion data (actual position, optimal position, and
DAC output) for an axis. See the description of Record and display Motion Data in the Application
Solutions chapter.

Profile S-curve

MCCL command: aPS a = Axis number n= none

compatibility: MC200, MC210

see also: PP, PT

This command causes the respective servo motor to perform point to point motions with a sinusoidal
acceleration profile. The resulting velocity profile is trapezoidal with rounded corners, thus the name
S-curve. Motion with this profile is limited to position and contour mode moves, where the

DCX-AT200 User’s Manual 323

DCX MCCL Commands

acceleration, deceleration, velocity, and destination don't change during the move. See the
description of Defining the Characteristics of a Move in the Motion Control chapter.

Profile Trapezoidal

MCCL command : aPT a=Axis number n= none

compatibility: MC200, MC210, MC260

see also: PS, PT

This command causes the respective servo or stepper motor to perform point to point motions with a
constant acceleration profile. The resulting velocity profile is trapezoidal. When motion is being
performed with this profile, the acceleration, velocity, and destination can be changed at any time
during the move. See the description of Defining the Characteristics of a Move in the Motion
Control chapter.

Restore Configuration

MCCL command: aRCn n=Axisnumber n= integer>0, <=127

compatibility: MC200, MC210, MC260

see also: SC

This command takes axis specifier a and requires a file number as parameter n. This command
restores the entire motor table. This includes the public motor table in dual port memory and the
private motor table in internal RAM. When used with the Save Configuration command, motors can be
stopped (aVOO0) during a move, their configurations saved, switched to any other mode (except
contouring), moved about and then returned to their original positions, their configurations restored,
and then commanded to continue the contour move (aVO1.0). See the description of Pause and
Resume Motion in the Motion Control chapter.

Save Configuration

MCCL command: aSCn n=Axisnumber n= integer >0, <=127

compatibility: MC200, MC210, MC260

see also: RC

This command takes axis specifier a and requires a file number parameter n. This command saves
the entire motor table. This includes the public motor table in dual port memory and the private motor
table in internal RAM. When used with the Restore Configuration command, motors can be stopped
(aVOO0) during a move, their configurations saved, switched to any other mode (except contouring),
moved about and then returned to their original positions, their configurations restored, and then
commanded to continue the contour move (aVO1.0). See the description of Pause and Resume
Motion in the Motion Control chapter.

Stop

MCCL command: aST a = Axis number
compatibility: MC200, MC210, MC260
see also: AB, MF

This command is used to stop one or all motors. It differs from the Abort command in that motors will
decelerate at their preset rate, instead of stopping abruptly. This command can be issued to a specific
axis, or can be issued to all axes simultaneously by using an axis specifier of 0. See the description of
Continuous Velocity Motion in the Motion Control chapter.

324 Precision MicroControl

DCX MCCL Commands

No Synchronization

MCCL command: aNS a = Axis number

compatibility: MC200, MC210, MC260

see also: SN

This command turns synchronization off in contour path motions. It should be issued to the controlling
axis of the contour group. See the description of Contour Motion in the Motion Control chapter.

Synchronization oN

MCCL command: aSN a = Axis number

compatibility: MC200, MC210, MC260

see also: GO, CP, NS

This command turns synchronization on for contour path motion. This command can be issued to the
controlling axis prior to Contour Path commands. With synchronization on, no motion will occur when
a Contour Path command is issued, until a succeeding GO command is issued to the controlling axis.
See the description of Contour Motion in the Motion Control chapter.

DCX-AT200 User’s Manual 325

DCX MCCL Commands

Reporting Commands

The commands in this section are used to display the current values of internal controller data. Some
of these values are 'real' numbers that must be displayed with fractional parts. In order to provide
compatibility with older products that don't support real numbers, and to provide flexibility in the
display format, certain reporting commands accept a parameter that sets the number of digits
displayed to the right of the decimal point. These commands will show a 'p' as a parameter in their
descriptions.

For ASCII command interfaces, p can be replaced with a number between 0 and 1 and the tenths digit
will be interpreted as the number of decimal digits to display to the right of the decimal point. If no
parameter is used with the command, or a parameter of 0 is used, the reply to the command will be
an integer with no decimal point. Example:
;If axis 1 position is 123.4567

1TP; DCX replies 123

1TPO; DCX replies 123

1TP.1; DCX replies 123.4

1TP.3; DCX replies 123.456

For the Binary command interface, the reporting commands that have a 'p' listed as their parameter
will accept an integer value of 0, 1 or 2 in place of p. A value of 0 will generate an integer reply, a
value of 1 will generate a 64 bit floating point reply, and a value of 2 will generate a 32 bit floating
point reply. See the appendix describing the DCX Binary Command Interface for more details on
these reply formats.

Auxiliary encoder Tell position

MCCL command: aATp a=Axisnumber p= 0,.1,.2,.3, 4,5

compatibility: MC200, MC210, MC260

see also: AH

Reports the absolute position of the auxiliary encoder of an axis. To read the primary encoder or
stepper position, see the Tell Position command.

Auxiliary encoder tell index

MCCL command. aAZp a=Axisnumber p= 0,.1,.2,.3 4,5

compatibility: MC200, MC210, MC260

see also:

Reports the position where the auxiliary encoder's index pulse was observed. This position is relative
to the encoder's position when the controller was reset or an Auxiliary encoder define Home
command was issued to the axis.

Display the recorded Optimal position

MCCL command: aDOp a=Axisnumber p= integer >0, <=512

compatibility: MC200, MC210

see also: PR

This command is used to report the captured optimal position of an axis. See the description of
Record and display Motion Data in the Application Solutions chapter.

326 Precision MicroControl

DCX MCCL Commands

Display the recorded DAC output

MCCL command: aDQp a=Axisnumber p= integer >0, <= 512

compatibility: MC200, MC210

see also: PR

This command is used to report the captured DAC output of an axis. See the description of Record
and display Motion Data in the Application Solutions chapter.

Display Recorded position

MCCL command: aDRp a=Axisnumber p= integer >0, <= 512

compatibility: MC200, MC210

see also: PR

This command is used to report the captured actual position of an axis. See the description of
Record and display Motion Data in the Application Solutions chapter.

Tell Analog

MCCL command: xTAp x=Channelnumber p= 0,.1,.2, .3, 4,.5
compatibility: MC500, MC510

see also:

Reports the digitized analog input signals to the DCX. The four 8-bit analog input channels accessed
on connectors J3 are numbered 1,2,3 and 4. For each of these channels, the TA command will
display a number between 0 and 255. These numbers are the ratio of the analog input voltage to the
reference input voltage multiplied by 256. The reference for the first four channels must be supplied to
the DCX on connector J3, and can be any voltage between 0 and +5 volts DC. The analog input
channels on any installed MC500 modules will be numbered sequentially starting with channel 5. See
the description of Analog Inputs in the DCX General Purpose I/O chapter.

Tell Breakpoint

MCCL command: aTBp a=Axisnumber p= 0,.1,.2,.3, 4,5

compatibility: MC200, MC210, MC260

see also: IP, IR

Reports the position where the breakpoint for a motor is placed. Breakpoints are placed with the IP,
IR, WP and WR commands. The interpretation of the command parameter p is explained at the
beginning of this section.

Tell digital Channel

MCCL command: TCx x = Channel number

compatibility: MC400

see also:

Reports the on/off status of each digital I/O line. This data is reported separately for each channel.
The DCX responds by displaying the channel number and a "1" if the channel is "on", or a "0" if the
channel is "off".

Tell Derivative gain

MCCL command: aTDp a=Axisnumber p= 0,.1,.2,.3, 4,5
compatibility: MC200, MC210

see also: SD

DCX-AT200 User’s Manual 327

DCX MCCL Commands

Reports the derivative gain setting for a servo.

Tell Contouring count

MCCL command: aTXp a=Axisnumber p= integer >0, <= 2,147,483,647

compatibility: MC200, MC210, MC260

see also: CP

Reports the current contour path motion that an axis is performing. The value that the DCX replies is
only valid for the controlling axis in a group of axes performing contoured path motion. After the
Contour Mode command is issued to an axis, the TX command will have a reply value of 0. For each
Linear or User Defined Contour Path motion that the controller completes, the contouring count will be
incremented by one. For Arc Contour Path motions, the count will be incremented by 2. By counting
the number of Contour Path commands that have been issued to the controller (1 for linear, 2 for arc),
and comparing it to the response from the TX command, the user can determine on what segment of
a continuous path motion the motors are on. The contour count is stored as a 32 bit value
(2,147,483,647). To reset the contour count value and avoid ‘wrap around’, the user should stop
motion and issue the Contour Mode command.

Tell Following error

MCCL command: aTFp a=Axisnumber p= 0,.1,.2,.3, 4,5

compatibility: MC200, MC210

see also: SE

Reports the current following error of a servo. This error is the difference between the commanded
position (calculated by the trajectory generator) and the current position.

Tell proportional Gain

MCCL command: aTGp a=Axisnumber p= 0,.1,.2,.3, 4,5
compatibility: MC200, MC210

see also: SG

Reports the proportional gain setting for a servo.

Tell Integral gain

MCCL command. aTlp a=Axisnumber p=0,.1,.2,.3, 4,5
compatibility: MC200, MC210

see also: set Integral gain

Reports the integral gain setting for a servo.

Tell integral Limit setting

MCCL command: aTlp a=Axisnumber p= 0,.1,.2,.3, 4,5
compatibility: MC200, MC210

see also: IL

Reports the integral limit setting for a servo.

Tell velocity Konstant
MCCL command: aTKp a=Axisnumber p= 0,.1,.2,.3, 4,5
compatibility: MC200, MC210

328 Precision MicroControl

DCX MCCL Commands

see also: VG

Reports the velocity constant for a servo. This is the value that was set with the Velocity Gain
command. For a closed loop stepper axis this command reports the Velocity Gain that was set during
initialization.

Tell Macros

MCCL command: TMn n= integer >=-1, <= 1099

compatibility: N/A

see also: MD, RM

Displays the commands which make up any macros which have been defined. If n = -1, all macros will
be displayed. Since macros may be defined in any sequence, the TM command is useful for
confirming the existence and/or contents of macro commands. In addition to the contents of macros,
this command will also show the amount of memory available for macro storage, both in RAM and
FLASH memory. See the description of Macro Command in the DCX Operation chapter.

Tell Optimal

MCCL command: aTOp a=Axisnumber p= 0,.1,.2,.3, 4,5
compatibility: MC200, MC210, MC260

see also:

Reports the desired position for servos and current position for steppers. For servos, the reported
value will be different than the position reported by the TP command if a following error is present.

Tell Position

MCCL command: aTPp a=Axisnumber p= 0,.1,.2,.3, 4,5

compatibility: MC200, MC210, MC260

see also: DH, FI

Reports the absolute position of axis a. It may be used to monitor motion during both Motor oN (MN)
and Motor ofF (MF) states. The interpretation of the command parameter p is explained at the
beginning of this section.

Tell torQue

MCCL command: aTQp a=Axisnumber p= 0,.1,.2,.3, 4,5
compatibility: MC200, MC210

see also: QM, SQ

Reports the current output for a servo module. See the description of the Torque Mode Output
Control in the Application Solutions chapter.

Tell Register ‘n’

MCCL command: TRn n= integer>=0, <= 256

compatibility: N/A

see also: AL, AR

Displays the contents of User Register n. When the command parameter is set to 0 (or not specified),
this command reports the contents of User Register zero, which is the accumulator.

DCX-AT200 User’s Manual 329

DCX MCCL Commands

report the Status of an axis
MCCL command: aTSp a=Axisnumber p= 0,.1,.2,.3,4,.5

compatibility:
see also:

MC200, MC210, MC260

Reports the status of an axis. If the command parameter is 0, the response is coded into a single 32
bit value. If the parameter has a value between 1 and 31 inclusive, the state of the respective bit is
displayed as a '0' for reset, and a '1' for set. Using a command parameter greater that 32 results in
formatted status displays. Status flags that are not valid for steppers are indicated by an asterisk. The
meaning of each bit is listed below:

0 Busy (motor data being updated)
1 Motor On
2 At Target
3 Trajectory Complete (Optimal = Target)
4 Direction (0 = positive, 1 = negative)
5 Motor Jogging is Enabled
6 Motor homed
7 Motor Error (Limit +/- tripped, max. following error exceeded)
8 Looking For Index (FI, WI)
9 Looking For Edge (FE, WE)
10 Index found
11 Unused
12 Breakpoint Reached (IP, IR, WP, WR)
13 Exceeded Max. Following Error *
14 Amplifier Fault Enabled *
15 Amplifier Fault Tripped *
16 Hard Limit Positive Input Enabled
17 Hard Limit Positive Tripped
18 Hard Limit Negative Input Enabled
19 Hard Limit Negative Tripped
20 Soft Motion Limit High Enabled
21 Soft Motion Limit High Tripped
22 Soft Motion Limit Low Enabled
23 Soft Motion Limit Low Tripped
24 Encoder Index (MC200, MC210)/Stepper Home (MC260)
25 Coarse home (current state)
26 Amplifier Fault *
27 Auxiliary Encoder Index
28 Limit Positive Input Active (current state)
29 Limit Negative Input Active
30 User Input 1 *
31 User Input 2 *
* not valid for stepper modules
330 Precision MicroControl

DCX MCCL Commands

example: DM ;Place DCX in Decimal Output Mode
1TS ;report the status of axis #1
DCX returns: 01 268439566 ;status =
;bit 28 set - limit + input active

;but limits error checking is not
;enabled (bit 16 cleared)

;bit 12 set - breakpoint reached
;bit 3 set - trajectory complete
;bit 2 set - axis At target

;bit 1 set - motor on

example: HM ;Place DCX in Hexidecimal Output Mode
1TS ;report the status of axis #1
DCX returns: 01 1000100E ;status =
;bit 28 set - limit + input active

;but limits error checking is not
;enabled (bit 16 cleared)

;bit 12 set - breakpoint reached
;bit 3 set - trajectory complete
;bit 2 set - axis At target

;bit 1 set - motor on

example: 1TS32

DCX returns:

MOTOR STATUS:

Motor On

At Target

Trajectory Complete

Direction = Positive

Jogging Disabled

Not Homed

No Motor Error

Not Looking For Index

Not Looking For Edge

Breakpoint Reached

Max. Following Error Not Exceeded
Amplifier Fault Disabled

Hard Motion Limit Positive Disabled
Hard Motion Limit Negative Disabled
Soft Motion Limit High Disabled
Soft Motion Limit Low Disabled
Index Input = 1

Coarse Home Input =0

Amplifier Fault Input = 0

Auxiliary Encoder Index = 0

DCX-AT200 User’s Manual 331

DCX MCCL Commands

Limit Positive Input = 1
Limit Negative Input =0
User lnput1=0

User Input2=0

example: 1TS33

DCX returns:

MOTOR AUXILIARY STATUS:

Hard Motion Limit Mode = Turn Motor Off
Soft Motion Limit Mode = Turn Motor Off
Servo Loop Rate is Medium
Synchronization is Off

Servo Phasing is Standard

Backlash Compensation is Off

example: 1TS34

DCX returns:

Motor status: 100100c

Auxiliary status: 20

Position count: 0

Optimal count: 0

Index count: 0

Position: 0.000000

Target: 0.000000

Optimal position: 0.000000

Break position: 0.000000

Dead band: 0.000000

Maximum following error: 1024.000000
Motion limits: Low: 0.000000 High: 0.000000
User Scale: 1.000000

User Zero: 0.000000

User Offset: 0.000000

User Rate Conv.: 1.000000

User output constant: 1.000000
Programmed velocity: 10000.000000
Programmed acceleration: 10000.000000
Programmed deceleration: 10000.000000
Minimum velocity: 0.000000

Current velocity: 0.000000

Velocity override: 1.000000

Module ADC Input 1: 0.019530 Input2: 0.000000

Tell Target

MCCL command.:

alTp a=Axisnumber p= 0,.1,.2, 3 4,5

332

Precision MicroControl

DCX MCCL Commands

compatibility: MC200, MC210, MC260

see also:

Reports target position. This is the absolute position to which the servo or stepper motor was last
commanded to move. It may be specified directly with the Move Absolute (MA) command or indirectly
with the Move Relative (MR) command. The interpretation of parameter p is explained at the
beginning of this section.

Tell Velocity

MCCL command: aTVp a=Axisnumber p= 0,.1,.2,.3, 4,5
compatibility: MC200, MC210, MC260

see also:

Reports the current velocity of a servo or stepper motor. The value is reported in units of encoder
counts per servo loop update.

Tell index position

MCCL command: aTZp a=Axisnumber p= 0,.1,.2,.3, 4,5

compatibility: MC200, MC210

see also:

Reports the position where the index pulse was observed. This position is relative to the encoder's
position when the controller was reset or a Define Home command was issued to the axis.

Tell firmware Version

MCCL command: VE

compatibility: N/A

see also:

Reports the revision level of the firmware in the ROM of the DCX. This command also displays the
amount of memory installed on the DCX motion controller motherboard.

example: VE

DCX returns:

DCX-AT200 Motion Controller

Hardware: 64K Dual Port RAM, 64K Private RAM, 256K Flash Memory
System Firmware Ver. PM1 Rev. 3.6a

Copyright (c) 1994-1999 Precision MicroControl Corporation

All rights reserved.

DCX-AT200 User’s Manual 333

DCX MCCL Commands

/0 Commands

Channel oFf

MCCL command: CFx x = Channel number
compatibility: MC400

see also:

Causes digital I1/0 channel x to go to "off" state. If the channel has been configured for "high true", the
channel will be at a logic low (less than 0.4 volts DC) after this command is executed. If it has been
configured for "low true", the channel will be at a logic high (greater than 2.4 volts DC).

Channel High

MCCL command. CHx x = Channel number
compatibility: MC400

see also:

Causes digital /0 channel x to be configured for "high true" logic. This means that the I/O channel will
be at a high logic level (greater than 2.4 volts DC) when the channel is "on", and at low logic level
(less than 0.4 volts DC) when the channel is "off". Note that issuing this command will not cause the
I/0O channel to change its current state. Issuing this command without specifying a channel will cause
all channels present on the DCX to be configured as "low true".

Channel In

MCCL command: Clx x = Channel number
compatibility: MC400

see also:

Used to configure digital I/O channel x as an input. All digital I/O channels on the DCX

default to inputs on power-on or reset. If they are subsequently changed to outputs with the Channel
ouT command, they can be returned to inputs with the Channel In command. The state of a digital 1/0
channel can be viewed with the Tell Channel command.

Channel Low

MCCL command: CLx x = Channel number

compatibility: MC400

see also:

Causes digital 1/0 channel x to be configured for "low true" logic. This means that the I/O channel will
be at a low logic level (less than 0.4 volts DC) when the channel is "on", and at high logic level
(greater than 2.4 volts DC) when the channel is "off". Note that issuing this command will not cause
the I/O channel to change its current state. Issuing this command without specifying a channel will
cause all channels present on the DCX to be configured as "low true".

Channel oN

MCCL command.: CNx x = Channel number
compatibility: MC400

see also:

334 Precision MicroControl

DCX MCCL Commands

Causes channel x to go to "on" state. If the channel has been configured for "high true", the channel
will be at a logic high (greater than 2.4 volts DC) after this command is executed. If it has been
configured for "low true", the channel will be at a logic low (less that 0.4 volts DC).

Channel Out

MCCL command.: CTx x = Channel number
compatibility: MC400

see also:

Used to configure digital I/O channel x as an output. The DCX will turn the channel "off" before
changing it to an output.

Get Analog

MCCL command: GAx x= Channel number

Performs analog to digital conversion on the specified input channel and places the result into the
Accumulator (User Register 0). Analog channels are numbered starting with 1.

Output Analog

MCCL command: OAn n= integer or real

compatibility MC500, MC520

Sets the specified analog output channel to the value stored in the Accumulator (User Register 0).
The analog output channels on any installed MC500 modules are numbered consecutively starting
with channel 1. The contents of the Accumulator should be in the range 0 to 4095.

Reset Counter

MCCL command: RC

compatibility: N/A

see also:

Initializes DCX hardware pulse counter to 0.
comment. Not implemented at this time.

Tell Analog

MCCL command: xTAp x=Channelnumber p= 0,.1,.2,.3, 4,.5
compatibility: MC500, MC510

see also:

Reports the digitized analog input signals to the DCX. The four 8-bit analog input channels accessed
on connectors J3 are numbered 1,2,3 and 4. For each of these channels, the TA command will
display a number between 0 and 255. These numbers are the ratio of the analog input voltage to the
reference input voltage multiplied by 256. The reference for the first four channels must be supplied to
the DCX on connector J3, and can be any voltage between 0 and +5 volts DC. The analog input
channels on any installed MC500 modules will be numbered sequentially starting with channel 5. See
the description of Analog Inputs in the DCX General Purpose 1/O chapter.

Tell Channel
MCCL command.: TCx x = Channel number
compatibility: MC400

DCX-AT200 User’s Manual 335

DCX MCCL Commands

see also:

Reports the on/off status of each digital I/O line. This data is reported separately for each channel.
The DCX responds by displaying the channel number and a "1" if the channel is "on", or a "0" if the
channel is "off".

336 Precision MicroControl

DCX MCCL Commands

Macro and Multi-Tasking Commands

BreaK

MCCL command: BK none

Execution of this command will cause the rest of the command line or macro to be skipped. This
command is used in conjunction with the If oN and If ofF commands to implement conditional
execution.

Escape Task

MCCL command: ETn n= integer>=0

see also: GT, TR

This command is used to terminate a 'background task' that was created with the Generate Task
command. The parameter to this command must be the task identifier that was placed in the
accumulator (user register 0) of the task that issued the Generate Task command. A background task
can use this command to terminate itself, but it must first acquire its identifier from the 'parent' task
through a global register. Note that the task that interprets and executes commands received from the
command interfaces cannot be terminated. See the description of Multi-Tasking in the DCX
Operation chapter.

Generate Task

MCCL command: GTn n= integer > =0, <=1099

see also: ET, MC, MD, TR

This command will cause macro n to be executed as a background task. Alternatively, this command
can precede a sequence of commands. In this case, the commands following the Generate Task
command will be executed as a background task. After this command is issued, an identifier for the
background task will be placed in the accumulator (register 0) of the task that issued the command.
This identifier can be used as the parameter to the Escape Task command to terminate the
background task. See the description of Multi-Tasking in the DCX Operation chapter.

Macro Call
MCCL command: MCn n= integer>=0, <=1099
see also: ET, MD

This command may be used to execute a previously defined macro command. If there is no macro
defined by the number n, an error message will be displayed. Macro Call Commands can also be
used in compound commands with other commands in the instruction set. In addition, a macro
command can call another macro command, which in turn can call another macro command, and so
on. See the description of Macro Command in the DCX Operation chapter.

Macro Define

MCCL command: MDn n= integer>=0,<=1099

see also: ET, GT, MD

Used to define a new macro. This is done by placing the Macro Define command as the first
command in a sequence of commands. All commands following the Macro Define command will be
included in the macro. See the description of Macro Command in the DCX Operation chapter.

DCX-AT200 User’s Manual 337

DCX MCCL Commands

On the DCX, macros can be stored in one of two types of memory. Macro numbers 0 through 9, and
256 through 1099 are stored in 'Flash' memory which is preserved even if power to the board is
turned off. Macro numbers 10 through 255 are stored in static RAM memory. T these macros will
erased if power to the board is turned off (unless a user supplied battery is connected to the board). A
macro in the Flash memory has the disadvantage that it can't be redefined unless all the macros are
erased. A macro in RAM can be redefined without erasing the existing macros, but the memory space
occupied by the previous version of the macro will not be reused until a Reset Macro command is
issued. Thus, if macro n already exists when a Macro Define command for that macro is issued, and n
is between 10 and 255 inclusive, the previously defined macro will be replaced by the new macro
definition. If n is outside this range, the previously defined macro will be "undefined", but not replaced.
Note that macro 0 will be executed when the board is powered up or reset.

Macro Jump

MCCL command: Mn n= integer > =0, <=1099

Jumps to a previously defined macro. This command differs from the Macro Call command in that
execution will not return to the command following the MJ command. See the description of Macro
Command in the DCX Operation chapter.

No Operation

MCCL command: NO none

This command does nothing. It can be used to cause short delays in command line executions or as a
filler in sequence commands.

Reset Macros

MCCL command: RMn n= integer 0, 1, or 2

This command will initialize the memory space used for storage of macro commands. It has the effect
of erasing currently defined macros from memory. It is also the only way in which macro commands
can be removed from memory after they are defined. The parameter to this command selects which
group of macros will be erased. A parameter value of 1, causes the macros in RAM to be erased, a
value of 2 causes the macros in Flash memory to be erased, and a parameter value of 0 causes all
macros to be erased. It is always a good idea to use the Reset Macro command (RM) before setting
up a new set of macro commands. See the description of Macro Command in the DCX Operation
chapter.

Tell Macros

MCCL command: TMn n= integer>=-1,<=1099

Displays the commands which make up any macros which have been defined. If n = -1, all macros will
be displayed. Since macros may be defined in any sequence, the TM command is useful for
confirming the existence and/or contents of macro commands. In addition to the contents of macros,
this command will also show the amount of memory available for macro storage, both in RAM and
FLASH memory. See the description of Macro Command in the DCX Operation chapter.

338 Precision MicroControl

DCX MCCL Commands

Register Commands

Accumulator Add

MCCL command: AAn n = integer or real

Performs ACC = ACC + n, the addition of the command parameter n to the Accumulator (User
Register 0). If the command parameter is in integer format, the result is stored in the Accumulator as a
32 bit integer. If the command parameter is in real format, the result is stored in the Accumulator
(User Register 0 and 1) as a 64 bit real value.

Accumulator Complement, bit wise

MCCL command: AC none

Performs ACC = !ACC, the bit wise logical complement of the Accumulator (User Register 0). The
result is stored in the Accumulator as a 32 bit integer.

Accumulator Divide

MCCL command: ADn n = integer or real

Performs ACC = ACC/n, the division of the Accumulator (User Register 0) by the command
parameter. If the command parameter is in integer format, the result is stored in the Accumulator as a
32 bit integer. If the command parameter is in real format, the result is stored in the Accumulator
(User Register 0 and 1) as a 64 bit real value. No operation is done if the command parameter is zero.

Accumulator logical Exclusive or with ‘n’, bit wise

MCCL command: AEn n = integer or real

Performs ACC = ACC * n, the bit wise logical exclusive or'ing of the Accumulator (User Register 0)
with the command parameter. The result is stored in the Accumulator as a 32 bit integer.

Accumulator load

MCCL command: ALn n = integer or real

Loads the Accumulator (User Register 0) with n . If the command parameter is an integer (no decimal
point or exponent label) the Accumulator will be marked as containing a 32 bit integer, otherwise it will
be marked as containing a 64 bit real value.

ALL1234567890 ;Load 1234567890 into the accumulator
AL1234.56789 ;Load 1234.56789 into the accumulator
ALL0.123456789e4 ;Load 1234.56789 into the accumulator

Accumulator Multiply

MCCL command: AMn n= integer or real

Performs ACC = ACC * n, the multiplication of the Accumulator (User Register 0) by the command
parameter. If the command parameter is in integer format, the result is stored in the Accumulator as a
32 bit integer. If the command parameter is in real format, the result is stored in the Accumulator
(User Register 0 and 1) as a 64 bit real value.

DCX-AT200 User’s Manual 339

DCX MCCL Commands

Accumulator logical ‘aNd’ the ‘n’, bit wise

MCCL command: ANn n= integer or real

Performs ACC = ACC & n, the bit wise logical AND of the Accumulator (User Register 0) with the
command parameter. The result is stored in the Accumulator as a 32 bit integer.

Accumulator logical ‘Or’ with ‘n’, bit wise

MCCL command: AOn n= integer or real

Performs ACC = ACC | n, the bit wise logical OR of the Accumulator (User Register 0) with the
command parameter. The result is stored in the Accumulator as a 32 bit integer.

copy Accumulator to Register

MCCL command: ARn n = integer or real

Copies the contents of the Accumulator (User Register 0) to the User Register specified by n. The
contents of the Accumulator are unaffected by this command.

Accumulator Subtract

MCCL command: ASn n= integer or real

Performs ACC = ACC - n, the subtraction of the command parameter from the Accumulator (User
Register 0). If the command parameter is in integer format, the result is stored in the Accumulator as a
32 bit integer. If the command parameter is in real format, the result is stored in the Accumulator
(User Register 0 and 1) as a 64 bit real value.

copy Register to Accumulator

MCCL command: RAn n = integer or real

Copies the contents of the User Register n into the Accumulator (User Register 0). The original
contents of the accumulator is overwritten, while the contents of the source User Register are
unaffected.

Accumulator Evaluate
MCCL command: Avn n= integer >= 0, <=25

Performs a unary operation on the contents of the Accumulator (User Register 0), placing the result in
the Accumulator, overwriting the original contents. Parameter n specifies the desired operation. The
table below list the available operations and the respective command parameter to use. The result
that is stored in the Accumulator (1<= n <= 25) will be a 64 bit real in all cases except the Convert to
ASCII operation which returns an integer.

Return type

1 Convert to ASCII (Address placed in ACC) Integer
2 Change Sign Double
3 Absolute Value Double
4 Ceiling Double
5 Floor Double
6 Fraction Double
7 Round Double

340 Precision MicroControl

DCX MCCL Commands

8 Square Double
9 Square Root Double
10 Sine Double
11 Cosine Double
12 Tangent Double
13 Arc Sine Double
14 Arc Cosine Double
15 Arc Tangent Double
16 Hyperbolic Sine Double
17 Hyperbolic Cosine Double
18 Hyperbolic Tangent Double
19 Exponent Double
20 Log Double
21 Log10 Double
22 Load Pi Double
23 Load 2 * Pi Double
24 Load Pi/2 Double
25 Convert double register contents to an integer Integer
Get Analog

MCCL command: GAx x= Channel number
Performs analog to digital conversion on the specified input channel and places the result into the
Accumulator (User Register 0). Analog channels are numbered starting with 1.

Get the module iD

MCCL command: GDx x= integer>0,<=6
Loads the accumulator with the type of motor module associated with an axis number

Module Type ID code

MC200 0
MC210 16
MC260 1

Get defaUlt axis

MCCL command: GUx x= integer>0,<=6
This command is used to place the current default axis number in the accumulator.

Get the position of the auxiliary encoder

MCCL command: aGX a= Axis number

compatibility: MC200, MC210, MC260

This command reads the auxiliary encoder associated with axis a and places the value into the
Accumulator (User Register 0).

Output Analog
MCCL command: OAx x= integer or real

DCX-AT200 User’s Manual 341

DCX MCCL Commands

compatibility MC500, MC520

Sets the analog output of channel x to the value stored in the Accumulator (User Register 0). The
analog output channels on any installed MC500 modules are numbered consecutively starting with
channel 1. The contents of the Accumulator should be in the range 0 to 4095.

Read the Byte at absolute memory location ‘n’ into the accumulator
MCCL command: aRBn a=Axisnumber n= integer

This command will copy the contents of the byte located at absolute memory address n into the
Accumulator (User Register 0). Alternatively, if an axis number is specified with the command, the
contents of a byte located within that axes' motor table will be copied into the accumulator. In this
case the command parameter specifies the offset of the byte from the beginning of that axes motor
table. The Reading DCX Memory section of this chapter lists the offsets of all data in the motor
tables. The upper bits of the Accumulator are cleared when the byte data is copied into it.

Read the Double (64 bit real) value at absolute memory location ‘n’ into

the accumulator

MCCL command: aRDn a=Axisnumber n= real

This command will copy the contents of the Double (64 bit real) located at absolute memory address n
into the Accumulator (User Register 0). Alternatively, if an axis number is specified with the command,
the contents of a Double located within that axes' motor table will be copied into the accumulator. In
this case the command parameter specifies the offset of the Double from the beginning of that axes
motor table. The Reading DCX Memory section of this chapter lists the offsets of all data in the motor
tables.

Read the Long (32 bit integer) value at absolute memory location ‘n’ into

the accumulator

MCCL command: aRLn a=Axis number n= integer

This command will copy the contents of the Long (32 bit integer) located at absolute memory address
n into the Accumulator (User Register 0). Alternatively, if an axis number is specified with the
command, the contents of a Long located within that axes' motor table will be copied into the
accumulator. In this case the command parameter specifies the offset of the Long from the beginning
of that axes motor table. The Reading DCX Memory section of this chapter lists the offsets of all data
in the motor tables.

Read the float (32 bit real) value at absolute memory location ‘n’ into the

accumulator

MCCL command: aRVn a=Axisnumber n= real

This command will copy the contents of the Float (32 bit real) located at absolute memory address n
into the Accumulator (User Register 0). Alternatively, if an axis number is specified with the command,
the contents of a Float located within that axes' motor table will be copied into the accumulator. In this
case the command parameter specifies the offset of the Float from the beginning of that axes motor
table. The Reading DCX Memory section of this chapter lists the offsets of all data in the motor
tables.

Read the Word (16 bit integer) value at absolute memory location ‘n’ into

the accumulator
MCCL command: aRWn a=Axisnumber n= integer

342 Precision MicroControl

DCX MCCL Commands

This command will copy the contents of the Word (16 bit integer) located at absolute memory address
n into the Accumulator (User Register 0). Alternatively, if an axis number is specified with the
command, the contents of a Word located within that axes' motor table will be copied into the
accumulator. In this case the command parameter specifies the offset of the Word from the beginning
of that axes motor table. The Reading DCX Memory section of this chapter lists the offsets of all data
in the motor tables.

Shift Left accumulator by ‘n’ bits

MCCL command. SLn n= integer >0, <= 31

Performs ACC = ACC << n, the logical shift of the Accumulator (User Register 0) to the left. The
command parameter specifies the number of bits to shift the accumulator. Zero bits will be shifted in
on the right. The result is stored in the Accumulator as a 32 bit integer.

Shift Right accumulator by ‘n’ bits

MCCL command. SRn n= integer >0, <= 31

Performs ACC = ACC >> n, the logical shift of the Accumulator (User Register 0) to the right. The
command parameter specifies the number of bits to shift the accumulator. Zero bits will be shifted in
on the left. The result is stored in the Accumulator as a 32 bit integer.

Tell Register ‘n’

MCCL command: TRn n= integer>=0, <= 256

compatibility: N/A

see also: AL, AR

Displays the contents of User Register n. When the command parameter is set to 0 (or not specified),
this command reports the contents of User Register zero, which is the accumulator.

Write the low Byte in the accumulator to absolute memory location ‘n’
MCCL command: WBn n= integer

This command will copy the low byte of the accumulator (User Register 0) to the byte located at
absolute memory address n.

Write the Double (64 bit real) value in the accumulator to absolute memory

location ‘n’

MCCL command: WDn n= real

This command will copy a Double (64 bit real) from the accumulator (User Register 0 and 1) to
absolute memory address n.

Write the float (32 bit real) value in the accumulator to absolute memory

location ‘n’

MCCL command: WVn n= real

This command will copy a float (32 bit real) from the accumulator (User Register 0) to absolute
memory address n.

DCX-AT200 User’s Manual 343

DCX MCCL Commands

Write the Long (32 bit integer) value in the accumulator to absolute

memory location ‘n’

MCCL command: WLn n= integer

This command will copy a Long (32 bit integer) from the accumulator (User Register 0) to absolute
memory address n.

Write the low Word (16 bit integer) value in the accumulator to absolute
memory location ‘n’

MCCL command: WWn n= integer

This command will copy the low Word (16 bit integer) of the accumulator (User Register 0) to absolute
memory address n.

344 Precision MicroControl

DCX MCCL Commands

Sequence (If/Then) Commands

Do if channel oFf

MCCL command.: DFx x = Channel number

Used for conditional execution of commands. If digital I/O channel x is "off", commands that follow on
the command line or in the macro will be executed. Otherwise the rest of the command line or macro
will be skipped. See the description of Digital /0 in the DCX General Purpose 1/O chapter.

DF2,1MR1000 ;If channel 2 is off move 1000

Do if channel ‘x’ is oN

MCCL command. DNx x = Channel number

Used for conditional execution of commands. If digital I/O channel x is "on", commands that follow on
the command line or in the macro will be executed. Otherwise the rest of the command line or macro
will be skipped. See the description of Digital /0 in the DCX General Purpose 1/0 chapter.

DN2,1MR1000 ;If channel 2 is off move 1000

If the accumulator is Below ‘n’, execute the next command, else skip 2

commands

MCCL command: IBn n = integer or real

Used for conditional execution of commands. If the contents of the accumulator (User Register 0) is
less than n, command execution will continue with the command following the IB command.
Otherwise the two commands following the IB command will be skipped, and command execution will
continue from the third command. See the description of Digital I/O in the DCX General Purpose
/0 chapter.

IBO,MJ10,NO,MJ11 ;If the accumulator contents is less
;than 10 jump to macro 10, otherwise
;jump to macro 11

If bit ‘n’ of the accumulator is Clear, execute the next command, else skip

2 commands

MCCL command: ICn n= integer >= 0, <= 31

Used for conditional execution of commands. If the contents of the accumulator (User Register 0) has
bit n reset, command execution will continue with the command following the IC command. Otherwise
the two commands following the IC command will be skipped, and command execution will continue
from the third command.

IC3,MJ10,NO,MJ11 ;If accumulator bit 3 is cleared jump
;to macro 10, otherwise jump to macro
;11

DCX-AT200 User’s Manual 345

DCX MCCL Commands

If the accumulator Equals “n”, execute the next command, else skip 2

commands
MCCL command: |En n = integer or real

Used for conditional execution of commands. If the contents of the accumulator (User Register 0)
equals n, command execution will continue with the command following the IE command. Otherwise
the two commands following the IE command will be skipped, and command execution will continue
from the third command.

IEO0O,MJ10,NO,MJ11 ;If accumulator contents equals 0 jump
;to macro 10, otherwise jump to macro
;11

If channel oFf do next command, else skip 2 commands

MCCL command: IFx x = Channel number

Used for conditional execution of commands. If digital I/O channel x is "off", command execution will
continue with the command following the IF command. Otherwise the two commands following the IF
command will be skipped, and command execution will continue from the third command. See the
description of Digital I/0 in the DCX General Purpose 1/O chapter.

IF5,MJ10,NO,MJ11 ;If digital input #5 is off jump to
;macro 10, otherwise jump to macro 11

If the accumulator is Greater than ‘n’ execute the next command, else skip

2 commands

MCCL command: |Gn n = integer or real

Used for conditional execution of commands. If the contents of the accumulator (User Register 0) is
greater than n, command execution will continue with the command following the IG command.
Otherwise the two commands following the IG command will be skipped, and command execution will
continue from the third command. See the description of Digital 1/0 in the DCX General Purpose 1/0
chapter.

IGO,MJ10,NO,MJ11 ;If the accumulator contents is
;greater than 0 jump to macro 10,
;otherwise jump to macro 11

If channel ’ oN do next command, else skip 2 commands

MCCL command: INx x = Channel number

Used for conditional execution of commands. If digital I/O channel x is "on", command execution will
continue with the command following the IN command. Otherwise the two commands following the IN
command will be skipped, and command execution will continue from the third command. See the
description of Digital I/0 in the DCX General Purpose 1/O chapter.

IN5,MJ10,NO,MJ11 ;If digital input #5 is on jump to
;macro 10, otherwise jump to macro 11

Interrupt on absolute Position
MCCL command: |Pn n = integer or real

346 Precision MicroControl

DCX MCCL Commands

compatibility: MC200, MC210, MC260

This command is used to indicate when an axis has reached a specific position. The position is
specified by parameter n as a relative distance from the axis home position. When the specified
position has been reached, the DCX will set the "breakpoint reached" flag in the motor status for that
axis. The IP command can be issued to an axis before or after it has been commanded to move.

Interrupt (set breakpoint reached flag) upon reaching relative position
MCCL command: Rn n = integer or real

compatibility: MC200, MC210, MC260

This command is used to indicate when an axis has reached a specific position. The position is
specified by parameter n as a relative distance from the target position established by the last motion
command. When the specified position has been reached, the DCX will set the "breakpoint reached"
flag in the status for that axis. The IR command can be issued to an axis before or after it has been
commanded to move.

If bit ‘n’ of the accumulator is Set execute the next command, else skip 2

commands

MCCL command: ISn n = integer >= 0, <= 31

Used for conditional execution of commands. If the contents of the accumulator (User Register 0) has
bit n set, command execution will continue with the command following the IS command. Otherwise
the two commands following the IS command will be skipped, and command execution will continue
from the third command.

IS3,MJ10,NO,MJ11 ;If accumulator bit 3 is set jump to
;macro 10, otherwise jump to macro 11

If the accumulator is Unequal to “n” execute the next command, else skip

2 commands

MCCL command: IUn n = integer or real

Used for conditional execution of commands. If the contents of the accumulator (User Register 0)
does not equal n, command execution will continue with the command following the IlU command.
Otherwise the two commands following the IU command will be skipped, and command execution will
continue from the third command.

IU0,MJ10,NO,MJ11 ;If accumulator contents is unequal to
;0 jump to macro 10, otherwise jump to
;macro 11

JumP to command absolute

MCCL command: JPn n= integer

Jumps to the specified command in the current command string or macro. Commands are numbered
consecutively starting with 0.

IEO0,JP5,NO,1MR1000,1WS, 1IMR2000, 1WS ;If accumulator equals 0 jump to
; IMR2000

DCX-AT200 User’s Manual 347

DCX MCCL Commands

Jump to command Relative

MCCL command: JRn n= integer

Jumps forward or backward by n commands in the current command string or macro. Specifying a
positive value will cause a forward jump in the command string or macro. Specifying a negative value
will cause a backward jump. A jump of relative 0 will cause the command to jump to itself.

1MR1000,1WS.005,IE0,JR-3 ;If accumulator equals 0 jump to
;1MR1000

RePeat

MCCL command: RPn n= integer > =0, < = 2,147,483,647

This command causes all the commands preceding the RP command to be executed n + 1 times. If n
is not specified or is 0 then the commands are repeated indefinitely. Note - There can be only one RP
command in a command string or macro.

TP,RP999 ;Display the position of axis #1, 1000
;times

WAIt

MCCL command: WAn n= integer or real >= 0

Insert a wait period of n seconds before going on to the next command. If this command was issued
from an ASCII interface, it can be aborted by sending an Escape character.

1TP,WAO0.1,RP9 ;Display the position of axis #1, 10
;times with a delay of one tenth of a
;second between displays

Wait for Edge

MCCL command: aWEx x=0or1
compatibility: MC200, MC210, MC260
see also: FE

Wait until the coarse home input of a servo or closed loop stepper axis a is at the specified logic level,
and then continue operation. If x is not specified or is 0, wait for coarse home to go active. If x is 1
wait, for coarse home to go inactive. If this command was issued from an ASCII interface, it can be
aborted by sending an Escape character.

Wait for digital channel oFf

MCCL command.: WFx x = Channel number
compatibility: MC400
see also: WN

Wait until digital I/O channel x is "off" before continuing to the next command on the command line or
in the macro. If this command was issued from an ASCII interface, it can be aborted by sending an
Escape character.

Wait for encoder index mark
MCCL command: aWin a=Axis number n= integer or real >= 0
compatibility: MC200, MC210, MC260

348 Precision MicroControl

DCX MCCL Commands

see also: Fl

Wait until the index pulse has been observed on servo axis a. This command should be used after a
Index Arm command has been issued to the axis, even if it is known that the index pulse has occurred
(this command performs internal operations). To complete the indexing function, a Motor On (aMN)
command should also be issued to axis a to re-initialize the position registers to n. If this command
was issued from an ASCII interface, it can be aborted by sending an Escape character.

Wait for digital channel oN

MCCL command: WNx x= Channel number

compatibility: MC400

see also: WF

Wait until digital I/O channel x is "on" before continuing to the next command on the command line or
in the macro. If this command was issued from an ASCII interface, it can be aborted by sending an
Escape character.

Wait for absolute Position

MCCL command: aWpn n = integer or real
compatibility: MC200, MC210, MC260
see also:

This command is used to delay command execution until axis a has reached a specific position. The
position is specified by the command parameter as a relative distance from the home position of the
axis. When the specified position has been reached, the DCX will set the "breakpoint reached" flag in
the status for that axis, and then continue execution of commands following WP. The WP command
will typically be issued to an axis after it has been commanded to move. If this command was issued
from an ASCII interface, it can be aborted by sending an Escape character.

Wait for Relative position

MCCL command: aWRn n= integer or real

compatibility: MC200, MC210, MC260

see also:

This command is used to delay command execution until axis a has reached a specific position. The
position is specified by the command parameter as a relative distance from the target position
established by the last motion command. When the specified position has been reached, the DCX will
set the "breakpoint reached" flag in the status for that axis, and then continue execution of commands
following WR. The WR command will typically be issued to an axis after it has been commanded to
move. If this command was issued from an ASCII interface, it can be aborted by sending an Escape
character.

Wait for Stop

MCCL command: aWsn n = integer or real

compatibility: MC200, MC210, MC260

see also: Wait (a period of time), Wait for target reached

Will delay execution of the next command in the sequence until the trajectory generator for axis a (or
all axes if axis specifier a = 0) has completed the current motion. The command parameter n specifies
an additional time period (in seconds) that the controller will wait before continuing execution of the
commands following WS.

DCX-AT200 User’s Manual 349

DCX MCCL Commands

3MR1000,WS0.1,MR-1000 ;Perform a forward then backward
;motion sequence

comment. If the WS command was not used in the above example, there would be no motion of the
axis. The reason being that the target position would simply be changed twice. The computer would
add 1000 counts to the target position then subtract the same amount. This would take place far
quicker than the axis could begin moving.

Wait for Target

MCCL command: aWTn n = integer or real
compatibility: MC200, MC210, MC260
see also: WA, WS

This command will delay command execution until axis a (or all axes if axis specifier a = 0) has
reached its target position. Parameter n specifies an additional time period (in seconds) that the
controller will wait before continuing execution of the commands following WT. The conditions for a
servo to have reached its' target, is that it remains within the position DeadBand for the time period
specified by the Delay at Target parameter ‘n’. The condition for a stepper motor to have reached its'
target is that the controller has output the last step of the motion. The Wait for Target command
should not be used for axes in contour mode.

3MR1000,WT0.1,MR-1000 ;Perform a forward then backward
;motion sequence

comment. If the WT command was not used in the above example, there would be no motion of the
axis. The reason being that the target position would simply be changed twice. The computer would
add 1000 counts to the target position then subtract the same amount. This would take place far
quicker than the axis could begin moving.

350 Precision MicroControl

DCX MCCL Commands

Miscellaneous Commands

set the RS-232 baud rate

MCCL command: BRn n= integer 1, 2, 4, 8, 16, 32, or 64

compatibility: MF300

Used to change the programmed baud rate for the RS-232 interface. The actual baud rate is
determined by using the value n in a countdown circuit. The values for parameter ‘n’ for standard
baud rates is shown below:

Baud Rate

19,200 1
9,600 2
4,800 4
2,400 8
1,200 16
600 32
300 64

The values given are decimal numbers. If you are in hex mode, be sure to enter the hexadecimal
equivalent, or momentarily change to decimal mode.

example: BRS8 ;sets the baud rate to 2,400 baud

comment. This command takes effect immediately, so use with caution. Any value entered will
result in some baud rate but not necessarily a standard one.

Decimal Mode

MCCL command: DM

see also: HM

Input and output numbers in decimal format.

comment. The Decimal Mode command must be "executed" by the DCX before commands can be
issued with decimal formatted parameters. The Decimal Mode (DM) and Hexidecimal Mode (HM)
commands cannot be in the same command string.

Echo oFf

MCCL command. ENn n=20,1,20r3
compatibility: MF300

see also: EF

Causes the DCX not to echo characters received through an ASCIl command port.

Only data specifically requested from the DCX will be transmitted. Normally used when operating with
the host or terminal in half duplex mode. Parameter n selects the terminating character or characters
that will be transmitted with command replies. The following table lists the available options.

Terminating Characters

0 No change from current setting

1 Carriage Return (ASCII 13) Only

2 Linefeed (ASCII 10) Only

3 Carriage Return and Linefeed (ASCII 13 and 10)

DCX-AT200 User’s Manual 351

DCX MCCL Commands

Echo oN

MCCL command. EFn n=0,1,2o0r3
compatibility: MF300

see also: EN

Causes all characters received through an ASCIl command port to be echoed to that port as received.
Normally used when operating with a or terminal in full duplex mode. Parameter n selects the
terminating character or characters that will be transmitted with command replies. The following table
lists the available options.

Parameter n | Terminating Characters

0 No change from current setting

1 Carriage Return (ASCII 13) Only

2 Linefeed (ASCII 10) Only

3 Carriage Return and Linefeed (ASCII 13 and 10)

Free Memory

MCCL command: FM

see also: ME

Returns the memory space allocated by the ME command and returns it to the ‘heap’.

display the supported MCCL commands
MCCL command: HE
explanation: Reports the valid DCX command mnemonics for the installed software version.

Handshaking oFf

MCCL command: HF

compatibility: MF300

see also: HN

Disables hardware handshake of serial communications through the RS-232 module.

Hexadecimal Mode

MCCL command: HM

see also: DM

Input and output numbers in hexadecimal format.

comment. The Hexadecimal Mode command must be executed by the DCX before commands can
be issued with hexadecimal formatted parameters. The Hexidecimal Mode (HM) and Decimal Mode
(DM) and commands cannot be in the same command string. If a command parameter is to be
entered in hexadecimal format, and the number starts with either A, B, C, D, E, or F, it must be
preceded by a '0' (zero).

Handshaking oN

MCCL command: HN

compatibility: MF300

see also: HF

Enables hardware handshake of serial communications through the RS-232 module.

352 Precision MicroControl

DCX MCCL Commands

allocate MEmory

MCCL command: MEnn = integer >0, <= 8192

see also: FM

Formats and allocates scratch pad memory. The first allocated memory address will be loaded into
the accumulator.

Prompt Character

MCCL command: PCn n = integer >0, <= 255

This command sets the character that will be sent out an ASCIl command port when the DCX
completes execution of a command issued to that port. The parameter to this command is the ASCII
code for the character. Issuing the command with a parameter of 0 will inhibit any character from
being sent. The default prompt character is '>' (ASCII 62 decimal).

ReseT

MCCL command: aRT a= Axis number

compatibility: MC200, MC210, MC260, MC400, MC5X0
see also: Default Settings in the Appendix

Performs a reset of the entire controller or a specific axis. If an axis number is specified when the
command is issued, just that axis will be reset. If no axis is specified, the entire controller and all
installed axes will be reset. \WWhen an axis is reset, the default conditions such as acceleration and
velocity will be restored, and the axes will be placed in the "off" state.

disable RS-232 XON/XOFF protocol

MCCL command: XF

compatibility: MF300

see also: XN

This command disables the XON/OFF handshaking protocol of the RS-232 serial port. This command
has no effect when issued through the host PC or IEEE-488 command interfaces.

enable RS-232 XON/XOFF protocol

MCCL command: XN

compatibility: MF300

see also: XF

This command enables the XON/XOFF handshaking protocol of the RS-232 serial port. This
command has no effect when issued through the host PC or IEEE-488 command interfaces.

DCX-AT200 User’s Manual 353

Troubleshooting

Chapter Contents

e DCX System Troubleshooting

e Communications Troubleshooting

e Troubleshooting — Tuning a Servo Motor

e Troubleshooting - Servo Motion chart #1

e Troubleshooting - Servo Motion chart #2

e Troubleshooting - Servo Motion chart #3

e Troubleshooting — Stepper Motion chart #1

e Troubleshooting — Limits and Home

354 Precision MicroControl

Troubleshooting

On the following pages you will find troubleshooting flow charts to assist in the with diagnosis of DCX
system failures.

The steps described in these flow charts will direct the user to PMC programs (Motion Integrator,
CWdemo, etc...) and utilities (Servo Tuning, WinControl) that are used to diagnose and resolve
system performance.

DCX-AT200 User’s Manual 355

Troubleshooting

DCX System Troubleshooting

Servo motors working
as expected?

Stepper motors working
as expected?

Axis I/O (Limits,
Home, Index, Amp Enable,
Amp Fault) working as
expected?

General
purpose I/O (digital 1/0 and
or analog 1/O) working
as expected?

Yes

Is the DCX control system
operating as expected?

Go to the
Communications
Troubleshooting flow
chart

Go to the Servo
Motor
Troubleshooting flow
charts

Go to the Stepper
Motor
Troubleshooting flow
[ETIE

Go to the Limits and
Home
Troubleshooting flow
charts

Go to the General
Purpose 1/10
Troubleshooting flow
charts

Go to the
Miscellaneous
operation
Troubleshooting flow
charts

356

Precision MicroControl

Troubleshooting

Communications Troubleshooting

Yes

Cycle 'PC'
power. Did the
Status LED's flash, then
remain off? Is the DCX now
communicating
with the PC?

Are all of the
Yellow and /or Red DCX
Status LED's off?

Open
WinControl or a PMC
demo (CWDemo, ...).

Is an MCAPI 'hardware not
present' error
returned?

Use MCAPI Setup to
configure the DCX
motion control system

Check 'PC' system
resources. Verify that
other components
utilize the same
memory space as the
DCX controller.

Open
WinControl or a PMC
demo. Does the program
open and run as
expected?

Yes

Remove all
DCX modules from the DC
motherboard. Cycle 'PC'
power. Are any red
Status LED's on?

DCX-AT200 User’s Manual

357

Troubleshooting

Troubleshooting - Tuning a Servo Motor

The axis error out, either:
1) Velocity is too high
Are all of the g gfcel r/_tid(;celzl toi?]rtngh
error LED's off? IO&DO onal gain too

3) Following error too low

Does the Increase the

i Proportional
axis reach the !

target? gain and/or

. Integral gain

Increase the
Derivative
gainand/or

decrease the

proportional
gain.

Does the axis
oscillate?

Derivative gain
too high.
E:i(;gi?]u r:]i?sr(; Yes Increase the
9 9) derivative
sampling period

Increase the
at target? Yes Integral gain /
get: Integral limit.

Near but not

358 Precision MicroControl

Troubleshooting

Troubleshooting - Servo Motion chart #1

Is the
motor on?

Turn the
motor on
MCEnable
Axis()

Are all error
LED's off?

Resolve the error
condition (limit+/-,
following error,
amp fault, ...)

Does
the motor resist
rotation?

Yes

The encoder
may have
failed, refer to
the encoder
checkout

Did
the encoder
checkout?

Replace the
encoder

Yes

Tune the
servo using
the Servo
Tuning utility

Is the
motion OK?

Yes

The servo control
system has failed.

Contact PMC technical
support

DCX-AT200 User’s Manual

359

Troubleshooting

Troubleshooting - Servo Motion chart #2

Encoder

properly
phased?

Change encoder
phasing or 'swap' the
encoder inputs
(AtoB,BtoA).

Any red
error LED's
on?

The encoder
or wiring has
failed,
remove and
replace.

360

Precision MicroControl

Troubleshooting

Troubleshooting - Servo Motion chart #3

All red error
LED's off?

Yes

Friction may
be present in mechanical
components. Has mechanical
system operation been
optimized?

Tune the
servo using
the Servo
Tuning utility

Clean and
adjust
mechanics

Yes Y

The commanded
maximum velocity,
accel, or decel exceeds
the system capability.

Reduce the trajectory
parameters

DCX-AT200 User’s Manual

361

Troubleshooting

Troubleshooting - Stepper Motion chart #1

Is the Turn the motor
motor turned on
on? MCEnableAxis

Resolve the
error condition
(limit+, Limit -)

All red error
LED's off?

Yes

Verify wiring/operation.
Connect voltmeter to
stepper module J3 pin
16. Enable axis, J3-16
should be less than 0.7V

Is the stepper
driver enabled?

From
CWDemo; zero position,
move relative 50 steps. Did the
motor move

Do the Actual,
Optimal, and Target position
readouts all display 507

362 Precision MicroControl

Troubleshooting

Problem
with a Limit
input?

Troubleshooting - Limits and Home

Limit
input wired
correctly

Refer to the

DCX User's Home

Manual for input wired
wiring correctly

examples

Connect
a voltmeter to the
Limit pin of the DCX
module J3 connector.
Activate Limit sensor. Doe;
the signal drop
below 0.75V7%

Yes

With sensor
active, does the Motion
Integrator Test Panel
indicate that the Limit

sensor is active?

Yes

DCX-AT200 User’s Manual

Refer to the
DCX User's
Manual for
wiring
examples

When sensor is

Connect

active, signal must = VEITIEET 19 i
be below 0.75V. Home pin of the DCX
module J3 connector.
Contact PMC Activate Home Sensor.

technical subport Does the signal drop

pport. below 0.75V2
Yes

DCX sensor input With sensor
circuit has failed. active, does the Motion
Integrator Test Panel
indicate that the Home

sensor is active?

Contact PMC
technical support

Yes

Issue move
command toward
home sensor, followed by
Wait for Edge and Stop
(aWEQO0,aST). Did the

motor stop?

Yes

When sensor is
active, signal must
be below 0.75V.

Contact PMC
technical support.

DCX sensor input
circuit has failed.

Contact PMC
technical support

Contact PMC
technical support

363

Controller Error Codes

Chapter Contents

e MCAPI Error codes

e MCCL Error codes

364 Precision MicroControl

Controller Error Codes

Both the MCAPI and the Motion Control Command Language (MCCL) provide error code and
interface status information to the user.

DCX-AT200 User’s Manual 365

Controller Error Codes

MCAPI Error Codes

MCAPI defined error messages are listed numerically in the table below. Where possible corrective
action is included in the description column. Please note that many MCAPI function descriptions also

include information regarding errors that are specific to that function.

0 MCERR_NOERROR No error has occurred

1 MCERR_NO_CONTROLLER No controller assigned at this ID. Use MCSETUP to configure a controller.

2 MCERR_OUT_OF_HANDLES MCAPI driver out of handles. The driver is limited to 32 open handles. Applications
that do not call MCClose() when they exit may leave handles unavailable, forcing
a reboot.

3 MCERR_OPEN_EXCLUSIVE Cannot open - another application has the controller opened for exclusive use

4 MCERR_MODE_UNAVAIL Controller already open in different mode. Some controller types can only be open
in one mode (ASCII or binary) at a time

5 MCERR_UNSUPPORTED_MODE = Controller doesn't support this mode for MCOpen() - i.e. ASCII or binary

6 MCERR_INIT_DRIVER Couldn't initialize the device driver

7 MCERR_NOT_PRESENT Controller hardware not present

8 MCERR_ALLOC_MEM Memory allocation error. This is an internal memory allocation problem with the
DLL, contact Technical Support for assistance

9 MCERR_WINDOWSERROR A windows function returned an error - use GetLastError () under WIN32 for details

10 reserved

11 MCERR_NOTSUPPORTED Controller doesn't support this feature

12 MCERR_OBSOLETE Function is obsolete

13 MCERR_AXIS_TYPE Axis type doesn't support this feature

14 MCERR_CONTROLLER Invalid controller handle

15 MCERR_WINDOW Invalid window handle

16 MCERR_AXIS_NUMBER Axis number out of range

17 MCERR_ALL_AXES Cannot use MC_ALL_AXES for this function

18 MCERR_RANGE Parameter was out of range

19 MCERR_CONSTANT Constant value inappropriate

20 MCERR_UNKNOWN_REPLY Unexpected or unknown reply

21 MCERR_NO_REPLY Controller failed to reply

22 MCERR_REPLY_SIZE Reply size incorrect

23 MCERR_REPLY_AXIS Wrong axis for reply

24 MCERR_REPLY_COMMAND Reply is for different command

25 MCERR_TIMEOUT Controller failed to respond

26 MCERR_BLOCK_MODE Block mode error. Caused by calling MCBlockEnd() without first calling
MCBlockBegin() to begin the block

27 MCERR_COMM_PORT Communications port (RS232) driver reported an error

28 MCERR_CANCEL User canceled action (such as when an MCDLG dialog box is dismissed with the
CANCEL button

366 Precision MicroControl

Controller Error Codes

MCCL Error Codes

When executing MCCL (Motion Control Command Language) command sequences the command
interpreter will report the following error code when appropriate:

Description Error code

No error 0
Unrecognized command 1
Bad command format 2
I/O error 3
Command string to long 4
Command Parameter Error -1
Command Code Invalid -2
Negative Repeat Count -3
Macro Define Command Not First -4
Macro Number Out of Range -5
Macro Doesn't Exist -6
Command Canceled by User -7
Contour Path Command Not First -8
Contour Path Command Parameter Invalid -9
Contour Path Command Doesn't Specify an AXIS -10
No axis specified -14
Axis not assigned -15
Axis already assigned -16
Axis duplicate assigned -17

Many error code reports will not only include the error code but also the offending command. In the
following example the Reset Macro command was issued. This command clears all macro’s from
memory. The next command sequence turns on 3 motors and then calls macro 10. The command
MC10 is a valid command but with no macros in memory error code —6 is displayed.

_'l WinControl32

File Edit Help
O = ¢ R -l e
SAM

>1MN,2MN, 3MN,MC10

2-6

{C3) MC10

>

>
>
>
i

DCX-AT200 User’s Manual 367

Printing a PDF Document

Chapter Contents

Introduction to PDF

Printing a complete PDF document

Printing selected pages of a PDF document
Paper

Binding

Pricing

Obtaining a Word 2000 version of this user manual

368

Precision MicroControl

Printing a PDF Document

Introduction to PDF

PDF stands for Portable Document Format. It is the defacto standard for transporting electronic
documents. PDF files are based on the PostScript language imaging model. This enables sharp,
color-precise printing on almost all printers.

Printing a complete PDF document

It is not recommended that large PDF documents be printed on personal computer printers. The
‘wear and tear’ incurred by these units, coupled with the difficulties of two sided printing, typically
resulting in degraded performance of the printer and a whole lot of wasted paper. PMC recommends
that PDF document be printer by a full service print shop that uses digital (computer controlled) copy
systems with paper collating/sorting capability.

Printing selected pages of a PDF document
While viewing a PDF document with Adobe Reader (or Adobe Acrobat), any page or range of pages
can be printed by a personal computer printer by:

Selecting the printer icon on the tool bar
Selecting Print from the Adobe File menu

Paper

The selection of the paper type to be used for printing a PDF document should be based on the target
market for the document. For a user's manual with extensive graphics that is printed on both sides of
a page the minimum recommended paper type is 24 pound. A heavier paper stock (26 — 30 pound)
will reduce the ‘bleed through’ inherent with printed graphics. Typically the front and back cover pages
are printed on heavy paper stock (50 to 60 pound).

Binding
Unlike the binding of a book or catalog, a user’'s manual distributed in as a PDF file will typically use
‘comb’ or ‘coil’ binding. This service is provided by most full service print shops. Coil binding is

DCX-AT200 User’s Manual 369

Printing a PDF Document

suitable for documents with no more than 100 pieces of paper (24 pound). Comb binding is
acceptable for documents with as many as 300 pieces of paper (24 pound). Most print shops stock a
wide variety of ‘combs’. The print shop can recommend the appropriate ‘comb’ based on the number
of pages.

Pricing
The final cost for printing and binding a PDF document is based on:

e Quantity per print run
¢ Number of pages
e Paper type

The price range for printing and binding a PDF document similar to this user manual will be $15 to
$30 (printed in Black & White) in quantities of 1 to 10 pieces.

Obtaining a Word 2000 version of this user manual
This user document was written using Microsoft's Word 2000. Qualified OEM’s, Distributors, and
Value Added Reps (VAR’s) can obtain a copy of this document for

o Editing
e Customization
e Language translation.

Please contact Precision MicroControl to obtain a Word 2000 version of this document.

370 Precision MicroControl

Chapter

16

Glossary

Accuracy - A measure of the difference between the expected position and actual position of a motion
system.

Actuator - Device which creates mechanical motion by converting energy to mechanical energy.

Axis Phasing - An axis is properly phased when a commanded move in the positive direction causes
the encoder decode circuitry of the controller to increment the reported position of the axis.

Back EMF - The voltage generated when a permanent magnet motor is rotated. This voltage is
proportional to motor speed and is present regardless of whether the motor windings are energized or
de-energized.

Closed Loop - A broadly applied term, relating to any system in which the output is measured and
compared to the input. The output is then adjusted to reach the desired condition. In motion control,
the term typically describes a system utilizing a velocity and/or position transducer to generate
correction signals in relation to desired parameters.

Commutation - The action of applying currents or voltages to the proper motor phases in order to
produce optimum motor torque.

Critical Damping - A system is critically damped when the response to a step change in desired
velocity or position is achieved in the minimum possible time with little or no overshoot.

DAC - The digital-to-analog converter (DAC) is the electrical interface between the motion controller
and the motor amplifier. It converts the digital voltage value computed by the motion controller into an
analog voltage. The more DAC bits, the finer the analog voltage resolution. DACs are available in
three common sizes: 8, 12, and 16 bit. The bit count partitions the total peak-to-peak output voltage
swing into 256, 4096, or 65536 DAC steps, respectively.

DCX-AT200 User’s Manual 371

Glossary

Dead Band - A range of input signals for which there is no system response.

Driver - Electronics which convert step and direction inputs to high power currents and voltages to
drive a step motor. The step motor driver is analogous to the servo motor amplifier.

Dual Loop Servo — A servo system that combines a velocity mode ampilifier/tachometer with a position
loop controller/encoder. It is recommended that the encoder not be directly coupled to the motor. The
linear scale encoder should be mounted on the external mechanics, as closely coupled as possible to
the ‘end effector’

Duty Cycle - For a repetitive cycle, the ratio of on time to total time:

Efficiency - The ratio of power output to power input.

Encoder - A type of feedback device which converts mechanical motion into electrical signals to
indicate actuator position or velocity.

End Effector — The point of focus of a motion system. The tools with which a motion system will work.
Example: The leading edge of the knife is the end effector of a three axis (XYZ) system designed to
cut patterns from vinyl.

Feed Forward - Defines a specific voltage level output from a motion controller, which in turn
commands a velocity mode amplifier to rotate the motor at a specific velocity.

Following Error - The difference between the calculated desired trajectory position and the actual
position.

Friction - A resistance to motion caused by contacting surfaces. Friction can be constant with varying
speed (Coulomb friction) or proportional to speed (viscous friction).

Holding Torque - Sometimes called static torque, holding torque specifies the maximum external
torque that can be applied to a stopped, energized motor without causing the rotor to rotate
continuously.

Inertia - The measure of an object's resistance to a change in its current velocity. Inertia is a function
of the object's mass and shape.

Kd - K'is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant.
The lower case ‘d’ designates derivative gain.

Ki - K is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant.
The lower case ‘i’ designates integral gain.

Kp - K is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant.
The lower case ‘p’ designates proportional gain.

372 Precision MicroControl

Glossary

Limits - Motion system sensors (hard limits) or user programmable range (soft limits) that alert the
motion controller that the physical end of travel is being approached and that motion should stop.

MCAPI - The Motion Control Application Programming Interface - this is the programming interface
used by Windows programmers to control PMC's family of motion control cards.

MCCL - Motion Control Command Language - this is the command language used to program PMC's
family of motion control cards.

Micro-Stepping - Stepper drive systems have a fixed number of electromechanical detents or steps.

Micro stepping is an electronic technique to break each detent or step into smaller parts. This results
in higher positional resolution and smoother operation.

Open Loop — A control system in which the control output is not referenced or scaled to an external
feedback.

Position Error - see following error.

Position Move - Unlike a velocity move, a position move includes a predefined stopping position. The
trajectory generator will determine when to begin deceleration in order to ensure the actual stopping
point is at the desired target position.

PWM - Pulse Width Modulation is a method of controlling the average current in a motor’s phase
windings by varying the duty cycle of transistor switches.

Repeatability - The degree to which the positioning accuracy for a given move performed repetitively

can be duplicated.

Resonance - A condition resulting from energizing a motor at a frequency at or close to the motor's
natural frequency.

Resolution - The smallest positioning increment that can be achieved.

Resolver - A type of feedback device which converts mechanical position into an electrical signal. A
resolver is a variable transformer that divides the impressed AC signal into sine and cosine output
signals. The amplitude of these signals represents the absolute position of the resolver shaft.

Slew - That portion of a move made at constant, non-zero velocity.

Step Response - An instantaneous command to a new position. Typically used for tuning a closed
loop system, ramping (velocity, acceleration, and deceleration) is not applied nor calculated for the

move.

Tachometer - A device attached to a moving shaft that generates a voltage signal directly proportional
to rotational speed.

Torque -

DCX-AT200 User’s Manual 373

Glossary

Velocity Mode Amplifier — An amplifier that requires a tachometer to provide the feedback used to
close the velocity loop within the amplifier.

Velocity Move - A move where no final stopping position is given to the motion controller. When a start
command is issued the motor will rotate indefinitely until it is commanded to stop.

374 Precision MicroControl

Glossary

DCX-AT200 User’s Manual 375

Appendix

Appendix Contents

e Dual Ported Memory

e Binary Communication Interface

e ASCIlI Communication Interface

e Power Supply Requirements

e Pause and Resume Motion

¢ Physical Assignment of Axes

e Multiple User Communication Interfaces
e Stand Alone Applications

e On-Board File Operations

¢ HPGL Plotting

376 Precision MicroControl

Appendix

Dual Ported Memory

When a DCX board is plugged in to a PC computer, depending on the setting of jumper JP8 and
rotary switch SW1 on the DCX, a 4096 byte portion of the board's dual ported memory will be

accessible somewhere in the PC's memory space. The location of this memory (defined by JP8), can

be configured to be anywhere in the range 80000 hex to FFFFF hex.

JP8 - IBM-PC Interface base memory address select

JP8 5to 6 JP8 3 to 4 JP8 1 to 2

80000 hex connected connected connected
90000 hex connected connected open
A0000 hex connected open connected
B0O00O0 hex connected open open
C0000 hex open connected connected
D0000 hex open connected open
EO0000 hex open open connected
FO000 hex open open open

In most PC configurations, the 64K area from D0000 hex to DFFFF hex is available and has
been chosen as the factory default memory range for the DCX. Most other ranges that

can be set with jumper JP8 will result in hardware conflicts within the PC when the DCX

is installed. Unless the user determines that another range is acceptable, jumper JP8
should be left at its default setting as shown in appendix B.

Assuming that jumper JP8 is at its factory default setting, the DCX will occupy a 4096
bytes somewhere between DO000 hex and DFFFF hex in the PC's memory space. If the

DCX-AT200 User’s Manual

377

Appendix

rotary switch SW1 is set to 0, the DCX will occupy D0O000 hex through DOFFF hex. If it
is set to 1, it will occupy D1000 hex through D1FFF hex, and so on. In the PC's memory
map, the lowest numbered memory location that a DCX board occupies is referred to as
the 'base' address. If the board's rotary switch is set to 0, its base address will be
D0000N. The base address should be added to all addresses listed in this appendix in

order to calculate the physical address in the PC's memory map.

Motor Table Addresses:

Oh
100h
200h
300h
400h
500h

OO~ WN -

Example: If the rotary switch is to 0, the position for axis 3 will be at D0214 hex.

Motor Table Data:

Data type

Motor Status unsigned integer 0 (0 hex)
Position Count integer 4 (4 hex)
Optimal Count integer 8 (8 hex)
Index Count integer 12 (C hex)
Auxiliary Status unsigned integer 16 (10 hex)

Data type

Position double 20 (14 hex)
Target double 28 (1C hex)
Optimal Position double 36 (24 hex)
Breakpoint Position double 44 (2C hex)
Position Dead band double 52 (34 hex)
Maximum Following Error double 60 (3C hex)
Low Limit of Movement double 68 (44 hex)
High Limit of Movement double 76 (4C hex)
User Scale double 84 (54 hex)
User Zero double 92 (5C hex)
User Offset double 100 (64 hex)
User Rate Conversion double 108 (6C hex)
User Output Constant double 116 (74 hex)
Programmed Velocity double 124 (7C hex)

Programmed Acceleration = double
Programmed Deceleration = double

132 (84 hex)
140 (8C hex)

Minimum Velocity double 148 (94 hex)
Current Velocity double 156 (9C hex)
378 Precision MicroControl

Appendix

Velocity Gain float 164 (A4 hex)
Acceleration Gain float 168 (A8 hex)
Deceleration Gain float 172 (AC hex)
Velocity Override float 176 (BO hex)
Torque Limit float 180 (B4 hex)
Proportional Gain float 184 (B8 hex)
Derivative Gain float 188 (BC hex)
Integral Gain float 192 (CO hex)
Integration Limit float 196 (C8 hex)
Module Analog Input 1 float 200 (C4 hex)
Module Analog Input 2 float 204 (CC hex)
Jog Gain float 208 (DO hex)
Jog Offset float 212 (D4 hex)
Jog Dead band 216 (D8 hex)
Jog Acceleration 220 (DC hex)
Jog Minimum Velocity 228 (E4 hex)
Wait Stop Timer short 326 (EC hex)
Wait Target Timer short 238 (EE hex)
Sampling Frequency short 240 (FO hex)
Master Axis short 242 (F2 hex)
Module Status short 244 (F4 hex)
Axis Number short 246 (F6 hex)
Module Position short 248 (F8 hex)
Module Type short 250 (FA hex)
Module Base Address unsigned integer 252 (FC hex)
where:

double = 64 bit floating point format

float = 32 bit floating point format

integer = 32 bit integer format (2's complement)
u.integer = 32 bit unsigned integer format

short = 16 bit integer format

DCX-AT200 User’s Manual 379

Appendix

Motor Status Bit Definitions:

0 Busy (motor data being updated)

1 Motor On

2 At Target

3 Trajectory Complete (Optimal = Target)
4 Direction (0 = positive, 1 = negative)

5 Motor Jogging is Enabled

6 Motor homed

7 Motor Error (Limit +/- tripped, max. following error exceeded)
8 Looking For Index (FI, WI)

9 Looking For Edge (FE, WE)

10 Index found

11 Unused

12 Breakpoint Reached (IP, IR, WP, WR)
13 Exceeded Max. Following Error *

14 Amplifier Fault Enabled *

15 Amplifier Fault Tripped *

16 Hard Limit Positive Input Enabled

17 Hard Limit Positive Tripped

18 Hard Limit Negative Input Enabled

19 Hard Limit Negative Tripped

20 Soft Motion Limit High Enabled

21 Soft Motion Limit High Tripped

22 Soft Motion Limit Low Enabled

23 Soft Motion Limit Low Tripped

24 Encoder Index/Stepper Home

25 Coarse home (current state)

26 Amplifier Fault *

27 Auxiliary Encoder Index

28 Limit Positive Input Active (current state)
29 Limit Negative Input Active

30 User Input 1 *

31 User Input 2 *

* not valid for stepper modules

380 Precision MicroControl

Appendix

General use variables:

ASCII interface input mailbox 800h
ASCII interface output mailbox 804h
Command Interpreter status 808h
Position of Motor 1 Module 80Ah
Position of Motor 2 Module 80B4h
Position of Motor 3 Module 80Ch
Position of Motor 4 Module 80Dh
Position of Motor 5 Module 80Eh
Position of Motor 6 Module 80Fh
Type of Module in Position 1 812h
Type of Module in Position 2 813h
Type of Module in Position 3 814h
Type of Module in Position 4 815h
Type of Module in Position 5 816h
Type of Module in Position 6 817h
Digital I/O Channels 1-16 81Ah*
Analog Input Channel 1 81Ch*
Analog Input Channel 2 81Eh*
Analog Input Channel 3 820H*
Analog Input Channel 4 822H*

* Value updated every millisecond

Module type ID codes:

Module type

0 MC200 Advanced Servo

1 MC260 Advanced Stepper

8 MC400 Digital 1/0 Module

9 MF310 GPIB Communications

10 MF300 RS-232 Communications

12 MC500 Analog I/0O Module

15 No module present

16 MC210 Advanced servo, motor output

DCX-AT200 User’s Manual 381

Appendix

Binary Communication Interface

In order to achieve the fastest PC to DCX command throughput, the DCX supports a "Binary"
command interface. This interface allows the PC to write binary coded commands directly into a
command buffer in the DCX's dual ported memory, thus bypassing the command interpreter. Using
this method, any command replies the DCX generates will be returned in binary format to the PC
through a reply buffer in the DCX's dual ported memory.

The MCAPI (Motion Control Application Programming Interface) supplied with the DCX on the utility
disk, uses this command interface for high speed communication with the DCX. The high level
programming languages supported by the MCAPI (C++, Visual Basic, Delphi, LabVIEW) all utilize this
high speed communication interface.

The procedure for using the DCX Binary Command Interface is described below:

1. Beginning at the start of the command buffer in the DCX's dual port memory, write up to 255 bytes
of commands. The number of commands that can be placed in the buffer depends on the format of
each command.

A command that has no parameter will occupy 2 bytes in the buffer. Any commands that have a 32 bit
integer or a 32 bit floating point parameter will occupy 6 bytes in the buffer. Any commands with a 64
bit double precision floating point parameter will occupy 10 bytes. A command with a string parameter
can occupy whatever space is remaining in the command buffer. The host computer is free to use
whichever number format is best suited to the command. The string format is reserved for specific
commands that require a string parameter (see the command descriptions). Each command in the
buffer must be in one of the following formats:

Command with no parameter

Byte 1:Command code (listed in appendix A), if code is greater than 255, place 8 least significant bits
in this byte and set extended command flag

Byte 2: Command flags & axis number*

Command with 32 bit integer parameter

Byte 1: Command code (listed in appendix A), if code is greater than 255, place 8 least significant bits
in this byte and set extended command flag

Byte 2: Command flags & axis number*

Bytes 3-6: Command parameter (binary integer, LSB first)

Command with 32 bit floating point parameter

Byte 1. Command code (listed in appendix A), if code is greater than 255, place 8 least significant bits
in this byte and set extended command flag

Byte 2: Command flags & axis number*

Bytes 3-6: Command parameter (binary floating point, IEEE-754 format)

Command with 64 bit double precision floating point parameter

382 Precision MicroControl

Appendix

Byte 1:Command code (listed in appendix A), if code is greater than 255, place 8 least significant bits
in this byte and set extended command flag

Byte 2: Command flags & axis number*
Bytes 3-10: Command parameter (binary double precision floating point, IEEE-754 format)

Command with string parameter

Byte 1: Command code (listed in appendix A), if code is greater than 255, place 8 least significant bits
in this byte and set extended command flag

Byte 2: Command flags & axis number*

Bytes 3-4: String size in bytes including terminating null character

Bytes 5-249: String text followed by null (0 dec.) character

* The command flags & axis number byte has the following format:
bits 0 - 3 specify the axis number, set these bits to 0 for all axes
bit 4 set if extended command (ie. code is greater than 255)
bits 5,6 & 7 specify the type of parameter the command has (see table below)

Parameter type bit coding:

| bit7 | bit6 | bit5 __ Parametertype

0 0 0 32 bit integer parameter

0 0 1 64 bit floating point parameter

0 1 0 32 bit floating point parameter

0 1 1 No parameter (default value = 0)

1 0 0 32 bit integer specifying the user
register that contains the parameter

1 0 1 string

1 1 0 Reserved

1 1 1 No parameter, use value in register 0

2. Write in the number of bytes written to the command buffer into the command count location.

3. Wait for the DCX to change the value in the command count location back to 0. This indicates that
the commands in the buffer have been executed. At that time the DCX will cause the PC's interrupt
line to go from low to high.

4. Any reply to the commands can be read from the reply buffer, with the value stored in the reply
counter indicating the number of valid bytes. After reading the reply, the host computer should set the
reply counter back to 0.

The format of the replies in the buffer is dependent on the command that generates the reply. The
majority of the reporting commands use the command parameter to select the format of the reply. For
these commands, a parameter value of O results in a 32 bit integer reply. A value of 1, results in a 64
bit floating point reply. And a value of 2 results in a 32 bit floating point reply. Commands such as Tell
Register, Tell Channel, and Tell Analog which use the command parameter to select the item, have
an implicit reply format. These formats are specified in the command description. In either case, a
reply will have one of the following formats:

Reply with 32 bit integer value

DCX-AT200 User’s Manual 383

Appendix

Byte 1:Command code (listed in appendix A), if code is greater than 255, 8 least significant bits will
be in this byte and extended command flag will be set

Byte 2: Reply flags & axis number*

Bytes 3-6: Reply value (binary integer, LSB first)

Reply with 32 bit floating point value

Byte 1:Command code (listed in appendix A), if code is greater than 255, 8 least significant bits will
be in this byte and extended command flag will be set

Byte 2: Reply flags & axis number*

Bytes 3-6: Reply value (binary floating point, IEEE-754 format)

Reply with 64 bit double precision floating point value

Byte 1:Command code (listed in appendix A), if code is greater than 255, 8 least significant bits will
be in this byte and extended command flag will be set

Byte 2: Reply flags & axis number*

Bytes 3-10: Reply value (binary double precision floating point, IEEE-754 format)

Reply with string text

Byte 1:Command code (listed in appendix A), if code is greater than 255, 8 least significant bits will
be in this byte and extended command flag will be set

Byte 2: Reply flags & axis number*

Bytes 3-4: String size in bytes including terminating null character

Bytes 5-249: String text followed by null (0 dec.) character

* The reply flags & axis number byte will have the following format:
bits 0 - 3 specify the axis number, these bits will be 0 for no axis
bit 4 set if extended command (ie. code is greater than 255)
bit 5,6 & 7 indicate the type of reply value (see table below)

Reply value type bit coding:

| bit7 | bit6 | bit5 __ Parametertype

0 0 0 32 bit integer parameter

0 0 1 64 bit floating point parameter
0 1 0 32 bit floating point parameter
0 1 1 Reserved

1 0 0 Reserved

1 0 1 string

1 1 0 Reserved

1 1 1 Reserved

5. Ifitis necessary for the PC to terminate command execution before the DCX has set the
command count back to 0, write a binary FFh into the command counter.

6. In order to clear the interrupt line, the PC can issue the next group of commands or write a binary
FFh to the command counter location.

The address offsets of the command and reply buffers in the DCX's dual port memory are as follows:

384 Precision MicroControl

Appendix

Memory address offset

Command Count = 900h
Command Buffer = 901 — 9FFh
Reply Count AQOh
Reply Buffer AO01 - AFFh

DCX-AT200 User’s Manual 385

Appendix

ASCIl Communication Interface

In order for the host computer to communicate to the DCX in ASCII characters, two mailbox locations
have been defined. The data input mailbox is used to send data to the DCX. This mailbox is the byte
located at 800 hex from the base address. For a DCX controller with the default configuration, this will
be absolute address D0800 hex. The data output mailbox is used to receive data from the DCX. This
mailbox is the byte located at 804 hex from the base address. This will be absolute address D0804
hex.

A simple protocol allows ASCII characters to be transferred to and from DCX boards. In order to send
an ASCII character to a board, first read the contents of its data input mailbox, if it is 0, write the data
into the mailbox. If the contents are non-zero, the previous data put in the mailbox has not yet been
processed by the DCX board. The host should continue checking the mailbox until the contents
become 0, and then write the data.

In order to receive ASCII characters from a DCX board, read the contents of its data output mailbox. If
the value read is non zero, it is a valid character and the host should save the character and then
write a 0 to the data output mailbox to indicate it has received the data. If the contents of the mailbox
is 0, the DCX has not placed new data in the mailbox. In this case the host can continue checking the
mailbox for new data.

In addition to the command interfaces, the host can read motor information directly from the DCX's
memory. An appendix of this manual details the contents of the "DCX Dual Port RAM".

386 Precision MicroControl

Appendix

Power Supply Requirements

DCX-AT200 09 - -
DCX-MC200 2 01 01 A
DCX-MC210 2 * * A
DCX-MC260 2 e A
DCX-MC400 25 e e A
DCX-MC500 1 * * A
DCX-MF300 01 . * A
DCX-MF310 T R R— A

* Current depends on output loading

DCX-AT200 User’s Manual 387

Appendix

Default Settings

Programmed Velocity 10,000
Programmed Acceleration 10,000
Programmed Deceleration 10,000
Minimum Velocity 1,000
Current Velocity 0
Velocity Gain 0
Acceleration Gain 0
Deceleration Gain 0
Velocity Override 1
Torque Limit 10
Proportional Gain 2
Derivative Gain A
Integral Gain .01
Integration Limit 50
Maximum Following Error 1024
Motion Limits disabled
Low Limit of Movement 0

High Limit of Movement 0
Servo Loop Rate MS
Stepper Pulse Range HS
Position Count 0
Optimal Count 0
Index Count 0
Auxiliary Status 0
Position 0
Target 0
Optimal Position 0
Breakpoint Position 0
Position Dead band 0

User Scale 1

User Zero 0

User Offset 0

User Rate Conversion 1

User Output Constant 1

Jog Gain 1000
Jog Offset 2.5
Jog Dead band A

Jog Acceleration 1000
Jog Minimum Velocity 0

Sampling Frequency
Slave Ratio 1

388 Precision MicroControl

Appendix

Pause and Resume Motion

The Save Configuration (aSCn) and Restore Configuration (aRCn) commands can be used with the
Velocity Override command to pause and resume motion.

Each of these commands takes an axis specifier a and requires a file number as the command
parameter n. These commands save and restore the entire motor table. This includes the public motor
table in dual port memory and the private motor table in internal RAM.

These commands allow the motors to be stopped (aVOO0) during a contour move, their configurations
saved, switched to any other mode (except contouring), moved about and then returned to their
original positions, their configurations restored, and then commanded to continue the contour move
(av01.0).

Note: Prior to resuming motion it is very important that the axes be
returned to the exact position at which the motor table was saved. If this

& is not done, the axis will either jump to the position at which motion was
paused or it may error out.

Physical Assignment of Axes Numbers

The DCX defaults to assigning axis numbers logically, not based solely on a motor module’s physical
location. In the graphic below three modules are installed on a DCX-AT200. The MC200 in module
location #1 would be defined as axis one. The MC200 in module location #3 would be defined as axis
two. The MC260 in module location #5 would be defined as axis three.

The DCX does support the assigning of axis numbers based only on their physical location. The Use
Physical command will redefine the logical addresses. To redefine axes 2 and 3 in the graphic above
as axes 3 and 5:

DCX-AT200 User’s Manual 389

Appendix

3UP3 ;Define the module in location 3 as
;axis 3

5UPS ;Define the module in location 5 as
;axis 5

Note — The reassignment of axes should be done before sending any
& other commands (setup, move, etc...).

Multiple User Communications Interfaces
The DCX supports multiple user interfaces. The interfaces supported are:

ISA Bus Binary

ISA Bus ASCII

Serial ASCII (requires installation of one MC300 RS-232 module)
GPIB ASCII (Requires installation of one MF310 IEEE-488 module)

Each of the four available command interfaces are handled by a separate CPU task controller. Any or
all user interface tasks can run simultaneously and independently.

Multi user interfaces offer the machine programmer great flexibility in supporting messaging. A typical
example of this capability would be a Vertical Form Fill and Seal (VFFS) packaging application. After
an empty bag is filled with coffee, a ‘hot seal bar’ is used to close the bag. Most machine operations
would typically be programmed using PMC’s Motion Control APl which communicates via the binary
interface. But monitoring the temperature of the hot seal bar could be implemented via a DCX macro
running as a background task. This would allow the operator interface to display a preprogrammed
ASCII text message issued from the DCX if the seal bar is not within the proper temperature range.
For additional information on messaging please refer to the section titled Outputting Formatted
Messages.

The Command interpreter status word in dual port memory (808h offset) has the following format:

Bit | Flag

Host Binary Interface - Busy
Unused

Unused

Unused

Host Ascii Interface - Busy
Unused

Unused

Host Ascii Interface - Loading File
Serial Interface - Busy
Unused

10 Unused

11 Serial Interface - Loading File
12 GPIB Interface - Busy

13 Unused

O ONOOOR~WN-=-O

390 Precision MicroControl

Appendix

14 Unused
15 GPIB Interface - Loading File

Stand Alone Applications

When used in the stand-alone configuration, power must be provided to the DCX through the edge
connector. In this configuration, one of the available communication interface modules (RS-232 or
IEE-488) can be used to send commands to the controller. In this case, a mating edge connector with
specific pins grounded or pulled high (connected to the 5 volt supply through a resistor) should be
used to properly disable the host interface. Please refer to the Stand Alone Edge Connector
description in Appendix A.

DCX-AT200 User’s Manual 391

Appendix

On-Board File Operations

The DCX has the ability to store text files in its on-board memory. The primary purpose for this
capability is for support of the Plotting function described in a later section. This section describes the
commands used to load and manage files in the controller's file system.

The standard memory on the DCX provides 8 Kbytes (8,192 characters) of memory for file storage.
With the expanded memory option, an additional 191 Kbytes (195,584 characters) of file storage is
available. The file system organizes the memory using a directory that can maintain up to 127
separate files. Each file is identified by an integer number from 1 to 127. A file can be any size, up to
the available memory in the file system. A file can contain any number of ASCII characters, but the
total space required by all files cannot exceed the file system memory. Note that file storage space is
allocated in 1024 byte blocks, so a file that is 100 bytes will occupy 1024 bytes of file system memory.

Prior to loading any files onto the DCX controller, the file memory must be initialized, similar to
formatting a floppy disk of a personal computer. This is accomplished by issuing the Format command
to the DCX.

Example:FO

Initializing the file system memory will delete all existing files from memory and make all space
available for new files.

Files can be loaded into the controller using any of the ASCII interfaces. Files can't be loaded using
the binary interface. To load a file, issue the LOad command with a parameter from 1 to 127
specifying the file to be loaded. After issuing this command the board will accept all characters
received at the interface and place them in the file. To terminate loading of the file, send the End-Of-
File ASCII character (1A hex) to the interface. This code can be generated by pressing the control-Z
key combination on the PC keyboard. When a file is loaded in this manner, all previous contents of
the specified file will be lost.

A program on the Utility Disk, DCX2LOAD can be used to copy a file on the host computer's disk drive
into the DCX's file storage. This DOS program takes the name of the file as a command line
parameter. Include a command line parameter with the form /C"LOR", where n is a number between 1
and 127 specifying the file number on the DCX that the file will be copied to. The program will
terminate immediately after copying the file.

Example:DCX2LOAD /C"LO10" FILE.EXT

This DOS command line will copy a file named 'FILE.EXT' to the DCX and store it as file number 10.
To display what has been loaded into a file, issue the TYpe command to the controller from one of the
ASCII interfaces. The controller will respond by displaying the entire contents of the file. To pause the
file display, press the Ctrl-S key combination. To resume the display, press the Ctrl-Q key

combination.

The Directory Listing command is used to display a list of what files are loaded and their respective
sizes.

392 Precision MicroControl

Appendix

The Remove File command issued with a parameter value from 1 to 127 will delete the respective file
from the controller's memory.

The following DCX commands are available for creating and maintaining files in the controller's
memory:

DL Directory Listing
syntax: DL
code: 271d, 10Fh

parameter: none

compatibility: N/A

see also: TY

explanation: This command causes the DCX to display information about the files that are currently
loaded in its memory and the amount of file storage space remaining for new files.

example: DL

FILE 1: SIZE = 8377

FILE 10: SIZE = 6129

FILE 100: SIZE = 26574

FREE SPACE = 162696 BYTES

EC Execute Command file
syntax: EC
code: 279d, 117h

parameter: 1 <=n<=127

compatibility: N/A

see also:

explanation: Implemented Execute Command file (EC, code=279) command. This command assumes
the on-board file specified by the EC command parameter contains DCX commands. If single
stepping is enabled while executing the command file, the file and line numbers will be displayed with
the command index.

FO FOrmat file system
syntax: FO
code: 270d, 10Eh

parameter: none

compatibility: N/A

see also: RF

explanation: This command initializes the DCX's file storage memory and makes the full amount of
memory allocated for file storage available. Any files that are stored in the file system will be erased
when this command is executed.

LO LOad file
syntax: LOn
code: 274d, 112h

parameter: integer (1 <=n <= 127)
compatibility: MC200, MC260
see also: TY

DCX-AT200 User’s Manual 393

Appendix

explanation: When this command is issued over one of the DCX's ASCII interfaces, the controller will

begin accepting characters from that interface and storing them sequentially in the file specified by the
command parameter. Loading of the file will be terminated when the End-Of-File ASCII character (1A
hex) is received.

RF

syntax:
code:
parameter:
compatibility:
see also:

Remove File

RFn

273d, 111h

integer (1 <=n <=127)
N/A

DL

explanation: This command will delete the specified file from the DCX's storage memory. Functionally
this command will make the memory occupied by the specified file available for storage of new files,
and set the directory entry for this file to 'empty".

TY

syntax:

code:
parameter:
compatibility:
see also:

TYpe file

aCMn

272d, 110h

integer (0 <=n <= 127)
N/A

DL

explanation: This command will cause the contents of the specified file to be sent to the ASCII
interface that the command was issued to.

example: TY10

IN;SP1;
PA1000,0;

PA1000,1000;

PAO0,1000;
PAO,0;

394

Precision MicroControl

Appendix

HPGL Plotting

The DCX has the ability to execute Hewlett Packard Graphic Language (HPGL) commands. This
language is a popular standard used for controlling X-Y tables in plotting and engraving applications.
The DCX can accept HPGL commands sent to it over an ASCII interface port, or it can read them
from an on-board file (see On-Board File Operations). Prior to executing HPGL commands from
either source, the plotting environment must be setup by issuing DCX plotter configuration
commands.

After configuring the plotting environment, the Plotting Enable command will cause the DCX to accept
HPGL commands from the ASCII interface port that the PE command was issued to. Once plotting is
enabled, the DCX will accept only HPGL formatted commands until plotting is disabled by sending it
an End-Of-File ASCII character (1A hex). Plotting can be re-enabled without issuing the configuration
commands if no changes are required.

Alternatively, HPGL commands can be stored in an on-board file and the Plot File command issued to
the DCX using the file number as the command parameter. In this mode, the DCX will execute the
HPGL commands in the file without host computer assistance. Similar to the Plot Enable command,
the Plot File command can be issued multiple times without issuing the configuration commands if no
changes are required.

A program on the Ultility Disk, DCX2LOAD can be used to plot a file on the host computer's disk drive.
This DOS program takes the name of the file as a command line parameter. Include a command line
parameter with the form /C"PE". The program will terminate immediately after plotting the file.
Example:DCX2LOAD /C"PE" FILE.EXT

This DOS command line will plot a file named 'FILE.EXT' using the DCX.

DCX Plotter configuration commands:

PA Plotter Acceleration
syntax: PAnN
code: 289d, 121h

parameter: integer or real (0 <=n)

compatibility: MC200, MC260

see also: PV

explanation: This command sets the acceleration and deceleration for contoured motion of the X and
Y plotting axes. The default value for the plotting acceleration is 1.0.

PD Pen Down
syntax: PDn
code: 293d, 125h

parameter: integer or real (0 <= n <= 1099)

compatibility: N/A

see also: PU,SP

explanation: Specifies a macro containing DCX commands that will be called whenever the HPGL
Pen Down (PD) command is executed.

DCX-AT200 User’s Manual 395

Appendix

PE Plotting Enable
syntax: PE
code: 281d, 119h

parameter: none

compatibility: MC200, MC260

see also: PF

explanation: This command places the DCX in plotting mode. Once this command is executed, the
board will only accept HPGL commands from the command port that the PE command was issued to.
To terminate plotting, the End-Of-File ASCII character (1A hex) must be sent to the same port.

PF Plot File
syntax: PFn
code: 280d, 118h

parameter: integer (1 <=n <= 127)

compatibility: MC200, MC260

see also: PE

explanation: This command will cause the specified file to be plotted. See the On-Board File
Operation section for an explanation of how to load a file prior to issuing this command. This
command can be executed as either a foreground or background task.

PI Plotter Initialize macro
syntax: Pin
code: 291d, 123h

parameter: integer (0 <= n)

compatibility: N/A

see also: PU,PD,SP

explanation: Specifies a macro containing DCX commands that will be called whenever the HPGL
Initialize (IN) command is executed.

PQ Plotter Quick velocity
syntax: PQn
code: 290d, 122h

parameter: integer or real (0 <= n)

compatibility: MC200, MC260

see also: PV

explanation: This command sets the velocity for Pen Up motion of the X and Y plotting axes. The
parameter to this command will be in the plotting units that were set by the Plotter X and Y Scaling
commands.

PU Pen Up macro
syntax: Un
code: 292d, 124h

parameter: integer (0 <= n <= 1099)

compatibility: N/A

see also: PD,SP

explanation: Specifies a macro containing DCX commands that will be called whenever the HPGL
Pen Up (PU) command is executed.

396 Precision MicroControl

Appendix

PV Plotter Velocity
syntax: PVn
code: 288d, 120h

parameter: integer or real (0 <=n)

compatibility:MC200, MC260

see also: PA,PQ

explanation: This command sets the velocity for the Pen Down contoured motion of the X and Y
plotting axes. The parameter to this command will be in the plotting units that were set by the Plotter X
and Y Scaling commands. Alternatively, the parameter to this command will be used as a scaling
factor if a HPGL Velocity Select command is executed during plotting. The default value for the
plotting velocity is 1.0.

PX Plotter X axis
syntax: PXn
code: 282d, 11Ah

parameter: integer (0 <= n <=6)

compatibility: MC200, MC260

see also: PY

explanation: Specifies the DCX controller axis that will be used for the X axis motion in executing the
HPGL commands.

PY Plotter Y axis
syntax: PYn
code: 283d, 11Bh

parameter: integer (0 <= n <=6)

compatibility: MC200, MC260

see also: PX

explanation: Specifies the DCX controller axis that will be used for the Y axis motion in executing the
HPGL commands.

SP Select Pen macro
syntax: SPn
code: 294d, 126h

parameter: integer (0 <= n <=1099)

compatibility: N/A

see also: PU,PD

explanation: Specifies a macro containing DCX commands that will be called whenever the HPGL
Select Pen (SP) command is executed. Prior to calling the macro, the pen number that was specified
with the HPGL Select Pen command will be placed in User Register 0. The macro can use the pen
number stored in User Register 0 to determine which pen or tool to select.

XO plotter X Offset
syntax: XOn

code: 286d, 11Eh
parameter: integer or real

compatibility: MC200, MC260
see also: XS, YO

DCX-AT200 User’s Manual 397

Appendix

explanation: Specifies an offset in the origin for the plotting X axis. The parameter to this command
should be in the same plotter units that are established with the Plotter X Scale (XS) command. The
value set with this command will be used as the axes' User Offset when the Plotting Enable (PE)
command is issued. This offset is independent of the offset that can be set with the HPGL Input P1
and P2 (IP), and Scale (SC) Commands. The default offset is 0.

XS plotter X Scale
syntax: XSn
code: 284d, 11Ch

parameter: integer or real

compatibility: MC200, MC260

see also: XO,YS

explanation: Specifies the scaling factor for the plotting X axis. The parameter to this command should
be the number of encoder counts or steps per plotter unit. The value set with this command will be
used as the axes' User Scale when the Plotting Enable (PE) command is issued. This scaling is
independent of the scaling that can be set with the HPGL Input P1 and P2 (IP), and Scale (SC)
Commands. The default scale factor is 1.0, or 1 plotter unit per encoder count or step.

YO plotter Y Offset
syntax: YOn

code: 287d, 11Fh
parameter: integer or real

compatibility: MC200, MC260

see also: XO,YS

explanation: Specifies an offset in the origin for the plotting Y axis. The parameter to this command
should be in the same plotter units that are established with the Plotter Y Scale (YS) command. The
value set with this command will be used as the axes' User Offset when the Plotting Enable (PE)
command is issued. This offset is independent of the offset that can be set with the HPGL Input P1
and P2 (IP), and Scale (SC) Commands. The default offset is 0.

YS plotter Y Scale
syntax: PAn

code: 285d, 11Dh
parameter: integer or real

compatibility: MC200, MC260

see also: XS, YO

explanation: Specifies the scaling factor for the plotting Y axis. The parameter to this command should
be the number of encoder counts or steps per plotter unit. The value set with this command will be
used as the axes' User Scale when the Plotting Enable (PE) command is issued. This scaling is
independent of the scaling that can be set with the HPGL Input P1 and P2 (IP), and Scale (SC)
Commands. The default scale factor is 1.0, or 1 plotter unit per encoder count or step.

398 Precision MicroControl

Appendix

Supported HPGL PLOTTING commands

When plotting is configured (using the DCX plotting configuration commands) and then enabled on
the DCX, it will accept and execute Hewlett Packard Graphic Language (HPGL) commands. This
appendix describes the HPGL commands that have been implemented on the DCX.

In the syntax descriptions, upper case letters are required, lower case letters represent numerical
values, and parenthesis delimit optional values.

Arc Absolute

syntax: AA x_abs,y_abs,angle (,chord)

Arc Relative
syntax: AA x_rel,y_rel,angle (,chord)

Circle
syntax: Cl radius

INInitialize

syntax: IN

IP Input P1 and P2
syntax: IP p1x,p1y(,p2x,p2y)
PA Plot Absolute
syntax: PA Xx,y(,...)

PD Pen Down

syntax: PD (x,y(;...))

PR Plot Relative

syntax: PR x,y(,...)

PU Pen Up

syntax: PD (x,y(,...))

SC Scale

syntax: SC xmin,xmax,ymin,ymax
SP Select Pen

syntax: SPn

VS Velocity Select
syntax: VSv

DCX-AT200 User’s Manual 399

Index

400 Precision MicroControl

Index

Index
Contour buffer 98
enable 99, 174
A on the fly changes 102
' specifying 216
Abort motion 178 Vector acceleration 97
Acceleration Vector deceleration 97
disable 50 Vector velocity 97
setting 48, 85, 87, 93, 171 ASCII command interface 60, 386
Active level At target
limit switches 108 commanding 118, 191, 207, 350
Amplifier fault input description 118
enable 166 Aucxiliary encoder
Analog I/0 dual loop servo 123
configuring 156 report position 197, 210, 334
testing 156 servo 123
Analog input stepper 123
description 154 testing 127
joystick 105 wiring 126
reporting 157,210, 327 Axis number 389
Analog output
calibration 158
description 155 B
max. loading 155
setting 158, 212, 335, 342 Background task
API cancel 214
components 15 Backlash compensation
installation 13 description 127
Application program samples ------ 44,45, 46, 47, 48 enable 127,181
Application programming Battery backup connector 232
Gt 44 BF022
Delphi 46 mounting footprint 268
LabVIEW 47 BF100
Visual Basic 45 mounting footprint 273
Arc motion 96 BF160
DCX-AT200 User’s Manual 401

Index

mounting footprint 277
Binary command interface 60, 382
C
C++ programming 44
Calibration

analog module outputs 158

stepper, constant 89

stepper, on power up 70
Capture data

actual position 136, 179

DAC output 136, 179

following error 136, 179

optimal position 136, 179
Capture encoder index 185
Command set

functional listing, MCAPI 163

functional listing, MCCL 283

MCAPI 161

MCCL 303
Communication testing

DCX-AT200 18
Connector

DCX module pin numbering 22

DCX-AT200 232, 235

DCX-BF022 266, 267

DCX-BF100 271, 272

DCX-BF160 276

DCX-MC200 241

DCX-MC210 246

DCX-MC260 252

DCX-MC400 254

DCX-MC5X0 256

DCX-MF300 258

DCX-MF310 262
Contact Precision MicroControl iv
Contour buffer

description 98

tell contour count 98
Cubic spline interpolation 102, 182
Current sink/source

digital output 149, 223, 227
D
DAC output

plotting 50
DCX Architecture 56,7,8
DCX command (MCCL)

description 64, 281, 303

format 65

pausing a command / sequence ------------------- 67

repeating 66

single stepping 290

terminating a command / sequence --------------- 67

DCX controller communications

ASCIlI command interface -------------------- 60, 386

Binary command interface -------------------- 60, 382

IEEE-488 (GPIB) 59

ISA bus 59, 60

RS-232 59, 60
DCX module

axis number 389

connector pin numbering 22
DCX system components

DCX-AT200 6, 149, 154

DCX-BF022 35, 149

DCX-MC400 149
DCX-AT200

communications testing 18
DCX-controller communications

IEEE-488 (GPIB) 61
Deceleration

disable 50

setting 48, 85, 87, 93, 171
Default directory

MCAPI 13
Default settings 388
Delphi programming 46
Derivative gain

description 70

retrieving 200

sampling period 78

setting 78, 167
Digital 1/0

AT200, pin out 232

configuring 150, 210

description 149

output, max current--------------------- 149, 223, 227

testing 150

turn off 152, 211

turn on 152, 211
Direction

setting 95, 180
Download

text file 290
Dual Loop servo 123
Dual loop servo control 82
Dual ported memory

data tables 377

description 377
Dwell

period of time 188
E
Encoder

auxiliary 123

capture index 185

checkout 54,72

descritpion 70

reversed phased 76

402

Precision MicroControl

Index

rollover 130 limit sensor 113
Encoder Index servo 109
checkout 110 stepper 114
description 70 troubleshooting 364
Error codes HPGL plotting 395
MCAPI 366
MCCL 367
Error LED's 231 I
E-stop .
enable 128 Inertia
examples 128 effects upon system 78
hard wired 128 Installation
DCX modules 22
DCX-BF022 35
F DCX-MC200 24
DCX-MC210 28
Fail safe operation DCX-MC400 35
watchdog circuit 145 DCX-MC5X0 36
Feed forward 82, 120, 145 DCX-MF300 36
acceleration 84, 121 DCX-MF310 37
calculating 82,120 MCAPI 13
deceleration 84, 121 Software 13
described 82 Integral gain
setting 83, 120 description 70
File operations 392 retrieving 200
Firmware upgrade 131 setting 78, 167
Fluid dispensing Integral limit
example 292 description 80
Following error setting 80
default setting 72 ISA bus signals 235
demonstrated 86
description 72
disable 73,310 J
plotting 50)
setting 167 Joggmgl '
Formatted messages 292 description 105
Friction 85 enable 106, 182
effects upon system 78 setting maximum velocity 106
Frictionless servo terminate 106
usinf output deadband 309 wiring : 105
using output deadband 85 Joystick controlled motion 105
Jumpering
analog input (DCX-AT200) 154
G DCX-AT200 233, 234
DCX-BF022 268
Gearing DCX-MC200 24,242
enable 104, 182 DCX-MC210 28, 247
setting ratio 104, 182 DCX-MC260 32, 253
terminate 104, 182 DCX-MF300 258, 259
DCX-MF310 37, 263
H
L
Home sensor
checkout 110 LabVIEW programming 47
Homing an axis Laser cutting
closed loop stepper 117 description 132
encoder index --------------- 111, 112, 183, 184, 185 example 132
home sensor 112, 183 Learning points 135, 186
DCX-AT200 User’s Manual 403

Index

LED's Minimum requirements
error 231 PC 5
Limiting the servo command output ---------------- 141 Module
Limits communication 7
active level 108 1/0 7
checkout 107 motion control 6
disable 107,172 Motherboard, motion control 56
enable 107,172 Motion complete
hard (switch / sensor) 107,172 at target 118
homing an axis 113 closed loop stepper 87, 88, 91
inverting active level----------—-—-—-—--- 107, 108, 172 description 118
normally closed switch 107, 108 trajectory complete 118
programmable 107,172 Motion control
troubleshooting 364 backlash compensation 127
Linear interpolation 96 Constant velocity move 95
Contour buffer 98 Contour move 96
enable 98, 136, 174 laser cutting 132
on the fly changes 102 Learning / Teaching points 135
specifying 97, 216 Master / Slave 104
Vector acceleration 97 pause motion 389
Vector deceleration 97 Point to point 95
Vector velocity 97 required settings 93
loading DCX data resume motion 389
user register 298 Tangential knife 138
Loading motor status 299 theory of operation 69
threading 140
Torque mode 141
M Motion Integrator
analog I/0O 156
Macro command analog output calibration 158
as background task 288 description 49
defining 286 digital I/0 150
described 286 encoder checkout 72
execute 214 encoder index checkout 110
execution upon reset / power up ----------------- 287 home sensor checkout 110
memory size 286 limit sensor checkout 107
non volatile 286 troubleshooting 355
reporting 287 Motor control output
resetting (deleting) 287 DCX-MC200 69
volatile 286 DCX-MC210 69
Master / Slave limiting 141
description 104 PWM 132
enable 104 Motor status 330
slave ratio 104 loading 299
tangential knife control 138 Mounting footprint
termination 104 BF022 268
threading 140 BF100 273
MCAPI BF160 277
components 15 Moving motors
default directory 13 required settings 65
installation 13 Servo motor 70
MCCL commands issued by ----88, 132, 138, 140 Stepper motor 87
Setup 16, 64 Multi-tasking
testing 18 commands not supported 288
uninstall 21 CPU utilization 289
MCCL commands described 288
issued via MCAPI --------------———- 88, 132, 138, 140 digital 1/0 203
not supported by MCAPI --------- 88, 132, 138, 140 example 289
404 Precision MicroControl

global data registers 289 DCX-MF300 258
passing data between 289 DCX-MF310 262
private data registers 289 PLC
quantity supported 289 analog I/0O 296
termination 289 digital 1/0 292
testing 288 Plotter file (HPGL) 395
PMC email address iv
PMC web address iv
N Point to point motion
execution 95, 186, 187
Normally closed limit switch --------------m---- 107, 108 Position
Recording 136
0 redefining 173
Position mode
enable 95, 174
OLE Server Printing a PDF document 368, 369
Integrator test panels 51 Program samples ----------------- 44,45, 46, 47, 48
On the fly changes Proportional gain T T T
arc and linear motion 102 description 70
Constant velocity motion 119 retireving 200
Point to point 119 setting 76. 167
Trapezoidal velocity profile 119 PWM servo control 132
enable 173
P
. : ' R
Parabolic velocity profile
p a%iicgp;![?onn 323 Recording ppsition data 136
Pausing Remote vehicle control
MCCL command / sequence 67 R example 296
PC requirements, minimum 5 epeating
’ command or sequence 66
PDF Report
described 369 :
document printing 368, 369 :le?st g;;u;gl/alue 118 3(1)2
viewing a document 369 captured d%ta 136’ 198
Phasing " ’
output/encoder 72, 76,91, 175 Surrent position g?f
PID digital filter-------------------- See Tuning the servo follglgv?/incg 2?;? 500
%g?émm ;8 MCAPI errors 196
description 70 motor command output 206
" term 70 motor status 195, 205, 330
1" term optimal position 202
not used 73 PID parameters 200
P term 70 prog_rammed velocity 207
rate selection 73 scaling factors 204
theory of operation 70 target position 206
Pin out trajectory complete 118, 208
DCX module connector 22 Reusc()ar:i;egster 203
DCX-AT200 gen. purpose [/Q----------wmemo- 232 fﬁmwage version 20
DCX-BF022 266, 267 MCAPI version 20
DCX-BF100 271, 272 Reset
Bgi:l\B/llg;OOO Z? manual (external switch) 137
DCX-MC210 246 software -- 187
DCX-MC260 252 Resume motion 389
DCX-MC400 254
DCX-MC5X0 256 encoder 130
DCX-AT200 User’s Manual 405

Index

S

Sales support iv
Scaling

defining user units 143, 169
S-curve velocity profile

description 95
Servo command output

+/- 10V 173

oV - +10V 173

limiting 141,176

PWM 173
Servo loop

description 70
Servo loop rate

selection 73
Servo motor control

homing 109

theory of operation 69

tuning the servo 74
Setup

MCAPI 16, 64
Single stepping a program 290
Software

default directory 13

Demo programs 55

Flash Wizard 53

installation 13,15

Motion Integrator ------------

49, 107, 150, 156, 355

New Controller Wizard 16
OLE Server 51
On-line help 55
Position Readout 54
reporting firmware version 20
reporting software version 20
Servo Tuning utility 74
setup 52
source code 55
uninstall MCAPI 21
WinControl 290, 367
Specifications
DCX-AT200 223
DCX-MC200 69, 222, 225
DCX-MC210 69, 222, 225
DCX-MC260 222, 226
DCX-MC400 227, 254
DCX-MC5X0 222,229, 256
DCX-MF300 229
DCX-MF310 229
Stand-alone applications 391
Status
motor 205, 330
Status LED's 231
Step rate
selection 87, 226
Stepper motor
homing 117

Stepper motor control

closed loop 88

homing 114

open loop 87

output, CW / CCW 173

output, Pulse & Dir. 173

theory of operation 70
Stop move 178, 188
Switch settings

DCX-AT200 12, 234

DCX-MF310 38, 264
T
Tangential knife control

description 138

example 138
Teaching points 135
Technical support iv
Terminating

MCCL command / sequence 67
Testing

analog I/0O 156

DCX-AT200 communication 18

digital I/O 150

MCAPI 18
Text file

download 290
Threading operations

description 140
Timeout, MCAPI

setting 219
Trajectory complete

closed loop stepper 87, 88, 91

description 118
Trajectory generator

demonstrated 86

description 69

disable 76

disable (Gain mode) 174

enable 86
Trapezoidal velocity profile

description 95
Troubleshooting

encoder checkout 54,72

general 356

home sensor input 364

limit switches 364

'PC' bus communication 357

servo motion 359, 361

servo tuning 358

stepper motion 362
Tuning the servo

derivative gain 78

derivative sampling period 78

description 74

high inertia systems 78

initial settings 76

406

Precision MicroControl

Index

integral gain 78 description 81,120
intergal limit 80 tuning 81
proportional gain 76 Velocity mode move
range of slide controls 81 enable 174
restoring settings 81 execution 95
saving settings 81, 84 setting direction 180
Servo tuning utility 74 setting the direction 95
Velocity mode amplifier 81 starting 96, 185
Velocity profiles
Contour mode motion 96
u Parabolic 69, 95, 174
) S-curve 69, 95, 174
Uninstall Trapezoidal 69, 95, 174
MCAPI 21 Version
Upgrade firmwareware 20
firmware 131 software 20
User memory 302 Visual Basic programming 45
User registers
description 298
User units w
controller time base 144
description 143 Wait
machine zero 144 for absolute position 189
output constant 145 for 'at target' 118, 191
part zero 144 for coarse home sensor 189
setting 143, 169 for digital channel = 212
trajectory time 144 for relative position 190
user scale 143, 144 for trajectory complete 118, 190
period of time 188
Watchdog circuit
v description 145
Wiring
Vector acceleration 97, 168 auxiliary encoder 126
Vector deceleration 97, 168 axis 1/O 26, 27, 30, 31, 33, 34
Vector velocity 97,168, 177 encoder, reversed phased 76
Velocity E-stop 128
disable 50, 76 Joystick 105
set too high 2 manual reset switch 137
setting --- 48, 85, 176 servo amplifier 26, 27
Velocity gain 89, 145 servo axis 26, 27, 30, 31
Velocity mode stepper axis 33,34
enable 95 stepper driver 33, 34
Velocity mode amplifier
DCX-AT200 User’s Manual 407

	Introduction
	Installation
	DCX Motion Control System Installation
	Installing the DCX Software (MCAPI)
	Installing DCX Motor Control and I/O Modules
	DCX-MC200 – Servo Motor Module Installation
	DCX-MC210 – Servo Motor Module Installation
	DCX-MC260 – Stepper Motor Module Installation
	DCX-MC400 – Digital I/O Expansion Module Installation
	DCX-MC500 – Analog I/O Expansion Module Installation
	DCX-MF300 – RS-232 Stand Alone Communication Module Installation
	DCX-MF310 – IEEE-488 Stand Alone Communication Module Installation

	Programming, Software and Utilities
	Controller Interface Types
	Building Application Programs using Motion Control API
	PMC Sample Programs
	Motion Integrator
	PMC Utilities
	MCAPI On-line Help

	Communication Interfaces
	PC communications Interfaces
	RS-232 Communications Interface
	IEEE-488 Communications Interface

	DCX Operation Basics
	Introduction
	Low Level DCX Operations

	Motion Control
	Theory of DCX Motion Control
	DCX Servo Basics
	Tuning the Servo
	DCX Stepper Basics
	Closed Loop Steppers
	Moving Motors with PMC demo’s
	Defining the Characteristics of a Move
	Velocity Profiles
	Point to Point Motion
	Constant Velocity Motion
	Contour Motion (arcs and lines)
	Electronic Gearing
	Jogging
	Defining Motion Limits
	Homing Axes
	Motion Complete Indicators
	On the Fly changes
	Feed Forward (Velocity, Acceleration, Deceleration)
	Save and Restore Axis Configuration

	Application Solutions
	Auxiliary Encoders
	Backlash Compensation
	Emergency Stop
	Encoder Rollover
	Flash Memory Firmware Upgrade
	Laser Cutting
	Learning/Teaching Points
	Record Motion Data
	Manually Resetting the DCX
	Tangential Knife Control
	Threading Operations
	Torque Mode Output Control
	Defining User Units
	DCX Watchdog

	General Purpose I/O
	DCX Motherboard Digital I/O
	Configuring the DCX Digital I/O
	Using the DCX Digital I/O
	DCX Motherboard Analog Inputs
	DCX Module Analog I/O
	Using the Analog I/O
	Calibrating the MC500/MC520 +/- 10V Analog Outputs:

	Motion Control API Function Reference
	Motion Control API Function Quick Reference Tables
	Setup Commands
	Motion Functions
	Reporting Functions
	I/O Functions
	Macros and Multi-Tasking
	MCAPI Driver Functions

	DCX Specifications
	Motherboard: DCX-AT200
	DCX-MC210 - PWM Motor Drive Servo Control Module
	DCX-MC260 - Stepper Motor Control Module
	DCX-MC400 - 16 channel Digital I/O Module
	DCX-MC5X0 - Analog I/O Module
	DCX-MF300 - RS-232 Communications Interface Module
	DCX-MF310 - IEEE-488 Communications Interface Module

	Connectors, Jumpers, and Schematics
	DCX-AT200 Motion Control Motherboard
	DCX-MC200 +/- 10V Servo Motor Control Module
	DCX-MC210 PWM Motor Drive Servo Control Module
	DCX-MC260 Stepper Motor Control Module
	DCX-MC400 Digital I/O Module
	DCX-MC500/510/520 Analog I/O Module
	DCX-MF300 – RS-232 Interface Module
	DCX-MF310 IEEE-488 Interface Module
	DCX-BF022 Relay Rack Interface
	DCX-BF100 Servo Module Interconnect Board
	DCX-BF160 Stepper Module Interconnect Board

	DCX MCCL Commands
	Introduction to MCCL (low level command set)
	MCCL Command Quick Reference Tables
	Building MCCL Macro Sequences
	MCCL Multi-Tasking
	Downloading MCCL Text Files
	Single Stepping MCCL Programs
	Outputting Formatted Message Strings
	PLC I/O Control using MCCL Sequence Commands
	PLC Control and DCX Analog I/O
	DCX User Registers
	Reading Data from DCX Memory
	DCX Scratch Pad Memory
	MCCL Command Set Description

	Troubleshooting
	Controller Error Codes
	MCAPI Error Codes
	MCCL Error Codes

	Printing a PDF Document
	Glossary
	Appendix
	Dual Ported Memory
	Binary Communication Interface
	ASCII Communication Interface
	Power Supply Requirements
	Default Settings
	Pause and Resume Motion
	Physical Assignment of Axes Numbers
	Multiple User Communications Interfaces
	Stand Alone Applications
	On-Board File Operations
	HPGL Plotting

	Index

