MultiFlex PC/
1000 Series

PCIl Motion Controller - User’s Manual
Revision 2.5

Precision MicroControl Corporation
2075-N Corte del Nogal
Carlsbad, CA 92009 * USA

Tel: +1-760-930-0101
Fax: +1-760-930-0222

www.pmccorp.com

Information: info@pmccorp.com
Technical Support: support@pmccorp.com

LIMITED WARRANTY

All products manufactured by PRECISION MICROCONTROL CORPORATION are guaranteed to be free
from defects in material and workmanship, for a period of 2 years from the date of shipment. Liability is
limited to FOB Factory repair, or replacement, of the product. Other products supplied as part of the
system carry the warranty of the manufacturer.

PRECISION MICROCONTROL CORPORATION does not assume any liability for improper use or
installation or consequential damage.

© Copyright Precision Micro Control Corporation, 2004-2012. All rights reserved.

Information in this document is subject to change without notice.

Intel is a registered trademark of Intel Corporation.
Microsoft® and Windows® are registered trademarks of Microsoft Corporation.
Acrobat® and Acrobat Reader® are registered trademarks of Adobe Corporation.

Precision MicroControl Corp.
2075-N Corte del Nogal
Carlsbad, CA 92011 « USA

Tel: +1-760-930-0101
Fax: +1-760-930-0222
Web: www.pmccorp.com
Email: info@pmccorp.com
support@pmccorp.com
sales@pmccorp.com

Precision MicroControl Corp.

Table of Contents

[0] o Yo LU - PR 3
1] 4 oo TU Yo (T] o NSRS OUURPPUPRR 5
[fo)dToT g @doT ok o] N = T 4= PSRRI 11
N ST L LR 15
The Command Set - the heart of the motion CONtrOllErcceeviiiiiii e 16
Executing Operations WIth IMCCLuuiiiiiiiiiee ittt ettt et e e e st e e e e sbbe e e e sebeeee e e 17
Closed loop, open loop, and poSition VEIfICAtIONoiiiiiiiiiiie e 20
Why does a Servo NEed t0 DB TUNEA? ... e e e e e e e sanbeae s 22
Position Feedback - Quadrature Incremental ENCOUETuuuuiiiiiiiiiiicer s 24
Servo Amplifiers: Current Mode versus VElOCity MOUE............ueeiiiiiiiiiiiiieiice e e e 25
Stepper Motors - Full Step VErsuUS MICIO SEEPuuuiiiiiii e e e e e e e re e e e e e e s ssaarreeeeeeeenanes 26
Homing - Why, WHhen, @na HOWouiiiiiiii et e st er e e e e e e s s st r e e e e e e e e s snnnnnnaneeeeesennnns 27
Software, Programming and ULHTIESiiii it e e e e e e s s anraeee e e s nnes 29
(70 a0 | (=T ok (=T g £= Lo = TN N7 =SSR 30
Building Application Programs using Motion Control APceee e srren e e e e 31
MCSpy - application program diagnNOStIC tOO0]...........cciiiuiiiiiiiiiii e 36
PMC SaMPIE PrOQIaIMS. ... ittiiiii ittt ettt ettt ettt e e ettt e e e st b et e e e sab et e e e aabb e e e e abb et e e aabbeeeesabbeeesanbeeaeee 37
Motion Control AP ON-liINE HEIPooiiiiiiie et sb e s e e 38
Y To]Te] T [a1=Te] =1 (o TR PPRTUPUPRPT 40
PIMC ULIILIES ..vveee ettt ettt ettt e e e st e e e sat e e e e eatee e e e aatae e e e antbeeaeaatbeaeeeasbaeeeasbeeaesasbaaeeenssanaenns 43
ConNNECtiNg 10 the CONTIOIIET ..ottt e e e e e e bbb e e e e e e e s s aeaeeaaaeeeaannes 47
+/- 10V Analog Servo Command CONNECLIONSuuiiiieeiiiiiiiiiieeie e s sesiree e e e e e s s s s e e e e e e e s seenrrereaaeeeaanns 48
PWM (Pulse Width Modulation) Command CONNECLIONS..........cccceiiiiiiiiiiieeee e e e srrrrrrr e e e e 49
Pulse ComMMEANd CONMNECHIONSeiiiiiiiiee ittt e et e e s bt e e s sabe e e e s sabe e e e s sabaeeessnbaeeessbeeeenes 51
Amplifier / Driver Enable ConNECtiONS - LOW ACHIVEuuviiiiieee e a e e 52
Driver Disable CONNECLIONS = LOW ACLIVEooiiiiiiiieiiiiee ettt e s nebee e e s snbae e e s seeee e e 53
Amplifier / Driver Enable Connections - High ACHIVEcc.ooiiiiiiiiii e 54
Amplifier / Driver FAult CONNECLIONScoiuiii ittt e e bbb e e s eenes 55
Differential Incremental ENCOAEr CONNECHONSuuiiiieeiiiiiiiiiieie e e sttt ee e e e e e s st ee e e e e e s senbnraeeeeaeennnes 56
Single Ended Incremental ENCOder CONNECTIONS........coiiiiiiiiiiiiiie ettt ee e e e eeeeaa e e e 57
Over-Travel LIMIit CONNECLIONSii ittt ettt e e e e e sttt e e e e e s e aababeeeeeaaeesaannbeeeaaeeaaannes 58
HOME SENSOI CONNECHIONSeeiiiiiiiiiiiitii ettt e e e e e ettt e e e e e e e e s bbbttt et e e e e e aaababaeeeaaeeesannnbbeaaaeeaaannes 60
LI B o1 c= U [T o101 s o] o1 g T=Tox 1o o =S 61
TTL Digital OULPUL CONNECLIONSuiiiieeii ittt ee e e s e e e e e s s e e e e e e e e s st et e e e e e e e e s snnstabaeeeeeesesasrraeeeaeens 62
A/D Input Connections WIriNg EXaMPIEccuuiiiiiiie e e e e e e s e re e e e e e s s e anb e e e e e e e s s errereees 63
Watchdog Relay CONNECLIONSuuiiiiiieii i e e e s e e e e e e s e s e e e e e e e s s aanbeeeeeeeesannnnnneees 64
T} ToT o I @%o] o1 o | PSR PRR 65
Servo (analog comMMAaNd) AXIS SEIUP ...uuuiriiiiie et e it e e e e e s s s s e e e e e e e s s s e e e e e e s s ssartaerreaeeeseannrneeeesaaannns 65
TUNING thE SEIVO ..ttt e e e et e e sk bt e e s nb et e e an b bt e e e anbb e e e s annees 68
MoVving Servo AXES WIth IMOTOI IMOVETcoiuiiiiiiiiiee ettt ettt e et e e e s sab e e s saeeee e 77
Stepper (Pulse COMMANA) AXIS SELUDuueitiiiaiiiiitiee it e ettt a e e et b et e e e e e e e s e ababeeeeaaaeesaabnbrneeeasaaanne 78
Moving Stepper AXeS With MOTOr MOVETooi ittt e e e bae e e e e e anes 85
Contour Motion (BrCS AN HINES)ceiiiiiiiiiiei et e e e e e e s e aab b e e e e e e e e e e e snbeeeaaeeaaaanes 91
[T=Tod o] g1 [© =T T o [O PEERRR 100
B [0 o 1T [PPSR 101

MultiFlex PCI 1000 Series User's Manual i

Table of Contents

DefiniNg MOTION LIMIES ..ottt e e e e e e s st b ettt e e e e e e s bbbt e e e e e e e e e abbnseeaaaeeaaanne 102
[(0] 0110 To [L PR UPPPPPPPRPRTN 105
MOtION COMPIELE INAICALOIS......eiiiiee ittt e et e e e e e e s e bbb e e e e e e e e e e anbbbeeeaeeeeaaane 117
(@ 1 L= Vo1 = g o =R 119
Feed Forward (Velocity, Acceleration, Deceleration)............c.ueeeeeeiiiiiiiiieeeee e e e e e e e ssrree e e e e 120
Save and Restore Axis Configuration SENGSuuveiiiieiiiiiiiiie e e e e e e sarrre e e e 122
PN o] o] FToz=\qTo T a1 1V 4 0] 13 SRR 123
Backlash COMPENSALION.........uuiiiiii i s e e e e e s e s e e e e e e s sasnnbeeeeeaeeesannnneeeaeeesannns 123
L= 0 =T 03 Y e o 125
[g TotoTo [=T gl = Lo | 01V =T SO PPRERP 127
Flash Memory Firmware UPAaAteueeiiiiiiieiieeee ettt s 128
Saving and Restoring Axis Configuration SEHNGS.........ocuiiiiiiiiieii e 129
Learning/Teaching POINTS.........o ettt e e e e e e s e e e e e e e s e sbreeeaeeeeaaanes 133
BUIldINg MCCL MACIO SEUUEBINCESuvtieiiaieiaiiitiiiteaaaaaaaaitttteeeaaaaaaaaabebeeeaaaeeaaaanbsbeeeeaaaessaasbsbeeeaaaaaanes 135
Y T @ I 1Y 1011 =T 24 o SRR 137
Lo Ty 11 T0 T @F=T o] U PSRRI 140
Lo Ty 11 To] T @0 0] = = PRERR 141
Position Verification of an Open LOOP PUISE AXIScoiiiiiiiiiiiie et ee e sctitrn e e e e e e s sninnreen e e e e e 143
PWM SEIVO COMIMANGceiiiitiiiieiiiiit ettt te ettt te e sttt et et e e e sbe e e e s bee e e e s bbe e e e s anbeeeesanbseeeesnbeaeeessbeeesnneeeeas 147
[RL=Tolo] (o Y o] (To] g T - | = VTR PP PP 150
RESEHNG the CONIOIETcoiiiiiie ettt et e st b et e e sbb et e snbb e e e e snenee s 151
Single StePPING MCCL PrOQIAIMScooiiiiiaiiiitee it te sttt sttt e et e e s aab e e e s nbae e e e ennbeeesnnnes 152
Torque Mode OULPUL CONTIOL........iiiiiiiiie ittt st e e s sb e e e abb e e e e sbae e e e enenes 154
Turning off Integral gain dUriNg @ MOVE............oiiiiiiiiiiiii et e e e saereeeeas 156
DEfiNING USEI UNILS....ccii ittt e e e e e e ettt e e e e e s s e b bbbt et e e e e e e e anbbbeeeeaaesaannbeseeeaaaeaaannes 159
LAYz 1o g To [0 To IO | (ol U | TR PPRTPT PP 163
GENEIAl PUIPOSE /Ot e e oo e ettt e e e e e e e e aabbe e e e e e e e annbbaneeaaaeeaaannes 165
(D] To 1 7= LN 1 RSP PRP 165
Configuring and Exercising the Digital 1/O...........ccccuiiiiiiie e 167
USING the DIGItal 1/O....ceee it e e e et r e e e e e s e e e e e e e e e s sasnteeeeeaeeeasssanneneeeeesaannns 168
0 1oV 170
Y 01T} o= 1 Lo 1= P SSUR 173
T] 1Te] @] 10] I =TT o 1O PPRSRP 173
Analog Command AXiS SPECITICALIONS.iiiiiiiiii et rbee e 174
Pulse Command AXiS SPECITICALIONSccciiiiiiiiiiiii ettt 175
(000] o[1=Tol (e EST VL@ Ir=Ta Lo S Yod aT=T0 g =L 4 o R 177
AV o | DO o] 4] [=Toi (o] £ SRR TUPTPPPPPRPPPRPROR 178
Controller StatuS LED INAICALOIScooiiiiiiiiiiee ettt ettt e e e e et e e e e e e e e s anabbbb e e e e e e e e e anbeeeaaaeens 179
(0] 1 170]|L=T g =lo] (=T 0110 00 =] (] £ RSP PR 180
Connector PiNOUt — MUILIFIEX PCl 1440ccoouiiiieiiiiiee ettt et e st a e s e e s enreeesneees 181
Connector Pinout — MUILIFIEX PCL L1040ccoiuiiiieiiiiee ittt st st e e s e e e 185
Y To T F= LD 1= o o] 1 o] g 1 PP 190
1[0} (o] @] 4T 4 F= T o IS To s F= £ PP 190
Encoder FEedback SIgNaS.........oouiiiiiiiii e 191
DEfAUIT AXIS INPULS. ...ttt ettt e sttt e e ettt e e e s abe et e e aa b b et e e sbb e et e sbe e e e snbbeeeesneneeas 191
DEfAUIt AXIS OULPULSeeieeieiiee ettt ettt ettt e bttt e s bb et e s kb et e e s aab bt e e e aabb e e e e snbnee e snbbeeeesnnnneeas 193
Default Configuration of General PUIPOSE 1/Ooiiiiiiiiiiiiiiee et 195
ClICUIL SCREIMALICS ... eeeeeei ettt oottt e e oo et b bttt e e e e e e e e abbeee e e e e e e e s s nnbbbeeeeeeaannnnbeneaaaaeas 197
RN e 101 o11=T] s e To) 4] g Lo PP ST PP PP PUPPPROPIN 201
(7o)l A go] | =T g =i fo] g o Lo [T TP PR UUPPPPPRRPTN 211
Vo) [g @de))i do) I AN od I =g (o] g @0 o [= 1T RSP 212
1Y (o @ I =y (o] g @ o [= 1 PRSP 213
L1 Lo 17T | R EERR 215
N] o 1= [1 G SRR 219
Default Axis Configuration SEHINGSuuiiiiiieii e e e s e e e e e e s s e e e e e e s snnanreneeeeeeannns 219
10T = PR 221

i Precision MicroControl Corp.

Prologue

This document provides configuration, programming and application information for the MultiFlex PCI
1000 Series motion controllers. Documentation for this product line includes the following documents:

MultiFlex PCI 1000 Series Quick Start Guide

MultiFlex PCI 1000 Series User’s Manual (this document)

Motion Control API (Application Programming Interface) Reference Manual
Motion Control Command Language (MCCL) Reference Manual

The latest versions of these documents can be downloaded from the Support section of PMC’s web site
at: www.pmccorp.com/support/mfxpcil000.php.

This user manual applies to all MultiFlex PCI 1000 Series models, which include the following:

Table 1. MultiFlex PCI 1000 Series Models

Model Total Analog Step/Dir or Encoder Analog

Axes and/or Cw/CCw Channels Inputs

PWM Axes Pulse Axes (standard / (optional)

(Servo) (Stepper/Servo) optional)

MultiFlex PCI 1040 4 - 4 0/4 8
MultiFlex PCI 1400 4 4 - 4 8
MultiFlex PCI 1440 8 4 4 4/8 8
MultiFlex PCI 1802 8 8* - 8 8

* PWM onlly

MultiFlex PCI 1000 Series User's Manual

http://www.pmccorp.com/support/mfxpci1000.php�

Page intentionally
left blank

Precision MicroControl Corp.

Chapter

Introduction

I/0 Connectors Digital I/O Analog Adjustment Analog I/0 LED Status Watchdog
J1&J3 Buffer Circuitry Potentiometers Circuitry Indicator Lights Relay Contacts

(LEERR NG

..... pddd

I/0 Connectors | Encoder Receivers with Universal (3.3 & 5V) 64-bit Floating FPGA 16 MB
J2 &34 Failure Detection Circuits ~ PCl-bus Connector Point RISC CPU DRAM

Figure 1. MultiFlex PCI 1000 Series Board Layout

The MultiFlex PCI 1000 Series are programmable, board-level, PCI-bus motion controllers designed for
high-performance multi-axis control of servo and stepper motors and I/O. Features offered by models in
this series include:

Plug & play PCI universal (3.3 & 5V) half-length card

64-bit floating-point RISC CPU for high precision and dynamic range
Customizable FPGA-based I/O architecture

Up to 8 total axes

4 axes analog servo control (models MultiFlex PCI 1400, 1440)

8 axes PWM servo control (model MultiFlex PCI 1802)

Up to 4 axes Step/Dir/fCW/CCW pulse control (models MultiFlex PCI 1040, 1440)
Coordinated motion - interpolation, contouring, spline, master/slave, gearing
Trapezoidal, S-curve and parabolic velocity profiles

MultiFlex PCI 1000 Series User's Manual S

Introduction

User selectable 2, 4 and 8 kHz servo update rate each axis

16-bit analog servo command outputs

20 mHz encoder inputs for high-speed, high-resolution moves

5 MHz step/direction/CW/CCW outputs for high-speed microstepping

On-the-fly changes in trajectory, direction and PID values

On-board multi-tasking - frees host PC for other tasks

Eight general-purpose 14-bit A/D input channels (optional)

Up to 60 user-assignable digital I/0O channels

Encoder-failure detection circuitry for improved machine safety

Sub-microsecond position capture & compare 1/O for rapid event triggering & synchronization
Uses widely available, low-noise twisted-pair shielded SCSI cables for all I/O

Programmable in C/C++/C#/.NET, Delphi, LabVIEW, VB and easy-to-use command language
Drivers and example programs with source code for Windows and Linux

Programming APl and commands are compatible across all PMC motion controllers
Graphical setup, tuning, diagnostic and example programs

Custom features and performance enhancements are available upon request

Processor

MultiFlex PCI 1000 series motion controllers feature an advanced 64-bit floating-point MIPS CPU core
coupled with PCl interface logic and internal cache memory to provide a powerful processing engine for
high-performance motion control. An embedded multi-tasking real time kernel executes all motion control
operations with 64 bit floating point precision. 16 MB of DRAM and 4 MB of non-volatile FLASH memory
provide on-board memory space for executing both the intrinsic motion control code as well as user
programs. A high-capacity FPGA interfaces directly with I/O such as encoders, analog inputs, control
signals and general-purpose I/O and provides a great amount of flexibility for tailoring the controller to
specific application and performance requirements.

PC computer minimum requirements

MultiFlex PCI 1000 series controllers can communicate with almost any Windows or Linux based
computer equipped with a 32 bit PCI-bus slot. The controller's CPU executes motion functions
independently of the host PC, so other than the minimum requirements for the selected operating
environment, the controller does not require the use of any additional PC resources.

Programming

Windows and Linux programmers can create flexible and powerful control programs for PMC motion
controllers in two ways:

1. Writing a high-level program (C/C++/C#/VB/Pascal/LabVIEW) that uses the functions supplied as
part of PMC’s Motion Control API (Application Programming Interface)

and/or

2. Using PMC’s embedded multi-tasking Motion Control Command Language (MCCL)

Programmers can use either, or both, programming methods to command and control the motion
controller. For example, a multi-threaded C/C++/C# host application program can control and coordinate
the execution of motion and 1/O, while one or more embedded MCCL routines can run simultaneously as
background tasks on the controller board.

PMC'’s WinControl terminal emulator utility (a Motion Control API component) provides a low-level
command interface used to send MCCL commands and routines to the controller for immediate
execution, or to download and save MCCL routines (also called “macros”) to the controller for later

6 Precision MicroControl Corp.

Introduction

execution. Any MCCL command or routine can also be downloaded and called from a high-level program
(CIC++/C#/VB etc) via the appropriate Motion Control API function libraries.

For additional information on Motion Control APl and MCCL programming, please refer to the Motion
Control API Reference Manual and the Motion Control Command Language (MCCL) Reference
Manual which are both available for download at: www.pmccorp.com/support/mfxpci1000.php.

Motion Control APl example

Function prototypes

CIC++ MCMoveAbsolute(HCTRLR hCtlr, WORD axis, double position);
C#/.NET Mcapi.Error Mcapi.MoveAbsolute(Int16 axis, Double position);
Delphi: procedure MCMoveAbsolute(hCtlr: HCTRLR; axis: Word; position: Double); stdcall;
VB: Sub MCMoveAbsolute(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double)
LabVIEW: Execute [T] - ;
Handle In Handle Out

Avis In (1) T SPA— hsic Dt
Position [0.0]) — ——-

MCMHoveAbsolute v

/ICIC++ Example, Move Axis 1 to position 85000
MCMoveAbsolute(hCtlr, 1, 85000.0);

MCCL command example

MA Move Absolute

MCCL command : aMAn a=Axisnumber n= integer or real
applies to: Analog Command Axis, Pulse Command Axis
see also: MR, PM

These MCCL command sequences cause the motion controller to execute a move to absolute position n.

;Example:
1MA1000 ;AXis 1 move to position 1000
2MA-25000 ;Axis 2 move to position -25000

The following example illustrates MCCL multi-tasking. This example shows how a user would monitor the
state of a digital input while an axis is moving in order to ‘automatically’ stop the axis as soon as the input
is activated:

;Example:

ALO,AR10 ;define user register 10 as input #4 active
ALO,AR100 ;define user register #100 as background task
MD100, IN4,MJ101,NO,1JR-3 ;jump to macro 101 when digital input #4 turns on
MD101,1ST,1WS.05 ; macro 101 defined, stop axis #1.
AL1,AR10,ET@100 ;terminate background task

There is not necessarily a one-to-one relationship between each Motion Control
API function and eacn MCCL command. Although any MCCL command can be

ﬂ called directly using the Motion Control API's pmccmdex() function, most Motion
Control API functions ease the task of programming by encapsulating additional
functionality within each function.

MultiFlex PCI 1000 Series User's Manual 7

http://www.pmccorp.com/support/mfxpci1000.php�

Introduction

Programming Tools

PMC'’s Motion Control API provides programmers with a comprehensive function library.

e g —— - L T
Do o e ot ot Bk Dok e ke N Fie L& Bookgat [(pions fsk
-1 I DEY S e A~) Sowcn | ek Coratarts | Swychans| g1
3 = . »
3 MCMoveRelative
Finchude meapih ﬂ

wold BCHaveRelative] 502k whos, datince)

HETRLR ACe
wol

MCMoveRelathva() intists 4 relativg poson miv 1 the specied aris o 48

o Pasameter Dasciiption
: =0 Cortroter hande. reburmed by

MCOpeni]
s Axit rmbar to mave.
dutance Amourt of detance 83 more

Hutums.
This Ranchion dors not retum & value

Com:

Tha awit must be enabled prios
the MCMoveRelath() 5 us

CLea

(gl
*CICH *Delphi
oy L i faley 1]
Develop application programs with Visual Comprehensive on-line help provides detailed
C/C++/.NET function descriptions and program samples
110 yntrol AP m
Axis 1 - MEX Servo - Multiflex Advanced Servo Motor Control
Actual Position _ Matar On @ Mation Pagition Rate
2 PTTTTTSTI—
Optimal Position _ L] Cn?pl @ Curtent Pos. '%' lion
o [Dir- @ Decsleration |1000000.00000
lalcetkosiion C. Home @ Max, Velocity |100000.000000) B ITI_S S 235
Folawing Ervor [AR lig i) Man. Torque [10.000000 | Pl okt ® High
- - Limit Enable
Distance | 400) { rore | UivitMode [sop [| | Frofie
(O Absolute () Relative) Cycle [—JMDVE+ [Fiopotionatiai i—ID'ZDDDDD e y
[[rtearslGan i_ln_i 010000 | [Invert Limits O Trapezoid
. W | Integration Limit | 50.000000 | L (&) 5-Curve
iz Mumber | Az 1 v| H syt Soft Limits
[Integral Option | Zero w O Farshala
Derivative Gain | 0.100000] + Limit Enable
: T ol
Sample programs with full source code are Deriv. Sarmping (0000250 | it (10000.000000
Supp|ied Wlth the MCAPI. These C++, Visual Following Errar | 1024.000000 | [#] - Limit Enable
Basic, and Delphi sample programs allow the Acceleaton Gain | 2.0000150000(Limi [1o0u0ooopg] | [4me Fault
user to; move an axis (Servo or stepper), A R - | [JRev.Phase
; i : Velacy Gain | 00000930000 LimitMode | ETETIN |
monitor position (actual, target, and optimal), kit
monitor axis status & I/O (Limits +/-, Home,
Index, an Amplifier Enable), define or change Lok J [Cancel |

move parameters (Maximum velocity,
acceleration/deceleration), Define or change
the servo PID parameters

Precision MicroControl Corp.

Introduction

Software Tools & Utilities

g::. on | sew | Ost [T qoomg veocy [N
- I [RTTER
:3" on | See | Dwt [T mon veoory NN
@t ol | Eoae [=f] r~ 1 X
Son - Jon | saip | vt [oo | ety [N
@ o0 [s EE e oseetioos
23‘. on | s | Det [T eoo veecry [EEEN
e T | T o
= [on | sem | vet [T vesoty EEEN
et = R e
g::. G 2 PEE —ry

Qine o || g PR S
I Peit b Pk woes | @ | mgn | @e |

I cyon wie. | wwen | men |

PMC'’s Motor Mover allows users to: move any or
all motors, change velocities on the fly, define
cycling routines, monitor position and status

4 Servo Tuning
File Setup Test Help

s |
Puosition -5000

—Motor

Y on | _of |

 Trajectory Generator
Q@] | Off |
Step Plus | {Siep Winus |

Optimal

~Test

Clear | Tero |

= = B
_0a0% _0.20% _kaly
:0.15% :D.1D°£)
—_ s

.

i :D.IJEI%‘;

The Servo Tuning Utility includes on-line help assisting
with both using the program and explaining the
fundamentals of servo tuning. A complete Servo Tuning
tutorial is also available on the Motion CD

. Motion System Setup. Connect and Test Switches

Connect Asis 1/0 Wizsad [x]
Mods 1 Stepper 1w
QHome Q) Coarse qmid by aral oy
Ouet: @ T signae tovened inthis bcionwe Limds, Cosrse
Ous. O Homa, A Fink. and A Enable for sereo systems and

it Home. Cosise Home, snd Diive Enable o shapper
P [[tystend
[0] To begin connectnn your duds 110, cick Hest
Axis 4 Serve
QhHome @ Amp Fust
QLmts O
Qum. Q@
Custen | Enats Moot » Carced

=]

PMC’s Motion Integrator's Setup Wizards

walk the user through the integration

process with external components (motors,

encoders, sensors)

= B3

< Windows Servo Tuming Utility Help
File Edit Bookmark Optionz Help

Eontentsl ﬁearchl Back | Frint I << | x> I

Windows Servo Tuning Util

Welcome to the online help for the Windows Servo Tuning B
Utility. Help provides assistance with installation issues,

some servo tuning background information, and a

description of the Serva Tuning Utility operation.

Contents

Installation

Tuning Basics

Lsing the Servo Tuning Utility

Glossary -

MultiFlex PCI 1000 Series User's Manual

Introduction

I/O Configuration Panel

PMC's I/0 Configuration Panel (accessible from Windows Control Panel) allows users to re-configure
the channel numbers and logical functions of the digital I/O. The flexibility provided by this unique feature
allows more efficient use of I/O resources and eases the task of connecting the controller to external

devices.
I/0 Configuration
Axes 1and 5 | fxes 2and 6 | Axes Jand 7 || Axes 4and 8
Auiz 1 [Sera) Az B [Stepper)
Home [inp] Home [inp]
Plus Limit {ing] Plus Limit [inp]
Minwis Limit (inp) Minus Limit (inp)
Armp Fault [inp) Drrive Fault (inp)
Amp Enable [out) Dirive Enable [out]
Diirection [out] Half Current [out]
[ok | [Cancel l
Figure 2. Digital I/O Configuration Panel
10 Precision MicroControl Corp.

Chapter

2

Motion Control Primer

Motion Control Architecture

A typical PC-based multi-axis motion control system is comprised of :

A programmable motion controller

A user interface from which to program, command and monitor the motion controller

Two or more servo or stepper motors

An amplifier/driver for each motor

A position feedback device for servo motors or closed-loop stepper motors

End of travel sensors (or limit switches) for axes with linear travel

A mechanical stage and load. In this illustration, a stage is mounted on bearings and a lead screw
is coupled to the motor shaft. When the motor shaft rotates, the stage moves along the lead
screw.

PC computer

I

T

3k

Motion Control card

Motor - servo or stepper

Lead screw

Encoder
(stepper optional)

Negative Limit Positive Limit
sensor sensor

Figure 3: Typical PC-based Motion Control System

MultiFlex PCI 1000 Series User's Manual 11

Motion Control Primer

Motion Controller Functional Block Diagram

Stepper Stepper
Driver 4 Motor__~

|
.]
Digital outputs
Analog inputs Digital inputs | <
+2V to +24V

General Purpose Digital /O

(PLC type event
Axis /0
. (home, limits,
amp enable..),
AD . Pul_se
inputs Timer Axis
(optional) Interrupts DAC +
l (-10v) — Servo
Amplifier N
. S
Trajectory Generator " Encoder
Command Processor (veocity profiles) rad P'E)(;"f’ Decode =% +2V to +24V
Axis 2 2::22
Axis 3
it it 11 3
Non-Volatile
PClI Interface User-Program RAM M o
Storage emer Motion Controller
| <
Windows H H
Device Driver High-speed encoder capture inputs Servo
High-speed encoder compare outputs
gh-sp p p , Motor -~
Application
Programming
Interface
PC Computer Quadrature
Encoder

12

Precision MicroControl Corp.

Motion Control Primer

Motion Controller Tasks

The MultiFlex PCI 1000 Series motion controllers feature a 64-bit floating-point CPU, FPGA, 1/O buffering
circuitry, a real time kernel and proprietary motion control firmware which work in combination to control
the position, velocity, or torque of as many as twelve axes. The primary operations performed by the
motion controller are:

Trajectory generation (Trapezoidal, S curve, and Parabolic)
PID filter (servo loop)

I/0 and error handling

Host communication

On a periodic basis (every 250 microseconds to 1 millisecond, depending on the selected Trajectory
update rate), the controller's CPU receives an internal interrupt that automatically triggers the execution of
the controller’s trajectory generator. Based on user commanded motion, the trajectory generator then
calculates a new desired positions and velocity values for all axes.

+/- 10 Volt Analog Servo Control

The target positions calculated by the trajectory generator are passed to each respective PID filter for
generation of a +/- 10V analog servo command signal for each axis. In addition to the trajectory
generator, every millisecond, the controller performs housekeeping and error checking (over travel limits
& following error exceeded) tasks.

PID Filter

The position feedback loop or PID (Proportional-Integral-Derivative) filter is executed every 1000, 500 or
250 microseconds (1, 2 or 4 kHz), depending on the servo loop update rate (Low, Medium or High)
chosen by the user. Each PID filter execution results in the writing of a value to the DAC (Digital to Analog
Converter) which is proportional to:

Position error (the difference between the optimal (desired) position and the current position)
Plus the integral of the error
Plus the derivative of the error

The following discrete-time equation illustrates the control performed by the servo controller:
u(n) = Kp*E(n) + Ki sum E(n) + Kd[E(n") - E(n" - 1)]

where u(n) is the analog command output level at sample time n, E(n) is the position error at sample time
n, n' indicates sampling at the derivative sampling rate, and kp, ki, and kd are the discrete-time filter
parameters loaded by the users. The first term, the proportional term, provides a restoring force
proportional to the position error. The second term, the integration term, provides a restoring force that
grows with time. The third term, the derivative term, provides a force proportional to the rate of change of
position error. It provides damping in the feedback loop. The sampling interval associated with the
derivative term is user-selectable; this capability enables the servo controller to control a wider range of
inertial loads.

MultiFlex PCI 1000 Series User's Manual 13

Motion Control Primer

Position Feedback via Incremental Encoder

The motion controller monitors the position of a servo via an incremental encoder. Both differential (A+, A-
, B+, B-, Z+, Z-) and single ended (A, B, Z) incremental encoders are supported. The maximum encoder
frequency is 20 MHz (@ 50% duty cycle). The two quadrature signals from the encoder are used to keep
track of the position of the motor. Each time a logic transition occurs at one of the quadrature inputs, the
controller’s position counter is incremented or decremented accordingly. This provides four times the
resolution over the number of lines provided by the encoder. The encoder interface is buffered by a
differential line receiver that includes error detection circuitry that will indicate an encoder fault for the
following conditions:

Open circuit condition

Short circuit condition

Low differential voltage signal
Common mode range violation

Note: For encoder fault detection of a single ended encoder the A-, B-, and Z+/Z- inputs must be
terminated to the 1.5V Encoder Reference signal.

Pulse (Step/Dir/CW/CCW) Command for Stepper or Pulsed Servo Systems

The controller supports the following type of pulse-command axes.

Open Loop Stepper

Open Loop Stepper with encoder feedback for position verification
Closed Loop Stepper

Closed Loop Servo (position loop closed by the servo ampilifier)

The default format of the pulse command signal pair is Step/Direction but it can be configured by the user
for Clockwise/Counter Clockwise operation. The step-rate range for a pulse command axis is from a
minimum of 0.1 pulses per second to a maximum of 5 million pulses per second.

Position Feedback via Incremental Encoder

For Pulse Command applications that require position feedback the controller supports both differential
(A+, A-, B+, B-, Z+, Z-) and single ended (A, B, Z) incremental encoders. The maximum encoder
frequency is 20 MHz (@ 50% duty cycle). The two quadrature signals from the encoder are used to keep
track of the position of the motor. Each time a logic transition occurs at one of the quadrature inputs, the
controller encoder position counter is incremented or decremented accordingly. This provides four times
the resolution over the number of lines provided by the encoder. The encoder interface is buffered by a
differential line receiver that includes error detection circuitry for differential encoders that indicates an
encoder fault for the following conditions:

Open circuit condition

Short circuit condition

Low differential voltage signal
Common mode range violation

Note: For encoder fault detection of a single ended encoder the A _, B_, and Z+/Z- inputs must be
terminated to the 1.5V Encoder Reference signal.

14 Precision MicroControl Corp.

Motion Control Primer

Axis 1/O

Digital 1/10

Dedicated and uncommitted Digital I/O are available on all MultiFlex motion controllers. The motion
controller provides a total of 32 digital inputs and 28 digital outputs. 16 of the digital inputs are bi-
directional optically isolated (+3V to +25 V) and 16 are TTL level. For MultiFlex PCI 1000 series model
1440, four of the bi-directional optically isolated inputs (Limit +, Limit -, Encoder Coarse Home, and
Amplifier Fault) are shared between an analog command axis and a pulse command axis. 12 of the digital
outputs are open-collector drivers and 16 are TTL level. By default each analog command axis includes
an open collect Amplifier Enable output that is capable of sinking 100 mA. By using the I/O Configuration
Panel described on pages 10 and 165, the user can associate any other digital output with the Amplifier
On/Off function.

High-speed 1/O

High-speed capture and compare signals are also functions provided via the TTL I/O. Position capture
inputs are provided with up to 1 KHz trigger rate and a minimum pulse duration of less than 100
nanoseconds. High-speed TTL position compare outputs are provided with programmable trigger rates of
greater than 1 MHz and a maximum latency of less than 100 nanoseconds. Position compare
programmable modes of operation include: Strobe (trigger and repeat - up to 1 MHz repeat rate), Static,
Toggle, and One-shot. The Strobe mode of operation is especially useful for triggering line-scan cameras
for high-resolution inspection applications.

For maximum convenience and ease of wiring, the user can re-assign the default functions of the digital
inputs and outputs using the 1/0 Configuration Panel described on page 10.

MultiFlex PCI 1000 Series User's Manual 15

Motion Control Primer

The Command Set - the heart of the motion controller

The motion controller is much more than an I/O card with DAC outputs and encoder inputs. The primary
task of the motion controller is to off load control and monitoring duties from the PC processor. This
requires a powerful and efficient low-level command set. Everything that a motion control card can do
depends on the command set. The command set of a high-performance motion controller should include
the ability to:

Move one, some, or all motors simultaneously
Calculate the trajectories and execute synchronized motion (linear interpolation, circular
contouring, helical motion)
e Set trajectory parameters (maximum velocity, acceleration, deceleration)
e Set PID filter parameters (proportional gain, derivative gain, derivative sampling period, integral
gain, integral limit, allowable following error, and feed forward)
e Report the axis / controller status, current position, target position, and many other parameters
e Provide data or interrupt the host PC based on user defined events
e Home an axis

The controller's command set for is called MCCL (Motion Control Command Language) and it supports
more than 200 individual operations. For a complete listing and description of the controller's command
set please refer to the separate Motion Control Command Language (MCCL) Reference Manual
which is available on PMC'’s Motion CD and online at: www.pmccorp.com/support/support.php.

For quick application prototyping and troubleshooting, PMC’s WinControl utility allows the user to issue
MCCL commands directly to the controller. From the keyboard, MCCL commands can be entered one
command at a time and executed as soon as the user hits the ‘Return’ key. From the File menu, the user
can also download an entire MCCL text file to the controller.

Open Command File

Look in: | 65 {5l em e Lete!

Y gDC‘?servuimNoFF‘mfxl
‘_:) gDC‘}servuimW\thFF.mfxl
MyFecent @BHomeClsdloopwCrsHmadndex.mfx1
Dacuments

Desklop
/
My Documents
1]
¥
My Computer
T . 5 File name: “mfxl

.

My Network Files of type: MF<-PCIT000 Files [*.mfx1] v Cancel

Figure 4. WinControl allows the user to issue MCCL commands to the controller

16 Precision MicroControl Corp.

http://www.pmccorp.com/support/support.php�

Motion Control Primer

Executing Operations with MCCL

MCCL commands are two character alphanumeric mnemonics built with two key characters from the
description of the operation (eg. "MR" for Move Relative). When an MCCL command (followed by a
carriage return) is received by the controller it will be executed immediately. The following graphic shows
the result of executing the “VE” command. This command causes the controller to report firmware version
and installed memory size.

L7 WinControl
File Edit Help

0O =

ve
HFX-PCI1441-2 Motion Controller

Hardware: 16384K Private RAM, 512K Flash Memory
System Firmware Uer. PM1 Rev. 1.8a

Copyright (c) 2882 Precision HicroControl Corporation
All rights reserved.

3

All axis-related MCCL commands will be preceded by an axis specifier, identifying for which axis the
operation is intended. The following graphic shows the result of issuing the Tell Position (aTP) command
to axis number one.

(7] WinControl32 _[O]
File Edit Help

O & & Bl af

Note that each character typed at the keyboard should be echoed to the WinControl display. If you enter
an illegal character or an illegal series of valid characters, the controller will echo a question mark
character, followed by an error code. The MCCL Error Code listing can be found on page 213 of this
manual. On receiving this response, you should re-enter the entire command/command string. If you
make a mistake in typing, the backspace can be used to correct it, the controller will not begin to execute

MultiFlex PCI 1000 Series User's Manual 17

Motion Control Primer

a command until a carriage return is received.

Once you are satisfied that the communication link is correctly conveying your commands and responses,
you are ready to check the motor interface. When the controller is powered up or reset, each axis is
automatically set to the "motor off" state. In this state, there should be no drive current to the motors. For
servos it is possible for a small offset voltage to be present. This is usually too small to cause any motion,
but some systems have so little friction or such high amplifier gain, that a few millivolts can cause them to
drift in an objectionable manner. If this is the case, the "null" voltage can be minimized by adjusting the
offset adjustment potentiometer.

Before a motor can be successfully commanded to move certain parameters must be set by issuing
commands to the controller. These include; PID filter gains (servo only), trajectory parameters (maximum
velocity, acceleration, and deceleration), allowable following error (servo only), configuring motion limits
(hard and/or soft).

At this point the user should refer to the Motion Control chapter sections titled Theory of Operation —
Motion Control, Servo Operation and Stepper Operation. There the user will find more specific
information for each type of motor, including which parameters must be set before a motor should be
turned on and how to check the status of the axis.

Assuming that all of the required motor parameters have been defined, the axis is enabled with the
Motor oN (aMN) command. Parameter ‘a’ of the Motor oN command allows the user to turn on a specific
axes or all axes. To enable all, enter the Motor oN command with parameter ‘a’ = 0. To enable a single
axis issue the Motor oN command where ‘a’ = the axis number to be enabled.

After turning a particular axis on, it should hold steady at one position without moving. The Tell Target
(aTT) and Tell Position (aTP) commands should report the same number. There are two commands used
for basic position mode motion, Move Absolute (aMAn) and Move Relative (aMRn). To move axis 2 by
1000 encoder counts, enter 2MR1000 and a carriage return. If the axis is in the "Motor oN" state, it should
move in the direction defined as positive for that axis. To move back to the previous position, enter 2MR-
1000 and a carriage return.

The controller controller supports grouping together several commands. This is not only useful for
defining a complex motion that can be repeated by a single keystroke, but is also useful for synchronizing
multiple motions. To group commands together, simply place a comma between each command,
pressing the return key only after the last command.

A repeat cycle can be set up with the following compound command:

2MR1000,WS0.5,MR-1000,WS0.5,RP6 <return>

This command string will cause axis 2 to move from position 1000 to position —1000 7 times. The RePeat
(RPn) command at the end of a command string causes the previous command to be repeated 6
additional times. The Wait for Stop (aWSn) commands are required so that the first motion will be
completed (trajectory complete) before the return motion is started. The number 0.5 following the WS
command specifies the number of seconds to wait after the axis has ceased motion to allow some time
for the mechanical components to come to rest and reduce the stresses on them that could occur if the
motion were reversed instantaneously. Notice that the axis number need be specified only once on a
given command line.

A more complex cycle could be set up involving multiple axes. In this case, the axis that a command acts
on is assumed to be the last one specified in the command string. Whenever a new command string is
entered, the axis is assumed to be 0 (all) until one is specified.

Entering the following command:

2MR1000, 3MR-500,0WS0.3,2MR1000,3MR500,0WS0.3,RP4 <return>

18 Precision MicroControl Corp.

Motion Control Primer

will cause axis 2 to move in the positive direction and axis 3 to move in the negative direction. When both
axes have stopped moving, the WS command will cause a 0.3 second delay after which the remainder of
the command line will be executed.

After going through this complex motion 5 times, it can be repeated another 5 times by simply entering a
return character. All command strings are retained by the controller until some character other than a
return is entered. This comes in handy for observing the position display during a move.

If you enter:

1MR1000 <return>
1TP <return>
(return)

(return)

(return)

(return)

The controller will respond with a succession of numbers indicating the position of the axis at that time.
Many terminals have an "auto-repeat" feature that allows you to track the position of the axis by simply
holding down the return key.

Another way to monitor the progress of a movement is to use the Repeat command without a value. If
you enter:

1MR10000 <return>
1TP,RP <return>

The position will be displayed continuously. These position reports will continue until stopped by the
operator pressing the Escape key.

While the controller is executing commands, it will ignore all alphanumeric keys that are pressed. The
user can abort a currently executing command or string by pressing the escape key. If the user wishes
only to pause the execution of commands, the user should press the space bar. In order to restart
command execution press the space bar again. If after pausing command execution, the user decides to
abort execution, this can be done by pressing the escape key.

£ winControl32 M= B3

Fie Edt Help
Ol@| &= -l

= md100,in5,mj101,n0,in6,mj102,no,jr6 ;monitor digital inputs 5 &6

= md101,1mr1.5,1ws.1,mj100 ;if channel 5 is on move relative 1.5"
= md102,1mr-1.5,1ws.1,mj100 ;if channel 6 is on move relative -1.5"
=yt100 ;hegin sequence as a backyround task
=1rl0,ar100 ;store task identifier in register 100

-

= in2,etg100,no0,jr-3 sterminate the backyground task if digital
iinput #2 is on

MultiFlex PCI 1000 Series User's Manual 19

Motion Control Primer

Closed loop, open loop, and position verification

As it applies to motion control, there are three recognized control modes:

Closed loop control
Open loop control
Open loop with position verification

Closed loop control

A broadly applied term, relating to any system in which the output is measured and compared to the
input. The output is then adjusted to reach the desired condition. In motion control, the term typically
describes a system utilizing a position transducer (an incremental encoder) to generate correction signals
in relation to desired parameters.

Servo systems are the most prevalent example of closed loop control. In a typical servo system a move
operations is initiated by the user issuing a move command to the servo controller. The controller then
calculates a velocity profile matching previously defined user trajectory (max. velocity, acceleration, and
deceleration) parameters. The controller applies a position/velocity command to the servo amplifier.
Based on feedback from an incremental encoder the servo controller calculates the following error
(difference between the actual position and the calculated desired position). The following error value is
then used by the PID filter to adjust the magnitude of the position / velocity command to the amplifier. For
additional information on the trajectory generator please refer to page 13 and 86. For additional
information on the PID filter please refer to page 13. For additional information on incremental encoders
please refer to page 24.

The significant advantage of a closed loop system is that based on the constant corrections by the PID
filter of the command voltage (based on the measured following error), servo systems are inherently more
intuitive than open loop systems. The disadvantage to the corrective nature of a servo system is that in
order for the PID filter to properly respond to a given error, the servo must be tuned. Tuning a servo is a
process in which the PID filter gain values are defined so that the response of the servo system to a given
following error meets the requirements of the machine designer. Compared to an open loop system,
which does not require PID filter tuning, the requirement of tuning a servo makes the setup of a closed
loop system a more complicated and time consuming operation. For additional information on tuning a
servo please refer to pages 22 and 68.

Open Loop control

An open loop control system is one in which the control output is not referenced or scaled to an external
feedback (typically an incremental encoder). The most widely recognized example of an open loop control
system is an axis controlled by a stepper motor. Most stepper motor controlled axes do not included any
type of external feedback device, so the axis is said to be operating "open loop". If for some reason the
stepper motor did not actually reach its target the stepper controller would be unaware of the fact.

Pulse command servo systems feature the use of digital amplifiers/drives which accept step/direction
(or CW/CCW) pulse command signals as inputs, and in which the closed loop control (position or velocity)
is executed entirely by the servo amplifier. As with a traditional servo system, a feedback device is
required, but in this case it is not necessary to connect it to the motion controller. The controller supports
pulse command servos, and if ordered with the stepper axis encoder option, the controller also supports
reading and recording the encoder position.

20 Precision MicroControl Corp.

Motion Control Primer

Open loop with position verification

By adding a feedback device (like an encoder) to a traditional open loop stepper you would have what is
known as an open loop with position verification system. For some applications where the higher costs,
complexity, or torque limitations of closed loop servos may be prohibitive a stepper coupled with an
encoder makes for a perfect compromise.

Contrary to many servo applications, where the following error of the axis along the entire path is of great
concern to the machine designer, for many stepper applications the user is only concerned about the '‘end
of move' final position of the axis. By adding an encoder (typically directly coupled to the stepper motor
shaft) the user can monitor the 'end of move' final position of the axis and issue 'correction moves' to
compensate for any possible lost steps. For additional information on open loop with position verification
systems please refer to page 143.

MultiFlex PCI 1000 Series User's Manual 21

Motion Control Primer

Why does a servo need to be tuned?

A servo is a closed loop system, which the dictionary describes as:

An automatic system in which the output is constantly compared with the input through some form of
feedback. The error (or difference) between the two quantities can be used to bring about the desired
amount of control.

In typical servo systems:

e The output is a +/- 10 volt (torque or velocity) command that is applied as an input to a servo
amplifier

e The input described in the dictionary definition comes from an encoder. An encoder is an opto
electric device that generates two pulse trains that are phase shifted by 90 degrees

e In order for a servo system to perform properly, the difference (error) between the input and
output is multiplied by a set of gain values which results in a new output, bringing about the
desired amount of control

Servo tuning is the process in which the gain values are determined. From one servo axis to another the
gain values will change depending on differences between the motion controller, motor, encoder, and
load. When a user attempts to move an axis without first tuning the servo (determining the gain values)
the motion controller will not be able to calculate the appropriate output command to apply to the servo
amplifier. One of the following undesirable results will probably be observed:

The axis will not move at all

The axis moves in the direction of the target but stops well short of the target

The axis moves in the opposite direction of the commanded target

The axis towards the target but fails to 'settle’, oscillation of one or more encoder counts is
detected

Imagine a seesaw, with the +/- 10 volt torque/velocity command on one side and the response of the
motor/load (feedback from an encoder) on the other side.

22 Precision MicroControl Corp.

Motion Control Primer

Until the servo is tuned, the system is effectively out of balance. Only after a servo has been tuned can
the controller calculate the appropriate torque/velocity command output for a given user defined motion.

To tune a servo axis use the Servo Tuning program included with PMC’s Mation Integrator software. For
assistance with servo tuning, refer to the Motion Control chapter of this manual or view or the
PowerPoint Servo Tuning tutorial available at www.pmccorp.com/support/mfxpci1000.php.

4 Servo Tuning
File Setup Test Help

e |
Paosition -5000

—Motar

@ on | o |
~Trajectory Generator

Q on | o |
~Test

Step Plus | {&tep Minus |

Clear I faero |

P T H oM

_0.30% _0.20% _291%
-0.15% -0.10% - 1.46%
— . -
——
-0.00% -0.00% -0.00%

Optimal

Figure 5. The Servo Tuning program is used to select PID gain values

MultiFlex PCI 1000 Series User's Manual

23

http://www.pmccorp.com/support/mfxpci1000.php�

Motion Control Primer

Position Feedback - Quadrature Incremental Encoder

Quadrature Incremental Encoders are the default standard for providing position / velocity feedback for
today's motion control systems. A quadrature incremental encoder is an opto electric feedback device. A
light source and photo sensor pickup are used to detect markings on a glass ‘scale’. The more markings
on the glass scale, the higher the resolution of the encoder. The output of the photo sensor is passed to a
Phase Generator circuit, which is used to generate two wave forms (Phase A and Phase B), which have a
phase difference of 90 degrees. This phase difference is used by the controller to:

Determine the direction of rotation (positive or negative) of the encoder/motor
Enhance the resolution of the encoder by a factor of 4.

For noise immunity or applications where the encoder is positioned a significant distance from the motion
controller the encoder can use a differential driver device to output both the generated wave forms (A+
and B+) and their compliments A- and B-). For Differential or single ended encoders, the controller
provides the user with the the option of enabling Encoder Fault detection, which will indicate an error
upon open circuit, short circuit, low differential voltage signal, and common mode range violation.

Glass scale

Index mark

Phase A+

Phase A-

""" B I I B R I A Y B TPy
‘ Phase B-

LED Photo Phase H Index+
sensor generation
circuitry |-| Index-

A 500 line quadrature incremental encoder will have 2000 quadrature counts per full rotation. The 90
degree phase difference is also used to determine the direction of motion of the axis/encoder. If phase A
comes before phase B, the controller will indicate positive or clockwise direction. If phase B comes
before phase A, the controller will indicate negative or counter-clockwise direction.

Some quadrature encoders include an additional ‘mark’ on the glass scale, which is used to generate an
index pulse. This signal, which ‘goes active’ once per rotation, is used by the motion controller to
accurately home (re-define the position of an axis) the axis. Please refer to the Homing Axes section of
this chapter.

Typically an encoder requires a +5 VDC power supply and ground reference, both of which are available
from the controller .

24 Precision MicroControl Corp.

Motion Control Primer

Servo Amplifiers: Current Mode versus Velocity Mode

For the vast majority of servo applications the user has the option of choosing between using a Current
Mode amplifier and a Velocity mode amplifier.

Current Mode amplifier (sometimes called Torque Mode)

The +/- 10V analog command output from the servo controller represents a current command to the
motor. The resulting output from the current mode amplifier will be proportional to the analog command
voltage output of the servo controller. A current mode amplifier typically requires that the user 'tune' the
current loop of the amplifier using either combinations of resistors and capacitors or adjusting
potentiometers while following manufacturer provided 'cook book' procedures.

Current mode amplifier advantages:
Low cost
Ease of use
High acceleration / deceleration increases machine throughput

Velocity Mode amplifier

Unlike a torque mode amplifier that closes only the current loop, a velocity mode amplifier closes both the
current loop and the velocity loop. A tachometer is used to provide velocity feedback. The +/- 10V analog
command output from the servo controller provides a velocity command to the amplifier, and the servo
controller uses Feed Forward (other wise known as Velocity Gain) to calibrate the velocity command to
the amplifier.

For servo systems that use velocity mode amplifiers the servo controller PID loop closes only the position
loop, and its operations are secondary to the velocity loop of the amplifier. Typically the PID gain values
of the servo controller will be very low (compared to the gain values of a torque mode amplifier).

Torque mode amplifier advantages:
High accuracy
Analog velocity loop results in higher gains (stiffer response) and minimal following error

If there is a downside to using velocity mode amplifiers it would be that they can be more difficult to
configure. For one thing, unlike the torque mode amplifier that required minimal setup, a velocity mode
amplifier must be well tuned (minimal overshoot and no oscillation) before attempting to tune the position
loop of the servo controller. For additional information on working with velocity mode amplifiers please
refer to page 71.

MultiFlex PCI 1000 Series User's Manual 25

Motion Control Primer

Stepper Motors - Full Step versus Micro Step

Stepper motors have long been viewed as a low cost alternative to closed loop servos. The reality is that
there are real world application requirements for which stepper motors are better suited, regardless of
cost. The primary advantages of a stepper motor are:

High torque to size
High torque at low speed
Holding torque (holds its position while not being commanded to move

Historically one of the primary disadvantages of a stepper motor was the limited number of step per
rotation, which limits final positioning resolution of the axis. Typical steps per rotation of today's stepper
motors range from 100 (3.6 degrees per step) to 500 (0.72 degrees per step). But with the advent of
microstepping driver technology a whole new world of applications have been opened up to the stepper
motor. For most stepper applications using a microstepping stepper driver can the user will gain:

Increased positioning resolution

Increased position accuracy

Increased system performance by minimizing resonance
Increased velocity resolution

As it relates to a stepper motor controller like the MultiFlex PCI 1000 Series, full step versus
microstepping is not an issue. The microstepping function of a motor occurs entirely in the stepper motor
driver - it has nothing to do with the motion controller. When switching to a microstepping stepper driver
the only required change is that prior to issuing a move command the user must recalculate the trajectory
parameters (max. velocity, acceleration, deceleration, and minimum velocity) and the move distance. For
example if a 200 step per rotation (1.8 degrees per step) stepper system with a maximum velocity of
20,000 steps per second is upgraded by using a microstepping driver operating at a ratio of 10:1.:

1) The maximum velocity of the axis is increased from 20,000 steps/sec. 200,000 steps/sec.
2) The move the axis one complete rotation the move distance is increased from 200 to 2000

26 Precision MicroControl Corp.

Motion Control Primer

Homing - Why, When, and How

All data registers on the motion controller are volatile, if power is cycled (turn off and then turned on) or
the controller is reset, the position registers will be initialized to zero. In order for the user to position one
or more axes to specific locations on the machine the user must first initialize the machine by homing
each of the axes.

For most applications, there is some position/angle of the axis (or mechanical apparatus) that is
considered 'home'. Typical automated systems use electro-mechanical devices (switches and sensors) to
signal the controller when an axis has reached this position. Upon activation of the sensor the controller
captures the position of the axis. The controller is not shipped from the factory programmed to perform a
specific homing operation. Instead, it has been designed to allow the user to define a custom homing
sequence that is specific to the application requirements. For additional information on building homing
sequences please refer to page 105.

Homing closed loop systems

The home location of a closed loop system is usually defined by the index mark of an encoder. For
systems that use a rotary encoder, where the index mark will be asserted multiple times along the range
of travel of the axis, a Coarse Home sensor is used to qualify which of the index mark locations will be the
home location. For additional information on homing closed loop axes please refer to page 107.

Encoder Inde:
mark Iocationx\
)

Servo motor
and encoder

1

Negative Limit Coarse Home Positive Limit
sensor sensor sensor

Figure 6. Homing a closed loop system with an encoder index mark and Coarse Home sensor

Homing open loop systems

Open loop steppers are typically homed based on the location of a home sensor. Unlike closed loop
systems that use a precision reference index mark, steppers are more prone to homing inaccuracies due
the lower repeatability of the single electro mechanical home sensor. To achieve the highest possible
repeatability; reduce the velocity of the axis and always approach the home sensor from the same
direction. For additional information on homing open loop steppers please refer to page 112 .

Home sensor Stepper motor
activated \' =

|
)

QDI LLDLU VLA LUL LD LY

Negative Limit Home sensor Positive Limit
sensor sensor

Figure 7. Homing an open loop stepper with a Home sensor

MultiFlex PCI 1000 Series User's Manual 27

Motion Control Primer

28

Precision MicroControl Corp.

Software, Programming and Utilities

MultiFlex motion controllers can integrate seamlessly with host-computer based Windows applications.
The Motion Control Application Programming Interface (Motion Control API) provides support for all
popular high level languages, including C/C++/C#/.NET Delphi, Visual Basic and LabVIEW. Additionally,
an embedded Motion Control Command Language (MCCL) allows machine designers to execute motion
control routines independent of the host PC.

PMC'’s Motion Control API is a group of Windows components that, taken together, provide a consistent,
high level, Applications Programming Interface (API) for PMC's motion controllers. The difficulties of
interfacing to new controllers, as well as resolving controller specific details, are handled by the API,
leaving the applications programmer free to concentrate on the application program.

ASCII Visual .
Command g:zzrocer?]ent Programming ll:hgnhLeveI
Interface eop ® Visual Basic anguages
Environments o LabVIEW o C/CH++
® Visual Studio ® C#/ .NET
® Lab VIEW X ® Visual Basic
b Drivers
= O o LabVIEW VI OlRasEE]
WinControl
‘ Motion Control API Function Library ‘

‘ Low-Level Device Driver (DLL) ‘

Motion Controller

Figure 8. PMC’s Motion Control API Architecture

The Motion Control API has been designed with a layered approach. As new versions of of the Motion
Control API and new PMC motion controllers become available, APl support is provided by simply
replacing one or more of these layers. Because the public API (the part the applications programmer
sees) lies above these layers, no changes to applications programs will be required to support new
versions of the Motion Control API.

MultiFlex PCI 1000 Series User's Manual 29

Software, Programming and Utilities

The API itself is implemented in three parts. The low level device driver provides communications with the
motion controller, in a way that is compatible with the Microsoft Windows operating system. The Motion
Control API low level driver passes binary MCCL commands (Motion Control Command Language — the
instruction set of the controller) to the controller . By placing the operating system specific portions of the
API here it will be possible to replace this component in the future to support new operating systems
without breaking application programs, which rely on the upper layers of the API.

Sitting above that, and communicating with the driver is the APl Dynamic Link Library (DLL). The DLL
layer implements the high level motion functions that make up the API. This layer also handles the
differences in operation of the various PMC Motion Controllers, making these differences virtually
transparent to users of the API.

At the highest level are environment specific drivers and support files. These components support specific
features of that particular environment or development system.

Care has been exercised in the construction of the API to ensure it meets with Windows interface
guidelines. Consistency with the Windows guidelines makes the API accessible to any application that
can use standard Windows components - even those that were developed after the Motion Control API!
Please refer to the Motion Control Application Programming Interface (Motion Control APl Reference
Manual for additional information on adapting the Motion Control API to other development environments.

Controller Interface Types

The controller supports two onboard interfaces, an ASCII (text) based interface and a binary interface.
The binary interface is used for high speed command operation, and the ASCII interface is used for
interactive text based operation. The high level sample programs (CWDEMO, PASDEMO, and VBDEMO)
use the binary interface, PMC WinControl uses the ASCII interface.

Application programs must indicate which interface they intend to use when they open a handle for a
particular controller. A controller may have more than one handle open at a time, but all open handles for
a particular controller must specify the same interface (all must be open with the binary interface or all
must be open with the ASCII interface). The open mode is specified by setting the second argument of
the MCOpen() function to either MC_OPEN_ASCII or MC_OPEN_BINARY.

Note that not all functions are available in the ASCIl mode of operation, this mode is intended primarily for
use with the pmcgetc(), pmcgets(), pmcputc(), and pmcputs() character based functions (these 4
functions are not available in binary mode). This restriction will be eliminated in a future release of the
API.

30 Precision MicroControl Corp.

Software, Programming and Utilities

Building Application Programs using Motion Control API

The Motion Control Application Programming Interface is designed to allow a programmer to quickly
develop sophisticated application programs using popular development tools. The Motion Control API
provides high level function calls for:

Configuring the controller (servo tuning parameters, velocity and ramping, motion limits, etc.)
Defining on-board user scaling (units for encoder/step, velocity, dwell time, user and part zero)
Commanding motion (Point to Point, Constant velocity, Electronic Gearing, Lines and Arcs,
Joystick control)

Reporting controller data (motor status, position, following error, current settings)

Monitoring Digital and Analog 1/O

Driver functions (open controller handle, close controller handle, set timeout)

A complete description of all Motion Control API functions can be found in the Motion Control API
Reference Manual.

Included with the installation of the Motion Control API is the Sources ‘folder’. In this folder are complete
program sample source files for C++, Visual Basic, and Delphi.

& Sources =1 E3
J File Edit “iew Go Favortes Help ‘
& . = [t ¥) | X e
Back Farsard Up Cut Copy Pazte Undo Delete Properties Wiews
J Address I[:I C:%Program Files'\Motion Control\Motion Control 2P1%Sources j
D PazDemo WEBDemo YBDemo32 WinCH
Sources
2 2 A
.ok o fom to view its Ciadh CU3dib Mospibss mospidef Moapih Moapili
#A A A A = A
Mcapipas Mcapi3Zbas meapi3Z.def mcapidZ. b Meclh MCDlg.bas
A = 2 E A A
MCDg. def MCOla.h Medlg lib MCOlapaz MCDIg32 baz MCDIg32 def
E |
MCDLGIZNIb Usertype.dat
26EKE |_§‘ ty Computer i

MultiFlex PCI 1000 Series User's Manual

31

Software, Programming and Utilities

C/C++ Programming

Included with each of the C program samples (CWDemo. Joystick demo, and WinControl) is a read me
file (readme.txt) that describes how to build the sample program. The following text was reprinted from the
readme.txt file for the CWDemo program sample.

Contents

- How to build the sample
- LIB file issues
- Contacting technical support

How to build the sample

To build the samples you will need to create a new project or make file within your C/C++ development
tool. Include the following files in your project:

CwbDemo.c

CWDemo.def

CwbDemo.rc

For 16-bit development you will also need:
.\mcapi.lib
.Amcdlg.lib
\ctl3d.lib

For 32-bit development you will also need:
.\mcapi32.lib
.\mcdlg32.lib

If your compiler does not define the _WIN32 constant for 32-bit projects you will need to define it at
the top of the source file (before the header files are included).

LIB File Issues

Library (LIB) files are included with MCAPI for all the DLLs that comprise the user portion of the API
(MCAPI.DLL, MCAPI32.DLL, MCDLG.DLL, and MCDLG32.DLL). These LIB files make it easy to resolve
references to functions in the DLL using static linking (typical of C/C++). Unfortunately,

under WIN32 the format of the LIB files varies from compiler vendor to compiler vendor. If you cannot use
the included LIB files with your compiler you will need to add an IMPORTS section to your projects DEF
file. We have included skeleton DEF files for all of the DLLs for which we also include a LIB file
(MCAPI.DEF, MCAPI32.DEF, MCDLG.DEF, and MCDLG32.DEF).

The 16-bit LIB files were built with Microsoft Visual C/C++ Version 1.52,
and the 32-bit LIB files Microsoft Visual Studio Version 5.

J File Edit “iew Go Favoites Help |
. d | &% W | X .

Cut Copy Paste Delete Properties WViews

j Back Forward Up Unda
J Address I[:I C:\Program FilessMotion Contral\kotion Control AP14S ources\Cw D emo

= KIIIJII

Cwdemno.def Cwdemo.h cwdemoico CwiDemomak CwDemo RC
CWDemo

Select it to wi it
d:;rip‘:inmlmem o view s CwiDemo3Z.. CwDemo3Z.. Headme bt

| |48.DKB |_§‘ by Computer 4

32 Precision MicroControl Corp.

Software, Programming and Utilities

Visual Basic Programming

Included with each of the Visual Basic program samples (VBDemo. VBDemo32) is a read me file
(readme.txt) that describes how to build the sample program. The following text was reprinted from the
readme.txt file for the VBDemo32 program sample.

Contents

- About the sample
- How to build the sample
- Contacting technical support

About the sample

This sample demonstrates a simple user interface to one axis of a motion controller. The user may
program moves and interact with the motion in a number of ways (stop it, abort it, etc.). Sample forms
demonstrate how to configure servo or stepper motor axes. A number of the new MCDialog functions
(such as a full-featured, ready-to-run

axis configuration dialog) are also demonstrated.

How to build the sample

To build the samples you will need to create a new project or use the Visual Basic project file (created
with Visual Basic v6.0) included with the sample. Include the following files if you create your own project:

About32.frm
Main32.frm
Servo32.frm
Step32.frm
VBDemo.bas

.\mcapi32.bas
.\mcdlg32.bas

Set frmMain as the startup object for the project.

& VBDemo32 Hi[=] &3
File Edit Yiew Go Favaoites Help |ﬁ
D | ¥ 9 | X =
Bac:k Forward Up Cut Copy Paste Undo Delete Properties WViews
J Address I[:I C:%Program Files\kaotion ContraliMotion Control P1NS ources\VBD emo32 j
@ About32 frm Main32.frm Feadme.txt Serv032 frm Step32.frm “bdemo3Z bas
VBDemo32

Whdemo32.ico Whdemo32....

Select an itemn to view its
description,

|88. OKE |_§‘ by Computer i

MultiFlex PCI 1000 Series User's Manual 33

Software, Programming and Utilities

Delphi Programming

Included with each of the Delphi program sample (PasDemo) is a read me file (readme.txt) that describes
how to build the sample program. The following text was reprinted from the readme.txt file for the
PasDemo program sample.

Contents

- About the sample
- How to build the sample
- Contacting technical support

About the sample

This sample demonstrates a simple user interface to one axis of a motion controller. The user may
program moves and interact with the motion in a number of ways (stop it, abort it, etc.). Sample forms
demonstrate how to configure servo or stepper motor axes. A number of the new MCDialog functions
(such as a full-featured, ready-to-run

axis configuration dialog) are also demonstrated.

How to build the sample

To build the samples you will need to create a new project or use the Delphi project files included with the
sample (Pdemo.dpr for 16-bit, Pdemo32.dpr for 32-bit). Include the following files if you create your
own project:

About.pas
Global.pas
PasDemo.pas
Servo.pas
Stepper.pas

For 16-bit projects you will also need:

.\mcapi.pas
.A\mcdlg.pas

For 32-bit projects you will also need:

.\mcapi32.pas
.A\mcdlg32.pas

PasDemo H[=1 3
J File Edit “iew Go Favortes Help |
. | ¥) | X =
Back Forward Up Cut Copy Paste Unda Delete Properties Wiews
J Addrese I[:I C:“Program Filez\Mation Cantral\kation Contral APINS ources\PasDema j

Global.pas Pasdemo.pas Pdemo.dpr Pdemoico Pdemo32.dpr

B

PasDemo

Select t t t
d:;,—ip‘:inmlj E o visw s Feadme.t«t Servo.pas Stepper.pas

| |5?.2KB |_§‘ My Computer i

34 Precision MicroControl Corp.

Software, Programming and Utilities

LabVIEW Programming

PMC'’s LabVIEW Virtual Instrument Library includes an On-Line help with a Getting Started guide.

2 Motion ¥I Library Help Hi=l E3

File Edit Bookmark Ophionz Help

Qontentsl Index I Back | Frint I i | 2 I

Getting Started

Befare you install the hMotion %1 Library you must first install Lab»IEW version 5.0 for Windows 95 /98 / NT.

-‘D:m""llmem[:"i“'s This is necessary sao that the Mation %I Library can add its function and control palettes to the LabWwIEWY
menu system, and install the online help where LabVIEWYY can locate it.

rfation

V"%’.—D:Uhlnlion VI Library You also need to have the 32-bit Motion Control APl (MCAPT) installed and configured before you can begin

using the Mation %1s. The current MCAPI release is available frorn the PMC World Wide YWeb site and may
¥ 3 3 3 be installed before ar after you install the Mation %1 Library. For full functionality you must use MCAPI
ng; version 2.1¢c or higher.

14 PGP
W¢G

WCDIg | Cmd

Samples

Four sample programs are now included with the Mation 1 library. The first, SIMPLEVI, shows how to execute a simple move. The SAMPLE. VI
sample provides an interactive panel for moving an axis and monitoring the status of that axis. CYCLEVI demonstrates how to implement a state
machine and execute multiple mowes under program contral {the state machine approach makes it easy to monitor the status of axes while the
motions are executed). Finally, ANALOG.VI demonstrates the use of the auxiliary analog inputs available on most PMC mation controllers.

The Motion %ls are installed in the Instrument Drivers function palette in a number of logically arranged sub-palettes. To better see how the Vs
are used, open the SAMPLE.VI fram the file menu (select File | Open, select the INSTR.LIB directory, then the MOTION CONTROL directory, and
finally SAMPLE.WI).

The first step in any motion program is to obtain a handle to the controller, using the MCOpen V1. This handle is used in all subsequent calls to
the tMotion %ls. When the program completes the handle should be passed to the MCClose %I to ensure the motion controller is propetly closed.
Failure to properly close the handle is the primary source of errors when using the Motion 1 Library. The following wiring diagram, fram the
SIMPLE.VI sample program, demaonstrates how to open the motion controller, perform a simple move, and close the motion controller:

Minimal motion sample - opens a mation
controller, moves axis ane 1500.0 counts in
the positive direction, and closes the handle.

Open EF—? Cloze
P Fiel »

MultiFlex PCI 1000 Series User's Manual 35

Software, Programming and Utilities

MCSpy - application program diagnostic tool

MCSpy is a debugging tool for application programs that use PMC's Motion Control APl programming
interface. MCSpy captures commands and replies sent between the application program and the motion
control card. These commands are displayed in Motion Control Command Language (MCCL), which is
the language the Motion Control API uses to communicate with PMC's Motion

The MCSpy Trigger Setup dialog
allows the user to terminate the

) capturing of commands / replies
e T data after the trigger event.

Axis Crnd If Arg Argument
[+][mw]] v| | ' Here the command /reply capture
will end 10 commands after a move
relative (MR) command has been

issued to axis #1.

Ll “rnd 1F &g
Commands to capkure after trigger 10

K J [Cancel]

[Ireply Trigger

The Trigger Event (1IMR1000)
is highlighted in green. © Fle Edt Capturs View Window Help

- IR Y

(00001 -

(0x0001) -

(0x0001):

(0x0001) - 1TE-1073739774
¢0x0001) - 1RL4
t0x000ly: OTRO
(0x0001) - OTREGZELTE
(0x0001) 0 1TE3:
(00001} - 1TS4616
¢0x0001) - 1RL4
t0x000ly: OTRO

36 Precision MicroControl Corp.

Software, Programming and Utilities

PMC Sample Programs

Sample programs with full source code are supplied with the Motion Control API. These C++, Visual
Basic, and Delphi sample programs allow the user to:

Move an axis (servo or stepper)
Monitor the actual, target, and optimal positions of an axis

Monitor axis 1/0O (Limits +/-, Home, Index, an Amplifier Enable)
Define or change move parameters (Maximum velocity, Acceleration/Deceleration)
Define or change the servo PID parameters

Actual Position m hdatar On @
Optiral Position 1 Trsiltinnl @
Dir- @

Target Pasition C. Home @
Following Error Hame G

u]

25600

Target

]
(#) Abzolute () Relative () Cucle i

Stop

Az Mumber Axis 5 v/

mAAam

Home

Axis 5 - MEX Stepper - Multiflex Advanced Stepper Motor Control

M atick

[Closed-Loop Mode

Propartional Gain |

Integration Limit |

Integral Dption

Derivative Gain |
Deriv. Sampling [i

Following Error i

Acceleration |150000.000000|
Dreceleration :71 BO000. 000000
Maw, Yelacity 1 _5_00_0@_90_0990_5
Min. Velociy 15000000000 |

Integral Gain [t

Encoder Scaling AL

Pozition

Hard Lirnits
+ Limit Enable
- Lirnit Enable

Lirit Mode | Stop v

[et Limits

Soft Limits

+ Limit Enable

Limit |1 00000, 00001

[+] - Limit Enable

Limit [100000.00000)

Current Pos. | 25600.000000

X

Fate

) Low
(&) Med
) High

Profile
(3 Trapezoid
() 5-Curve

) Parahola

Mizcellaneous

MultiFlex PCI 1000 Series User's Manual

) Half Step
Limit bode Stnp | Low Current
Axis 1 - MEX Servo - Multiflex Advanced Servo Motor Control
Actual Position _ Motor On @ Metion Position Rate
i jory [1000000.00000] [0.000000 -
il Posion _ Traj Cn?p\ @ Acceleration JDUDUDD.UUDDD; Currertt Pro. || OlLow
Dir- @ Deceleration |1000000.00000 T
Target Position — T 1 ard Limits) Med
2 Citicrie gy Ma. Velocity [100000.000000] e
Fatowing Ener ||| | | Y Index @ Max Tergue | 10.000000 +Limit Enable © High
— - Lirit Enable
) PID Filter ~ . =
Distance 400 . _— S Limit Mede | Stop | Profile
: ropartional Gain |0. .
o :
O Abzolite () Relative O Cycle et T Fllrver s O Trapezaid
s - = ’ o or
Buis Mumber | Awis 1 W [ri=arztion L) ol QD-Q-D@ ! Soft Limitz e
= Integral Option | Zera w | o
_ | i ! Parabola
Derivative Gain | 0.100000 L En‘?‘?'? R
Deriv. Sampling [0.000280 | Limit |-10000.000001 Mise
Following Errar |1024.000000 - Lirit Enable
Acceleration Gain |-0.0000150000() Limit { 10000000000 T
Deceleration Gain 0013500 » . [FlEs Fase
Yelocity Gain |-0. Limit b ode v

Software, Programming and Utilities

Motion Control API On-line Help

Electronic help files are available for PMC’s Motion Control API. Help documents include; installation and
basic usage, complete function call reference and examples, high level dialog descriptions, and
LabVIEW VI Library reference.

<2 Motion Control APl User's Guide M= B
o G Btk Qs S The MCAPI Users Guide On-line Help
: EEE s 2 N N P describes the basics of PMC’s MCAPI. This
Mecguide. hip Motion Control APl Users Guide o , :
- should be the first stop’ for any questions
This manual describes the installation and
usage of PMC's Maotion Cantrol AP] (MCAPT abOUt the MCAPI
faor the Windows operating systern. This AP
brings the power and performance of PMC's
DCX and DC2 families of programmable
mation controllers to high level YWindows
pragramming and development tools
For detailed MCAPI programming information
see the MCAP| Online Reference, ar far help
with the Motion Dialog functions see the
Mation Dialog Reference

@ Introduction

@ |nstallation

@ Demo Programs

@ Programming Basics

@ Glossary

@ Technical Support

ol G 7

@ el - The MCAPI On-line Help provides a complete listing and

' e —— description of all MCAPI functions. Function calls are
Mcapi hip MCMoveRelative grouped both alphabetically and by functional groups
ettt g (Motion, Setup, Reporting, Gearing, etc...). Source code
I s examples are provided for C++, Visual Basic, and Delphi.
E‘"’??:‘& P sancato v fom cunet

MCMavsRalativa]) initistes 5 relatis position miws for the spacified axie or all
aung

Parameter Description MCAPI Progsamming Sanple H=1E
e Cotolls hancie,wetiened by [€ f C4+4 Move Sample

MCOpent)
g Aais nymiber to move This exarple homos all auns, then draws & roctangio using absolte conrdinatos for axis

distance Arnount of distance 1o move, | 1 and rolatin coedinates fos

Returms

£i emable all wees
This function does nol return & value :

¢ send axis 1 howt

el H
WCWad tFocStap] hoels

Comment C_ALL_KCES, 0.1 }:

The axis must be enabled peior to execuling & meve |

3
' MeMoveAbsolure | b
the MCHevaRelativa() iz used wih MCLaarmPoln OV Lxa0 LOTE]

WCWad tFocStap] he

. 1, 1000.0 1: /¢ boveom edge four o 1000
: # 511 ue'ce there

- #ide (up by S00)

fou may not set the wixs parameser to MG _all 43T

MCPueek

Example HEWALLF

Hem

#CIC+| | eDelphl |

MCCL Heference

L] |

38 Precision MicroControl Corp.

Software, Programming and Utilities

£ Common Motion Cantrol Dialogs Help

File Edit Bookmark Options Help

Cortents] each | Gock | Bint |

EEEEN|

The MCAPI Common Dialog On-line Help

Common Motion

Dialog Functions Version 2.1

describes the high level MCAPI Dialog

Medlg.hip

MCOLG AboutBax
MCOLG _ConfigureAxis
MCOLG ControllerDesc
MCOLG_Contrallernfa
MCOLG_DownloadFile
MCDLG _Initialize
MCOLG_ListControllers
MCOLG MWaoduleDesc
MCOLG RestareAxis
MCDLG_RestareDigitall0
MCOLG_Savedxis
MCDLG_SaveDigitallD
MCDLG_Scaling
MCOLG_SelectContraller

MCOLG_LEDCLASS

Technical Support

The Common Motion Dialog library includes easy-to-use
high-level functions for the control and configuration of your
mation controller. By combining these functions in a single
library we've made it easy for programmers to include the
Common Mation Dialog functionality in their application
programs. Functions are provided for the configuration of

servo and stepper axes, scaling setup, controller selection,

file download, and save/restare of motor settings

Motion Dialog Functions

Motion Dialog Window Classes

MCOLG_READOUTCLASS

functions. These operations include: Save
and Restore axis configurations (PID and
Trajectory), Windows Class Position and
Status displays, Scaling, and 1/0
configuration.

< Lab¥IEW / MCAPI Components Help

File Edit Bookmark Options Hs

=] B3

elp

bl hlp

Qomlenlsl ﬁearchl Bach | Frint I 1< I

> |

Motion VI Library
Version 1.1 - Windows 95

Welcome to the online help fo
contains detailed infarmation

Contral AP before you install

Started section for details.

Getting Started

Mation Functions

System Functions

Pk EEEE @

Digital & Analog 110

Parameter Setup Functions

Repaorting Functions

Low-Level OER Functions

Contacting Techical Support

t the Motion W1 library. The online help file
about the Yls that make up the Library,

and tips for waorking with LabVIEW. This versin_n m’thg Mation W1 | & LabVIEW / MCAFI Camponents Help
has been designed for the LabWIEVY 4.0 (32-bit) running under Wy
95. You should install LabWIEY 4.0 and the 32-bit edition of the b

File Edt Bookmark Options Help

The Motion VI Library On-line Help provides
installation assistance and detailed descriptions
of available VI's.

[_ O[]

the Motion %1 Library. See the Getti

Qontentsl §ealch| Back | Frint |

« | s

Motion Vis

travel

This section describes the Vs for the contral of mation, including
starting raotion, stopping mation, and controlling the direction of

3

5@l
ol il = el
[Bl°g

The Motion Function Palatte.

MCAbort MChioveAbsolute
MCDirection MCMoveRelative
MCEnahleiis MCStap
MCG MEWalt

of)

MultiFlex PCI 1000 Series

User's Manual

39

Software, Programming and Utilities

Motion Integrator

PMC'’s Motion Integrator program is just like having your own ‘Systems Integrator’ to assist you with every
step of the integration process. Motion Integrator is a suite of powerful Windows tools that are used to:

e Configure the controller e Tune the servo axes

o Verify the operation of the control system o Diagnose controller failures

e Connect and test I/O o Execute and plot the results of single
0 Axis I/O (Home, Limits, Enable) and/or multi-axes moves
0 General purpose Digital /10 e Comprehensive on-line help

0 General purpose Analog I/O
e Comprehensive on-line help

For first time PMC motion control users, Motion Integrator can be run as a series of Windows Wizards

Motion System Setup] 54
File Help
Wizards |Tesl Panel | Turing |

Start Dane
_I ™ 1. Connect and Test Switches: Enablefnhibit, Home, Limits, Amp Fault

] [~ 2 Connect and Test Encoders
| ™ 3. Connect and Test Motars
O

4. Configure Hard Limnits

MFX-PCHO00 - MutiFlex 1000-Series Motion Cortroller

Motion System Setup, Connect and Test Switches [_[O]x]

The Motion System Setup program opens with a e Help e — =
listing of the recommended integration steps | s 1 Stepper

QHome (@ Coarse
@umt+ @i
@Limt- @ Fhace

_|usteh _ |Ensble

MEvE: I

—axis 4 Serva
@Home @ Amp Faut

QLmi+ @Eror
Qlimit- @ e

_|tatch _|Enable < Back Hext > Cancel
iovE

This wizard will help you connect and test pour &xis /0
quickly and easily

The signals covered in this section are Limits, Coarse
Home, Amp Fault, and Amp Enable for servo systems and
Limits, Home, Coarse Home, and Drive Enable for stepper
spstems,

To begin connecting your Axis 140, click Hext

Ok

The Axis I/O wizard allows the user to verify the
operation of the Limits, Home, and Amp/Drive Enable

40 Precision MicroControl Corp.

Software, Programming and Utilities

[} Motor Mover E o] 5|

Setup Move Help

@ on on | Setup | Dist | 10000
[1 10000 PR
@ Limi Off Scale " abs % Rel
@ On on | setwp | Dist | 10000
2 1 0000 @ Error
I @ Lit oft | Scale Az (5 Rel
@on on | Setup | Dist | 2000
3 500 1 @ Error
I @ Limt oft | Seale = Abs % Rel L
4 @ Error [
@ Limt off Scale " ahs (% Rel N
@ On on | Setup | Dist 50000
h 50000 @ Error
I @ Limt off Scale i ahs Rel
@on ¢ | setup | Dist | 10000
b - 1 0000 @ Error : -
I @ Limit off Scale " ahs (% Rel
@ on on | Setup | Dist | 500000
I ‘ 500000 @ Error Off Scale " aphz (¢ Rel
@ Limit _I = ©
@ On on | setup | Dist 1000000
o |
1000000 :Lim'rt off Scale " ahs (% Rel

' Point to Point Move + | Stop | Zera

" Cycle Maye - | Ahort | Home

Once the systems has been tested and tuned (servo’s only) PMC’s Motor Mover allows
users to: move any or all motors, change velocities on the fly, define cycling routines,
monitor position and status

Digital and Analog I/O Test Panels

The Digital 1/0, and Analog Test panels allow the user to verify the operation of the general purpose 1/0

AFE Anslog Test Pane B R
T Vi Hel File Help

t16 |17.32 | 2348 | 4084 |
Refa

“Woltage

| th2 <h 3 oh 4 5 €h B <h T o 8

N N N N N N DN

Bl 3 on & B0 B @ Bl —Analog Input 1 ~Analog Input 2 —Analog Input 3 ~Analog Input 4
: : |

IH‘.J |.elkJ- i‘eﬂ_l IESIJ IH!J |.elkJ f‘e!l f!!‘J + 2495 V + 2483 V + 2483 V + 27498 V

o il |led|l |jod| (lod|led]ed |(|ad]|jed
Setup Setup Setup Setup

oh 8 <h 10 A h 12 ch 13 <hod o 15 £n 16

Bl EBEm Bl Bl B B e ~Analog Input § ~Analog Input & ~Analog Input 7 ~Analog Input &

- I}

[-j) B B) e + 2473y + 2475V + 2487 V + 2. 464 V
'r—.vl_l
@ikl

L] ect 2] | Catctii O] -
Tosk Trst Tesd Tread Setup Setup Setup Setup

Tod Tesd Teal
el |la_ l@ e e e 2| (e

MultiFlex PCI 1000 Series User's Manual

41

Software, Programming and Utilities

Tuning servo’s with Motion Integrator

Motion Integrator provides a powerful and easy to use tool for ‘dialing in’ the performance of servo

systems. From simple current/torque mode amplifiers to sophisticated Digital Drives, Motion Integrator
makes tuning a servo is quick and easy.

By disabling the Trajectory generator, the user can execute repeated Gain mode (no ramping - maximum
velocity or acceleration/deceleration) step responses to determine the optimal PID filter parameters:

Proportional gain
Derivative gain

Derivative sampling period

Integral gain
Integration Limit

With the Trajectory generator turned on, the user can execute ‘real world’ moves displaying the calculated
position, actual position, following error, and DAC output plots.

[Servo Tuning
Fle Setup Test Help

e |
Fuosition -5000

Optimal

—Motor

Y on | _of |

Oﬁl

@ Onl

~Trajectory Generator—————

~Test
Step Plus | CETERRRE
Clear | Zero |
= N = I |
_0.30% _0.20% _291%
-0.15% -0.10% - 1.48%
= - b
JEEE
-000% -0.00% -0.00%

_____Tl] rque——p—

The Servo Tuning Utility includes on-line help assisting
with both using the program and explaining the
fundamentals of servo tuning. A complete Servo Tuning
tutorial is available on the Motion CD

< Windows Servo Tuning Utility Help

Fil= Edit Bookmark Option: Help

[_[O] x|

Qontentsl ﬁearchl Back | FErint I 44 |

B

Windows Servo Tuning Util

Contents

Installation

Tuning Basics

Using the Servo Tuning Utility

Glossary

-

Welcome to the online help for the Windows Servo Tuning
Utility. Help provides assistance with installation issues,
sorme servo tuning background information, and a
description of the Serva Tuning Utility operation.

42

Precision MicroControl Corp.

Software, Programming and Utilities

PMC Utilities

A powerful suite of utilities are included with the Motion Control API. These tools allow the user:

Query motion control system version information

Issue native language (MCCL) commands directly to the controller
Upgrade the firmware of the controller

Manually position axes with a game port joystick

Display the Status of an axis

Motion Control Panel

The Motion Control Panel is used to query the motion control system for firmware and Motion Control API
version information, and to uninstall a controller. It can be launched either from the Windows Start menu
or by selecting the Motion Control icon from the Windows Control Panel.

S

b otion Control

Motion Control Panel

@; Use this application ta configure and test motion cortrollers.

[Motion Cortroller

| Type [sStatus

B0 mPx-PClIODD Okay

4
Motion Controller Properties

General] Intelface] Advanced Info]

Mation Contraller
Controller Model: mfx-pei1d41-2

Firmware Version: pm1l

Maotion Control AP

Revisior: 1.0a

2%

MCAPI DLL Version: 3.3.015 [mcapi32 dil
Interface DLL Verzsion: 3.3.0.2 [pmchus.dil)
. Config DLL Version: 3.3.0.8 [cfgmix1.dl)
b4, Femove., | Propeties.. |
LI Help O | Cancel

WinControl — MCCL (Motion Control Command Language) command set interface

utility

This utility provides the user with a direct communication interface with the controller in its native
language (MCCL). This tool is extremely useful not only during initial controller integration but also as a
debug tool during application software development. Two methods of executing MCCL commands are
supported: A PC keyboard key stroke is passed directly to the controller, and/or download a MCCL

command text file via the File — Open menu options

] WinControl
= File Edit Help
WinControl.exe

All rights reserved.

MultiFlex PCI 1000 Series User's Manual

43

Software, Programming and Utilities

Flash Wizard

All operational program code (firmware) for the MultiFlex PCI Series controllers is stored in non-volatile
memory on-board the controller. PMC’s Flash Wizard is a windows application that allows users to easily
upgrade controller firmware via software. Users can download the latest firmware revisions from the
Support page of PMC'’s web site at www.pmccorp.com/support/support.php.

Flazhiwiz. exe

Joystick Applet

Flash Wizard E3

Welcome to the Flash Wizard

Thiz wizard will guide pou through the installation of new
spstem or application firmware for your mation contraller

It iz recommended that you exit all ather ‘Windows programs
befare proceeding with the Flash \wWizard.

If you are upgrading a ram-bazed controller such az the
DC-PLI300 and you have more than one of the zame model
of controller installed in your PC, all matching controllers will
alza have their firmware upgraded

Flash Wizard version 2.1.0.4

To continue. click Mext.

< Back

Cancel

Help

Allows the user to manually position two axes using a joystick connected to a USB port on the host PC.
Full source code for this applet is provided with the Motion Control API installation.

Motion Jopstick [32-bit) =

Setup Help

Z» MCAPI Joystick Demo Help
File Edit Bookmark Optons Help

IS =] E3

¥ Pos -5100 e

on | 0f | Zer

Eantentsl Eearchl Back I Print I

|

» |

oo I ©

on | 0O | Zer

Motion Control APl Joystick Demo

— Pozition

Leamn

— Paint Storage

Index I'I
Total

Forget

Clear

R ewind

St

Ffiir

During Joystick operation, each controlled
axis is placed in velocity mode and velocities propartional to
the joystick displacement are sent ta the caontroller
"on-the-fly". Pressing the number ane button on the joystick
stores the current point in point memory. If the number two
button is pressed the controlled axes are operated in slow
speed mode for as long as the button is pressed

MOTE: This application requires the MC260 or MC3E0

T . The Jaystick dema program demonstrates j
o | velocity mode operation and point store /
e =eel | move to point operation using MCAP|

i functions.

44

Precision MicroControl Corp.

http://www.pmccorp.com/support/support.php�

Software, Programming and Utilities

Status Panel

Allows the user to monitor the status any or all axes (servo or stepper).

9

Status Utility - MEX-PCIT000 (ID #0)

.
Skatus, exe Setup Help

nta @ néa @ Aux Enc @ nda @

nda @ nda @ PriEnc @ Break Pt @

- Lirnit gk Homed & - 5Lim T @ Pos Cap @

+ Lirnit & [dx Fd @ +5Lim T @ Drir - &y

Fault @ Lk A& Id= @ -HLim T @ Tra| Cropl @
Auglnd< @ lomeFnd@ +HLim T @ At Target @
C. Home G Lk Horme @ Fault T @ Motor On @

Home &b néa @ Fol Errar @ Error @

MultiFlex PCI 1000 Series User's Manual 45

Software, Programming and Utilities

46 Precision MicroControl Corp.

Chapter

A

Connecting to the Controller

This chapter provides examples of the typical wiring connections and interface circuitry required when
using the controller to control the position or velocity of motors and associated I/O events.

see the chapter titled Connectors, I/0 and Schematics beginning on page

0 For detailed connector and screw-terminal board board signal pin-outs, please
177.

MultiFlex PCI 1000 Series User's Manual a7

Connecting to the Controller

+/- 10V Analog Servo Command Connections

Connectors J1 and J2 each provide two analog command signal pairs for controlling the position of two

analog command servos. The 16 bit +/- 10V Analog Command Output signals are available on pins 1 and
2. The Analog Command Return signals are available on pins 35 and 36. The typical interconnections for
the +/- 10V analog servo command are shown below.

Servo Amplifier

Ref +

To Motor

Ref -

+/- 10V Analog Command Output

Motion Controller

>
>

AA
vVy¥

<
<
<

Analog Command Return

+12V. _.‘M,—>

>
>

<
<
<

i
A2V 1 g2142

N

Figure 9. +/- 10V analog command servo wiring example (axis #1)

For Unipolar Analog Command (0.0V to +10.0) Servo Amplifiers an additional
connection (to the Direction output) to the amplifier is required to indicate the

‘direction of motion'.

48

Precision MicroControl Corp.

Connecting to the Controller

PWM (Pulse Width Modulation) Command Connections

Connectors J1 and J2 each provide two PWM command outputs for controlling the position of as many as
four PWM command servos. Each output is driven by an Open Collector Driver (75434) and is capable of
sinking as much as 100 mA (max. voltage = 30V). The PWM Command outputs are available on pins 6
and 7 of connectors J1 & J2. Any of the Grounds signals can be used as a reference. The typical
interconnections for a Bipolar PWM servo are shown below.

PWM Driver
ST Micro Motion Controller
16203 +sy 4K
In
t W—
In 5 PWM Command PWM Out
2 = Ottptt: 75453
l 515 Groﬁnd \—[;
- Axis #1 Amp Enable w:_E =
Enableﬂ<} {i‘ | Amp Enable
7

| AA._BV
4.7K

Figure 10. Bipolar PWM command wiring example (axis #1). The ST Micro L6203 is shown for
example purposes only - THIS INTERCONNECT DRAWING IS NOT INTENDED TO BE USED FOR
CIRCUIT DESIGN.

to the PWM Command Motion description in the Application

ﬂ For information on configuring and operating a PWM servo please refer
Solutions chapter of this manual (page 147 .

Unipolar PWM

A unipolar PWM requires both a PWM Command (Magnitued) signal and a Direction (Sign) signal. Due to
I/O limits the controller does not provide a dedicated PWM Direction output, but any of the general
purpose Digital Outputs can be configured to this function. For information on configuring the Digital
Outputs please refer to page 165. The typical interconnections for a Unipolar PWM servo are shown
below.

MultiFlex PCI 1000 Series User's Manual 49

Connecting to the Controller

PWM Driver

Motion Controller

Nat Semi
LMD18200

PWM

PWM Command

Sutput
Ground

75453

PWM Sign

Axis #1 Amp Enable L wWw—

ADAM-3968
wiring module

Figure 11. Unipolar PWM command wiring example (axis #1). For this example the PWM Direction
output is configured to use Digital Output #2. The National Semi LMD18200T is shown for example
purposes only - THIS INTERCONNECT DRAWING IS NOT INTENDED TO BE USED FOR CIRCUIT
DESIGN.

50 Precision MicroControl Corp.

Connecting to the Controller

Pulse Command Connections

Connectors J3 and J4 each provide two command signal pairs for controlling the position of two stepper
motors or two pulse command servo axes. The Step command output is available on pins 2 and 7. A +5
VDC opto isolator supply is available on pins 36 and 41. The Direction command output is available on
pins 3 and 8. A +5 VDC opto isolator supply is available on pins 37 and 42.

For Pulse command axes that require Clockwise / Counter Clockwise control signals (instead of Step /
Direction) the Motion Control API function MCSetModuleOutputMode() will allow the user to reconfigure
the pulse command output signals.

The typical interconnections for a pulse command axis are shown below.

Stepper Driver

Motion Controller

2 Puise—CEW-Commant——— g Pulse
3 g

output
+5 VDC | 6

Direction

I— Gl
ettt 3
B7 o
+5 VDC | 27

To Motor

A
W
il

Figure 12. Pulse (Step & Direction) command wiring example (axis #5)

Note:
1) Not all drivers / amplifiers provide an optical isolator current limiting resistor. An external current limiting
resistor can be added between the terminal strip contact and the input contact on the driver / amplifier.

MultiFlex PCI 1000 Series User's Manual 51

Connecting to the Controller

Amplifier / Driver Enable Connections - Low Active

Connectors J1 and J2 each provide two Amplifier Enable command signal pairs. The typical
interconnections for Low Active Amplifier Enable are shown below.

Servo Amplifier

I
Motion Controller
Amp Erfable
RS 5 Axis 1 Amp Enable Output . ARl
o< * |Axis 2 Amp =nable
% +5 VDC > @.

39

@
To Motor
A . A O .:
g odule

Figure 13. Low Active Amplifier Enable wiring example (axis #1)

Note:
1) Not all drivers / amplifiers provide an optical isolator current limiting resistor. An external current limiting
resistor can be added between the terminal strip contact and the input contact on the driver / amplifier.

52 Precision MicroControl Corp.

Connecting to the Controller

Driver Disable Connections - Low Active

Connectors J3 and J4 each provide two Driver Disable command signal pairs. The typical
interconnections for Low Active Driver Disable are shown below.

Stepper Driver
| Motion Controller

Driver Disable T n wos
Axis 5 Driver Disable Output
=k 1o (]

+5VDC [35

To Motor

ADA 068

Figure 14. Low Active Amplifier Enable wiring example (axis #5)

Note:
1) Not all drivers / amplifiers provide an optical isolator current limiting resistor. An external current limiting
resistor can be added between the terminal strip contact and the input contact on the driver / amplifier.

MultiFlex PCI 1000 Series User's Manual 53

Connecting to the Controller

Amplifier / Driver Enable Connections - High Active

The controller uses open collector drivers (Tl SN 75453B) for the Amplifier Enable/Driver outputs. These
are current sinking devices which, when turned on, will 'pull' the Amplifier Enable output low (near
ground). Until the axis has been enabled by the user an internal resistor forces the Amplifier Enable
output to its inactive state (high). This type of circuit provides fail safe operation of 'low" active
Amplifier/Driver Enable systems .

For applications that require 'high' active Amplifier/Driver Enable outputs, once Windows has loaded
and an application program has been launched, the MCConfigureDigitallO() function can be used to
change the active level of the Amplifier/Driver Enable outputs.

2 Warning — High Active Amplifier/Driver Enable is not a fail safe operation.

The typical interconnections for High Active Amplifier Enable are shown below.

Servo Amplifier

[+5VDC

Motion Controller

Amp Erjable 5 g T
"O<]'§:i ® Amp Enable Output : @.
Ground I I

1L

To Motor

Figure 15. High Active Amplifier Enable output wiring example (axis #1)

54 Precision MicroControl Corp.

Connecting to the Controller

Amplifier / Driver Fault Connections

The controller provides four optically isolated inputs for interfacing to an Amplifier / Driver fault sensor. Bi-
directional optical isolators are used, so the external device used to indicate an Amplifier/Driver Fault may

be either a sinking or sourcing device. By default each Amp Fault circuit is shared between an Analog

Command axis and a Pulse Command axis (Amp Fault 1 is shared by axes 1 and 5, Amp Fault is shared
by axes 2 and 6, etc...).

The maximum voltage that can be applied to an Amplifier / Driver Fault input is 25V. The minimum

voltage that will cause the optical isolator to conduct is 3.0V. The Amplifier / Driver Fault sensor must be
capable of sinking/sourcing at least 0.25 mA.

This wiring example shows a 'high' active (sourcing) Amplifier Fault circuit. For a
'low' active Amplifier Fault circuit:

1) The switch connects the Amplifier Fault input to ground
2) Connect a amplifier DC power supply (3.0 VDC to 25 VDC) to Amp Fault

supply/return

Servo Amplifier

t5vDC o o |

Amp Fault output

—

I

To Motor

17}

Amplifier/Driver Fault

Motion Controller

Amp Fault supply/return

[Eye

a =
1=

Figure 16. High Active Amplifier Fault input wiring example (axis #1)

MultiFlex PCI 1000 Series User's Manual

55

Connecting to the Controller

Differential Incremental Encoder Connections

Each of the four VHDCI connectors provide two incremental encoders interfaces. These encoder
interfaces support either differential encoders (A+, A-, B+, B-, Z+, and Z-) or single ended encoders (A, B,
and Z). When differential encoders are used the controller supports hardware encoder error detection.

0 For additional information on incremental encoder basics please refer to page
24,

Differential Motion Controller
Encoder
(Axis #1)

A+ out - Axis 1 Encoder A+
A-out ",w" . 2K A
[Axis 1 Encoder A- A Error
B+ out - Axis 1 Encoder B+
Ty B
B- out ~
o Axis 1 Encoder B. 2« B Error
Z+ out = Axis 1 Encoder Z+
- N Z
Z-out I Axis 1 Encoder Z+ 2K Z Error
+5VDCin +5 VDC output +5VDC
Ground G d
roun

Figure 17. Differential encoder wiring example (axis #1)

56 Precision MicroControl Corp.

Connecting to the Controller

Single Ended Incremental Encoder Connections

Each of the four VHDCI connectors provide two incremental encoders interfaces.

As shown in the drawing below the unconnected encoder inputs (A-, B-, and Z-)
must be tied to the +1.5 VDC Encoder Reference.

Motion Controller

Single Ended
Encoder
(Axis #1)
=
A out L—I“ . Axis 1 Encoder A+
ES ¥ _ k A
1 [Axis 1 Encoder A- A Error
-
B out =1ES) - Axis 1 Encoder B+
W B
1 heS ' Axis 1 Encoder B- o« g B Error
Z out QBG o Axis 1 Encoder Z+
v Z
+ 5 S) a Axis 1 Encoder Z- 2K 3 Error
. I~ .
+5VDC in = 105 +1.5VDC (Encoder ref. +1.5VDC (Encoder ref.)
Ground
u +5VDC +5VDC
— outpt —
=ES Ground
E= I

Figure 18. Single ended encoder wiring example (axis #1)

The wiring example above assumes that the encoder outputs (A, B, & Z) are
'high active'. If any of the encoder outputs (most likely the Z output) are 'low

active' it should be connected to the '-' input of the MultiFlex and the '+' input
should be terminated to the +1.5V reference.

Depending on the current drive capability of the encoder the controller may not
support Encoder Fail Detection for single ended encoders. For additional
information please contact PMC Tech Support.

MultiFlex PCI 1000 Series User's Manual 57

Connecting to the Controller

Over-Travel Limit Connections

Sourcing Sensor

The controller provides eight optically isolated inputs for monitoring over-travel limit sensors. Bi-directional
optical isolators are used, so the over travel sensors may be either sinking or sourcing devices.

By default each over-travel limit input is shared between an Analog Command axis and a Pulse
Command axis (a Limit + is shared by axes 1 and 5, a Limit + is shared by axes 2 and 6, etc...). The
maximum voltage that can be applied to an over travel limit input is 25V. The minimum voltage that will
cause the optical isolator to conduct is 3.0V. The over travel limit sensor must be capable of
sinking/sourcing at least 0.25 mA.

Motion Controller

Normall
y Closed

+5VDC
AT I 9

+ 6 Axis 1/5 Limit +

r’_ Axis 1/5 Limit + return /

"
PPTY

Figure 19. Sourcing over travel limit sensor wiring example

This example uses Normally Closed switches for Fail Safe operation. If the
switch is opened or a wire is broken a change of state will be indicated. To
configure to controller for Normally Closed switches issue the function
MCConfigureDigitallO() with mode value = MC_DIO_LOW.

In Position and Velocity mode the response to an activated limit input is
direction sensitive, the axis will only be stopped if it is moving in the direction of

0 the activated limit switch. In Contour mode, the axis will be stopped regardless
of the direction it is moving if a limit is activated. In Torque mode, the controller
will ignore the activation of a limit input.

58 Precision MicroControl Corp.

Connecting to the Controller

Sinking Sensor

The controller provides eight optically isolated inputs for monitoring over-travel limit sensors. Bi-directional
optical isolators are used, so the over travel sensors may be either sinking or sourcing devices.

By default each over-travel limit input is shared between an Analog Command axis and a Pulse
Command axis (a Limit + is shared by axes 1 and 5, a Limit + is shared by axes 2 and 6, etc...). The
maximum voltage that can be applied to an over travel limit input is 25V. The minimum voltage that will
cause the optical isolator to conduct is 3.0V. The over travel limit sensor must be capable of
sinking/sourcing at least 0.25 mA.

Motion Controller

Normall
y Closed

J_m 29

+ Axis 1/5 Limit +

— +5 VDC

Axis 1/5 Limit + return /

1
PPy

Figure 20. Sinking over travel limit sensor wiring example

This example uses Normally Closed switches for Fail Safe operation. If the
switch is opened or a wire is broken a change of state will be indicated. To
configure to controller for Normally Closed switches issue the function
MCConfigureDigitallO() with mode value = MC_DIO_LOW.

In Position and Velocity mode the response to an activated limit input is
direction sensitive, the axis will only be stopped if it is moving in the direction of

“ the activated limit switch. In Contour mode, the axis will be stopped regardless
of the direction it is moving if a limit is activated. In Torque mode, the controller
will ignore the activation of a limit input.

MultiFlex PCI 1000 Series User's Manual 59

Connecting to the Controller

Home Sensor Connections

The controller provides four optically isolated inputs for defining the home position of an axis. Bi-
directional optical isolators are used, so the sensors may be either sinking or sourcing devices.

By default each Coarse Home / Stepper Home input is shared between an Analog Command axis and a
Pulse Command axis (a Coarse Home / Stepper Home is shared by axes 1 and 5, a Coarse Home /
Stepper Home is shared by axes 2 and 6, etc...). The maximum voltage that can be applied to an over
travel limit input is 25V. The minimum voltage that will cause the optical isolator to conduct is 3.0V. The
over travel limit sensor must be capable of sinking/sourcing at least 0.25 mA.

Normall
y Open

+5 VDC

[B

Axis 5 Home

Axis 5 Home .
Motion Controller

Axis 1 Coarse Home

A\DJA 968 AXs 1/5 Home return /
suppl

Normall
y Open

+5VDC | @ A
Axis 1
Encoder
Coarse Home

L

ADA 0R8

Figure 21. Home sensor wiring example (axes #1 & #5)

60 Precision MicroControl Corp.

Connecting to the Controller

TTL Digital Input Connections

Each of the four VHDCI connectors provide four TTL level digital input channels that can be used to
monitor external events. An 74LS541 is used as the buffering device. An board 10K ohm pull resistor is
provided for each channel.

Warning — Voltage levels outside valid TTL levels applied to the TTL inputs may
& damage the controller.

Motion Controller

+5 VDC 7418541
:”F 23] o %
~ Digital input #1
- 57 L
Ground +5VDC
+5VDC > %
Fal Digital input #2
58 A
{% Ground +5 VDC
’\ 25| -
L /__ Digital input #3 E
59)
i+ Ground +5VDC
{>O 26] %
/7y Digital input #4
S E— = ‘v'
_ { i Ground
A\ . A O o) : O

Figure 22. TTL digital inputs wiring example (first 4 channels)

MultiFlex PCI 1000 Series User's Manual 61

Connecting to the Controller

TTL Digital Output Connections

Each of the four VHDCI connectors provide four TTL level digital output channels that can be used to
activate external devices. A 74LS541 is used as the buffering device. On power up (until the controller
has completed initialization - 30 seconds to 3 minutes) all outputs will go to a TTL 'high' level. When
initialization is complete the outputs will change to a TTL low state. The default state for the digital outputs
is for 'high true' (sourcing) logic.

When used as sinking (TTL low) outputs each channel can sink a maximum of 24 mA. which is suitable
for driving TTL loads, low current optical isolators, and low current solid state switches.

To configure a digital output for sinking (TTL low) use the function MCConfigureDigitallO().

Note: once initialization is complete, a sinking output cannot 'turned off' (set to a TTL high) until an
application program has been launched.

Warning — Attempting to drive a load that exceeds the current drive capability of
& the 74LS541 may damage the controller.

Motion Controller

Sample External Devices
Solid Stat
Swieh 45 vDC
74LS541 +5 VDC
¢ =y
e 2 Digital Output #1
5565 I
Relay 424 \DC "%" +5 VDC IS Ground +5 VDC
e Y|
{_—|_|6 Digital Output #2
NEES)
/‘ i+ Ground gee
21
~J $9 [Digital Output #3
HNES) L
Ground +5 VDC
22
i e Digital Output #4
=S
Ground

Figure 23. TTL digital outputs wiring example (first 4 channels)

62 Precision MicroControl Corp.

Connecting to the Controller

A/D Input Connections wiring example
If the Analog Input option is present each of the four VHDCI connectors provide two 14 bit A/D channels

(total of 8). The A/D option can be ordered with a voltage range of either:

(standard)

-10V to +10V
(special order)

0V to +4V

Power +10 VD
Supply | |
+10 VDC+ P
+10 VDCt)
| -10 VDC |

=

Motion Controller

ADAM-3968
wiring module

Figure 24. A/D inputs wiring example

Referring to the drawing above:
If configured for +/- 10V A/D input range then AlPos = +12 VDC and AlNeg = -12 VDC
If configured for O - 4V A/D input range the AlPos = +4 VDC and AlNeg = Ground

For more information about how to read the analog input values, please refer to the section titled “A/D

Inputs” on page 170.

63

MultiFlex PCI 1000 Series User's Manual

Connecting to the Controller

Watchdog Relay Connections

The controller incorporates a watchdog circuit and relay to protect against improper CPU operation. After
a controller reset, PC reset, or PC power cycle, once the controller is initialized (Run LED D3 on) the
watchdog circuit is enabled and the normally open watchdog relay is energized (contacts closed).

For some applications it is required that the motion controller watchdog circuit be hard wired into the
power distribution system. The diagram below details how the watchdog relay can be used to disable
amplifier power in the case of a controller watchdog failure.

+24 VDC
Servo I '
Amplifier -
85 [[IT/1
EEY
Motor Relay - NO |—..f.:8:
AC Power NO
_ Relay
v ifi Run
Servo 7 Amplifier u L
Amplifier Power Supply
0 B Motion Controller
Motor,
Figure 25. Watchdog relay wiring example
Watchdog relay contact specifications Watchdog Relay Contacts

Max. switching power = 30W il Eired
Max. switching current = 1A /
Max. switching voltage: DC = 110V, AC=125V

J8 Mating connector:

| ol

Pin Housing: Molex P/N 22-01-3027
Crimp pin: Molex P/N 08-50-0114

64 Precision MicroControl Corp.

Chapter

5

Motion Control

This chapter describes the basic motion control operations that can be performed by the motion
controller. The operations described in this chapter are common to both servo and stepper motors, with
specific differences detailed in the text.

Servo (analog command) Axis Setup

The basic steps required to implement closed loop servo motion are:

Verify proper encoder operation

Setting the allowable following error

Define trajectory parameters

Tuning the servo (select PID filter gain parameters)

Verify proper encoder operation

The Motion Integrator program provides easy to use tools for testing the operation of an encoder. The
user has the option of using the Connect Encoder Wizard or the Motion System Setup Test Panel.

Unlike the Connect Encoder Wizard, the Motion System Setup Test panel
ﬂ does not allow the user to verify the operation of the encoder Index.

Connect Encoder Wizard " Motion System Setup, Connect and Test Encoders

Encoder Test: Rotate encodsr shaft a few degrees Fil= Help
in both directions.

—Axiz 1 Servo ————— ~Axiz 2 Servo
O Home O Amp Fautt O Home (O Amp Fault
®] Pased e et O Limit + & Errar O Limit + & Errar
el @ Limit - @ Fhaze @ Limit - @ Fhase
B Bppass Breoder Tiest
e _|tateh _ |Enable _|tsteh _|Enable

Cick Nest 1 cotrue 1440 [Postion
I [y e} = | I [y [= |

< Back Mest = Cancel |

MultiFlex PCI 1000 Series User's Manual 65

Motion Control

Manually rotate the motor/encoder in either direction, the position reported should increment or
decrement accordingly. Refer to the Troubleshooting Guide later in this manual if the controller does not
report an appropriate change of position.

Setting the Allowable Following Error

Following error is the difference between where an axis ‘is’ and where the controller has ‘calculated it
should be’. Most all servo systems require ‘some’ position error to generate motion. When a servo axis is
turned on, if a position error exists, the PID algorithm will cause a command voltage to be applied to the
servo to correct the error.

While an axis is executing a move, the following error will typically be between 1 and 1000 encoder
counts. Very high performance systems can be ‘tightly tuned’ to maintain a following error within 1 to 10
encoder counts. Systems with low resolution encoders and/or high inertial loads will typically maintain a
following error between 150 and 5000 encoder counts during a move.

The controller supports ‘hard coded’ following error checking. If at anytime the difference between the
optimal position and the current position exceeds the user defined ‘allowable following error’, an error
condition will be indicated. The axis will be disabled (Amplifier Enable output turned off, output command
signal set to 0.0V) and the axis status word will indicate that an error has occurred. The MCEnableAxis()
function is used to clear a following error condition. To disable ‘hard coded’ following error checking set
the allowable following error to zero.

Axis 1 - MEX Servo - Multiflex Advanced| Servo Motor, Control @

tatioh Pasition Fiate
Acceleration | 10000.000000 Current Pos. |-1.000000
) Low
Deceleration | 10000.000000 el
ard Limits Med
b aw. Welocity | 10000000000 Ll
W il .
tax Torque | 10.000000 e Bt s () High

- Limit Enable

PID Filker Profil
_ _ Limit Mode | Stap w roiie
Propartional Gain | 0200000
Integral Giain | 0.010000 [nvert Limits O ape d
Integration Limit | 50.000000 S ot Liits () 5-Curve
Integral Option | Marmal w Parabol
o [Lk Bl # Ferbas
Derivative Gain | 0700000
Define the allowable following Dreriv. Sampling | 0.0071E250 Limit |0.000000 Mizc:
error for aservo axis. The . .
defanlt setting is 1024 e 0| ctitng Evror | 1024.000000 []- Limit Enable T
encoder counts Acceleration G sin |0.000000000 Limit [0.000000 Al
Deceleration Gain | 0.000000000 [P, [Flise
Lirnit bMode | OFF w

Welocity Gain | 0000000000

The three conditions that will typically cause a following error are:

1) Improper servo tuning (Proportional gain too low)
2) Velocity profile that the system cannot execute (moving too fast)

3) The axis is reversed phased (positive command results in
negative motion)

66 Precision MicroControl Corp.

Motion Control

The Status Panel screen shot below shows the typical display when a following error has occurred.

Status Utility - MEX-PCI1000 (ID #0) X
Setup Help
Ox 01 000109 #1 (MFX Servo) D
hda @ nda @ A Enc @ hda @
nia @ néa @ Fri Enc: @ Ereak Pt @y
- Lirviit s Homed & -SLim T @ Pos Cap @
+ Limit @ & |d<Fd @k +SLim T @ Dir - @ vithen a following errar
Faul: @ Lk A Ids @ -HLim T @ Traj Cropl @ occurs the Motor Error and
Aurlnd: @ IndsFrd@ +HLmT @ At Target @ Following Errar status bits
C. Home @ Lk Indx @ Fault T ‘M =7 will b set.
Irdes G nda @ Fol Error @ Error @

Define trajectory parameters

Prior to issuing any motion commands the user must define the following trajectory parameters:

Maximum Velocity
Acceleration
Deceleration

These parameter values can be defined either by issuing function calls (MCSetVelocity(),
MCSetAcceleration(), MCSetDeceleration()) or by entering values from the Servo Setup dialog
(available from Motor Mover, Servo Tuning program, CWDemo32.exe). For additional information on
trajectory profiles and velocity profiles please refer to pages 86 and 88.

MultiFlex PCI 1000 Series User's Manual 67

Motion Control

Tuning the Servo

Servo tuning is the process of setting the digital PID filter gains (proportional, derivative, and integral) to
get the best possible performance from an electro mechanical system.

A servo is a closed loop control system. The user commands the motion controller to execute a move of
one or more axes. The controller then calculates a velocity profile based on user defined trajectory
parameters (maximum velocity, acceleration, and deceleration). Each time the digital PID filter is
executed (every 250 usec's.) the difference between the encoder position and the calculated 'desired’ is
measured and defined as the Following Error. Using the following error value, the PID filter adjusts the
+/- 10V Analog Command output to reduce the following error.

A servo motor and its load both have inertia, which the servo amplifier must accelerate and decelerate
while attempting to follow a change in the input (from the motion controller). The presence of inertia will
tend to result in over-correction, with the system oscillating or "ringing" beyond either side of its target
(under-damped response). This ringing must be damped, but too much damping will cause the response
to be sluggish (over-damped response). Proper balancing will result in an ideal or critically-damped
system.

Underdampened
Response

Critical
Dampening

LG ETTETET
Response

105 140 175 210 245 280 315

A servo system is tuned by repeatedly executing a ‘step response’ (move of a specific distance), plotting
the resulting motion, and adjusting the digital PID filter parameters until an acceptable system response is
achieved.

For additional information on tuning a servo please refer to:

PMC Servo Tuning program on-line help
Servo Tuning PowerPoint tutorials (on the Motion CD)

68 Precision MicroControl Corp.

Motion Control

[Servo Tuning _ O] =]

File Setup Test Help

s |

Positian 3000 Optimal
—Mdotar
@ on | of |
—Trajectory Generatar
a o | of |
—Test
RS S | Step Minus |
Clear | fero |
= I = B =
_D.45% 030 _6.25%

-D0.25% -0.0% -3.13%

= - Torque =
q a4 'Aql"‘-'\-._;_aﬂuﬂv.-ﬂ.\,ml

AL, Lo ——
o o = " —

/
- i

—_ . M, .\'1'

—_ L el Sl

—D.06% —0.00%

Figure 26. PMC's Servo Tuning Utility is used to: execute moves, plot the response of the servo,
and adjust PID gains

Saving the Tuning Parameters

Once an axis has been tuned you should save the PID and trajectory parameters. Select Save All Axis

Settings from the File menu. Selecting this option will load all servo settings into the mcapi.ini file (in the
C:\Windows folder). In addition when you elect to close the Servo Tuning program it will prompt the user
about saving the settings.

I |
Do you wizh to zave changes made ko
wour Auto [nitialize settings?

Tes | Hao |

MultiFlex PCI 1000 Series User's Manual 69

Motion Control

Electing to save the Auto Initialize settings causes the Servo Tuning utility to
call the Motion Control APl Common Dialog function MCDLG_SaveAxis. All
ﬂ servo parameters (PID, Trajectory, Limits, etc...) will be saved in the dialog

To define these servo parameters from a user’s application program, call the
Motion Control APl Common Dialog function MCDLG_RestoreAXxis.

Changing the Scale of the Slide Controls

At the top of each slide control is a value showing the current setting as a percentage of the current
maximum setting. To change the range of one or more slide controls select the Zoom In (+) or Zoom Out

(-) buttons.

To Zaom In i+ and Zoom Cut i)

+ + +

F H l H D H‘< huttons allow the userta change the scale
_0.45% _D20% _G.25% afthe PID slide controls

NS
SN

This value indicates the current scale of
the P, I, and O slide contrals

|

—D.06% I -0o0%

Executing cycle operations from the Servo Tuning program.

Beginning with revision 2.4 the servo tuning program allows the user to execute cycle operations. From
the Test Setup dialog define the move distance, dwell between positive and negative moves, cycle repeat
count, and dwell between cycles.

70 Precision MicroControl Corp.

Motion Control

[Servo Tuning
Eile Setup Test Help

B Test Setup
Axis
[Mution [~ Plat

Positio Distance 1000.000 I | et osition

I¥ | Optimal positicn

Motor— Time [2000000 s
@ I Fallwing eror
. Del 00
G e I~ Torqus

v Cyele ™ Target pasition

Test—— k= LI =y

Step F
\ I — € Single
NW—E & Muli
" Separate
Pl Dl 200.0 ms

T Ganty Mode & Plot &ll points

IEstenAss |1 2 © Plot every other point
Gl ey ﬁ, " Plat svery fourth point

¥ | Shiare bator Settings

TR Cancel | Hep |

o o o _

Figure 27. Use the Test Setup dialog to configure the
distance, dwell, and repeat count of cycle operations

- Plattibg——

£=

Tuning Velocity Mode Amplifier Servo Systems

A velocity mode amplifier incorporates an analog tachometer to provide the feedback for the velocity loop,
which is closed within the amplifier. The velocity loop is considered the primary or ‘inner’ loop of the servo
system. MultiFlex controllers, which are position controllers, is used to close the secondary or ‘outer’
position loop of the servo system. For optimum position accuracy and repeatability it is recommended that
the encoder for a velocity mode amplifier axis not be directly coupled to the motor. Ideally a linear scale
(encoder) should be mounted on the external mechanics, as closely coupled as possible to the load or
‘end effector’.

The most important step of tuning a servo that uses a velocity mode amplifier is
to carefully follow the amplifier manufacturers setup instructions. Since the
amplifier provides the primary servo control, if it is not setup correctly there is
no possibility of attaining acceptable servo system performance.

There are significant differences when tuning servo systems that close the velocity loop external to the
controller’s position loop. The digital PID filter of the controller becomes a secondary component in the
generation of the output signal that is applied to the velocity mode amplifier. The primary component that
the controller will use to generate the servo command signal is the Feed Forward term.

Feed Forward defines a voltage level output from the controller, which in turn
ﬂ commands the velocity mode amplifier to rotate the motor at a specific velocity.

Prior to tuning velocity mode amplifier servo system the velocity feed forward term must be determined.
The following example describes how to calculate and set velocity feed forward of a servo axis:

MultiFlex PCI 1000 Series User's Manual 71

Motion Control

Setting the Velocity Feed Forward

The main component required to set the velocity feed forward of a servo axis is to determine the output
level of the tachometer at a specific motor velocity. For this example, a typical tachometer specification
would state:

Output Range 0.0 to +10V
Tach Output @ 1K RPM 1.0 volt

The specification describes a tachometer with an output range of 0 — 10V. The tachometer output ratio is
1.0V per 1,000 RPM’s. The resolution of the linear scale encoder is 2000 encoder counts per inch, and
the maximum velocity of the axis is 50 inches per second. Note: the servo amplifier may require scaling
adjustments for the RPM/Tachometer voltage output ratio. The velocity feed forward is calculated as
follows:

controller output = Velocity (encoder counts/sec) X Feed forward term (encoder counts/volt/sec.)
10 volts = 100,000 counts/sec. X Feed forward term (encoder counts * volt/sec.)
Feed forward = 10 volts / 100,000 counts per sec.

0.0001 =10 volts /100,000 counts per sec.

1VG0.0001 ;set velocity gain (velocity feed
;forward) with MCCL command

// set velocity gain (velocity feed forward) using Motion Control API

function

//
MCGetFilterConfig(hCtrlr, iAxis, &Filter);
Filter.VelocityGain = (hctlr, 1, 0.0001);

MCSetFilterConfig(hCtrlr, iAxis, &Filter);

Tuning the Servo

After setting the velocity feed forward (velocity gain) as shown above, open the Servo Tuning Utility.
Configure the utility as follows:

1) From the Setup menu, select Servo Setup and define the trajectory parameters (velocity,
acceleration, and deceleration) to match the application requirements.

2) From the Test Setup menu define a typical application move distance and duration. For this
example, the move distance is 5000 encoder counts. The move duration is set to 600
milliseconds.

3) Set the Proportional (P), Integral (1), and Derivative (D) slide controls to 0%.

4) Turn on the Trajectory generator

5) Turn the motor on

6) Press the Step Plus pushbutton

A response similar to the following graphic should be observed:

72 Precision MicroControl Corp.

Motion Control

[Servo Tuning
File Setup Test Help

s |
Pasition 4190 Oppiire

Mator
’7 Q@ On | Off |

’rTraJectory Generatar

@ i | Off |
rlest———————
TSRS Step Minus |

Clear | Tero |

= L e

_D.Fe% _0.10% _B.25%

-0.30% -005% -313%

—rm000% ___m000% 000

- (O]

Increase the ‘P’ term 1-2 % at a time (it usually requires very little P for velocity mode amplifier systems)
and repeat the move until the following error value is no longer reduced by increases in the P gain.

[Servo Tuning
File Setup Test Help

s |
Positian 49382 opteal

Mator
’7 Q@ On | Off |

Trajectory Generator
’7 @] | Off |

~Test
TSRS Step Minus |

Clear | Zero |

P] o

_D.10% _0.10% _B.25%

-0.05% -0.05% -313%

“000% __em000% __em000%

=[O]

The current P gain is your baseline value. Note this value in case you need get back to this step.

Increase the ‘P’ term and repeat the move until the following error begins to oscillate around a following

error of O.

MultiFlex PCI 1000 Series User's Manual

73

Motion Control

[Servo Tuning
File Setup Test Help

s |
Pasition 5000 O

Mator
’7 @ On | Off |

’rTraJectory Generatar

I [=1 B3

Q@] | Off |
~Test——
SRR TS Step Minus |

Clear | Zero |

P] o

_D.39% _0.10% _B.25%

-0.20% -005% -313%

“000% ___em0.00% ___emD00%

Reduce the ‘P’ term by 15% to 20%. Begin adding derivative gain until the oscillations have been
dampened.

[Servo Tuning

(O[]

File Setup Test Help

e |
Positian 41996 Opied
hotor

(@ on | of |

"Trajectury Generator

a on | o |

~Test——
CERRBINET] Step Minus I
Clear | Zero I
+ + +
[T ECT e[EE
D20 _Dan% B35
R
-020% -0.05% ENER
__/-
-000% __-000%

00509

If the axis is not within a acceptable target range (typically +/- 1 encoder count) | gain is used to reduce
the static error at the end of the move. Without issuing another move, very slowly begin to increase the |

gain setting until the axis 'slews' to within +/- 1 encoder count. Now execute another move, if the axis
oscillates at the end of the move the | gain is too high, reduce the | gain and repeat the move.

74 Precision MicroControl Corp.

Motion Control

3 Servo Tuning

File Setup Test Help

e |
Pasition 5001 Lpdnsll

—Iotar
@ an | of |
—Trajectory Generator
oY on | of |
—Test
Step Plus | StepMinusl
Clear | Zero |
B = LN
_0.39% _0.20% _6.35%
-~
-0.20% -0.10% -3.13%
=2
~0.00% -I_,—n.nn‘; ~0.00%

04675

The motion controller provides the user with an option for the selecting the
mode of Integral gain operation. For Velocity mode amplifiers it is
recommended that the Integral gain option be set to Zero. In this mode of
operation Integral gain is only calculated after the calculated trajectory has been
completed. For additional information on Integral gain options please refer to
page 156.

MultiFlex PCI 1000 Series User's Manual 75

Motion Control

Saving the Tuning Parameters

When servo tuning is complete, closing the tuning utility will prompt this message about saving the Auto
Initialize setting, selecting Yes will store all settings for all installed axes. Selecting No will cause all
settings to be discarded.

I |
Do you wizh to zave changes made ko
wour Auto [nitialize settings?

Tes | Hao |

Acceleration and Deceleration Feed Forward

For most applications velocity feed forward is sufficient for accurately positioning the axis. However for
applications that require a very high rate of change, acceleration and deceleration gain must be used to
reduce the following error at the beginning and end of a move.

Acceleration and deceleration feed forward values are calculated using a similar algorithm as used for
velocity gain. The one difference is the velocity is expressed as encoder counts per second, while
acceleration and deceleration are expressed as encoder counts per second per second.

Controller output = Accel./Decel. (encoder counts/sec/sec.) X Feed forward term (encoder counts *
volt/sec./sec.)

the Servo Tuning Utility to set the proportional and integral gain. For additional

0 Acceleration and deceleration feed forward values should be set prior to using
information please contact PMC Tech support.

Systems with Electrical or Mechanical Deadband

Some servo systems may demonstrate significant dead band due to friction, sticktion, or insufficient
amplifier drive power. This will typically be indicated when the output command to the servo is relatively
high but the axis does not move.

Systems of this type can be very difficult to ‘tune’. To overcome the limitations of the system and get the
axis moving, the proportional gain would need to be set very high. This will tend to make the system
become unstable, causing the axis to ‘oscillate’ at the end of a move. The Output Deadband (aODn)
command is used to compensate for the electrical and or mechanical dead band in a system by modifying
the calculated output signal, allowing the module to simulate a ‘frictionless’ system. The deadband value
will be added to a positive output and subtracted from a negative output.

76 Precision MicroControl Corp.

Motion Control

Moving Servo Axes with Motor Mover

Once the servo is tuned, the axis is ready to perform velocity profile moves. PMC’s Motor Mover program
allows the user to execute absolute, relative, and cycle move sequences, monitor position and status of
the axis. By selecting the Setup button the user can; set velocity parameters (maximum velocity,
acceleration, and deceleration), set velocity profile (Trapezoidal, S curve, or Parabolic), and enable over
travel limits.

I Motor Mover o] |

Setup Mowe Help

— @ On o | Setup | Di I 10000 welocty
1 1 0000 @ Error
- off | Scale | " ophs % Rel
@ Limit _I = & T
@ on on | Setupl Dist |_ 10000 Yelncity
2 1 0000 @ Error E—
@ume O | se | Caws FRa T
@ On on | 5etup| Dist | =000 Yelncity
3 Errar
500 :Limn Off | Scale | " phs % Rel — J
@ On on | Setup | Dist | 2500 Welocity
@ Error [l_
@ Limit Mﬂl " sbs (* Rel D
@ On o | Setup | Dist I =00 welocty
5 50000 @ Error
- off | Scale | & ops O Rel
@ Limit _I = & TR A

)

—

— @ On Dizt I 10000 welocity
6 -
10000 :Er;?tr o G R —

— @ On on | 5etup| Dist | Snnonn Yelncity
/ 500000 :Err:?tr off | Scale | O fbhs ¥ Rel — J_
[e T T T I I |

(8 @ On ilﬂl Dist | 1000000 welocity
8 -1000000 :Elrr::rutr o | — o @ R J_
L I I

' Paint ta Point ove + | Stop | Zero | All On

 Cycle move- | apot | home | Al Ot

Figure 28. PMC's Motor Mover can be used to move as many as 8 axes simultaneously

MultiFlex PCI 1000 Series User's Manual 7

Motion Control

Stepper (pulse command) Axis Setup

The controller supports three modes for controlling stepper motors or pulse command servo's:

Open loop pulse command

Open loop pulse command with encoder feedback

Closed loop pulse command
Open Loop Pulse Command Motion

Controlling the position and velocity of a stepper motor with no component of the command output
adjusted based on encoder feedback from the electro mechanical system is called open loop control.
The steps required to implement open loop pulse command motion are:

Select the Velocity Profile type

Select the Pulse Rate range

Configure axis inputs (over travel limits and driver fault)

Define Trajectory parameters (max. velocity, acceleration, deceleration, min. velocity)

To configure a Pulse Command axis for motion use the Stepper Axis Setup Dialog (select Setup from

Motor Mover).

Axis 5 - MFX Stepper - Multiflex Advanced Stepper Motor Control

totion
Acceleration | 500000000000
Define trajectory Deceleration | 500000.000000
parameters Man, Velocity | 250000.000000
i Velocity | 5000.000000

[Closed-Loop Mode
Propartional Gain
Integral Gain
Integration Limit
Integral Option
Derivative Gain
Deriv. Sampling
Follawing Error

Encoder Scaling

Pogition
Current Paos. |0.000000

Hard Lirnits

R ate

(0 Low
(") ted

+ Limit Enable
- Limit Ernable

Lirnit Mode | Stop v
[T Invwert Limits
Soft Lirnits

+ Limit Enable
Lirnit | 20000000000

- Limit Enable
Linit | -2000000.0000

Limit Mode | Stop “

(%) High

Frofile:

() Trapezoid
() 5-Curve

(%) Parabola

iscellaneous
] Fault \

|

| | Low Current

Cancel

Figure 29. Stepper axis Setup Dialog

default value is 1,000 steps per second. The recommended setting of the

Set Step Rate Range

Low - 0.1 to 78K steps/sec.
Medium - 20 to 625K steps/sec.
High - 153 to 5.0M steps/sec.

Select Velocity
Profile type

Configure axis inputs

ﬂ The Minimum Velocity of a stepper axis must be set to a non zero value. The

78

Precision MicroControl Corp.

Motion Control

minimum velocity is from 1% to 10% of the maximum velocity.

When the user commands a move the controller counts each pulse that is issued to the stepper motor
driver. When the position of an axis is queried (by issuing the function MCGetPosition () or MCCL Tell
Position (aTP) command), the number of pulses issued to the stepper driver is reported. Since there is no
position (or velocity) feedback there is no need to 'tune' the axis. However, the axis module must be
configured (Trajectory parameters, Velocity Profile, Limits etc...).

Stepper drivers typically use the Direction output from the stepper controller
signals to determine the observed direction of motion. If the observed direction
of motion is not correct (moving positive causes counter clockwise instead of
clockwise rotation) set axis scaling to -1.0.

Open Loop Pulse Command Motion with Position Verification Encoder

For some open loop stepper applications it is required that an encoder be incorporated to allow the user
to compensate for 'lost steps'. For these type of applications follow the steps described in the previous
section for configuring Open Loop Pulse Command Motion. After the axis has been configured and
basic motion has been verified, issue the Motion Control API function MCGetAuxEncPosEX() to read
the position of the auxiliary encoder. For auxiliary encoder connection information please refer to the
Connectors, I/0 and Schematics chapter. For additional information please refer to the Application
Solutions chapter.

MultiFlex PCI 1000 Series User's Manual 79

Motion Control

Closed Loop Steppers

The advancements in stepper motor/micro stepping driver technology have allowed many machine
builders to maintain ‘servo like’ performance while reducing costs by moving to closed loop stepper
systems. While closed loop steppers will still be susceptible to ‘stalling’, they are not plagued with the
familiar open loop stepper system problem of loosing steps due to friction (mechanical binding) or system
resonance.

For high accuracy stepper applications, the controller supports closed loop control of stepper motors
using quadrature incremental encoders for position feedback. The stepper axis will be controlled as if it is
a closed loop servo, the quantity and frequency of step pulses applied to the stepper driver is based on
the trajectory parameters of the move and the position error of the axis. Prior to attempting to operate a
stepper motor in closed loop mode the basic system components (motor, driver, wiring, and controller)
should be verified by moving in open loop mode. For information on operating an open loop stepper
please refer to the Stepper Basics and Moving Motors with Motor Mover sections in this chapter. If the
stepper motor does not operate as expected please refer the Troubleshooting chapter.

While executing closed loop stepper motion, when the target position
equals the current encoder position, the step pulse generator (PID filter)
0 will be turned off within 1 micro second.

Unlike a closed loop servo, if the final position of the stepper encoder is
beyond the target position of the move the motor will not be
commanded to move back to the target.

Closed Loop Stepper Setup
There are four steps required to configure a stepper to operate in closed loop :

1) Connect and verify operation of the encoder
2) Define the Encoder / Steps ratio

3) Set the trajectory parameters

4) Tune the axis

Connect and verify the encoder
Connect the stepper motor's encoder to the controller per the connector pinouts described in chapters 5
and 10 of this manual.

To verify the operation of the encoder open the Motor Mover program (Start\Programs\Motion
Control\Motion Integrator\Motor Mover). From the Setup dialog select Closed Loop Mode and OK.:

[0 Motor Mover _[=]=]
Setwp Mave Help

Dist 0 veincty [EE
_lAbs [Rel

n o
@m0 | s

I™ Poirt to Poirt: [avE + | Stap | Zera | AlCn |

_eyete b e | st

Figure 30. Select Setup to open the dialog

80 Precision MicroControl Corp.

Motion Control

Axis 1 - MC360 - DSP-Based Stepper
Acceleralion [10000.000000 Cuent Pos. [0.000000 L
ow
Deceleration [T0000.000000
| Hard Limi
M elosity [10000 000000 ar © Med
Min Velocity [1000 000000 I+ Limik Ensble & High
I™ - Limit Enable
% ClosedLoop Mode
q [Puctile
Linit Mods [0rf =
Pigg@Monsl Gain [0.001000
ntegral Giain [0.000000 I Invvert Limits
Integration Lirit [100.000000 .
Integral Option [Homal =
Deivative Gain [0.000000 B b
Deiiv. Sampling [0.001000 Limit [0.000000
Follawing Exror [0.000000 I™ - LimitEnable
fccelralion Giain [0 000000000 Linit [0.000000
Dceleration G [0 000000000
Velooity Gain [0.000000000 Limit Mode | Off =
Cancel

Figure 31. From the Stepper Setup dialog select the Closed Loop Mode check box

After closed loop mode has been enabled the Motor Mover position readouts will display the position of
the encoder (versus displaying the 'pulse count’). Rotate the motor / encoder shaft back and forth and
verify that the position display changes accordingly.

[T Motor Mover o=
Sewp Move Help
@ on on | setup | Dist 0 elosity
1 @ Errar
@ume O | s _lAps [Rel — l »

™ Point to Poirt Mave + | Stop | | Al Gn |

Zero
eyele Move - | Aport | Horme | Aot |

[} Motor Mover _[o]=]
Sewp Move Heb

@ on on | setup | Dist 0 elosity
1 @ Errar
@ Limit _IO" _Isca\e ks T Rel n000000%000

‘ I~ Point to Point hlove + | Stop | Zera | Algn |

eyele Move - | Aport | Horme | Aot |

Figure 32. In closed loop mode the Motor Mover position readout displays encoder position

After switching a stepper axis into or out of closed loop mode the axis must be
disabled and then enabled. From a PMC program (Motor Mover, Cwdemo,

0 Servo Tuning, etc...) select the Motor Off and then the Motor On buttons). From
a user application issue the MCEnableAxis () function with state = False and
then state = True.

Define the motor steps per rotation / encoder counts per rotation ratio

When a stepper axis is operating in closed loop mode, move commands are issued in units of encoder
counts. The EncoderScaling member of the MCFILTEREX data structure is used to configure the
controller for converting encoder units to step pulses. The value is calculated by dividing motor steps per
rotation by encoder counts per rotation. For example, if there 2000 encoder counts per rotation (500 line
encoder) and the stepper motor has 51,200 steps per rotation, the Encoder Scaling value would be

EncoderScaling = motor steps per rotation / encoder counts per rotation.
EncoderScaling = 51,200 / 2000
EncoderScaling = 25.6

MultiFlex PCI 1000 Series User's Manual 81

Motion Control

The Encoder Scale can also be defined from the Stepper Setup dialog of the Servo Tuning or Motor
Mover programs.

Axtis 1 - MC360 - DSP-Based Stepper x|
~Motion ~ Position —Ral
Acoeleration [10000000000 | | | CurerePos. [0000000 |
Deceleration lm -
s Velosity [T00Dm0000T || o0 ® [t
Min. VYelocity W I+ Limit Enable ' High
™ -Limit Enablz

¥ Closed-Loop Mode

Limit Mode IUH vI - Profile:
Propartional Gain [0.000700

Integral Giain [0.000000 I~ Inert Limis 9@ ez
5
Integration Limit |1UU.EIUUUUU Goft Limits Ve
Integral Dption |Mormal ha £ Parabola

Derivative Gain |0.000000 I™ +Limit Enable
Deriv. Sampling |0.001000 Limnit |D 00000 el

Following Error |1024.000000 I™ - Limit Enable ™ Fault
Acceleration Gain | 0000000000 Limit IU 000000 I” Fev. Fhase
Deceleration Gain |0.000000000 ¥ Half Step

Encader Sealing [25.60000000 LinitMods [0 E | IR Lowcuren

-

/ [o | Cancal |
/

Figure 33. Enter the closed loop steps / encoder scale

Set the trajectory parameters

As with an open loop stepper, the trajectory parameters (maximum velocity, acceleration, deceleration,
and minimum velocity) must be set prior to commanding motion. These values can be set using the
MCMOTION data structure or can be entered from the Stepper Setup dialog of Servo Tuning or Motor
Mover.

Closed loop stepper trajectory parameters (and move distances) are specified
ﬂ in encoder units, not motor step units.

Tune the axis

When a stepper axis is configured for closed loop operation the default proportional gain is set to 0.0001,
which should be sufficient to move the axis near the specified target. Further adjustments of the
proportional and integral gain allow the controller to:

Minimize the following error while moving

Eliminate slow speed slewing of the axis near the end of the move
Settle within 1 encoder count of the target

Use the PMC Servo Tuning program (\Start\Programs\Motion Control\Motion Integrator\Servo Tuning) to
tune the closed loop stepper.

Step 1 - Enter a typical move distance (in encoder counts) and move duration (in milliseconds) using
the Test Setup dialog (Setup\Test Setup).

Step 2 - Verify that the Trajectory Generator is on (yellow LED)

82 Precision MicroControl Corp.

Motion Control

Step 3 - Set the Proportional gain Slide Control Scale 0.20% (Press P+ zoom button)

Step 4 - Verify that the Proportional gain is set to 0.0001, Integral and Derivative gain = 0. Generally
Derivative gain and Integral gain are not required to tune a closed loop stepper.

Step 5 - From the Servo Setup dialog verify that Closed Loop Mode is enabled and that the
Encoder Scaling has been set

Step 6 - Toggle the Motor Off and Motor On buttons to initialize the closed loop position registers
Step 7 - Start the move with the Move + or Move - buttons
Step 8 - Observe the plot of following error during the move

Step 9 - Increase the proportional gain and repeat the move until the point of diminishing returns is
reached (the following error no longer decreases). Further increases of the proportional gain
will tend to cause the motor to emit a grinding noise or stall during a commanded move.

Step 10 - If the axis moves slowly near the end of the move and/or stops a few counts short of the
target the Minimum Velocity is probably set too low.

Step 11 - Save the closed loop stepper settings by selecting Save All Axes Settings from the Servo
Tuning File menu. This operation will copy all settings into the mcapi.ini file so that any
windows application program can load axis settings upon opening.

For additional information on using the Servo Tuning program please refer to:

0 The Tuning the Servo section of the Motion Control chapter
The Servo Tuning program on-line help

function with Mode = MC_IM_OPEN_LOOP or deselect the closed loop check

0 To disable closed loop stepper operation, issue the MCSetModulelnputMode
box in the Servo Tuning Servo Setup dialog..

Reverse Phasing of a closed loop stepper

If the closed loop stepper is reverse phased, issuing a move command will cause the motor to 'take off' in
the wrong direction at full torque / speed. Once the position error exceeds the value entered for the
allowable following error (default = 1024) a motor error will occur and the axis will stop. To change the
phasing either:

Issuing the MCSetServoOutputPhase () function with Phase = MC_PHASE_REVERSE

Selecting the Reverse Phase option in the Servo Tuning Servo Setup dialog
Swap the encoder phase A and B connections to the controller.

Closed loop stepper example

Axis 5 is a 51,200 micro steps per rotation stepper motor. A 2,000 count (500 line) incremental encoder is
coupled to the stepper motor shaft. The required maximum step rate for this application is 896,000 steps

MultiFlex PCI 1000 Series User's Manual 83

Motion Control

per second (1050 RPM), which requires the axis to be configured for High Speed step range. After
verifying the operation of the closed loop stepper from within the Servo Tuning program, save the
configuration with the File menu Save All Axis Settings option. From a users application program to load
the closed loop configuration call the MCDLG_RestoreAxis function from the PMC Common Motion
Dialog Library. To load the closed loop axis configuration from a PMC application program (Servo Tuning
or Motor Mover) select Auto Initialize from the File menu.

84 Precision MicroControl Corp.

Motion Control

Moving Stepper Axes with Motor Mover

After configuring the stepper setup parameters it is ready to execute motion. The Motor Mover program
allows the user to execute absolute, relative, and cycle move sequences, monitor position and status of
the axis. By selecting the Setup button the user can; set velocity parameters (maximum velocity,
acceleration, and deceleration), set velocity profile (Trapezoidal, S curve, or Parabolic), and enable
motion limits.

I Motor Mover o] |

Setup Mowe Help
— @ On o | Setup | Dist I 10000 welocty
1 1 0000 @ Error

- off | Scale | " ophs % Rel

@ Limit _I = & T
@ Oon n | Setup | Dist I 10000 YWelocity

2 1 0000 @ Error E—
@ume O | se | Caws FRa T

@ Cn on | 5etup| Dist | so00 welocity
Etror
:Limn oiff | Scale | " ahs % Rel — J
@ On on | Setup | Dist | 2500 Welnoity
@ Error [l_
@ Limit Mﬂl " sbs (* Rel D
— @ On o | Setup | Dist I =00 welocty
5 50000 @ Error
- off Scale | * aps O Rel
@ Limit _I = & TR A

3 500

—

— @ On Dizt I 10000 welocity
6 -
10000 :Er;?tr o G R —

— @ On on | 5etup| Dist | Snnonn Yelncity
/ 500000 :Err:?tr off | Scale | O fbhs ¥ Rel — J_
[e T T T I I |

(8 @ On ilﬂl Dist | 1000000 welocity
8 -1000000 :Elrr::rutr o | — o @ R J_
L I I

' Paint ta Point ove + | Stop | Zero | All On

- |

 Cycle move- | apot | home | Al Ot

Figure 34. PMC's Motor Mover can be used to command motion for as many as 8 axes
simultaneously

MultiFlex PCI 1000 Series User's Manual 85

Motion Control

Defining the Characteristics of a Move

Prior to executing any move, the user should define the parameters of the move. The components that
make up a move are:

// Set axis 1 maximum velocity
// Set axis 1 acceleration

// Set axis 1 deceleration

// Set profile as Trapezoidal

// Set Position mode

// Set target (10000), begin move

MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 100000.0);
MCSetDeceleration(hCtlr, 1, 100000.0);
MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOID);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCMoveRelative(hCtlr, 1, 100000.0);

The parameters defined in the program example above specify a move to position 100,000. During the
move the velocity will not exceed 10,000 encoder counts per second. A trapezoidal velocity profile will be
calculated by the motion controller The rate of change (acceleration and deceleration) will be 100,000
encoder counts per second/per second, there by reaching the maximum velocity (10,000 counts per
second) in 100 msec’s. The resulting velocity and acceleration profiles follow:

Velocity
(encoder counts per second)

10000

7500

5000

2500

100 200 300 400 500 600 700 800 900 1000

Time (msec's)

86 Precision MicroControl Corp.

Motion Control

Acceleration / Deceleration
(encoder counts per sec / sec)

100000

Time (msec's)

100000

The default units for expressing Trajectory Parameters are:

Velocity - encoder counts / second
Acceleration - encoder counts / second / second
Deceleration - encoder counts / second / second

If user unit parameters Scale and / or Rate are set to values other than 1 then
the Velocity, Acceleration, and Deceleration units will change as well.

MultiFlex PCI 1000 Series User's Manual 87

Motion Control

Velocity Profiles

The user can select one of three different velocity profiles that the controller will then use to calculate the
trajectory of a move.

DCX Velocity Profiles

Max. Velocity
10,000 counts / sec.

Time Time Time

Trapezoidal Profile Parabolic Profile S curve Profile

DCX Accel / Decel Profiles

Accel
100,000 counts
sec. / sec.

Decel
100,000 counts
sec. / sec.

Trapezoidal Profile Parabolic Profile S curve Profile

Trapezoidal Profile — (servo & steppers) MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOID);
Shortest time to target when using the same trajectory parameters
Profile most likely to result ‘jerk’ and/or oscillation
Supports ‘on the fly’ target changes

Parabolic Profile — (stepper only) MCSetProfile(hCtlr, 1, MC_PROF_PARABOLIC);
Slow ‘roll off’ minimizes lost steps at high velocity

Initial linear rate of change eliminates ‘cogging’
On the fly changes will cause the axis to first decelerate to a stop

S curve Profile — (servo only) MCSetProfile(hCtlr, 1, MC_PROF_SCURVE);
‘True sine’ rate of change effectively eliminates ‘jerk’ and/or oscillation
Longest time to target when using the same trajectory parameters
On the fly changes will cause the axis to first decelerate to a stop

88 Precision MicroControl Corp.

Motion Control

Point to Point Motion

To perform point to point motion of a servo or stepper motor::

// Enable the axis

// Enable Position mode

// Define the velocity profile (trapezoidal, S curve, or parabolic)
// define maximum velocity

// define acceleration

// define deceleration

// execute the move

MCEnableAxis(hCtlr, 1, TRUE);

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE POSITION);
MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOIDAL);
MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 25000.0);
MCSetDeceleration(hCtlr, 1, 50000.0);
MCMoveRelative(hCtlr, 1, 122.5);

MultiFlex PCI 1000 Series User's Manual 89

Motion Control

Constant Velocity Motion

To move a servo or stepper at a continuous velocity until commanded to stop:

// Enable the axis

// Enable Velocity mode

// Define the velocity profile (trapezoidal, S curve, or parabolic)
// define maximum velocity

// define acceleration

// define deceleration

// define the direction (positive or negative) of the move
// begin motion of axis 1

// wait for digital 1/0 #4 to be true

// reduce velocity

// wait for digital 1/0 #2 to be true

// stop the motion of axis 1

MCEnableAxis(hCtlr, 1, TRUE);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_VELOCITY);
MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOIDAL);
MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 100000.0);
MCSetDeceleration(hCtlr, 1, 100000.0);
MCSetDirection(hCtlr, 1, POSITIVE);

MCGo(hCtlr, 3);

MCWait For DigitallO(hCtlr, 4, TRUE);
MCSetVelocity(hCtlr, 1, 5000.0);

MCWait For DigitallO(hCtlr, 2, TRUE);
MCStop(hCtlr, 1);

Velocity
(encoder counts per seconds)

10000

7500

5000

2500

- —— e el

1 2 3 4 5 6

Time in seconds
= e - Digital input #4 'turned on"

Digital input #2 'turned on"

90 Precision MicroControl Corp.

Motion Control

Contour Motion (arcs and lines)

The controller supports Linear Interpolated motion with any combination of two to eight axes and Circular
Contouring on as many as four groups of two axes. Executing a multi axis contour move requires:

Turn the axes on

Define the axes in the contour group and the controlling axis

Define the trajectory (Vector Velocity, Vector Acceleration and Vector Deceleration)
Define the type of contour move (Linear, Circular, user defined) and the move targets
Loading the Contour Buffer for Continuous Path Contouring

Define the contour group

The MCSetOperatingMode() command is used to define the axes in a contour group. Issue this
command to each of the axes in the contour group. The parameter wMaster should be set to the lowest
axis number that will be moving on the contour. This axis will then be defined as the 'controlling' axis for
the contour group. The following example configures axis 1, 2, and 3 for contour motion with axis #1
defined as the controlling axis.

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 3, 1, MC_MODE_CONTOUR);

Define the trajectory parameters

The MCGetContourConfig(), MCSetContourConfig(), and MCContour data structure are used to
define the trajectory parameters of a contour motion. The default units of the vector velocity are encoder
counts or steps per second. The default units of vector acceleration and vector deceleration are encoder
counts or steps per second per second. The default units of velocity override is a percentage of the
setting for vector velocity.

/I Motion settings (GetDlgltemDouble() is a helper function defined

/I elsewhere)

1

case IDOK:
MCGetContourConfig(hCtrlr, iAxis, &Contour);
Contour.Vector.Accel = GetDlgltemDouble(hDlg, IDC_TXT_ACCEL);
Contour.VectorDecel = GetDlgltemDouble(hDlg, IDC_TXT_DECEL);
Contour.VectorVelocity = GetDlgltemDouble(hDlg, IDC_TXT_VELOCITY);
Contour.VelocityOverride = GetDlgltemDouble(hDlg, IDC_TXT_MAX_TORQUE);
MCSetContourConfig(hCtrlr, iAxis, &Contour);

Define the type of contour move

The nMode parameter of the MCBlockBegin(') function is used to define the type of contour move to be
executed. The following types of contour motion are supported:

MultiFlex PCI 1000 Series User's Manual o1

Motion Control

Table 2. Contour Mode Parameters

nMode parameter Contour move type Description

MC_BLOCK_CONTR_USER User defined, 1 to 8 axes Specifies that this block is a user defined
contour path motion. INum should be set to
the controlling axis number.

MC_BLOCK_CONTR_LIN Linear interpolated move, 1 Specifies that this block is a linear contour
to 8 axes path motion. INum should be
set to the controlling axis number.
MC_BLOCK_CONTR_CW Clockwise arc, 2 axes Specifies that this block is a clockwise arc

contour path motion. INum should be set to
the controlling axis number.
MC_BLOCK_CONTR_CCW Counter Clockwise arc, 2 Specifies that this block is a counter-
axes clockwise arc contour path motion. INum
should be set to the controlling axis number.

Examples of a linear move and a clockwise arc follow:

// Linear move

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 10000.0);
MCMoveAbsolute(hCtlr, 2, 20000.0);
MCMoveRelative(hCtlr, 3, -5000.0);

MCBlockEnd(hCtlr, NULL);

// Clockwise arc move

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
MCArcCenter(hCtlr, 1, MC_CENTER_ABS, 20000.0);
MCArcCenter(hCtlr, 2, MC_CENTER_ABS, 0.0);
MCMoveAbsolute(hCtlr, 1, 40000.0);
MCMoveAbsolute(hCtlr, 2, 0.0);

MCBlockEnd(hCtlr, NULL)

Loading the Contour Buffer for Continuous Path Contouring

The controller uses a wrap around buffer known as the Contour Buffer to support Continuous Path
Contouring. When a single contour move is executed, the axes will begin moving towards the targets at
the user specified vector velocity and then will decelerate (at the specified vector velocity) and stop at the
target. If multiple contour move commands are issued, the contour buffer allows moves to smoothly
transition from one to the other. The vector motion will not decelerate and stop until the contour buffer is
empty or an error condition (max following error exceeded, limit sensor ‘trip’, etc...) occurs.

The wrap around Contour Buffer can be queued with as many as 256 linear motions or 128 arc motions
(an arc move takes up twice as much buffer space). The MCGetContouringCount() command will
report how many contour moves have been executed since the axes were last configured for contour
motion with MCSetOperatingMode(). The contouring count is stored as a 32 bit value, which means that
2,147,483,647 contour moves can be executed before the contour count will ‘roll over'.

To delay starting contour motion until the contour buffer has been fully loaded use the MCEnableSynch()
command. This command should be issued to the controlling axis before issuing any contour moves.
Moves issued after the MCEnableSynch() command will be queued into the contour buffer. To begin
executing the moves in the buffer, issue the MCGoEx() command to the controlling axis . To return to

92 Precision MicroControl Corp.

Motion Control

normal operation (immediate execution of contour move commands), issue MCEnableSynch() to the
controlling axis with the state = FALSE.

Multi Axis Linear Interpolated moves

An example of three linear interpolated moves is shown below. Once the first compound move command
is issued, motion of the three axes will start immediately (at the specified vector velocity). The other two
compound commands are queued into the contouring buffer. As long as additional contour moves reside
in the contour buffer continuous path contour motion continue. In this example, smooth vector motion will
continue (without stopping) until all three linear moves have been completed (the contour buffer has been
emptied). At this time the axes will simultaneously decelerate and stop.

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 3, 1, MC_MODE_CONTOUR);

// Motion settings (GetDlgltemDouble() is a helper function defined
// elsewhere)

//
case IDOK:
MCGetContourConfig(hCtrlr, iAxis, &Contour);
Contour .Vector.Accel = GetDlgltembouble(hDlg, IDC_TXT_ACCEL);
Contour .VectorDecel = GetDIgltemDouble(hDlg, IDC_TXT_DECEL);
Contour .VectorVelocity = GetDlgltemDouble(hDlg, IDC_TXT_VELOCITY
)
Contour_VelocityOverride = GetDIlgltembDouble(hDIlg,

IDC_TXT_MAX_TORQUE);
MCSetContourConfig(hCtrlr, iAxis, &Contour);

// Linear move #1

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 85000.0);
MCMoveRelative(hCtlr, 2, 12000.0);
MCMoveAbsolute(hCtlr, 3, -33000.0);

MCBlockEnd(hCtlr, NULL);

// Linear move #2

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 0.0);
MCMoveAbsolute(hCtlr, 2, 0.0);
MCMoveAbsolute(hCtlr, 3, 0.0);

MCBlockEnd(hCtlr, NULL);

// Linear move #3

//

MCBlockBegin(hCtlr, MC_BLOCK CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 5000.0);
MCMoveRelative(hCtlr, 2, 23000.0);
MCMoveAbsolute(hCtlr, 3, -16000.0);

MCBlockEnd(hCtlr, NULL);

MultiFlex PCI 1000 Series User's Manual 93

Motion Control

Arc Motion

The controller supports specifying an arc motion in two axes in any of three different ways:

Specify center and end point
Specify radius and end point (not supported by the Motion Control API)
Specify center and ending angle (not supported by Motion Control API)

When the first arc motion is issued, motion of the two axes will start immediately (at the specified vector
velocity). Additional contour motions will be queued into the contouring buffer. As long as additional
contour moves reside in the contour buffer continuous path contour motion will occur. In this example,
smooth vector motion will continue (without stopping) until all both arc motions have been completed (the
contour buffer has been emptied). At this time the axes will simultaneously decelerate and stop.

Arc motions by specifying the center point and end point

The MCArcCnter() command is used to specify the center position of the arc. This command also
defines which two axes will perform the arc motion. The MCMoveAbsolute() or MCMoveRelative()
commands are used to specify the end point of the arc. A spiral motion will be performed if the distance
from the starting point to center point is different than the distance from the center point to end point. An
example of two arc motions is shown below:

10,000

End point of
first arc

Starting Arc center X 10,000
point YO

< L

1st move - 180 degree clockwise arc

-10,000

2nd move - 180 degree clockwise arc

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);

// Motion settings (GetDlgltemDouble() is a helper function defined
// elsewhere)

//
case IDOK:
MCGetContourConfig(hCtrlr, iAxis, &Contour);
Contour .Vector.Accel = GetDIlgltembouble(hDlg, IDC_TXT_ACCEL);
Contour .VectorDecel = GetDlgltembDouble(hDlg, IDC_TXT_DECEL);
Contour .VectorVelocity = GetDlgltemDouble(hDlg, IDC_TXT_VELOCITY);
Contour .VelocityOverride = GetDIgltemDouble(hDlg, IDC_TXT_MAX_TORQUE);

MCSetContourConfig(hCtrlr, iAxis, &Contour);

94 Precision MicroControl Corp.

Motion Control

// Clockwise arc move #1

//

MCBlockBegin(hCtlr, MC_BLOCK _CONTR_CW, 1);
MCArcCenter(hCtlr, 1, MC_CENTER_ABS, 10000.0);
MCArcCenter(hCtlr, 2, MC_CENTER_ABS, 0.0);
MCMoveAbsolute(hCtlr, 1, 20000.0);
MCMoveAbsolute(hCtlr, 2, 0.0);

MCBlockEnd(hCtlr, NULL);

// Clockwise arc move #2

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CCW, 1);
MCArcCenter(hCtlr, 1, MC_CENTER_REL, -10000.0);
MCArcCenter(hCtlr, 2, MC_CENTER_REL, 0.0);
MCMoveRelative(hCtlr, 1, -20000.0);
MCMoveRelative(hCtlr, 2, 0.0);

MCBlockEnd(hCtlr, NULL);

Arc motions by specifying the radius and end point

The MCArcRadius() function is used to execute an arc move by specifying the radius and end point of
an arc. The Axis parameter should equal the controlling axis for the contour move. The parameter Radius
should equal the radius of the arc. If the arc is greater than 180 degrees, the parameter Radius must be
expressed as a negative number. The MCMoveAbsolute() or MCMoveRelative() commands are used
to specify the end point of the arc. An example of two arc motions is shown below:

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);

// 90 degree Clockwise arc move #1

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
MCArcRadius(hCtlr, 1, 10000.0);
MCMoveRelative(hCtlr, 1, 10000.0);
MCMoveRelative(hCtlr, 2, 10000.0);

MCBlockEnd(hCtlr, NULL);

// 270 degree Clockwise arc move #2

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
MCArcRadius(hCtlr, 1, -10000.0);
MCMoveRelative(hCtlr, 1, -10000.0);
MCMoveRelative(hCtlr, 2, -10000.0);

MCBlockEnd(hCtlr, NULL);

MultiFlex PCI 1000 Series User's Manual 95

Motion Control

End point of
first arc

N

Starting 10,000
point

« Iz

-10,000

1st move - 90 degree clockwise arc

2nd move - 270 degree clockwise arc

Arc motions by specifying the center point and ending angle

The MCArcEndingAngle() function is used to execute an arc move by specifying the ending angle and
center point of an arc. The Axis parameter should equal the controlling axis for the contour move. The
parameter Angle should equal the ending angle (absolute or relative) of the arc. When using this method
to specify an arc, the MCMoveAbsolute() and MCMoveRelative() functions are not used.

The MCArcCenter() function defines the radius of the arc. An example of two arc motions is shown

below:

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);

// Clockwise arc move #1

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
MCArcCenter(hCtlr, 1, MC_CENTER_ABS, 10000.0);
MCArcCenter(hCtlr, 2, MC_CENTER_ABS, 0.0);
MCArcEndAngle(hCtlr, 1, MC_ABSOLUTE, 0.0);

MCBlockEnd(hCtlr, NULL);

// Clockwise arc move #2

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
MCArcCenter(hCtlr, 1, MC_CENTER_REL, -10000.0);
MCArcCenter(hCtlr, 2, MC_CENTER_REL, 0.0);
MCArcéEndAngle(hCtlr, 1, MC_RELATIVE, 1800.0);

MCBlockEnd(hCtlr, NULL);

96

Precision MicroControl Corp.

Motion Control

Y
(90 degrees)

10,000

End point of
first arc
-X
(180 degrees)

X
(0 degrees)

\ Starting

point

\L

-10,000

-Y
(270 degrees)

1st move - 180 degree clockwise arc
2nd move - 180 degree clockwise arc

Changing the velocity ‘on the fly’

‘On the fly’ velocity changes during contour mode motion are accomplished by using the
VelocityOverride member of the MCContour data structure. Issue the command (to the controlling axis)
to scale the vector velocity of a linear or arc motion. The rate of change is defined by the current settings
for vector acceleration and vector deceleration.

Changing the velocity of a contour group using Velocity Override
0 is not supported for S-curve and/or Parabolic velocity profiles.

Cubic Spline Interpolation of linear moves

To have the controller perform ‘curve fitting’ (cubic spline interpolation) on a series of linear moves, issue
the MCEnableSynch() command to the controlling axis before issuing any contour move commands.
Next issue linear contour path commands to points on the curve. After loading the desired nhumber of
moves into the contour buffer, issue a MCGOEXx() command with the value Param set to 1. Motion will
continue from the first to the last point in the contour buffer. To return to normal operation, issue the
MCEnableSynch() command with parameter pState = FALSE.

Note that when performing cubic spline interpolation, only 128 motions can be
0 queued up in the contouring buffer.

User Defined Contour path

When executing contour motion the controller assumes that the axes are arranged in an orthogonal
geometry. The controller will calculate the distance and period of a move as follows:

MultiFlex PCI 1000 Series User's Manual 97

Motion Control

Beginning position: X=0 Y=0 Z=0
Target position: X=10,000 Y=10,000 Z=1000

Calculated Contour Distance = \/(X2 + Y2+ Zz)
=(10,000” + 10,000” + 1,000%)
= (100,000,000 + 100,000,000 + 1,000,000)
=+/201,000,000
=14177.44

The period, or elapsed time of the move, is a simple matter of applying the current settings for Vector
Acceleration + Vector Velocity + Vector Deceleration to the Calculated Contour Distance.

For applications where orthogonal geometry is not applicable, the controller allows the user to define a
custom contour distance. This is accomplished by:

1) The command sequence must be preceded by the Contour Path (aCPn) command (a = the
controlling axis) with parameter n = 0.

2) Contour Distance (aCDn) must be the last command in the compound command sequence,
with parameter n = the Calculated Contour Distance of the move

The controller will use the current settings for vector velocity, vector acceleration, and vector deceleration
to calculate the period of the motion. When a User Defined Contour Path is selected (MCBlockBegin
with parameter nMode set to MC_BLOCK_CONTR_USER), the MCContourDistance() function is used
to enter the non-orthogonal contour distance.

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 3, 1, MC_MODE_CONTOUR);

// User defined move #1

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_USER, 1);
MCMoveAbsolute(hCtlr, 1, 1000.0);
MCMoveAbsolute(hCtlr, 2, 1000.0);
MCMoveAbsolute(hCtlr, 3, 1000.0);
MCContourDistance(hCtlr, 1, 10000.0);

MCBlockEnd(hCtlr, NULL);

// User defined move #2 - the Distance parameter is 10,000 + 10,000 =
20,000
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_USER, 1);
MCMoveAbsolute(hCtlr, 1, 0.0);
MCMoveAbsolute(hCtlr, 2, 0.0);
MCMoveAbsolute(hCtlr, 3, 0.0);
MCContourDistance(hCtlr, 1, 20000.0);
MCBlockEnd(hCtlr, NULL);

For the MCContourDistance() function, the parameter Distance is an absolute
value, relative to the positions of the included axes when the

0 MCSetOperatingMode() function was last issued. Re-issuing the
MCSetOperatingMode() function will reset the current contour distance to
zero.

98 Precision MicroControl Corp.

Motion Control

Special case: setting the Maximum Velocity of an Axis

When executing simple point to point or velocity mode motions the maximum velocity of each axis is set
individually. When executing multi axis contour moves, the maximum velocity is typically expressed as the
velocity of the ‘end effector’ of the contour group. In a cutting application the ‘end effector’ would be the
tool doing the cutting (torch, laser, knife, etc...). Setting the maximum velocity of an axis in the contoured
group is not typically supported.

By combining a user define contour path (MCBlockBegin with parameter nMode set to
MC_BLOCK_CONTR_USER) with the MCContourDistance() command with parameter Distance = 0,
the user can execute multi axis contour moves and limit the maximum velocity of an individual axis. In this
mode of operation the MCVectorVelocity() command is not used to set the velocity of the contour
group. The axis with the longest move time (calculated by distance, velocity, acceleration, and
deceleration) will define the total time for the contour move. For moves of sufficient distance where the
axis has enough time to fully accelerate, this one axis will move at its preset maximum velocity. All axes
will move at or below their specified maximum velocities. All axes will start and stop at the same time. In
the following example, axes 1 and 2 are commanded to move the same distance but the maximum
velocity for axis two is 1/3 that of axis one. Since both axes are moving the same distance, they will both
travel at a maximum velocity of 100 counts per second.

MCSetVelocity(hCtlr, 1, 300.0);
MCSetAcceleration(hCtlr, 1, 1000.0);
MCSetDeceleration(hCtlr, 1, 1000.0);

MCSetVelocity(hCtlr, 2, 100.0);
MCSetAcceleration(hCtlr, 2, 1000.0);
MCSetDeceleration(hCtlr, 2, 1000.0);

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);

MCContourdistance(hCtlr, 1, 0.0);

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_USER, 1);
MCMoveRelative(hCtlr, 1, 1000.0);
MCMoveRelative(hCtlr, 2, 1000.0);

MCBlockEnd(hCtlr, NULL);

If the commanded move distance of axis one was 2000 counts it would move at a higher velocity than
axis two, but it would not reach its maximum velocity as set by the MCSetVelocity() command.

MultiFlex PCI 1000 Series User's Manual 99

Motion Control

Electronic Gearing

MultiFlex motion controllers support slaving any axis or axes to a master. Moving the master axis will
cause the slave to move based on the specified slave ratio. The optimal position of the slave axis is
calculated by multiplying the optimal position of the master by the gearing ratio of the slave. The slave's
optimal position is maintained proportional to the master's position. This can be used in applications
where multiple motors drive the same load. Gearing supports both servos and stepper axes, with the
master axis operating in position, velocity, or contouring mode. If a following error or limit error occurs on
any of the geared axes (master or slaves) all axes in the geared group will stop.

The Motion Control API function MCEnableGearing() configures and initiates gearing. The slave ratio
can be set to any integer or real value. If the slave ratio is a positive value, a move in the positive
direction of the master will cause a move in the positive direction of the slave. If the slave ratio is a
negative value, a move in the positive direction of the master will cause a move in the negative direction
of the slave. The following program example configures axes 2, 3, and 4 as slaves of axis 1.

// Enable gearing of axis 2, 3, and 4

// Move axis 1 (master), slaves (axes 2, 3, and 4) will move at define
ratio

MCEnableGearing(hCtlr, 2, 1, 0.5, TRUE);

MCEnableGearing(hCtlr, 3, 1, 12.87, TRUE);

MCEnableGearing(hCtlr, 4, 1, -125, TRUE);

MCMoveRelative (hCtlr, 1, 215.0);

// disable gearing

MCEnableGearing(hCtlr, 2, 1, 0.5, FALSE);
MCEnableGearing(hCtlr, 3, 1, 12.87, FALSE);
MCEnableGearing(hCtlr, 4, 1, -125, FALSE);

parameters for each axis must be defined prior to beginning

: Note — if the slave axes are servo’s or closed loop steppers, the PID
master/slave operation.

Note — Changing the slave ratio ‘on the fly’ may cause the mechanical
& system to ‘jerk’ or to ‘error out’ (following error).

100 Precision MicroControl Corp.

Motion Control

Jogging

In some applications it may be necessary to have a means of manually positioning the motors. Since the
controller is able to control the motion of servos and steppers with precision at both low and high speeds,
all that is required to support manual positioning is: .

e A PC with a game port

e A PC joystick
e PC based software that positions the axes in Velocity mode

Jogging without writing software

One of the tools provided with the Motion Control API is the Joystick Demo. This tool allows the user to
configure and then jog one or two axes.

Motion Joystick [32-bit] x|
Setup Help
% Pos 57603 R | O | Zen:ul Joystick Configure |
i Bz =T Ais
vror RO @ v ot zeo
ML 0 - puis [pis2]
e [Point Storage Dizplay IF'DSitiDn vl Display IF'DsitiDn "I
Ind IEI
ees Fast Speed [500000 Fast Speed [500000
Totdl [0 | | Sjow Speed [25000 Slow Speed [25000
Leam | Forget| Clea Maw. Travel I'IEIEIEIEIEI bl &, Travel |1DDEID
Fewind| Stop Fun Mir. Trawel |-1 0oaa0 Min. Trawel I-'I 00oa
[Deadband I'IE|45 Deadband |1E|Ei?
Zero |31 a04 £Eero |3EI2EE
[Flip Jopstick [Flip Joystick
Ok, I Cancel | Help |

Figure 35. Joystick Demo program

Using the Joystick Demo in your application program

After the Motion Control API has been installed the source files for the Joystick Demo are available in the
Motion Control folder \Program Files\Motion Control\Motion Control API\Sources\Joy.

MultiFlex PCI 1000 Series User's Manual 101

Motion Control

Defining Motion Limits

The controller implements two types of motion limits error checking. End of travel or 'Hard' limit
switch/sensor inputs and 'soft' user programmable position limits.

Servo or stepper
motor

1

Lead screw

Negative Limit

sensor

Hard Limits

Positive Limit
sensor

The Limit + and Limit - inputs of the controller use bi-directional optical isolators for interfacing to the
external limit sensors. For example wiring diagrams refer to pages 58 and 59. For axis 1/O circuit
schematics refer to page 199. Use the Motion Integrator Motion System Setup Test Panel or the Status
Panel Utility to test the limit sensors, wiring, and controller operation.

© Motion System Setup. Connect and Test Switches

Status Utility - MEX-PCI1000. (ID #1) X
Setup Help

Fil= Help
— 5 43 Steppen B

@ Home (D Coarse @ Home Amp Faut Activate a Limit
@ Limit + @ Error O Limit + 5 @ Error sensor/switch and the n/a @ ni'a @ A Enc @ n'a @
OLinit- @ Fhees © Lint -]W_ associated LED will turn ™ n/a @ n'a @ ROERRC BeEkFC
on. - Lirnit @k Homed @ -SLim T @k Pos Cap @
_|isteh | Ensble _|tsteh | Enable +Limit @ AldeFd@ +SLim T @ Dir - @
» N Fault @ Lk & 1d= @ -HLim T @ Traj Cropl @
B Aulnd @ domeFrd @ +HLmT @ AtTacet @
I [GE | I [WGHE: | C. Home @ Lk Home @ Fault T @ bdotor On @y
Home: @ néa @ Fol Ermor @k Error @

i

By default all optically isolated inputs indicate that an input is on when the opto
device is conducting. For a limit sensor circuit that operates like a ‘normally
open' switch, when the switch is closed (opto isolator is conducting) the
associated Limit +/- status bit will be set to a

For fail safe limit operation a 'normally closed' circuit can be used by issuing the
MCConfigureDigitallO() with Mode value = MC_DIO_LOW. This will invert the
reported limit state so that the Limit +/- status bit will be set to a 1 if either the
switch is opened or one of the limit circuit wires is broken.

The controller supports two levels of limit switch handling:

102

Precision MicroControl Corp.

Motion Control

Auto axis disable
Simple monitoring

The Motion Control API function MCSetLimits() allows the user to enable the Auto Axis Disable
capability of the controller. This feature implements a hard coded operation that will stop motion of an axis
when a limit switch is active. This background operation requires no additional controller processor time,
and once enabled, requires no intervention from the user’s application program. However it is
recommended that the user periodically check for a limit tripped error condition using the MCGetStatus(
), MCDecodeStatus() functions. The MCSetLimit() function provides the following limit flags:

Flag Description
MC_LIMIT_PLUS Enables the Positive/High hard limit
MC_LIMIT_MINUS Enables the Negative/Low hard limit
MC_LIMIT_BOTH Enables the Positive and Negative hard limits
MC_LIMIT_OFF Turn off the axis when the hard limit input ‘goes’ active
MC_LIMIT_ABRUPT Stop the axis abruptly when the hard limit input goes active
MC_LIMIT_SMOOTH Decelerate and stop the axis when the hard limit input goes active
Invert the active level of the hard limit input. Typically used for normally closed
MC_LIMIT_INVERT limit sensors. Do not use if MCConfigureDigitallO() with Mode value =

MC_DIO_LOW is being used to invert the reported state of a limit input .

When a limit event occurs, motion of that axis will stop and the error flags (MC_STAT_ERROR and
MC_STAT_PLIM_TRIP or MC_STAT_MLIM_TRIP) will remain set until the motor is turned back on by
MCEnable(). The axis must then be moved out of the limit region with a move command
(MCMoveAbsolute(), MCMoveRelative()). The Status Panel screen shot below shows the typical
display when a hard limit sensor is tripped during a move.

Status Utility - MFX-PCI1000 (D #1) X
Setup Help

0x 10 00 04 0B [l#6 (MFX Stepper) [l The +HLiIm T and

Error bits indicate

The Limit + bit nia g n'a @ Aux Enc @ nia g that a over travel
indicates the ; / BiE Break P limit error has
current state of the ~_ néa @ n/a @ fiEnc @ reak Pt @ occurred.
Limit + input. \lelt & Homed @ -SLlim T @k Pos Cap @
+ Limnit @ GldeFd@ +5SLimT @ 0j

Fault Lk & [dx @ -HLirn T @ 1 Crpl &
Audlnd: @ dome Fnd @ +HLim T @ At Target @
C. Home @ Lk Home @ Fault T @ Motor On @

Haome @ nda @ Fol Errar @k Erar @

// Set the both hard limits of axis 1 to stop smoothly when tripped,
ignore

// soft limits:

//

MCSetLimits(hCtlr, 1, MC_LIMIT_BOTH | MC_LIMIT_SMOOTH, 0, 0.0, 0.0);

MultiFlex PCI 1000 Series User's Manual 103

Motion Control

// Set the positive hard limit of axis 2 to stop by turning the motor
off.

// Because axis 2 uses normally closed limit switches we must also invert
the

// polarity of the limit switch. Soft limits are ignored.

MCSetLimits(hCtlr, 2, MC_LIMIT_PLUS | MC_LIMIT_OFF | MC_LIMIT_INVERT, O,
0.0, 0.0);

In Position and Velocity mode the response to an activated limit input is
direction sensitive, the axis will only be stopped if it is moving in the direction of
the activated limit switch. In Contour mode, the response to an activated limit
input is not direction sensitive, the axis will be stopped regardless of the
direction it is moving if either limit switch is activated. In Torque mode, the
controller will ignore the activation of a limit input, the axis will continue to move.

If the user does not want to use the Auto Axis Disable feature, the current state of the limit inputs can be
determined by polling the controller using the MCGetStatus(), MCDecodeStatus() functions. The flag
for testing the state of the Limit + input is MC_STAT_INP_PLIM. The flag for testing the state of the Limit
- input is MC_STAT_INP_MLIM.

Soft Limits

Soft motion limits allow the user to define an area of travel that will cause an error condition. When
enabled, if an axis is commanded to move to a position that is outside the range of motion defined by the
MCSetLimit() function, an error condition is indicated and the axis will stop. The MCSetLimit() function
provides the following limit flags:

Table 3. Motion Control API Limit Mode Flags

Flag Description

MC_LIMIT_PLUS Enables the High/Positive soft limit

MC_LIMIT_MINUS Enables the Low/Negative soft limit

MC_LIMIT_BOTH Enables the High and Low soft limits

MC_LIMIT_OFF Turn off the axis when the hard limit input ‘goes’ active
MC_LIMIT_ABRUPT Stop the axis abruptly when the hard limit input goes active
MC_LIMIT_SMOOTH Decelerate and stop the axis when the hard limit input goes active

When a soft limit error event occurs, the error flags (MC_STAT_ERROR and MC_STAT_PSOFT_TRIP or
MC_STAT_MSOFT_TRIP) will remain set until the motor is turned back on by MCEnable(). The axis
must then be moved back into the allowable motion region with a move command (MCMoveAbsolute(),
MCMoveRelative()).

// Assume axis 3 is a linear motion with 500 units of travel. Set the

both

// hard limits of this axis to stop abruptly. Set up soft limits that

will

// stop the motor smoothly 10 units from the end of travel (i.e. at 10
// and 490).

MCSetLimits(hCtlr, 3, MC_LIMIT_BOTH | MC_LIMIT_ABRUPT, MC_LIMIT_BOTH |
MC_LIMIT_SMOOTH, 10.0, 490.0);

104 Precision MicroControl Corp.

Motion Control

Homing Axes

When power is applied or the controller is reset, the current position of all servo and stepper axes are
initialized to zero. If they are subsequently moved, the controller will report their positions relative to the
position where they were last initialized. At any time the user can call the MCSetPosition() function to re-
define the position of an axis.

In most applications, there is some position/angle of the axis (or mechanical apparatus) that is considered
'home'. Typical automated systems utilize electro-mechanical devices (switches and sensors) to signal
the controller when an axis has reached this position. The controller will then define the current position of
the axis to a value specified by the user. This procedure is called a homing sequence. The controller is
not shipped from the factory programmed to perform a specific homing operation. Instead, it has been
designed to allow the user to define a custom homing sequence that is specific to the system
requirements. The controller provides the user with two different options for homing axes:

1) High level function calls using the Motion Control API - Easy to program homing sequences
usingMotion Control API function calls.

2) MCCL homing macro’s stored in on-board memory - When executed as background tasks,
MCCL homing macro’s allow the user to home multiple axes simultaneously. For additional
information on macro’s and background tasks please refer to the Motion Control Command
Language (MCCL) Reference manual.

Connecting a Home Sensor

The Home inputs (Coarse Home - servo’s & closed loop steppers, Home — open loop stepper) of the
controller use bi-directional optical isolators for interfacing to the external home sensor. For example
wiring diagrams refer to page 60. For axis I/O circuit schematics refer to page 199. Use the Motion
Integrator Motion System Setup Test Panel or the Status Panel Utility to test the home sensors, wiring,
and controller operation.

Status Utility - MEX-PCIT000 (ID #1) X
Setup Help

File Help
0x 10 00 OO 08 #6 (MFX Steppen) D

—Axis 1 Servo —Axis 2 Servo

Home Coarse L Home A Fault
o ° & © fAmp Activate the Home

Q© Limit + & Errar @ Limit + fi — senzor and the néa @ nv'a @ AU:’f Enc @ n/a @
Q@Limt- @ Fheee Q@Limt- @ Fhees azsociated LED will turn na @ néa @ PriEnc @ Break Pt @
on. - Limit @ Homed @ -SLim T @ Fos Cap @

_I Latch _I Enable _I Latch _I Enable + Limit @ A |dx Fd @ +5Lim T @ Dir - @
Fault @ Lk & [d= ~HLim T @ Traj Cropl @

Auwlnde @ domeFnd @ +HLm T @ At Target @

[} Lk Home @ Fault T @ Motor On @
Home & néa @ Fol Ermor @ Eror @

Verifying the operation of the Index Mark of an Encoder

Most closed loop system applications will use the Index mark of the encoder to define the ‘home’ position
of a servo. Use Motion Integrator’'s Connect Encoder Wizard to verify the proper operation of the encoder
index.

MultiFlex PCI 1000 Series User's Manual 105

Motion Control

Connect Encoder Wizard [%]

Index Test: Rotate encoder shaft one complete
revvolution.

QO Index Captured

Index Capture Positian
m Curtent Position

Restart Test Bupass |

Click Mest to continue.

< Back | Mext > | Cancel

Programming Homing Routines

The controller provides sophisticated programming support for homing closed loop servos, Closed Loop
Steppers, and Open Loop Steppers. The following two tables summarize which commands are provided

for homing operations.

Table 4. Motion Control APl Homing Functions

Axis Type

Functions

Input

Notes

Closed Loop Servo

MClIndexArm
MCWaitForindex
MClsIndexFound

Encoder Index

Closed Loop Servo

MCFindIndex

Encoder Index

Use only from within
background task

Closed Loop Stepper

MCIndexArm
MCWaitForindex
MClsIndexFound

Aux. Encoder Index

Closed Loop Stepper MCFindIndex Aux. Encoder Index | Use only from within
background task
Open Loop Stepper MCEdgeArm Home
MCWaitForEdge
MClsEdgeFound
Open Loop Stepper MCFindEdge Home Use only from within
background task
Table 5. MCCL Homing Commands
AXxis Type Command Input Notes
Closed Loop Servo IA & WI Encoder Index
Closed Loop Servo FI Encoder Index Use only from within
background task
Closed Loop Stepper 1A & WI Aux. Encoder Index
Closed Loop Stepper FI Aux. Encoder Index | Use only from within
background task
Open Loop Stepper EL & WE Home
Open Loop Stepper FE Home Use only from within
background task

106

Precision MicroControl Corp.

Motion Control

Homing a Rotary Stage (closed loop servo or closed loop stepper) with the
Encoder Index

Many servo motor encoders generate an index pulse once per rotation. For a multi turn rotary stage,
where one rotation of the encoder equals one rotation of the stage, an index mark alone is sufficient for
homing the axis. When an axis need only be homed within 360 degrees no additional qualifying sensors
(coarse home) are required.

The following C example uses the MCIndexArm(), MClsindexFound(), and
MCWaitForindex() functions for homing a closed loop system. For complete C
code homing samples that can be cut and pasted into an application program
please refer to the Motion Control APl on-line help (mcapi.hip).

// Arm index and wait for index to be found

//

MCIndexArm(hCtlr, 1, 0.0);

if (IMCIslndexFound(hCtlr, 1, 10.0)) {
// Index not found within time limit (10 seconds),
// error handling code goes here

}

//

// Process index and stop motor

//

MCWaitForindex(hCtlr, 1); // controller "processes™ iIndex data
MCStop(hCtlr, 1); // stop

if (IMCIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

}
Sleep(100); // let motor settle 100 msec (WIN32 APl function)

The following MCCL example uses the Index Arm (alAn) and the Wait for Index
0 (awl) commands to home a closed loop system.

;MCCL rotary axis homing sequence index mark
mMD10,1Sv10000,1VvM,1D10,1G0,11A0,LU""STATUS" ,1RL@0, IC18,JR-3,NO, 1WI ,MJ11
;move, arm and capture index
MD11,1ST,1WS.01,1PM,1MN,1MAO,1WS.01 ;stop, initialize axis, move to
index
smark

Homing a Closed Loop Axis with Coarse Home and Encoder Index Inputs

A typical axis will incur multiple rotations of the motor/encoder over the full range of travel. This type of
system will typically utilize a coarse home sensor to qualify which of the index pulses is to be used to
home the axis. The Limit Switches (end of travel) provide a dual purpose:

1) Protect against damage of the mechanical components.
2) Provide a reference point during the initial move of the homing sequence

MultiFlex PCI 1000 Series User's Manual 107

Motion Control

Servo motor and
encoder

.....................

=

e
) ‘)

Lead screw

Negative Limit Coarse Home Positive Limit
sensor sensor sensor

Figure 36. Typical Linear Stage

When power is applied or the controller is reset, the position of the stage is unknown. To home the axis a
velocity mode move in the positive direction is commanded, checking the status of both the Coarse Home
sensor and the Limit + sensor. Once the axis is within the Coarse Home sensor the MCindexArm(),
MClsIndexFound(), and MCWaitForindex() functions are used to reference the reported position of the
axis to the index mark. The MCEnableAxis() function completes the homing operation by reinitialize all
position registers. The following flow chart describes a typical homing procedure. If the positive limit
sensor is activated the stage will change direction prior to homing the axis.

108 Precision MicroControl Corp.

Motion Control

Homing a Closed Loop System -
Encoder Index, Coarse Home Sensor, and Over Travel Limits

Start Enable axis
velocity to clear limit.
mode move Move neg.
in the to Coarse
positive Home
direction sensor

Coarse
Home sensor
active?

Limit + Coarse I(g:apttére
sensor Home sensor ?CdO Glr
tripped? active? ke

Coarse Coarse fﬂtggrtg :\ln
Home sensor Home sensor !

move to
index mark

active? inactive?

Stop axis, Stop axis,
change change
direction direction

Figure 37. Typical homing routine for a servo

The following C example uses the MCIndexArm(), MClsindexFound(), and
MCWaitForindex() functions for homing a closed loop system. For complete C
code homing samples that can be cut and pasted into an application program
please refer to the Motion Control API on-line help (mcapi.hip).

// Motion Control APl linear stage homing sequence using the index mark
//
MCIndexArm(hCtlr, 1, 1000.0);
if (IMClIslndexFound(hCtlr, 1, 10.0)) {
// Index not found within time limit (10 seconds),
// error handling code goes here

// Process index and stop motor
MCWaitForIndex(hCtlr, 1); // controller "processes” index data
MCStop(hCtlr, 1); // stop
if (IMClIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

MultiFlex PCI 1000 Series User's Manual 109

Motion Control

Sleep(100); // let motor settle 100 msec (WIN32 API function)

// Move back to location of index mark

//

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);

MCEnableAxis(hCtlr, 1, TRUE);

MCMoveAbsolute(hCtlr, 1, 0.0);

MCIsStopped(hCtlr, 1, 2.0);

if (IMClIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

s
Sleep(100);

The following MCCL example uses the Index Arm (alAn) and the Wait for Index
0 (awl) commands to home a closed loop system.

;MCCL linear stage homing sequence using the index mark

MD10,11A1000,MC20,1WI,1ST,1WS.01,MJ11 ;capture index (position = 1000) then
stop
MD11,1PM,1MN,1MA1000,1WS.1 ;initialize axis, move to index

;homing sub routines
MD20, LU""STATUS",1RL@0, 1S18,BK,NO,JR-5 ;test for Index Found

110 Precision MicroControl Corp.

Motion Control

Homing a Closed Loop Axis with a Limit sensor

An axis can be homed even if no index mark or coarse home sensor is available. This method of homing
utilizes one of the limit (end of travel) sensors to also serve as a home reference.

This method is not recommended for applications that require high
repeatability and accuracy. To achieve the highest possible accuracy when
using this method, significantly reduce the velocity of the axis while polling for
the active state of the limit input.

The following Motion Control APl and MCCL sequences will home an axis at the position where the
positive limit sensor ‘goes active”:

The following C example uses the MCSetPosition() function to redefine the
encoder position a closed loop system. For complete C code homing samples
that can be cut and pasted into an application program please refer to the
Motion Control API on-line help (mcapi.hlp).

// Motion Control API homing sequence (using positive limit sensor)

// the axis must have already been moved into (and tripped) the positive
limit

// sensor

// Once the positive limit switch is active, move negative until switch is inactive
//
if (IMCIsStopped(hCtlr, 1, 2.0)) {

// Motor failed to stop within time limit (2 seconds),

// error handling code goes here

}

MCEnableAxis(hCtlr, 1, TRUE);

MCDirection(hCtlr, 1, MC_DIR_NEGATIVE);

MCSetVelocity(hCtlr, 1, 1000.0);

MCGoEx(hCtlr, 1, 0.0));

dwStatus = MCGetStatus(hCtlr, 1);

if (IMCDecodeStatus(hCtlr, dwStatus, MC_STAT_INP_PLIM)) {
dwStatus = MCGetStatus(hCtlr, 1)

}

// Stop the axis and define the leading edge of the limit switch as position O
//
MCAbort(hCtlr, 1);
it (IMClIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

¥

MCSetPosition(hCtlr, 1, 0.0);

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 1, TRUE);

MCMoveAbsolute(hCtlr, 1, -100.0);

MultiFlex PCI 1000 Series User's Manual 111

Motion Control

The following MCCL example uses the Define Home (aDHn) command to
ﬂ redefine the encoder position of a closed loop system.

; MCCL linear stage homing sequence using the positive limit sensor
MD1,1LM2,1LN3,MJ10 ;call homing macro
mMD10,1VM,1DI10,1GO,LU”STATUS”,1RL@0, 1S10,MJ11,NO,JR-5

;move and poll the Limit + sensor
mMD11,1wS0.01,1MN,1DI1,1SV1000,1G0O,LU”STATUS”,1RL@0, IC28,MJ12,NO,JR-5

;move negative until limit + inactive
MD12,1AB,1WS.1,1DHO,1PM,1MN, 1MA-100 ;stop immediately when limit + not active,

;define position as 0. Move to position —
100.

Homing open loop steppers

Open loop steppers are typically homed based on the position of a home sensor. Unlike servos that use a
precision reference index mark, steppers are more prone to homing inaccuracies due the lower
repeatability of the single electro mechanical home sensor. To achieve the highest possible repeatability;
reduce the velocity of the axis and always approach the home sensor from the same direction. Here is a
typical linear axis controlled by an open loop stepper motor. A home sensor defines the home position of
the axis. End of travel or Limit Switches are used to protect against damage of the mechanical
components.

Stepper motor

Lead screw

Negative Limit Home sensor Positive Limit
sensor sensor

When power is applied or the controller is reset, the position of the stage is unknown. The following
command sequence will move the stage in the positive direction. If the positive limit sensor is activated
before the Home sensor the stage will change direction, until home sensor is located. When the Home
sensor is activated the MCEdgeArm () and MClsEdgeFound () functions are used to capture the
position of the Home sensor active edge.

112 Precision MicroControl Corp.

Motion Control

Homing an Open Loop Stepper -
Home Sensor and Over Travel Limits

Enable hard limit
error checking

Start velocity
mode move
in the Slow down
positive
direction

Home Home
sensor sensor
No active? inactive?

Limit + Stop axis,
sensor change
tripped? direction

Enable axis, Stop, move

Move neg. Capture to position 0

towards s:gEsdorLe?%e (where index
geLatc

Home MCWairForEdge mark was

sensor captured)

Homing complete

Figure 38. Typical homing routine for a stepper

The following C example uses the MCEdgeArm(), MCIlsEdgeFound(), and
MCWaitForEdge() functions for homing a closed loop system. For complete C
code homing samples that can be cut and pasted into an application program
please refer to the Motion Control API on-line help (mcapi.hip).

// Motion Control APl open loop stepper linear stage homing sequence using
the home sensor
//
MCEdgeArm(hCtlr, 1, 1000.0);
if (IMClsEdgeFound(hCtlr, 1, 10.0)) {
// Edge not found within time limit (10 seconds),
// error handling code goes here

// Process edge and stop motor
MCWaitForEdge(hCtlr, 1); // controller "processes” edge data
MCStop(hCtlr, 1); // stop
if (IMCIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

}
Sleep(100); // let motor settle 100 msec (WIN32 API function)
// Move back to location of home sensor edge

//
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE POSITION);

MultiFlex PCI 1000 Series User's Manual 113

Motion Control

MCEnableAxis(hCtlr, 1, TRUE);

MCMoveAbsolute(hCtlr, 1, 0.0);

MClsStopped(hCtlr, 1, 2.0);

it (IMCIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

}

Sleep(100);

// Enable / disable axis to set MC_STAT_INP_INDEX to monitor the current
// state (not capture & latch) of Home sensor

MCEnableAxis(hCtlr, 1, FALSE);

MCWait(hCtlr, 0.01);

MCEnableAxis(hCtlr, 1, TRUE);

Prior to issuing MCEdgeArm () the status flag MC_STAT_INP_INDEX will
indicate the current state of the Home Sensor (1 = active, 0 = inactive). After
issuing MCEdgeArm () MC_STAT _INP_INDEX will be latched when the
0 Home sensor edge has been captured. To clear latching of
MC_STAT_INP_INDEX issue:
MCEnableAxis(hCtlr, 1, FALSE);
MCEnableAxis(hCtlr, 1, TRUE);

The following MCCL example uses the Edge Arm (aEAn) and the Wait for Edge
0 (@aWE) commands to home a closed loop system.

; MCCL Stepper linear stage homing sequence using Home & positive limit

;sensors

MD5,5LM2,5LN3,MJ10 ;enable limits, call homing macro

mD10,5VM,5D10,5SV10000,5G0, LU"STATUS",5RL@0, 1S24 ,MJ11,NO, 1S10,MJI13,NO,JR-8
;test for sensors (home and

+limit)

MD11,LU"STATUS",5RL@0, 1C24,MJ312,NO,JR-5 ;continue moving until home
sensor off

MD12,5ST,5WS.1,5D11,5Sv5000,5G0,MJ14 ;move back to the home sensor
MD13,5WS0.01,5MN,5D11,5Sv5000,5G0,MJ14 ;move out of limit sensor range

;back toward the home sensor
MD14 ,5ELO0,MC15,5WE,5ST,5WS.1,5MF,5MN, 5PM, 5MA-100

;capture the active edge of the

;home sensor. Stop axis and

;define a position 0, ;move to

;position -100
MD15,LU"STATUS",5RL@0, 1S18,BK,NO,JR-5 ;loop status for Edge found bit
set

Prior to issuing Edge Latch (aELn) the status bit 24 Index / Home will indicate
the current state of the Home Sensor (1 = active, 0 = inactive). After issuing
0 Edge Latch (aELn) status bit 24 will be latched when the Home sensor edge
has been captured. To clear latching issue:
1MF,1MN

114 Precision MicroControl Corp.

Motion Control

Homing a Open Loop Stepper with a Limit sensor

An axis can be homed even if no home sensor is available. This method of homing utilizes one of the limit
(end of travel) sensors to also serve as a home reference. The following Motion Control APl and MCCL
sequences will home an axis at the position where the positive limit sensor ‘goes active’:

The following C example uses the MCSetPosition() function to redefine the
encoder position a closed loop system. For complete C code homing samples
that can be cut and pasted into an application program please refer to the
Motion Control API on-line help (mcapi.hip).

// Motion Control APl homing sequence (using positive limit sensor)

// the axis must have already been moved into (and tripped) the positive
limit

// sensor

// Once the positive limit switch is active, move negative until switch is inactive
//
if (IMClIsStopped(hCtlr, 1, 2.0)) {

// Motor failed to stop within time limit (2 seconds),

// error handling code goes here

b

MCEnableAxis(hCtlr, 1, TRUE);

MCDirection(hCtlr, 1, MC_DIR_NEGATIVE);

MCSetVelocity(hCtlr, 1, 1000.0);

MCGoEx(hCtlr, 1, 0.0));

dwStatus = MCGetStatus(hCtlr, 1);

if (!MCDecodeStatus(hCtlr, dwStatus, MC_STAT_INP_PLIM)) {
dwStatus = MCGetStatus(hCtlr, 1)

b

// Stop the axis and define the leading edge of the limit switch as position 0
//
MCAbort(hCtlr, 1);
it (IMClIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

¥

MCSetPosition(hCtlr, 1, 0.0);

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 1, TRUE);

MCMoveAbsolute(hCtlr, 1, -100.0);

The following MCCL example uses the Define Home (aDHn) command to
ﬂ redefine the encoder position of a closed loop system.

; MCCL linear stage homing sequence using the positive limit sensor
MD5,5LM2,5LN3,MJ10 ;call homing macro
mMb10,5vM,5D10,5G0,LU”STATUS”,5RL@0, 1S10,MJ11,NO,JR-5

;move and poll the Limit + sensor
mMb11,5WS0.01,5MN,5D11,5Sv1000,5G0, LU”STATUS”,5RL@0, 1C28,MJ12,NO,JR-5

;move negative until limit + inactive
MD12,5AB,5WS.1,5DH0,5PM,5MN,5MA-100 ;stop immediately when limit + not active,

MultiFlex PCI 1000 Series User's Manual 115

Motion Control

;define position as 0. Move to position —
100.

116 Precision MicroControl Corp.

Motion Control

Motion Complete Indicators

When the controller receives a move command, the Trajectory Generator calculates a velocity profile.
This profile is based on:

The target position (absolute or relative)
The user defined trajectory parameters (velocity, acceleration, and deceleration)
The user selected velocity profile type (trapezoidal, s-curve, parabolic)

The velocity profile, as calculated by the trajectory generator, is made up by a series of calculated
‘Optimal Positions’ that are evenly spaced along the motion path in increments of 1 msec’s. For an analog
command servo axis these 1 msec optimal positions are passed to the PID filter, which then performs a
linear interpolation, calculating intermediate target points every 250 usec's.

Velocity
(encoder counts per second)
100000
75000
50000
calculated trajectory complete
(status bit 3 set)
25000

Optimal position - Actual position = Following error

4 8 12 16 20 Time (msec's)

= Calculated trajectory = Following Error

= Actual trajectory

@ = Optimal positions

For a closed loop servo, when the calculated optimal position of an axis is equal to the move target,
the calculated ‘digital trajectory’ of the move has been completed and the MC_STAT_TRAJ status flag
(MCCL status trajectory complete bit 3) will be set (as shown in the Status Panel graphic below). For a
closed loop stepper axis when the encoder position is equal to the move target, the trajectory of the
move has been completed and the MC_STAT_TRAJ status flag will be set. For an open loop stepper
axis when the step count (pulses issued) is equal to the move target, the trajectory of the move has
been completed and the MC_STAT_TRAJ status flag will be set.

MultiFlex PCI 1000 Series User's Manual 117

Motion Control

Status Utility - MFX-PCI1000 (ID #1) X]

Setup Help

1 (M Sorvo)
rnida g nta @ Aux Enc @ rnida g
néa @ nfa @ Pri Enc: @y Break Pt @
- Lirnit @ Homed @ -SLim T i@ Pos Cap @
+ Lirnit @ Ald«Fdd@h +5SLimT @ Dir - @
Fault @ Lk A [@ -HLim T @ Traj Cropl @k
B Inds @ IndsFnd @ +HLim T @ At Tanget @
C. Home @ Lk Irndx @ Fault T @ Matar On @k
Index G nda @ Fol Error @ Ermor @k

The MC_STAT_TRAJ status flag is the conditional component of the MClsStopped() and
MCWaitForStop() functions. As shown by the trajectory graph above, the typical lag or following error
during a servo move can cause the MC_STAT_TRAJ flag to be set before the axis has reached its
target. Issuing MClsStopped() with a timeout value specified or MCWaitForStop() with a Dwell time
specified allows the user to delay execution move has been completed (following error = 0). In the
example below, the MClsStopped() function (with a 2 second timeout) is used to poll the axis for
MC_STAT_TRAJ = true. The Windows SLEEP function is used to allow the axis to stop and settle for 100
milliseconds. command includes a Dwell of 5 msec’s, allowing the axis to stop and settle.

MCMoveRelative(hCtlr, 2, 500.0); // move 500 counts
MCIsStopped(hCtlr, 1, 2.0);
if (IMClIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

}
Sleep(100);

Another method of indicating the end of a move of a servo is to use MCIsAtTarget() or
MCWaitForTarget() functions. To satisfy the conditions of MCIsAtTarget() and MCWaitForTarget() ,
the axis must be within the Deadband range (encoder counts +/- or stepper pulses +/-) for the time period
specified by DeadbandDelay, both of which are defined within the MCMotion data structure.

The MC_STAT_AT_TARGET flag will be set when the conditions for both Deadband and Deadbanddelay
have been met.

MCMoveRelative(hCtlr, 1, 1250.0); // move 1250 counts
MCWaitForTarget(hCtlr, 1, 0.005); // wait till MC_STAT TRAJ set
plus // msec’s

MCIsAtTarget(hCtlr, 1, 2.0);

it (IMCIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to reach the target within time limit (2 seconds),
// error handling code goes here

}
Sleep(100);

118 Precision MicroControl Corp.

Motion Control

On the Fly changes

During a Trapezoidal profile point to point or constant velocity move of one or more axes, the controller
supports ‘on the fly’ changes of:

Target

Maximum Velocity
Acceleration
Deceleration

PID parameters

Changes made to any or all of these motion settings while an axis is moving will take affect within 1 msec.

Note — Changing the PID parameters (Proportional gain, Derivative gain,
& Integral gain) ‘on the fly’ may cause the axis to jump, oscillate, or ‘error out’.

S-curve or Parabolic velocity profiles:
1) Changing the target position on the fly will cause the axis to
decelerate to a stop before proceeding to the new target
2) On the fly changes of trajectory parameters (max. velocity, accel,
decel) will not be implemented until the current move has been
completed

If an “on the fly” target position change requires the axis to change direction the
axis will first decelerate to a stop. The axis will then move in the opposite
direction to the new target. This will occur if:

1) The new target position is in the opposite direction of the current
move
2) A ‘near target’ is defined. A near target is a condition where the
0 current deceleration rate will not allow the axis to stop at the
new target position. In this case the axis will decelerate to a stop at
the user define rate, which will result in an overshoot. The axis will
then move in the opposite direction to the new target.

If an on the fly change requires the axis to change direction, the command
interpreter will stall, not accepting any additional commands, until the change of
direction has occurred (deceleration complete).

MultiFlex PCI 1000 Series User's Manual 119

Motion Control

Feed Forward (Velocity, Acceleration, Deceleration)

Feed forward is a method in which the controller increases the command output to a servo in order to
reduce the following error of an axis. Traditionally feed forward is associated with servo systems that use
velocity mode amplifiers, but simple torque mode amplifiers used for high velocity and high rate of change
applications can also benefit from the use of feed forward.

The basic concept of feed forward is to match the servo command voltage output of the controller to a
specific velocity of axis. This essentially adds a user defined offset to the digital PID filter, resulting in
more accurate motion by reducing the following error. For example:

The maximum velocity of an axis is 500,000 encoder counts per second. With a typical load applied, the
user determines that a servo command voltage of 8.25V will cause the motor to rotate at 500,000
encoder counts per second. The feed forward algorithm used by the controller to generate the servo
command output is:

controller output = Velocity (encoder counts/sec) X Feed forward term (encoder counts/volt/sec.)

with a velocity of 500,000 counts per second at a command input of 8.25V the algorithm will be:

8.25 volts

Feed forward

0.0000165

= 500,000 counts/sec. X Feed forward term (encoder counts * volt/sec.)
=8.25V /500,000 counts per sec.

=10 volts / 100,000 counts per sec.

Because the controller’s PID filter uses negative feedback, feed forward values
are expressed as negative values.

// set velocity gain (velocity feed forward) using Motion Control API

function

//

MCGetFilterConfig(hCtrlr, iAxis, &Filter);
Filter_VelocityGain = (hctlr, 1, -0.0000165);
MCSetFilterConfig(hCtrlr, iAxis, &Filter);

;set velocity gain (velocity feed forward) using MCCL VG command

1VG-0.0000165 ;set velocity gain (velocity feed

;Forward) with MCCL command

An axis that has been tuned without feed forward will need to be re-tuned when
the feed forward has been changed to a non zero value.

See the description of Tuning a Velocity Mode amplifier in the Tuning the
Servo section of the Motion Control chapter

120

Precision MicroControl Corp.

Motion Control

When feed forward is incorporated into the digital PID filter it becomes the primary component in
generating the servo command output voltage. Typically the setting of the other terms of the filter will be:

Proportional gain — reduced by 25% to 50%
Integral gain — reduced by 5% to 25%
Derivative gain — set to zero, if the axis is too responsive reduce the gain of the amplifier

Acceleration and Deceleration Feed Forward

For most applications, velocity feed forward is sufficient for accurately positioning the axis. However for
applications that require a very high rate of change, acceleration and deceleration gain must be used to
reduce the following error at the beginning and end of a move.

Acceleration and deceleration feed forward values are calculated using a similar algorithm as used for
velocity gain. The one difference is the velocity is expressed as encoder counts per second, while
acceleration and deceleration are expressed as encoder counts per second per second.

controller output = Accel./Decel. (encoder counts/sec/sec.) * Feed forward term (encoder counts *
volt/sec./sec.)

Acceleration and deceleration feed forward values should be set prior to using
0 the Servo Tuning Utility to set the proportional and integral gain.

Acceleration feed forward and deceleration feed forward are not supported
ﬂ during Contour Mode (multi-axes lines and/or arcs).

MultiFlex PCI 1000 Series User's Manual 121

Motion Control

Save and Restore Axis Configuration Settings

The Motion Control API Motion Dialog library includes MCDLG_SaveAxis() and
MCDLG_RestoreAxis(). These high level dialogs allow the programmer to easily maintain and update
the settings for servo and stepper axes.

MCDLG_SaveAxis() encodes the motion controller type into a signature that is saved with the axis
settings. MCDLG_RestoreAxis() checks for a valid signature before restoring the axis settings. If you
make changes to your hardware configuration (i.e. change controller type) MCDLG_RestoreAxis() will
refuse to restore those settings.

You may specify the constant MC_ALL_AXES for the wAXxis parameter in order to save the parameters
for all axes installed on a motion controller with a single call to this function.

If a NULL pointer or a pointer to a zero length string is passed as the PrivatelniFile argument the default
file (mcapi.ini) will be used. Most applications should use the default file so that configuration data may be
easily shared among applications. Acceptance of a pointer to a zero length string was included to support
programming languages that have difficulty with NULL pointers (e.g. Visual Basic).

122 Precision MicroControl Corp.

Chapter

6

Application Solutions

Backlash Compensation

In applications where the mechanical system isn't directly connected to the motor, it may be required that
the motor move an extra amount to compensate for system backlash. When backlash compensation is
enabled, the controller will offset the target position of a move by the user defined backlash distance. This
feature is only available for Analog Command Servo axes.

The function MCEnableBacklash() is used to initiate backlash compensation. The Backlash parameter
of this function sets the amount of compensation and should be equal to one half of the amount the axis
must move to take up the backlash when it changes direction. The units for this command parameter are
encoder counts, or the units established by the MCSetScale() command for this axis.

When this feature is enabled, the controller will add or subtract the backlash distance from the motor's
commanded position during all subsequent moves. If the motor moves in a positive direction, the distance
will be added; if the motor moves in a negative direction, it will be subtracted. When the motor finishes a
move, it will remain in the compensated position until the next move.

Prior to enabling backlash compensation, the motor should be positioned halfway between the two
positions where it makes contact with the mechanical gearing. This will allow the controller to take up the
backlash when the first move in either direction is made, without "bumping" the mechanical position.

While backlash compensation is enabled, the response to the MCGetPosition(), MCTellTarget() and
MCTellOptimal() commands will be adjusted to reflect the ideal positions as if no mechanical backlash
was present.

For the example below assume that the system has 200 encoder counts of backlash. This example
moves the system to the middle of the backlash range and enables compensation. Note that the
compensation value (in encoder counts) used with MCEnableBacklash() is half of the total amount of
backlash.

MCMoveRelative(hCtlr, 1, -100.0); // move to middle of backlash
MCWaitForStop(hCtlr, 1); // let motion Finish
MCEnableBacklash(hCtlr, 1, 100.0, TRUE); // enable backlash
compensation

MultiFlex PCI 1000 Series User's Manual 123

Application Solutions

Gear backlash

124 Precision MicroControl Corp.

Application Solutions

Emergency Stop

Many applications that use motion control systems must accommodate regulatory requirements for
immediate shut down due to emergency situations. Typically these requirements do not allow an
emergency shut down to be controlled by a programmable computing device. The drawing below depicts
an application where an emergency stop must be a completely ‘hard wired’ event.

Servo

Amplifier

E-stop Switch

= _—

Motor

s +5VDC
Computer Control ervo
Panel Amplifier
Motor
- Relay - NC
Amplifier —
m O Power Supply M
== (— ~
Servo 5
Amplifier AC Power In
ACIn Motor
— d
0
C J

Figure 39. Typical 'hard wired' E-stop

This *hard wired’ E-stop circuit uses a relay to disconnect power from the servo amplifiers. The motors
and amplifiers would certainly be disabled, but the motion controller and the application program will have
no indication that an error condition exists.

E-stop switch connected to Amplifier Fault servo module input

The Amplifier / Driver Fault inputs can be used to disable motion with no user software action required.
The E-stop switch is wired to the Amplifier/Drive Fault input of each axis being used. Auto shut down of
motion upon activation of the E-stop switch is enabled by the MCMotion structure member
EnableAmpFault. When the E-stop switch is activated:

1) The axis is disabled (PID loop terminated, Amplifier Enable / Driver Disable output turned off)
2) The status flag MC_STAT_AMP_FAULT will be set for each axis
3) The status flag MC_STAT_ERROR will be set for each axis

When the E-stop condition has been cleared, motion can be resumed after issuing the MCEnableAxis
function with the parameter wAxis set to MC_ALL_AXES.

MultiFlex PCI 1000 Series User's Manual 125

Application Solutions

E-stop Switch

ADAM-3968 wiring
? m°d”ie&#; Motion Controller
axes
+24 VDC ‘e 6 ()
Re|ay - =Rks Axis 1 Amplifier Fault
NC Amplifier = Amp Fault supply! w—m_
m Power Supply 1 O 18 A 2 Ampiifier Faul
ﬁ#
AC Power In

Amp Fault supply/

retarTT

Axis 3 Amplifier Fault

Amp Fault supply/ %—
TEWTTT

Amp Fault supply/ %—
TewrmT

ADAM-3968 wiring

module #1
(axes 3& 4)

Figure 40. E-stop switch wired to the Amplifier / Driver Fault inputs

126 Precision MicroControl Corp.

Application Solutions

Encoder Rollover

The controller provides 32 bit position resolution, resulting in a position range of —2,147,483,647 to
2,147,483,647. For an application where the axis is moving at maximum velocity (20 million encoder
counts per second), the encoder would rollover in approximately 1.6 minutes. When the encoder rolls
over, the reported position of the axis will change from a positive to a negative value. For example, if the
axis is at position 2,147,483,647 the next positive encoder count will cause the controller to report the
position as —2,147,483,647.

If a user scaling other than 1:1 has been defined the controller will report the position in user units. The
reported position at which the value will rollover is based on the user scaling. If user scaling is set to
10,000 encoder counts to one position unit, the reported position will rollover at position 214,748.3647.
The next positive encoder count will cause the controller to report the position as

—214,748.3647.

Encoder rollover during Position Mode moves

The controller does not support executing Position Mode moves when the encoder rolls over. No matter
what the commanded position, the axis will stop at the rollover position (2,147,483,647 or
—214,748.3647).

Encoder rollover during Velocity Mode moves
No disruption or unexpected motion will occur if a rollover occurs during a Velocity mode
(MCSetOperatingMode, MC_MODE_VELOCITY) move.

Prior to executing a velocity mode move in which the encoder position may
rollover the axis must be homed (MCFindindex or MCSetPosition) to position 0.
Defining a offset to the home position will cause the axis to pause at the rollover
point.

MultiFlex PCI 1000 Series User's Manual 127

Application Solutions

Flash Memory Firmware Update

PMC'’s Flash Wizard is a windows utility that allows the user to easily update the controller’s firmware
code. Firmware updates for most PMC motion controllers are available for download from from the
Support section of PMC’s web site www.pmccorp.com/support/support.php. Note: Please contact PMC if
firmware is not available for your model.

Flash Wizard

Wealcome to the Flash Wizard

T hiz wizard will guide pou through the inztallation of new

sugtern or application firmware for your maotion controller,

It is recommended that pou exit all other *Windows programs
before proceeding with the Flash wizard.

If wou are upgrading a ram-bazed contraller zuch az the
DCH-PCI300 and pou hawve rore than one of the zame model
aof controller inztalled in wour PC, all matching controllers will
alzo have their firmware upgraded.

Flazh ‘whzard version 2.7.0.4

To continue, click Hest.

< Bachk Cancel Help

128 Precision MicroControl Corp.

http://www.pmccorp.com/support/support.php�

Application Solutions

Saving and Restoring Axis Configuration Settings

Users of PMC motion controllers can:

Save desired motion controller and axis configuration settings to a text file
Download the saved settings from a text file to any installed controller

Copy the saved settings from one PC to another for use by multiple controllers
View the saved settings by opening a saved text file

Whenever the motion controller is reset or powered up, all motion settings (velocity, acceleration,
deceleration, limits, PID values, etc) and all global controller settings (user scaling and 1/O configuration)
revert to factory default values (factory default values are listed on page 165). Therefore, after power-up,
you should always initialize all controller and axis settings to their desired values. You can accomplish
this in any one of three ways:

1. Use the Setup Menu selections “save all axis settings” and “initialize (restore) axis settings”
in any of PMC’s application programs.

2. Use the Motion Control Dialog MCDLG_SaveAxis() and MCDLG_RestoreAxis() functions.

3. Save and initialize each parameter individually from a high-level program or an MCCL command
text file.

values. Therefore, after power-up, users should always initialize all controller

ﬂ On power-up or reset, all motion controller settings revert to factory default
settings to their desired values.

Saving and restoring configuration settings using PMC application programs

For initial testing and system configuration, users will probably find it most convenient to save and restore
(initialize) axis settings via the menu selections in PMC'’s application programs.

The first time that the Motion Control API recognizes that one or more PMC motion controllers are
installed, a (mcapi.ini) text file is created in the C:\Windows\ folder. Initially mcapi.ini contains only
information about the controller type and interface settings. When users select “Save All Axis Settings” in
the application program’s setup menu, the settings currently being used by the motion controller are
saved to the mcapi.ini file.

The available menu choices are:

a. "Save All Axis Settings" - Copies the settings used by the controller to mcapi.ini

b. "Initialize All Axes" - Copies the axis settings saved in mcapi.ini to the controller

C. "Always (or Auto) Initialize All Axes" - Every time that the program starts, the axis settings
will automatically be copied from mcapi.ini to the controller

MultiFlex PCI 1000 Series User's Manual 129

Application Solutions

Motion Control API 'C’ 32-bit Sample o [l
Setup Help
Configure Axis. .. L
Scaling... Matar On @ Errar @k
v Always Initizlize All Axes Traj Cropl G + Limit
Initialize All Axes Drir - @ - Lirviit
Save All Axes Settings C. Home @ Fault @
Controller Info... Index G Fhase @
Select Controller...
Reset Controller 0 B[
o000 | | n_| |
Exit Pl e + | g - |
' _— T Cycle
Stop | Abark |
dig Mumber | Az 2 j Hame | Zerm |

Figure 41. Saving and Restoring Settings From a PMC Sample Program

Example: PMC’s Motion Integrator provides first-time users with a step by step process that helps them
install, configure and troubleshoot their motion controller. Like the provided sample programs, Motion
Integrator also allows users to conveniently save all settings to C:\Windows\mcapi.ini. Once the desired
settings are saved, users can direct other PMC application programs to load and use the saved setting by
selecting Auto Initialize from each program’s File menu.

I Motor Mover

Setup Maove Help
v Auto-nitislize Al Axes :
uto-inihalize & on an Setup | Dist 5000 Welocity
Save Al Azes Settings @ Errr
- e Scale Lhs [REel
Controller [nfo... @ Limit -
Select Controller... @ On on Setup Cist I 50000 Welocity 2%
Beset Contraller @ Error] J—
o @ Limi e Scale B A | RE e
i
@ on an | Setup | Dist | l 11500 Welocity
| 3 @ Error
@ Limi e | Scale | B A | RE
| Point to Pairt e | Stap | Zeto | Al On |
I cycle Maye - | Shart | . | e |

Figure 42. Use Previously Saved Settings by Checking the “Auto Initialize” Menu Selection

Selecting Save All Axes from the File menu of a PMC application program will
overwrite all previously stored settings.

A\

130 Precision MicroControl Corp.

Application Solutions

Saving and restoring configuration settings using the MCDLG functions

Programmers can programmatically save axis settings to the mcapi.ini file (or any other text file) and
restore (initialize) the settings from the saved file back to to the motion controller using the MCDLG
(Motion Control Dialog) functions MCDLG_SaveAxis() and MCDLG_RestoreAxis(). These functions are
convenient because they save all controller and axis settings at once. These are the same functions
invoked by the Setup menu selections of PMC’s sample programs. These functions are documented in
more detail in the MCDLG Reference online help, accessible from the Motion Control APl program group,
as shown in the following figure.

ﬁ' Motion Control APT ¥ E C# Demo

[T) Motion Integrator » B8] CWhDemo

[T Flash Wizard » @9 Joystick Demo

[Z] Motion Control API Read Me
#% Pascal (Delphi) Demo
. Position Display

> Status Panel Utility
| Visual Basic Dema
B win Control

I'_J) MCAFT Guide

) MCAPI Reference

™ MCAPI Spy Utility

1 Sample Source Code

Figure 43. MC Dialog Box Reference and Sample Source Code Program Groups

and axis settings is mcapi.ini. However users can programmatically save the

ﬂ The default name for the initialization file used to save and restore controller
axis settings to any filename, with a different filename extension if they wish.

As a helpful guide for programmers, PMC’s Motion Control API also includes a Sample Source Code
folder which contains the source code for all of PMC’s sample programs. For example, the following
source code performs the saving and restoring functions for the "Save All Axis Settings" and "Initialize All
Axes" menu selections in the sample application programs.

case IDM AUTO_INIT:
SkipTimer = true;
if (GetMenuState (GetMenu (hDlg), IDM AUTO INIT, MF_BYCOMMAND) & MF_CHECKED)
CheckMenuItem (GetMenu (hDlg), IDM AUTO INIT, MF UNCHECKED) ;
else

CheckMenuItem (GetMenu (hDlg), IDM_AUTO INIT, MF CHECKED) ;
MCDLG RestoreAxis (hCtlr, MC_ALL AXES, MCDLG PROMPT |
MCDLG CHECKACTIVE, NULL) ;

Cycle = SkipTimer = false;
break;

MultiFlex PCI 1000 Series User's Manual 131

Application Solutions

case IDM INIT:

SkipTimer = true;

MCDLG RestoreAxis (hCtlr, MC_ALL AXES, MCDLG_ PROMPT | MCDLG_CHECKACTIVE,
NULL) ;

Cycle = SkipTimer = false;

break;

case IDM SAVE SETTINGS:
SkipTimer = true;
MCDLG SaveAxis (hCtlr, MC ALL AXES, 0, NULL);
SkipTimer = false;
break;

Saving and restoring configuration settings via individual function or MCCL calls

In addition to the MCDLG functions, programmers can selectively save and restore one, some, or all
settings individually according to their needs. Users can do this either by Motion Control API function calls
or by sending one or more MCCL commands to the motion controller. For example, after boot-up, users
can send the motion controller a text file containing the MCCL commands required to initialize the desired
configuration settings. See the Motion Control API Reference Manual and Motion Control Command
Language Reference Manual for more specific information about programming the controller.

132 Precision MicroControl Corp.

Application Solutions

Learning/Teaching Points

As many as 256 points can be stored for each axis in the controller’s point memory by using the
MCLearnPoint() function. A stored point can be either the actual position of an axis
(MC_LRN_POSITION) or the target position of an axis (MC_LRN_TARGET).

The value MC_LRN_POINT would typically be used in conjunction with jogging. The operator would jog
the axes along the desired path, issuing the MCLearnPoint() command at regular intervals. The
MCMovePoint() command would then be used to ‘play back’ the path traversed by the operator.

For applications where the target point data was previously recorded and stored in the PC, the value
MC_LRN_TARGET would be used to load the target points into the controller. For some applications,
using MCLearnPoint() to load a series of moves may be ‘easier’ than issuing a series of contour mode
linear moves, even though the results would be the same.

Once all points have been stored, the axes are commanded to move to the stored positions with
MCMoveToPosition(). The parameter windex indicates to which stored point the axis should move.

// Move axis 1 and store position in consecutive point storage locations.

WORD wlndex;

MCEnableAxis(hCtlr, 1, TRUE); // motor on

MCGoHome(hCtlr, 1); // start from absolute zero
MCWaitForStop(hCtlr, 1, 0.100);

for (windex = 0; windex < 5; wilndex++) {
MCMoveRelative(hCtlr, 1, 1234.0); // move
MCWaitForStop(hCtlr, 1, 0.100); // are we there yet?
MCLearnPoint(hCtlr, 1, wlndex, MC_LRN_POSITION);

}

// Store several positions for axis 4 without actually moving the axis. Note //
that axis is disabled with MCEnableAxis() prior to storing positions

WORD wlndex;

MCEnableAxis(hCtlr, 4, FALSE); // motor off

for (wlndex = 0; windex < 5; wlndex++) {
MCMoveRelative(hCtlr, 4, 2468.0); // nothing actually moves
MCLearnTarget(hCtlr, 4, windex, MC_LRN_TARGET);

}

// This example moves to the stored positions, dwelling for 0.2 seconds at
// each point.

WORD wlndex;

MCEnableAxis(hCtlr, 4); // enable axis

for (windex = 0; wIndex < 5; wlndex++) {
MCMoveToPoint(hCtlr, 4, windex); // move to next point
MCWaitForStopped(hCtlr, 4, 0.2);

b

To cause the controller to perform linear interpolated moves between the taught points, place each of the
axes in contour mode. Use the lowest axis number as the contour mode command parameters, this is the
controlling axis. Set the vector velocity and accelerations of the controlling axis. Issue a single
MCMoveToPoint() command to the controlling axis with the point numbers as the command parameter.
Note that when point memory is used with motors in contour mode, point O should not be used. This

MultiFlex PCI 1000 Series User's Manual 133

Application Solutions

example executes linearly interpolated moves through three stored points of axes 1, 2, and 3.

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 3, 1, MC_MODE_CONTOUR);

// Linear interpolated move sequence through stored points

for (windex = 1; wilndex < 4; wlndex++) {
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
MCMoveToPoint(hCtlr, 1, windex);
MCMoveToPoint(hCtlr, 1, windex);
MCMoveToPoint(hCtlr, 1, wilndex);
MCBlockEnd(hCtlr, NULL);

}

134 Precision MicroControl Corp.

Application Solutions

Building MCCL Macro Sequences

A powerful feature is the ability to define MCCL (Motion Control Command Language) command
sequences as macros.

For additional information on macro’s and MCCL (Motion Control Command
0 Language) commands please refer to the MCCL Reference Manual.

A macro is a user define sequence of operations that is executed by issuing a single command. For
example:

1MR1000,WS0.25,MR-1000,WS0.25

will cause the motor attached to axis 1 to move 1000 counts in the positive direction, wait one quarter
second after it has reached the destination, then move back to the original position followed by a similar
delay. If this sequence were to represent a frequently desired motion for the system, it could be defined
as a macro command. This is done by inserting a Macro Define (MDn) command as the first command in
the command string. For example:

MD3, 1MR1000,WS0.25,MR-1000,WS0.25

will define macro #3. Whenever it is desired to perform this motion sequence, issue the command Macro
Call (MC3).

To command the controller to display the contents of a macro, issue the Tell Macro (TMn) command with
parameter ‘n’ = the number of the macro to be displayed. To display the contents of all stored macro’s
issue the Tell macro command with parameter ‘n’ = -1.

[Z] winControl32 = [O]]

File Edit Help
O | & | % Bz o E &

> md3, 1mr1000,ws0.25,mr-1000,ws0.25

» mc3

» tm-1

MC3 TMR1000.1wWS0.250000.1MB-1000. 1W50.25000
Av

R4

FL
>

Once a macro operation has begun, the host will not be able to communicate
with the controller until the macro has completed execution. For information
on communicating with the controller while executing macro’s please refer to

the section titled MCCL Multi-Tasking.

MultiFlex PCI 1000 Series User's Manual 135

Application Solutions

The controller can store up to 1024 user defined macros. Each macro can include as many as 255 bytes,
resulting in a total macro capacity of 255K bytes. Depending on the type of command and type of
parameter, a command can range from 2 bytes (a command with no parameter) to 10 bytes (a command
with a 64 bit floating point parameter).

If the amount of available macro memory exceeds 255K bytes the controller will
0 respond with error code - 18

All memory on the controller is volatile, which means that the data in memory will be cleared when the
controller is reset or power to the board is turned off. The Reset Macro (RMn) command is used to erase
macros.

To terminate the execution of any macro that was started from WinControl press the escape key.

To start a macro that runs indefinitely without ‘locking up’ communication with the host, start the macro’s
with the generate a Background task (GT) command instead of the Call macro command (MC). This
will allow the operation execute as a background task. Please refer to the next section Multi-Tasking.

executing as the foreground task. For additional information please refer to

0 The controller supports single-stepping of any MCCL macro command
Single Stepping MCCL Programs later in this chapter.

136 Precision MicroControl Corp.

Application Solutions

MCCL Multi-Tasking

The controller's command interpreter is designed to accept commands from the user and execute them
immediately. With the addition of sequencing commands, the user is able to create sophisticated
command sequences that run continuously, performing repetitive monitoring and control tasks. The
drawback of running a continuous command sequence is that the command interpreter is not able to
accept other commands from the user.

Once a macro operation has begun, the host will not be able to communicate
& with the controller until the macro has completed execution.

The controller supports Multi-tasking, which allows the controller to execute continuous monitoring or
control sequences as background tasks while the foreground task communicates with the ‘host’.

With the exception of reporting commands (Tell Position, Tell Status, etc...), which are not compatible
with Multi-Tasking, any MCCL commands, can be executed in a background task. Prior to executing a
command sequence/macro as a background task, the user should always test the macro by first
executing it as a foreground task. When the user is satisfied with the operation of the macro, it can be
run as a background task by issuing the Generate Task (GTn) command, specifying the macro number
as the command parameter. After the execution of the Generate Task command, the accumulator
(register 0) will contain an identifier for the background task. Within a few milliseconds, the controller will
begin running the macro as a background task in parallel with the foreground command interpreter. The
controller will then be free to accept new commands from the user.

;Multitasking example — while axis #1 is moving, monitor the state of
digital

;input #4. When the iInput goes active, stop axis #1 and terminate the
;background task

ALO,AR10 ;define user register 10 as input #4
active

;Flag register
ALO,AR100 ;define user register #100 as
background task

;1D register

MD100, IN4,MJ101,NO,1JR-3 ;jump to macro 101 when digital input
#4

;turns on
MD101,1ST,1WS.05,AL1,AR10,ET@100 ;stop axis #1. Terminate background
task
GT100,AR@100,1VM,1D10,1G0O ;spawn macro #10 as background task.
Store

;task ID into register #100. Start axis
#1

;moving in velocity mode,

MultiFlex PCI 1000 Series User's Manual 137

Application Solutions

Note: Immediately after ‘spawning’ the background task (with the GTn
command), the value in the accumulator (task identifier) should be stored in a
user register. This value will be required to terminate execution of the
background task.

Another way to create a background task is to place the Generate Task command as the first command
in a command line, using a parameter of 0. This instructs the command interpreter to take all the
commands that follow the Generate Task command and cause them to run as a background task. The
commands will run identically to commands placed in a macro and generated as a task.

;Multitasking example — while axis #1 is moving, monitor the state of the
;motor error status bit (bit 7). If error occurs set bit #1 of user
;register 200

GTO,AR@100,LU”STATUS”,1RL@0, IC0,JR-3,NO,AL1,AR200,ET@100

;loop on axis #1 status bit 0, If set;
set

;bit #1 of register 200, terminate task
using

;Task ID (in register #100)

Within the background task, the commands can move motors, wait for events, or perform operations on
the registers, totally independent of any commands issued in the foreground. However, the user must be
careful that they do not conflict with each other. For example, if a background task issues a move
command to cause a motor to move to absolute position +1000, and the user issues a command at the
same time to move the motor to -1000, it is unpredictable whether the motor will go to plus or minus 1000.

In order to prevent conflicts over the registers, the background task has its own set of registers 0 through
9 (register 0 is the accumulator). These are private to the background task and are referred to as its 'local’
registers. The balance of the registers, 10 through 255, are shared by the background task and
foreground command interpreter, they are referred to as 'global’ registers. If the user wishes to pass
information to or from the background task, this can be done by placing values in the global register. Note
that when a task is created, an identifier for the task is stored in register 0 of both the parent and child
tasks.

When one or more background tasks are active the Task Handler will begin issuing local interrupts every
250 microseconds. Each time the task handler interrupt is asserted, the controller will switch from
executing one task to the next every 250 micro seconds. For example if three background tasks are
active, plus the foreground task (always active), each of the four tasks will receive approximately 100
micro seconds of processor time every 1 millisecond.

Background task #3
Background task #2

Background task #1

Foreground task

1000

1250 1500 1750 2000

750
B s 100 Processing Time
Clive lask = usec (USGC'S)

138

Precision MicroControl Corp.

Application Solutions

While a background task executes a Wait command, that task no longer receives any processor time. For
tasks that perform monitoring functions in an endless loop, the command throughput of the controller can
be improved by executing a Wait command at the end of the loop until the task needs to run again.

A common way for a background task to be terminated, is when the command sequence of the task
finishes execution. This will occur at the end of the macro or if a BreaK (BK) command is executed.
When a task is terminated, the resources it required are made available to run other background tasks.

;Multitasking example — this background task will terminate itself if the
;motor error status bit for axis #1 is set. This sequence is similar to
the ;previous example except that the task is self terminating, so
register #100

is not required.

GTO,LU”STATUS”,1RL@O, IC0,JR-3,NO,AL1,AR200,BK

;loop on axis #1 status bit 0, If set;
set

;bit #1 of register 200, task self
terminates

;(no commands left to execute)

Alternatively, the Escape Task (Ten) command can be used to force a background task to terminate.
When a task is generated by the GT command, a value known as the Task ID is placed into the
accumulator. This value should immediately be copied into a user register. The parameter to this
command must be the value that was placed in accumulator (register 0) of the parent task, when the
Generate Task command was issued.

;Multitasking example — Terminating a background task with the Escape
Task command.

GT100,AR@150 ;call macro #100 as a background task,
copy

; task ID into user register 150
ET@150 ;to terminate background task issue
escape

; task command with parameter n = Task
1D

MultiFlex PCI 1000 Series User's Manual 139

Application Solutions

Position Capture

The controller features versatile high-speed position capture circuits that allow users to precisely
synchronize motion with external events. The controller supports capturing the position of a closed loop
servo or stepper encoder or step count (of an open loop stepper) on the rising edge of a TTL Position
Capture input. As many as 1024 captured positions can be stored in the recording memory for each axis.
The maximum frequency of position captures is 1 KHz. The maximum latency between the rising edge of
the position capture input and the loading of the captured position is 100 nano seconds.

general purpose digital /0 channels, a position capture input cannot be

0 The active level of a position capture input is fixed as a TTL high. Unlike the
configured for 'low true' operation.

The Motion Control API function MCEnableCapture () is used to initiate position capture. When this
feature is enabled the current position will be recorded on the rising edge of the capture input. If
parameter count equals 1 the module will capture only one position. If parameter count equals 2 the
module will capture two positions, and so on. When the number of positions captured = count , the
MC_STAT_POS_CAPT flag (status bit 5) will be set. To report the number of positions captured issue the
MCGetCount () function with the type = MC_COUNT_CAPTURE. To disable position capture issue
MCEnableCapture () with parameter count equal to 0. Captured positions may be retrieved using the
MCGetCapturedData() function.

Long int count;
double data{10};

MCEnableAxis(hCtlr, 1, 1);
MCMoveRelative(hCtlr, 1, 10000.0);

// Capture 10 positions
//
MCEnableCapture(hCtlr, 1, 10.0);

// Retrieve the 10 captured positions into local array
//
do {
MCGetCount((hCtlr, 1, MC_COUNT CAPTURE, &count);
} while (count <10);

MCGetCaptureData(hCtlr, 1, MC_CAPTURE_ACTUAL, 0O, 10, &data);

140 Precision MicroControl Corp.

Application Solutions

Position Compare

The controller features versatile high-speed position compare circuits that allow users to precisely
synchronize external events with encoder position. The position compare circuits assert a TTL logic
output when one or more pre-defined encoder positions are reached. The controller provides two high
speed TTL outputs to signal that an encoder position has been reached (a “compare” event has
occurred). The assertion of this output is based on the position of the encoder of a closed loop servo or
stepper axis or the step count register of an open loop stepper axis. As many as 1024 compare positions
can be stored in the recording memory.

Compare predefined positions

To configure an axis for position compare, first use the Motion Control API function
McConfigureCompare () to define the number of compare positions (as many as 1024) and the
compare output mode. Then issue the Motion Control API function MCEnableCompare () with the flag =
MC_COMPARE_ENABLE. This will terminate any current compare operation and initializes the compare
index to 0. After starting a move, when the actual position is equal to the compare position the compare
output will be turned on (TTL high by default) and the next compare position will be loaded into the
compare register. When all position compare events have been completed the MC_STAT _BREAKPOINT
flag of the axis status will be set.

Compare at incremental distances

For compare events at fixed distances of travel use the function MCEnableCompare () and:

1) Store the beginning point (first compare position) in the first location of values
2) Set the num parameter to 1
3) Set the inc parameter to the distance (counts or steps) between compare events

Compare frequency and output latency

The compare position update frequency is based on the trajectory generator, which is executes at a rate
determined by the trajectory generator rate setting; (low (the default) = 1 mSec (1 kHz), medium = 500
mSec (2 kHz), high = 250 mSec (4 kHz). Therefore the distance between compare positions cannot be
such that the time from one compare event to the next is less than the position update frequency. The
maximum latency between the an axis reaching the compare position and the activation of the compare
output is 100 nano seconds.

Compare output signal configuration

When the compare output is activated as the result of a compare or breakpoint occurrence, the compare
output signal will react according to the which mode has been selected with the mode parameter of the
MCConfigureCompare () function.

Mode Description
MC_COMPARE_DISABLE Disables the compare output
MC_COMPARE_INVERT Inverts the active level of the compare output

MultiFlex PCI 1000 Series User's Manual 141

Application Solutions

Configures the compare output for one shot operation (one shot
period is defined by the period parameter of
McConfigureCompare () function. The one shot pulse period

MC_COMPARE_ONESHOT range is from 1millisecond to 1.0 second. For one shot periods

less than 50 milliseconds the timer resolution is 1 millisecond.
For one shot periods greater than 50 milliseconds the timer
resolution is 50 milliseconds.

Configures the compare output to turn on when a compare

MC_COMPARE_STATIC event occurs. The output will stay on until a new compare event

MC_COMPARE_TOGGLE

is called
Configures the compare output to toggle between the active and
inactive state each time a compare event occurs

For all of the output modes, the compare output will be activated within 100 nano seconds of the
encoder/step count reaching the compare position. When the compare output mode is set to Disabled,
the output will be at its' in-active level (TTL low). The controller sets the output mode to Disabled on

power up or reset.

To report the number of compare events that have occurred issue the MCGetCount (') function
with the type = MC_COUNT_COMPARE. To disable position compare issue
MCEnableCompare () with parameter flag value = MC_COMPARE_DISABLE.

//

// Use positions spaced 5 units apart, beginning at 10.0 as compare
// positions. Toggle the output pin on valid compares. Wait for 20
// compares to complete.

//

data[0] = 10.0; // starting point

MCConfigureCompare(hCtlr, 1, data, 1, 5.0, MC_COMPARE_TOGGLE, 0.0);

MCEnableCompare(hCtlr, 1, MC_ENABLE_COMPARE); // enable compare
MCMoveRelative(hCtlr, 1, 100.0);

do {

// wait for 5 points

MCGetCount(hCtlr, 1, MC_COUNT_COMPARE, &count);

} while (count < 20);

142

Precision MicroControl Corp.

Application Solutions

Position Verification of an Open Loop Pulse Axis

Historically stepper motors have been used as a reduced cost alternative to servos for applications that
do not require the accuracy, repeatability, and acceleration of a closed loop servo. One of the necessary
‘evils' of the tradeoff of selecting a stepper motor over a servo is the tendency of steppers to 'lose steps'
due to motor / load resonance. By adding an encoder (typically directly coupled to the stepper motor
shaft) the user can monitor the final position of the stepper and issue 'correction moves' to compensate
for the lost steps.

One of the available controller options is the support of encoder feedback for Pulse Command axes. A
Pulse Command axis can be configured to use an encoder in one of two different ways:

Closed Loop Mode
Open Loop with Position Verification

For a detailed description of Closed Loop Operation of a Pulse Command axis please refer to page 80. In
order to differentiate between an encoder used for Closed Loop operation of a Analog or Pulse Command
axis and an encoder used for position verification of a Pulse Command axis, the encoder of an Open
Loop Pulse Command axis will be referred to as an Auxiliary Encoder. The advantages of an open loop
stepper with auxiliary encoder versus a closed loop axis are:

The pulse train of an open loop stepper 'at velocity' is much more stable
Easier to configure - open loop systems require no tuning
Lower cost

Position verification example

Typically an encoder is added to an open loop stepper to allow the user to retrieve the encoder position at
the end of a move. The reported position of the auxiliary encoder is used to determine whether or not the
axis is properly positioned.

// After a move compare the target and auxiliary encoder position.
// 1T short of the target, execute a move = the difference of the target &
// encoder position

MCMoveAbsolute(hCtlr, 1, 122.5);
it (IMCIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here
}
iT (MCGetTargetEx(hCtlr, 2, &Target) == MCERR_NOERROR)
if (MCGetAuxEncPosEx(hCtlr, 1, &Position) == MCERR_NOERROR)
if (Position < 122.0)
(Target — Position = AuxEncDiff)
MCMoveRelative(hCtlr, 1, AuxEncDiff);
if (IMCIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

}
if (MCGetAuxEncPosEx(hCtlr, 1, &Position) == MCERR_NOERROR)

if (Position < 122.0)
// print error message

Homing the auxiliary encoder of an open loop stepper

MultiFlex PCI 1000 Series User's Manual 143

Application Solutions

The encoder of an open loop stepper may be homed in one of two ways:

Home the encoder using the Auxiliary Encoder Index input
Re-define the position of the encoder when the axis is homed

encoder can be redefined at anytime using the Motion Control API function

ﬂ If no encoder index mark output is available, the position of the auxiliary
MCSetAuxEncPos().

If the encoder includes an index mark output it is recommended that this signal be used to home both the
reported position of the axis and the auxiliary encoder. The repeatability of a system homed using the
index mark will be significantly better than that of a system that uses a mechanical
switch/electromechanical sensor. The following programming example will reference both the reported
position of an open loop stepper and the auxiliary encoder at the location of the Index mark:

The following C example uses the MCFindAuxEncldx() and MCSetPosition (
) functions to redefine the encoder position register and the step count register

ﬂ of an open loop stepper with an auxiliary encoder. For complete C code homing
samples that can be cut and pasted into an application program please refer to
the Motion Control API on-line help (mcapi.hlp).

MCFindAuxEncldx(hCtlr, 5, 0.0);
dwStatus = MCGetStatus(hCtlr, 5);
while (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT_AUX_IDX_FND))
dwStatus = MCGetStatus(hCtlr, 5);
lIdxPosition = MCGetPosition(hCtlr, 5);
MCStop(hCtlr, 5);
ifT (IMCIsStopped(hCtlr, 5, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

}
Position = MCGetPosition(hCtlr, 5);
HomePosn = (Position - ldxPosition) * -1

MCSetOperatingMode(hCtlr, 5, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 5, TRUE);
MCMoveRelative(hCtlr, 5, HomePosn);
if (IMCIsStopped(hCtlr, 5, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

¥
MCSetPosition(hCtlr, 5, 0.0);

After issuing the MCFindAuxEncldx() function the reported position of the
encoder of an open loop stepper will be redefined to equal parameter position
once the index has been captured.

144 Precision MicroControl Corp.

Application Solutions

;MCCL example - define positions at auxiliary encoder index mark
MD1,5MN,5VM,5D10,5G0,WA.1,MJ10 ;start velocity mode move
MD10,5AF0,WAO0.1,LU"STATUS" ,5RL@0, 1S20,MJ11,NO,JR-5
;Enable aux. encoder index mark
;capture, loop until Aux. Index
;Found = True
MD11,LU"POSITION",5RD@0,AR100,5ST,5WS.1,LU"POSITION",5RD@0,AR101,5PM,5MN,

MJ12 ;load accumulator with step
count

;position at location of index
mark.

;Stop the move. Load current
position,

;enable position mode
AL@101,AS@100,AM-1,5MR@0,5WS_1,5DH0O ;calculate step count distance to
;index, move to index, define

step
;count to O

For MCCL homing samples that can be downloaded to the controller and
ﬂ executed please refer to PMC’s Motion CD.

Verifying the Operation of the encoder of an open loop stepper

To verify the operation of the encoder of an open loop stepper use either WinControl or Motor Mover.
From WinControl, issuing the Auxiliary encoder Tell position (aAT) command will cause the current
position of the open loop steppers encoder to be reported.

LI'WinControl
File Edit Help

'}
;report the position of the auxiliary encoder

;rotate the shaft of the motor/encoder

;report the position of the auxiliary encoder
;uerify that the encoder position changed as expected
:rotate the shaft of the motor/encoder the other direction
:report the position of the auxili sncoder

that the encoder position changed as expected

Figure 44. Verify auxiliary encoder operation using WinControl

To use Motor Mover you must configure the stepper axis for closed loop mode. This is because Motor
Mover uses the MCGetPositionEX() function for the position readouts. For an open loop stepper the
MCGetPositionEX() function returns the Step Count Position Register value (not the auxiliary encoder
count). To enable closed loop stepper mode, from the Motor Mover Setup menu select:

Closed Loop Mode checkbox
OK

MultiFlex PCI 1000 Series User's Manual 145

Application Solutions

Toggle the Off & On buttons

The Motor Mover position display will report the position of the encoder.

2] :E::n' 0 3
e Bt 1000 Velocty

© D
e CEt 25000 Velocty
aim o
22:” Lt 2500000 Velociy
@ Lt o J
:;‘:w pist 1000| velocty
@ Limit 0 J
:;‘:Dr Dt 25000| Velocty
@ Limit 0 J

Figure 45. Rotate the motor / encoder shaft back and forth.
Verify that the position is changing accordingly

If Motor Mover was used to verify proper auxiliary encoder operation don't forget
0 to disable Closed Loop Stepper mode.

146 Precision MicroControl Corp.

Application Solutions

PWM Servo Command

For cost sensitive DC servo motor applications the combination of the MultiFlex motion controller and an
inexpensive external analog H-Bridge Driver can provide a very cost-effective solution. The controller
provides the PWM command which the H-Bridge Driver then proportionally converts to motor current to
drive the servo motor.

PWM Command motion requires both Motion Control API 3.5.0 or higher AND
ﬂ firmware 2.8a or higher

For each PWM servo axis the controller provides a PWM command output that can be configured for
Bipolar or Unipolar mode (PWM frequency = 19.53 KHz). For applications that require a different
frequency please contact the factory. In Biolar mode, when the motor is at its target position the PWM
output will be at 50% duty cycle. In Unipolar mode, when the motor is at its target position the PWM
output will be off (0% duty cycle). For many applications the Unipolar mode may be preferrable because it
is more heat efficient (no current across the motor when it is at its target and enabled).

PWM Command output with axis 'at target'

25.6 25.6 25.6 25.6
usec's usec's usec's usec's
Bipolar Mode Unipolar Mode

PWM Command output at 50% Torque

38.4 12.8 25.6 25.6
usec's usec's usec's usec's
Bipolar Mode Unipolar Mode

MultiFlex PCI 1000 Series User's Manual 147

Application Solutions

PWM Command output at 100% Torque

38.4 12.8 25.6 25.6
usec's usec's usec's usec's
Bipolar Mode Unipolar Mode

Configuring PWM operation

To configure / enable a servo axis for PWM Command set the PWM mode use the Motion Control API
function (rev. 3.5.0 or higher) MCSetModuleOutputMode() with the mode parameter set to
MC_OM_UNI_PWM for Unipolar mode, or to MC_OM_BI_PWM for Bipolar mode.

MCSetModuleOutputMode(hCtlr, 1, MC_OM_UNI_PWM);
MCSetModuleOutputMode(hCtlr, 2, MC_OM_BI_PWM);

For Unipolar operation you will need to configure one of the TTL general
purpose digital output channels to be used for the PWM Direction (Sign).
0 For PWM Command wiring examples please refer to page 49.

The following screen captures detail how to associate Digital output #2 (channel
34) with the PWM Direction function by using PMC's Motion Control Panel.

E3 Control Panel O] =] Motion Control Panel
File Edit Wiew Go Favoritez Help |
&) -) @ % @ >< £ % Use this application to configure and test motion controllers.
Back fEarward Up Cut Copy Paste Unda Delete Properties
&ddress I@I Contral Panel j [Metian Eenfraler
| e p— § - | [8] | Type | Statuz
: gﬂqj @ 0 MFAPCIT000 Okay
Accessibility AddMew Add/Remove Date/Time Digital Camera
Optionz Hardware Programs Settings
Control
Panel B @ & A D
[N = Ed 2
Display Find Fast Fonts Garning Inkernet
Motion Control Dptians Optians e
Adds, Removes, and
Changes settings for @ @ @g %)
Mation Controllers Add | Femnive | Properties |
Keyboard tdail todems Motion Contiol Mouse ¥
Microsoft Home — _I
Technical Support = am . =1] 2 0K Hel
_ p
|Adds, Removes, and CF by Cl#puler s 4'
Step #1 - open the Metion Control Panel / I Step #2 - double click the controller

148 Precision MicroControl Corp.

Application Solutions

Motion Controller Properties K E3 Motion Controller Properties 2 %]
General | Interfacel Advancedl Infa | Generall |nterface Advanced | Ik |
Cenge frllo: 1 Configure azis digital 1/0 [home, limits, etc.]
Controller Type: -PCIT000
™ Bhable communication intermipts
Description

/ Ok I Cancel | Al | I ok | Cancel | Aoy |
! !

Step #3 - celect the Advanced tab Step #4 - select the configure button

1/0 Conhguration EEa |

Avez 1 and 5 I Aues 2 and B | Auesdand 7 I Axes 4 and B |
—Aumiz 1 (Servol————— iz B [Stepper)

Coarze Home [inp) |-|? vl Coarze Home [inp) |-|? 'rI
Pluz Lirit [inp) I'lg vl Pluz Limit [inp) |13 -rI
Firuz Limit [inp) |19 vl ki Lirit [inp] |19 vI

amp Faulkt [inp) |20 - Drrive Fault [inp] |20
Amp Enable [out] |49 - Drive Enable [out] |50

Direction [out] (34 = Half Current [out] |51

- WL

35

|: g? j Cancel | Sppl |

38
33 Step #5 - select

312 «(the digital channel

driver. If the PWM input connection to the H-Bridge is a TTL input you will need

ﬂ The PWM Command output (pins 6 and/or 7) is provided via an Open Collector
to add a pullup resistor to +5 volts.

Once the PWM Mode has been selected the servo can be tuned and exercised using any the standard
PMC tools (Servo Tuning utility and Motor Mover).

MultiFlex PCI 1000 Series User's Manual 149

Application Solutions

Record Motion Data

The controller supports capturing and retrieving motion data for closed loop axes and open loop steppers.
As many as 1024 'data sets' (actual, optimal, following error, DAC output) can be captured for each axis.
Captured position data is typically used to analyze servo motor performance and PID loop tuning
parameters. PMC's Servo Tuning utility uses this function to analyze servo performance. The Motion
Control API function MCCaptureData() is used to acquire motion data for a servo axis. This function
supports capturing:

Actual Position versus time

Optimal Position versus time

Following error versus time

DAC output versus time (Analog Command axes only)

Auxiliary encoder position (for tuning an open loop Pulse Command servo axis)

The time base (4 KHz, 2 KHz, 1 KHz) for captured data is set by Rate member of the MCMotion data
structure. The function MCGetCapturedData() is used to retrieve the captured data. This example
captures 1000 data points from axis 3, then reads the captured data into an array for further processing.

double Data[1000];

MCBlockBegin(hCtlr, MC_BLOCK _COMPOUND, 0);
MCCaptureData(hCtlr, 3, 1000, 0.001, 0.0);
MCMoveRelative(hCtlr, 3, 1000.0);
MCWaitForStop(hCtlr, 3, 0.0);

MCBlockEnd(hCtrilr, NULL);

// Retrieve captured actual position data into local array

//

if (MCGetCaptureData(hCtlr, 3, MC_DATA_ACTUAL, 0O, 1000, &Data) {
.. // process data

150

Precision MicroControl Corp.

Application Solutions

Resetting the Controller

The controller supports software controlled reset. To reset the controller CPU and all axes issue the
Motion Control API function MCReset(). For additional information please refer to the Motion Control
API Reference Manual.

Most PMC application programs (Motor Mover, Servo Tuning, WinControl) allow the user to reset the
controller by selecting Reset Controller from the WinControl File menu.

[l winControl32 =10 x|
File Edit Help

Open...

=] &

Auto-Initialize All Axes
Save All Axis Settings ;ontroller

lvate RAM, 512K Flash Hemory
Contraoller Info... - PM1 FRev. 1.8a
Select Contraller. .. Precision MicroControl Corporation
Reset Controller 1.

Figure 46. Resetting the Controller

Resetting the controller from a user application program (with MCReset()) or from one of a PMC'’s
software programs (by selecting Reset Controller from: Motor Mover, WinControl, Servo Tuning, etc...)
will cause the controller to revert to default settings (PID, velocity, accel/decel, limits, etc...). For
information restoring the user defined settings please refer to the Initializing and Restoring Controller
Configuration section in this chapter.

In the event of a ‘hang up’ of the application program and/or controller, the
application program may fail to resume operation after issuing the MCReset()
function. The user will have to terminate and then re-open the application
program.

The contacts of a normally open relay are available on pins 1 and 2 of
connector J8. Following a reset (MCReset()) or after a PC re-boot / power
cycle the relay will not be energized until the controller has been fully initialized.

MultiFlex PCI 1000 Series User's Manual 151

Application Solutions

Single Stepping MCCL Programs

While the controller is executing any Motion Control Command Language (MCCL) macro program, the
user can enable single step mode by entering <ctrl> . Each time this keyboard sequence is entered,
the next MCCL command in the program sequence will be executed. The following macro program will be
used for this example of single stepping:

MD10,WA1,1MR1000,1WS.1,1TP,1MR-1000,1WS_1,1TP,RP

This sample program will: wait for 1 second, move 1000 encoder counts, report the position 100 msec’s
after the calculated trajectory is complete, move -1000 encoder counts, report the position 100 msec’s
after the calculated trajectory is complete, repeat the command sequence.

This command sequence can be entered directly into the controller's memory by typing the command
sequence in the terminal interface program WinCtl32.exe or by downloading a text file via WinControl's
file menu.

To begin single step execution of the above example macro enter MC10 (call macro #10) then <ctrl>
the following will be displayed:

{C1,MC10} 1MR1000 <

The display format of single step mode is: {Command #,Macro #} Next command to be executed

EI WwinControl32

File Edit Help

Dz e wlda

=
MD10,WA1,1MR1000,1WS.1,1TP,1MR-1000,1WS.1,1TP,RP

MC10 =ctrl> (<ctrl> is a keyboard action that will not be echoed on the screen)

{C1,mM10} 1MR1000 <ctrl>
{C2,M10} 1WS0.100000 <ctrl> <B:=
{C3,mMm10} 1TPO1 1000 <ctrl>

{C4,M10} 1MR-1000 <ctrl>
{C5,M10} 1WS0.10000 <ctrl>
{C6,M10} 1TPO1 D <ctrl>
{C7.M10} RP [REPEAT} <ctrl>
{co,m10} WAl

-

To end single stepping and return to immediate MCCL command execution press <Enter>. To abort the
MCCL program enter <Escape>. Single step mode is not supported for a MCCL sequence that is
executing as a background task.

Single stepping can also be enabled from within a MCCL program by using the break command
immediately followed by a “string” parameter. When the break command is executed the controller will
display the characters in the string (inside the quotation marks) and then delay additional command
execution until the space bar (execute next command and then delay) or the enter key (terminate single
stepping and resume program execution) are selected. In the following example axis one will move 1000

152 Precision MicroControl Corp.

Application Solutions

counts, report the position, move —1000 counts, report the position, halt command execution until the
space bar is entered, repeat one time.

MC10 1MR1000,1WS0.100000,1TP,1MR-1000,1WS0.100000,1TP,BK " wait" ,RP1

>mcl0

01 997

010

BREAK AT COMMAND 6, MACRO 10
wait

{C7,M10} RP10 [REPEAT] <

<space bar>

01 997

010

BREAK AT COMMAND 6, MACRO 10
wait

{C7,M10} RP10 [REPEAT] <

>

MultiFlex PCI 1000 Series User's Manual 153

Application Solutions

Torque Mode Output Control

The +/- 10V Analog Command outputs channels provide two methods of directly and completely
controlling the Torque/Velocity of a axis. When executing closed loop servo motion in Position or Velocity
mode, the MCSetTorque() command allows the user to limit the output signal or duty cycle to a specific
level. The following graph depicts a simple position mode move of 1000 encoder counts with the default
torque setting of 10 volts (no limit).

Analog .
output Maximum voltage
output
+H0V +—— — — — - - - - — - — — — — — — —
+7.5V +
+5.0V +
+2.5V +
I I | | | | | |
25 50 75 100 125 150 175 200 225
Time (msec's)

The graphic below depicts the same 1000 encoder count move, but the maximum voltage output has
been limited to 5.0 volts.

MCSetTorque(hCtlr, 1, 5.0);
MCMoveRelative(hCtlr, 1, 1000.0);

Analog
output
+10V +
+7.5V +
Maximum voltage

+5.0V 4 — output
+2.5V +

I I I | | | | |

25 50 75 100 125 150 175 200 225

Time (msec's)

154 Precision MicroControl Corp.

Application Solutions

Analog Command output channels as simple D/A output with encoder reader

Selecting Torque mode (Mode = MC_MODE_TORQUE) using the MCSetOperatingMode() function
allows the user to directly write values to the servo control DAC. This mode does not support closed loop
servo control, but the user can read the position of the encoder at any time.

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_VELOCITY);
MCSetTorque(hCtlr, 1, 2.5); ;axis 1 output to 2.5V (MC300)
MCSetTorque(hCtlr, 1, 7.5); ;set duty cycle to 75% (MC320)

When operating in Torque Mode the Following Error and Limit error checking is
0 disabled. If either or both of these error conditions exist the controller will not
command the axis to stop.

MultiFlex PCI 1000 Series User's Manual 155

Application Solutions

Turning off Integral gain during a move

Servo controllers primarily use Proportional gain to determine the current/velocity command signal that
the controller applies to the servo amplifier during a move. For motion control applications, integral gain is
used primarily to reduce the static position error at the end of a move. For additional information about
servo tuning and integral gain please refer to :

e the Servo Tuning description in the Motion Control chapter of this manual
e the Servo tuning tutorials on PMC'’s Motion CD and available for download from the Support
section of PMC's web site.

For some applications, integral gain has a tendency to cause bounce or oscillation of the command signal
during a move. This tendency can be is especially problematic in:
High gain servo systems

e Systems with high and / or irregular friction
e Systems with unbalanced loads
e Systems with unbalanced and / or high offset amplifiers

The following graphic shows the typical response of a high gain servo system when integral gain is
enabled through out the move. Even though the following error never exceeds 10 encoder counts during
the 100,000 count move, a significant oscillation (+/- 10 counts) occurred.

4 Servo Tuning 101 x|

File Setup Test Help

s |

Pasition 100000 Optimal
—Motar

@ on | of |
~Trajectory Generator

oY on | of |
—Test

Step Plus | Step Minus |

Clear | fem |

o.rs

-0.38% -0.20% -0.78%

Figure 47. Typical servo response when integral gain is enabled throughout the move

156 Precision MicroControl Corp.

Application Solutions

By disabling the integral gain term until after the trajectory is complete (desired position = target position)
the same move is accomplished with a following error of +/- 3 counts versus +/- 10 counts.

[[4 Servo Tuning
File Setup Test Help

s |

Pasition 100000
—Mlatar

@ on | of |
—Trajectary Generator

Q on | of |
— Test

Step Plus | Step Minus |
Clear | Zero |

4 o f
:D.?S% \\Q

-0.39% -0.20% -0.75%

-0.00%

Optimal

=101]|

Figure 48. Typical servo response when integral gain is disabled until the calculated is complete

The IntegralOption member of the MCFilterEx structure allows the user to select from three different
mode of integral gain operation for servo or closed loop stepper.

IntegralOptiont value

MC_INT_NORMAL - integral term always on (default)

MC_INT_FREEZE - Freezes accumulation of
integration term during movement. Integration will
continued once the calculated trajectory (trajectory
complete, status bit 3 = 1) has been completed.
MC_INT_ZERO - Zero and freeze accumulation of

the integration term when motion begins. When the
calculated trajectory (trajectory complete, status bit 3

= 1) has completed, enable the integration term

Notes — (all other servo parameters
remaining unchanged)

Smallest following error during move. As the
integral term is increased the command output /
following error will tend to bounce

Ideal for applications with unbalanced loads
(robotic arm with vertical axis, hoist)

Most stable command signal / servo
performance during the move. Largest following
error during the move. Not acceptable for
applications with unbalanced load.

From PMC application programs like Servo Tuning and Motor Mover the integral gain mode can be

MultiFlex PCI 1000 Series User's Manual

157

Application Solutions

selected from the Servo Setup Dialog.

[Servo Tuning

File Setup Test Help

Axis | -
Position

~Motor———————
@ On

— Trajectory Generator—
@) Cn |

~Test——————

Step Plus | Step |

Clear | il
P +
i _078% _030%
-0.39% -0.30%
R -

Axis 1 - MC300 - DSP-Based Servo (analog outpukt)

Yelocity Gain I-EI.DEIEIEIEEIDDD

Lirnit Mode Ifo 'I

— Motion — Position —Fate
Acceleration IEDDUD.DDDDDD Current Pos. |1DDDDD.EIEIEIEIEI € Low
Deceleration IEDDDD.DDDDDD

— Hard Lirnits " Med
b an. Welocity IEDDUD.DDDDDD
Mas, Torque [10.000000 [+ Limit Enable & High
™ - Limit Enable
— PID Filter .
P I I — Prafile
Lirnit bode | O -
Proportional Gain ID.DED?81
Intearal Gain [0.008353 I Invvert Limits % Trapezaid
ion Limi 5.0
Integration Limit |4D.DDDDDD ot Limits urye
Integral Option |MNag " Parabal
b P ol [~ + Limit Enable Arshois
Derivative Gain 3
reeze .
Deriv. Sampling [Zero Limit ID-DDDDDD ~ Mise
Following Errar |1 0024.000000 [- Limit Enable
Acceleration G ain I-U.UEIDD2DDDD Limit [0.000000 I Amp Faul
Deceleration Gain I-D.DDDD1 Faan I Rev. Phase

Cahicel |

Figure 49. Using Servo Tuning’s Servo Setup Dialog to set the integral gain mode of operation

158

Precision MicroControl Corp.

Application Solutions

Defining User Units

When power is applied or the controller is reset, it defaults to encoder counts or stepper pulses as its
units for motion command parameters. If the user issues a move command to a servo with a target of
1000, the controller will move the servo 1000 encoder counts. If the user issues the same command to a
stepper motor, it will issue 1000 step pulses.

In many applications there is a more convenient unit of measure than the encoder counts of the servo or
steps of the stepper motor. If there is a fixed ratio between the encoder counts or steps and the desired
‘user units', the controller can be programmed with this ratio and it will perform conversions implicitly
during command execution.

Defining user units is accomplished with the function MCSetScale(), which uses the MCSCALE data
structure. This function provides a way of setting all scaling parameters with a single function call using
an initialized MCSCALE structure. To change scaling, call MCGetScale(), update the MCSCALE
structure, and write the changes back using MCSetScale().

or Zero) the axis must first be disabled (turned off). To complete a scaling

0 Before changing any/all of the axis related scaling values (Scale, Rate, Offset,
change enable (turn on) the axis.

MCScale Data Structure

typedef struct {

double Constant; // Define output constant
double Offset; // Define the work area zero
double Rate; // Define move (vel., accel, decel)
time units
double Scale; // Define encoder scaling
double Zero; // Define part zero
double Time; // Define time scale

} MCMOTION;

Setting Move (Encoder/Step) Units

The value of the Scale member is the number of encoder counts or steps per user unit. For
example, if the servo encoder on axis 1 has 1000 quadrature counts per rotation, and the
mechanics move 1 inch per rotation of the servo, then to setup the controller for user units of
inches:

MultiFlex PCI 1000 Series User's Manual 159

Application Solutions

MCSCALE Scaling;

MCEnableAxis(hCtlr, 3, False);

MCGetScale(hCtlr, 3, &Scaling);

Scaling.Scale = 1000.0; // 1000 encoder counts/inch
MCSetScale(hCtlr, 3, &Scaling);

MCEnableAxis(hCtlr, 3, True);

Prior to issuing the Scale member, the parameters to all motion commands for a particular axis are
rounded to the nearest integer. After setting a new encoder scale and calling MCEnableAxis() to
initialize the axis, motion targets are multiplied by the ratio prior to rounding to determine the correct
encoder position. Calling the MCGetPosition() will load the scaled encoder position.

settings (Velocity, Acceleration, Deceleration, and Velocity Gain) but not PID

ﬂ Note — setting a user scale other than 1:1 will require a change of trajectory
settings.

Trajectory Time Base

The value of the Rate member sets the time unit for velocity, acceleration and deceleration values, to a
time unit selected by the user. If velocities are to be in units of inches per minute, the user time unit is a
minute. The value of the Rate member is the number of seconds per 'user time unit'. If the velocity,
acceleration and deceleration are to be specified in units of inches per minute and inches per minute per
minute for axis 1, then the Rate value should be set to 60 seconds/1 minute = 60 (LUR60). The function
MCEnableAxis() must be issued before the user rate will take effect.

MCSCALE Scaling;

MCEnableAxis(hCtlr, 3, False);

MCGetScale(hCtlr, 3, &Scaling);

Scaling.Rate = 60.0; // set rate to inches per minute
MCSetScale(hCtlr, 3, &Scaling);

MCEnableAxis(hCtlr, 3, True);

Time Unit User Rate Conversion
second 1 (default)

minute 60

hour 3600

Figure 50. Typical Trajectory Rate Values

Defining the Time Base for Wait commands

For the MCWait(), WaitForStop() and WaitForTarget() functions, the default units are seconds. By
setting the member Time, these three commands can be issued with parameters in units of the user's
preference. The parameter to member is the number of 1 second periods in the user's unit of time. If the
user prefers time parameters in units of minutes, Time = 60 should be issued.

MCSCALE Scaling;
MCEnableAxis(hCtlr, 3, False);

MCGetScale(hCtlr, &Scaling);
Scaling.Time = 60.0; // set Wait time unit to minutes

160 Precision MicroControl Corp.

Application Solutions

MCSetScale(hCtlr, &Scaling);
MCEnableAxis(hCtlr, 3, True);

Defining a System/Machine zero

The member Offset allows the user to define a ‘work area’ zero position of the axis. The Offset value
should be the distance from the servo or stepper motor home position, to the machine zero position. This
offset distance must use the same units as currently defined by set User Scaling command. Offset does
not change the index or home position of the servo or stepper motor, it only establishes an arbitrary zero
position for the axis.

MCSCALE Scaling;

MCEnableAxis(hCtlr, 3, False);

MCGetScale(hCtlr, 3, &Scaling);

Scaling.Offset = 12.25; // define offset to 12.25 inches
MCSetScale(hCtlr, 3, &Scaling);

MCEnableAxis(hCtlr, 3, True);

Defining a Part Zero

The member Zero would typically be used in conjunction with Offset to define a ‘part zero’ position. A
PCB (Printed Circuit Board) pick and place operation is a good example of how this function would be
used. After a new PCB is loaded and clamped into place the X and Y axes would be homed. The Offset
member is used to define the ‘work area’ zero of the PCB. The Zero member is used to define the ‘part
program’ or ‘local’ zero position. This way a single ‘part placement program’ can be developed for the
PCB type, and a ‘step and repeat’ operation can be used to assemble multiple part assemblies.

MCSCALE Scaling;

MCEnableAxis(hCtlr, 3, False);
MCGetScale(hCtlr, 3, &Scaling);

Scaling.Offset = 12.25; // define offset to 12.25 inches
Scaling.Zero = 1.25; // define “part zero” to 1.25
inches

MCSetScale(hCtlr, 3, &Scaling);
MCEnableAxis(hCtlr, 3, True);

MultiFlex PCI 1000 Series User's Manual 161

Application Solutions

XY Pick and Place Assembly

&

X &Y servo
motor home

Work area C)
zero Part program zero
(UserOffset) _ (User Zero)

U0000000000000)
COO0O00CON00
UOOCOOCOOUCCIICE

UO00OOCCUCUON) 0000000000000 . UO00O00CUCOCC) 00000000000000

PCB clamp assembly

Defining the output constant for velocity gain

The member Constant allows the user to define the units to be used for setting the Velocity Gain
parameters. Please refer to the description of Using Velocity Gain in the Application Solutions
chapter of this user manual.

162 Precision MicroControl Corp.

Application Solutions

Watchdog Circuit

The controller incorporates a watchdog circuit to protect against improper CPU operation. After a
controller reset, PC reset, or PC power cycle, once the controller is initialized the watchdog circuit is
enabled.

If the controller’s processor fails to properly execute firmware code for a period of 200 msec's, the
watchdog circuit will 'time out' and the on-board reset will be latched by the ‘watchdog reset relay’. This in
turn will hold the controller in a constant state of reset. All motor outputs (+/- 10V & Step/Direction) will be
disabled. When the watchdog circuit has tripped, the green Run LED will be disabled. To clear the
watchdog error either cycle power to the computer (recommended), or reset the computer

MultiFlex PCI 1000 Series User's Manual 163

Application Solutions

164 Precision MicroControl Corp.

Chapter

7

General Purpose I/O

Digital I/O

The controller board provides:

16 TTL inputs (digital I/O channels 1 - 16)

16 optically isolated inputs (digital I/O channels 17 - 32)
16 TTL outputs (digital I/O channels 33 - 48)

12 open collector outputs (digital I/O channels 49 - 64)

I/O Configuration Panel

By default the optically isolated inputs and open collector outputs are associated with 'hard coded' motion
control functions (Limits, Homing, Amp/Drive fault, Amp/Drive Enable). For maximum application flexibility
the controllerallows the user to reassign most of the default digital /O assignments. The Windows 1/O
Configuration dialog is used to change the default digital I/0O configuration.

1/0 Configuration

Axes 1and 5 | Awes 2and 6 || Aes Jand 7 | Awes dand 8
Az 1 [Servo) Lz B [Stepper]

Home (inp) |17« Home (inp) (17
Plus Limit (inp] |18 Flus Limit [inp] {15+
Wi Limit (inp] |19 s Mifwss Limit [inp) {15«
Amp Faulk [inp) (20« Drive Fault inp] |20+
Amp Enable [out] |51 Diive Enable [out] |49
Direction [out] |.. « Half Current [owt] |- s

Figure 51. Digital I/O configuration panel

MultiFlex PCI 1000 Series User's Manual 165

General Purpose I/0

The configuration dialog is launched from the Motion Control Panel (\Properties\Advanced\Configure)

The Stepper Home function cannot be reassigned to a different digital input
channel. An open loop stepper axis can only be ‘homed' by applying an active

ﬂ level on the controller's SCSI connector pin, #27. Additionally, Position Capture
input (rising edge) and Position Compare output (high active) functions cannot
be reassigned to different digital I/O channels.

Table 6. Default Function Assigned to Digital /0O Channels

Ch. # | Description Ch. # | Description
1 TTL input 1 (Capture axes 1 & 2) 33 TTL output 1 (Compare axes 1 - 4)
2 TTL input 2 34 TTL output 2
3 TTL input 3 35 TTL output 3
4 TTL input 4 36 TTL output 4
5 TTL input 5 (Capture axes 3 & 4) 37 TTL output 5
6 TTL input 6 38 TTL output 6
7 TTL input 7 39 TTL output 7
8 TTL input 8 40 TTL output 8
9 TTL input 9 (Capture axes 5 & 6) 41 TTL output 9 (Compare axes 5 - 8)
10 TTL input 10 42 TTL output 10
11 TTL input 11 43 TTL output 11
12 TTL input 12 44 TTL output 12
13 TTL input 13 (Capture axes 7 & 8) 45 TTL output 13
14 TTL input 14 46 TTL output 14
15 TTL input 15 47 TTL output 15
16 TTL input 16 48 TTL output 16
17 gztsollscmoa;?sde(a\émi&o 49 Open collector (100mA)
. Axis 1 Amp Enable
Axis 5 Home
18 Opto isolated (3V - 25V) 50 Open collector (100mA)
Axis 1/5 Limit + Axis 5 All Driver Disable
19 Opto isolated (3V - 25V) 51 Open collector (100mA)
Axis 1/5 Limit - Axis 5 Half Current
20 Opto isolated (3V - 25V)
Axis 1/5 Amp Fault
Opto isolated (3V - 25V)
21 Ax@s 2 Coarse Home >3 gzznzc,:&e; tI(E)rrlélll)?eomA)
Axis 6 Home
29 Opto isolated (3V - 25V) 54 Open collector (100mA)
Axis 2/6 Limit + Axis 6 Driver Disable
23 Opto isolated (3V - 25V) 55 Open collector (100mA)
Axis 2/6 Limit - Axis 6 Half Current
24 Opto isolated (3V - 25V)
Axis 2/6 Amp Fault
o5 gz;oésggfge(a\émzsv) 57 Open collector (100mA)
. Axis 3 Amp Enable
Axis 7 Home
26 Opto isolated (3V - 25V) 58 Open collector (100mA)
Axis 3/7 Limit + Axis 7 Driver Disable
27 Opto isolated (3V - 25V) 59 Open collector (100mA)
Axis 3/7 Limit - Axis 7 Half Current
28 Opto isolated (3V - 25V)
Axis 3/7 Amp Fault
29 g)atso Aiscmoa;(resde(a\émisw 61 Open collector (100mA)
. Axis 4 Amp Enable
Axis 8 Home
30 Opto isolated (3V - 25V) 62 Open collector (100mA)
Axis 4/8 Limit + Axis 8 Driver Disable
31 Opto isolated (3V - 25V) 63 Open collector (100mA)
Axis 4/8 Limit - Axis 8 Half Current
32 Opto isolated (3V - 25V)
Axis 4/8 Amp Fault

166 Precision MicroControl Corp.

General Purpose 1/0

All Digital 1/0 signals can be accessed via the connectors on the available interconnection boards.

Upon completion of General Purpose Digital /0 re-configuration, selecting OK
0 will cause the updated configuration to be written into the Windows registry.

Configuring and Exercising the Digital I/O

The configuration of the digital I/0O is accomplished using either PMC’s Motion Integrator software or the
Motion Control API function MCConfigureDigitallO(). The screen shot that follows shows the Motion
Integrator Digital I/O test panel. This tool can be used to configure and exercise each digital I/O channel.

Comprehensive on-line help is available from the Help menu.

=101 x|

MY Digital I/0 Test Panel
File View Help
1-16 |1?-32 | 33-95 | 4964 |

~ch1—— rCch2—— (Ch3i— Chd4— ChS5— Chb6—+ Ch7¥— ~Ch&—

| L O DN DN N N
Fos JIY Fo- JIE Fo- RIY ro- B -o- i -o- i o .
Leteh || | Lateh || | Later | |[etety || | Lateh || | Cater]| | Catetu]| | Latet]

o)) [l | |] |[] |[] |[oT] /o]

—Ch 13— Ch 14— ~Ch 15— ~Ch 16—

~Ch 89— Ch 10— ~Ch 11— ~Ch 12—

Cr L T I I U I I
Fos JIY Fo- JIE Fo- RIY ro- B -o- i -o- i o .
Leteh || | Lateh || | Later | |[etety || | Lateh || | Cater]| | Catetu]| | Latet]

o)) [l | |] |[] |[] |[oT] /o]

Figure 52. Digital I/O Test Panel

The Digital 1/0O Test Panel groups the 64 digital I/O channels into 4 banks of 16:

TTL inputs (channels 1 - 16) = Standard I/O tab
Optically isolated inputs (channels 17 - 32) = Module 1 tab

TTL outputs (channels 33 - 48) = Module 2 tab
Open collector driver outputs (channels 49 - 64) = Module 3 tab

Each channel is individually programmable as either:

¢ High true/Positive logic (MC_DIO_HIGH)
e Low true/Negative logic (MC_DIO_LOW)

For each digital I/O channel, the Test LED indicates the current state of the channel.

MultiFlex PCI 1000 Series User's Manual

167

General Purpose I/0

Using the Digital I/O

After configuring the Digital I/O channels with the MCConfigureDigitallO() function, three Motion
Control API functions are available for activating and monitoring the digital I/O:

MCEnableDigitallO() set digital output channel state

MCGetDigitallO() get digital input channel state
MCWaitForDigitallO() wait for digital input channel to reach specific state

Enable Digital 10

Turns the specified digital 1/0 on or off, depending upon the value of bState.

TRUE Turns the channel on
FALSE Turns the channel off

Note that depending upon how a channel has been configured "on" (and conversely "off") may represent
either a high or a low voltage level.

see also: Configure Digital 10

C++ Function: void MCEnableDigitallO(HCTRLR hCtlr, WORD wChannel, short int bState);

Delphi Function: procedure MCEnableDigitallO(hCtlr: HCTRLR; wChannel: Word; bState: Smallint);

VB Function: Sub MCEnableDigitallO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As
Integer)

MCCL command: CF,CN

E recute [T] ;

Handle In i Handle Out
LabVIEW VI: Channel (1) a8
State [T] - ==

MCEnableDigitall0_wi

Get Digital 10

Returns the current state of the specified digital I/O channel. This function will read the current state of
both input and output digital I/O channels. Note that this function simply reports if the channel is "on" or
"off"; depending upon how a channel has been configured "on" (and conversely "off") may represent
either a high or a low voltage level.

see also:

C++ Function: short int MCGetDigitallO(HCTRLR hCtlr, WORD wChannel);

Delphi Function: function MCGetDigitallO(hCtlr: HCTRLR; wChannel: Word): Smallint;

VB Function: Function MCGetDigitallO (ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer

MCCL command : TC

Execute [T] -~ :

Handle In E Handle Out
LabVIEW VI: Channel (1) -

MCGetDigitallO._vi

168 Precision MicroControl Corp.

General Purpose 1/0

Wait for Digital 10

Waits for the specified digital I/0O channel to go on or off, depending upon the value of bState.

see also: Wait for digital channel on

C++ Function: void MCWaitForDigitallO(HCTRLR hCtlr, WORD wChannel, short int bState);

Delphi Function: procedure MCWaitForDigitallO(hCtlr: HCTRLR; wChannel: Word; bState: Smallint);

VB Function: Sub MCWaitForDigitallO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As
Integer)

MCCL command: WF, WN

Execute [T]
LabVIEW VI: Handle In Handle Dut

State [T] P
MCWaitF orDigitall0_vi

MultiFlex PCI 1000 Series User's Manual 169

General Purpose I/0

A/D Inputs

One of the available controller options is the capability to read 8 A/D input channels (with 14 bit
resolution). This A/D input option can be obtained in two different voltage ranges: -10V to +10V (default)
or OV to +4V (by special order).

Because the controller is implemented in digital electronics, all analog input signals levels must be
converted into a digital value. Even though the current A/D device provides 14 bits of resolution, to
support possible future increases in resolution up to 16 bits, the value returned by the MCGetAnalogEx()
function is a 'left justified' 16 bit value (0 - 65532). A returned value of O translates to the lowest analog
voltage in the input range. A digital value of 65532 translates to the highest analog voltage in the input
range. These inputs are very high impedance with leakage currents less than 10 nano amps.

Using the A/D inputs

You can read the analog input values using either the Motion Control API function MCGetAnalogEx(), or
by issuing the MCCL command Tell Analog (TAX, x=channel number) from PMC’s WinControl program.
The value returned for each input channel will be a number between 0 and 65536, corresponding to the
entire input voltage range. For example, if the input voltage range is -10V to +10V; then -10.0V=0,
0.0v=32768 and +10.0V=65536. If the input voltage range is 0.0 to +4.0V; then 0.0V=0, 2.0V=32768 and
4.0V=65536.

The screen capture that follows shows the Motion Integrator Analog 1/O test panel, which can also be
used to report the measured voltage level. Comprehensive on-line help is available from the Help menu.

Analog Test Panel =101 x|

File Help

—Reference Waltage ——

N

—Analog Input 1 —Analog Input 2 —Analog Input 3 —Analog Input 4

+ 2495V + 2483V + 2483V + 2498 V
Setup | Setup | Setup | Setup |

—Analog Input & —Analog Input B —Analog Input 7 —Analog Input 8

+ 2473V + 2475V + 2ABT V + 2464 V
Setup | Setup | Setup | Setup |

The Motion Control API function for reading an A/D input channel is as follows:

MCGetAnalogEx() get digital input channel digitized level

170 Precision MicroControl Corp.

General Purpose 1/0

Get Analog

Reads the digitized level of the specified input wChannel. For each of A/D input channel, this function will
return a value between 0 and 65532.

C++ Function: WORD MCGetAnalogEx()(HCTRLR hCtlr, WORD wChannel);
Delphi Function: function MCGetAnalogEx()(hCtlr: HCTRLR; wChannel: Word): Word;
VB Function: Function MCGetAnalogEx() (ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer

MCCL command: TA

EIIEII:I.I[E [T]
Handle In - Handle Out
Channel (1] T |}

Yalue

LabVIEW VI:
MCGetAnalog. vi

MultiFlex PCI 1000 Series User's Manual 171

General Purpose I/0

172 Precision MicroControl Corp.

Specifications

Chapter

8

Motion Control Board

Function

Installation

Main Processor
Processor Clock Rate

Memory

Processor Fault Detection

Status LED's
Standard Communication Interface

Connectors

Required PCI-bus Supply Voltages
PCI-bus Signaling Level compatibility
Form Factor

Operating Temperature range

1 - 8 Axis, servo, stepper and I/O controller
PCI-bus universal (3.3 & 5V) short-card
Toshiba 64-bit MIPS RISC CPU

200 MHz

Flash Memory: 2 KB
Synchronous DRAM: 16 MB

Watchdog Circuit with Reset Relay (normally open)
Max. switching power = 30W
Max. switching current = 1A
max. switching voltage: DC = 110V, AC=125V

Power, Reset, Run

32-bit, 33 MHz PCI Bus
4 KB dual ported memory in Memory Address Space
‘Plug & Play’ dynamic addressing

4 SCSI (VHDCI) connectors (2 axes each)

+3.3V (0.6A), +5V (0.45A), +12V (0.07A), and -12V (0.07A)
3.3V and 5V (connector is keyed for Universal PCI bus support)
Half-length, full-height PCI-bus card (6.875" x 4.2")

0° C to 55° C, non-condensing

MultiFlex PCI 1000 Series User's Manual 173

Specifications

Analog Command Axis Specifications

Function

Operating Modes
Filter Algorithm
Servo Filter Update Rate

Trajectory Generator

Command output

Position Feedback

Position and Velocity Resolution

Encoder
Encoder and Index Inputs
Encoder Count Rate
Encoder Supply Voltage
Minimum Phase differential
Hardware Error Checking

Axis Inputs (Optically isolated)
Device conducting

Minimum current required

Axis Outputs (Open Collector)
Maximum voltage
Maximum current sink

Position Capture (Latch) input
Active level
Minimum pulse duration
Maximum trigger frequency

Position Compare (trigger) output
Active level
Minimum pulse duration
Maximum repeat frequency

Closed Loop Servo Motor Control

Position, Velocity, Contouring, Torque, and Gain
PID with Velocity, Accel / Decel Feed-Forward (PID-VAFF)
4, 2, or 1 KHz - software selectable

Trapezoidal, Parabolic or S-Curve
Independent Acceleration and Deceleration

Analog Signal (+/- 10 vdc @ 10 ma, 16 bit)

Incremental Encoders with Index and Hardware Error Detection
64 bit floating point

Differential or Single-ended, -25 to +25 vdc max.
Up to 20,000,000 Quadrature Counts/sec. per axis
+5 vdc or +12 vdc

200mV

Yes (for differential encoders)

Limit+, Limit-, Home, Amplifier/Drive Fault
minimum voltage = 3V
maximum voltage = 25V

0.25 mA

Amplifier/Drive Disable, Amplifier/Drive Enable
30V
100 ma

TTL (0 - +5V), 1 per servo axis pair
Rising edge (TTL high, > 2.4 VDC)
100 nanosecond

1 KHz

TTL (O - +5V), 1 per four servo axes
Programmable, default = TTL high

<1 nanosecond

>1 MHz (programmable trigger modes)

174

Precision MicroControl Corp.

Specifications

Pulse Command Axis Specifications

Open Stepper, Open Loop Stepper with Position Verification,
Closed Loop Stepper, or Pulse Command Servo

Function
Operating Modes Position, Velocity, Contouring, Torque, and Gain

Trapezoidal, Parabolic or S-Curve
Independent Acceleration and Deceleration

Incremental Encoder with Index (for closed loop stepper
operation or position verification of an open loop stepper)

Position and Velocity Resolution 64 bit floating point

Trajectory Generator

Position Feedback

Step/Direction or CW/CCW (software selectable), 50% duty
cycle open collector drivers (max. 30V, 100ma current sink)
High Speed - 153 Steps/Sec. - 5.0M Steps/Sec.

Step Rates (Software Selectable) Medium Speed - 20 Steps/Sec. - 625K Steps/Sec.

Low Speed - .1 Steps/Sec. — 78K Steps/Sec.

Step Outputs

Position Feedback Incremental Encoder with Index
Position and Velocity Resolution 32 hit
Encoder
Encoder and Index Inputs Differential or single ended, -25 to +25 vdc max.
Encoder Count Rate To 20,000,000 Quadrature Counts/Sec.
Encoder Supply Voltage +5 vdc or +12 vdc
Minimum Phase differential 200mvV
Hardware Error Checking Yes (differential encoder only)
Axis Inputs (Optically isolated) Limit+, Limit -, Home, Drive Fault (shared with analog cmd. axis)

minimum voltage = 3V

Device conducting maximum voltage = 25V

Minimum current required 0.25 mA

Axis Outputs (Open Collector) Driver Disable, Driver Enable, Full/Half Current
Maximum voltage 30V
Maximum current sink 100ma

Position Capture (Latch) input TTL (0 - +5V)
Active level Rising edge (TTL high, > 2.4 VDC)
Minimum pulse duration 100 nanosecond
Maximum re-trigger frequency 1 KHz

Position Compare output TTL (0 - +5V), 1 per four servo axes
Active level Programmable, default = TTL high
Minimum pulse duration < nanosecond
Maximum re-trigger frequency >1 MHz, (programmable trigger modes)

MultiFlex PCI 1000 Series User's Manual 175

Specifications

General Purpose I/O Specifications

Digital Inputs 16 channels, TTL, Buffered (74LS541)

Active level

TTL high level input min. voltage
TTL high level input max. voltage
TTL low level input min. voltage
TTL low level input max. voltage
Input termination (pull up/down)

Digital Outputs

Active level

TTL low level current sink max.
TTL high level curr. source max.
TTL high level out. min. voltage
TTL high level out. max. voltage
TTL low level output min. voltage
TTL low level out. max. voltage

Analog Inputs

Input voltage range

Nominal read rates
From a Windows program
From on-board MCCL routine

Programmable
2.0v
5.0V
0.0v
0.6V
None

16 channels, TTL, Buffered (74LS541)
Programmable

24 mA

15 mA

2.4V

5.0V

0.0v

0.5v

8 channels, 14 bit per channel
-10.0V to +10.0V (standard), 0.0V to +4.0V (special order)

~200 usec* (results will vary depending PC configuration)
~42 usec *

* results will vary based on the state of controller at time of A/D conversion.

176

Precision MicroControl Corp.

Chapter

Connectors, I/0O and Schematics

I/O Connectors Digital I/0 Analog Adjustment Analog 1/0 LED Status Watchdog
J1&J3 Buffer Circuitry Potentiometers Circuitry Indicator Lights Relay Contacts

I/O Connectors | Encoder Receivers with Universal (3.3 & 5V) 64-bit Floating FPGA 16 MB
J2 &34 Failure Detection Circuits ~ PCI-bus Connector Point RISC CPU DRAM

Figure 53. MultiFlex PCI 1000 Series Board Layout

MultiFlex PCI 1000 Series User's Manual 177

Connectors, I/0O and Schematics

VHDCI Connectors

The controller uses four 68 contact SCSI VHDCI (Very High Density Cable Interconnect) receptacles for
all signal connections. These high density shielded connectors (AMP P/N 787962-2) mate with widely
available industry-standard cables that are often used in RAID (Redundant Array of Independent Disks)

network servers.

MultiFlex PCI 1440 Connector Locations and Signal Assighments

Receptacle J2:
Axis #3 (analog command)
Axis #4 (analog command)
Digital Inputs 5 - 8 (TTL)
Digital Inputs 25 - 32 (Opto isolated)
Digital Outputs 37 - 40 (TTL)
Digital Outputs 53 - 55 (Open collector)

Receptacle J1:
Axis #1 (analog command)
Axis #2 (analog command)
Digital Inputs 1 - 4 (TTL)
Digital Inputs 17 - 24 (Opto isolated)
Digital Outputs 33 - 36 (TTL)
Digital Outputs 49 - 51 (Open collector)
A/D inputs 1 & 2 (option)

o0

A/D inputs 3 & 4 (option)

MO

o

Receptacle J4:
Axis #7 (pulse command)
Axis #8 (pulse command)
Digital Inputs 13 - 16 (TTL)
Digital Inputs 25 - 32 (Opto isolated)
Digital Outputs 45 - 48 (TTL)
Digital Outputs 61 - 63 (Open collector)
A/D inputs 7 & 8 (option)

Receptacle J3:
Axis #5 (pulse command)
Axis #6 (pulse command)
Digital Inputs 9 - 12 (TTL)
Digital Inputs 17 - 24 (Opto isolated)
Digital Outputs 41 - 44 (TTL)
Digital Outputs 57 - 59 (Open collector)
A/D inputs 5 & 6 (option)

MultiFlex PCI 1040 Connector Locations and Signal Assighments

Receptacle J2:
Digital Inputs 5 - 8 (TTL)
Digital Inputs 25 - 32 (Opto isolated)
Digital Outputs 37 - 40 (TTL)
Digital Outputs 53 - 55 (Open collector)
A/D inputs 3 & 4 (option)

Receptacle J1:
Digital Inputs 1 - 4 (TTL)
Digital Inputs 17 - 24 (Opto isolated)
Digital Outputs 33 - 36 (TTL)
Digital Outputs 49 - 51 (Open collector)
A/D inputs 1 & 2 (option)

O

O
o

Receptacle J4:
Axis #3 (pulse command)
Axis #4 (pulse command)
Digital Inputs 13 - 16 (TTL)
Digital Inputs 25 - 32 (Opto isolated)
Digital Outputs 45 - 48 (TTL)
Digital Outputs 61 - 63 (Open collector)
A/D inputs 7 & 8 (option)

Receptacle J3:
Axis #1 (pulse command)
Axis #2 (pulse command)
Digital Inputs 9 - 12 (TTL)
Digital Inputs 17 - 24 (Opto isolated)
Digital Outputs 41 - 44 (TTL)
Digital Outputs 57 - 59 (Open collector)
A/D inputs 5 & 6 (option)

178

Precision MicroControl Corp.

Connectors, I/0O and Schematics

MFX-PCI VHDCI Connector pin numbering
(only J1 and J3 shown)

J1-35 J1-68

J J1-34

J3 (NN RN RN AR NN RN RN RN J3—1

Prior to inserting the VHDCI cable 'plug' connector into the controller-mounted
VHDCI receptacle always visually inspect the contacts of both the plug and
receptacle. Contacts that are visibly out of alignment may damage the contacts
of the mating connector or cause a wiring short circuit which could damage the
controller (voiding the warranty).

If any contacts are visibly out of alignment, contact PMC Tech Support at
support@pmccorp.com.

VHDCI SCSI mating connectors and cables

J1 - J4 Mating connector:
Cable Plug (offset): Amp P/N 787801-1
Backshell (offset): Molex P/N 788362-1

VHDCI SCSI cables supplied by PMC:
PMC P/N: CBL-VH68-6: VHDCI male to HD68 (SCSI-II) male, 6’ (~2M) (compatible with ADAM 3968
Wiring Terminal Board).

Controller Status LED Indicators

LED# Color Description

D1 Green | +3.3 VDC PC logic supply OK
D2 Yellow = Controller reset active (watchdog relay de-energized)
D3 Green | Run (motion control code executing, watchdog relay energized)

MultiFlex PCI 1000 Series User's Manual 179

Connectors, I/0O and Schematics

Controller Potentiometers

POTL1 - Axis #1 offset adjustment potentiometer
Adjust the analog command output offset of axis #1 (measured between J1 pins 1 and 35).Maximum
adjustment range is approximately 1.0 volt.

POT2 - Axis #2 offset adjustment potentiometer
Adjust the analog command output offset of axis #2 (measured between J2 pins 1 and 35).Maximum
adjustment range is approximately 1.0 volt.

POT3 - Axis #3 offset adjustment potentiometer
Adjust the analog command output offset of axis #3 (measured between J3 pins 1 and 35).Maximum
adjustment range is approximately 1.0 volt.

POT4 - Axis #4 offset adjustment potentiometer
Adjust the analog command output offset of axis #4 (measured between J4 pins 1 and 35).Maximum
adjustment range is approximately 1.0 volt.

POTS5 - Reserved for factory use only (Analog input reference adjustment)

180 Precision MicroControl Corp.

Connectors, I/0 and Schematics

Connector Pinout — MultiFlex PCI 1440

Connector J1 (Analog Command Axes 1 & 2, Dig. inputs 1-4, Dig. outputs 1-4, A/D inputs 1 & 2)

VHDCI @ Digital /0 R Description (default ADAM-3968
g Circuit Type . ; .
Pin # Channel configuration) Pin #
Jl-1 Axis 1 Servo Command (+/- 10V) 1
J1-35 Axis 1 return / Analog Ground 35
Ji1-2 Axis 2 Servo Command (+/- 10V) 2
J1-36 Axis 2 return / Analog Ground 36
Ji-3 3
J1-37 37
Jl-4 53 Output - open collector driver Axis 2 Amp. Enable output 4
J1-38 +5VDC 38
Jl1-5 49 Output - open collector driver Axis 1 Amp. Enable output 5
J1-39 +5 VDC 39
J1-6 51 Output - open collector driver #1 PWM out / #1 Direction / #5 Full Current out 6
J1-40 +5 VDC 40
J1-7 55 Output - open collector driver #2 PWM out / #2 Direction / #6 Full Current out 7
Ji-41 +5VDC 41
Ji1-8 8
Jl1-42 42
Ji-9 +12 VDC 9
J1-43 +12 VDC 43
Ji1-10 Axis 1/2 Encoder Ref. (1.5V) 10
J1-44 Axis 1/2 Encoder Ref. (1.5V) 44
Ji-11 Axis 1 Encoder Phase A+ 11
J1-45 Axis 1 Encoder Phase A- 45
Ji-12 Axis 1 Encoder Phase B+ 12
J1-46 Axis 1 Encoder Phase B- 46
J1-13 Axis 1 Encoder Phase Z+ 13
J1-47 Axis 1 Encoder Phase Z - 47
Jl1-14 Axis 2 Encoder Phase A+ 14
J1-48 Axis 2 Encoder Phase A- 48
Ji1-15 Axis 2 Encoder Phase B+ 15
J1-49 Axis 2 Encoder Phase B- 49
J1-16 Axis 2 Encoder Phase Z+ 16
J1-50 Axis 2 Encoder Phase Z - 50
J1-17 20 Input - opto isolated (bi-directional) Axis 1 Amp. Fault input (shared by Axis 5 Drive 17
J1-51 Axis 1/5 Amp Fault supply / return 51
J1-18 24 Input - opto isolated (bi-directional) Axis 2 Amp. Fault input (shared by Axis 6 Drive 18
J1-52 Axis 2/6 Amp Fault supply / return 52
J1-19 33 Output - TTL Digital Out #1 / Axis 1 - 4 Compare 19
J1-53 +5VDC 53
J1-20 34 Output - TTL Digital Output #2 20
J1-54 +5VDC 54
Ji1-21 35 Output - TTL Digital Output #3 21
J1-55 +5VDC 55
J1-22 36 Output - TTL Digital Output #4 22
J1-56 +5VDC 56
J1-23 1 Input - TTL Dig. In. #1 / Axis 1 & 2 Position Capture (Latch) 23
J1-57 Ground 57
J1-24 2 Input - TTL Digital Input #2 24
J1-58 Ground 58
J1-25 3 Input - TTL Digital Input #3 25
J1-59 Ground 59
J1-26 4 Input - TTL Digital Input #4 26
J1-60 Ground 60
J1-27 17 Input - opto isolated (bi-directional) Axis 1 Coarse Home (shared by Axis 5 Home) 27
Jl1-61 Axis 1/5 Coarse Home / Home return / supply 61
J1-28 21 Input - opto isolated (bi-directional) Axis 2 Coarse Home (shared by Axis 6 Home) 28
J1-62 Axis 2/6 Coarse Home / Home return / supply 62
J1-29 18 Input - opto isolated (bi-directional) Axis 1Limit + (shared by Axis 5 Limit +) 29
J1-63 Axis 1/5 Limit + return / supply 63
J1-30 22 Input - opto isolated (bi-directional) Axis 2 Limit + (shared by Axis 6 Limit +) 30
J1-64 Axis 2/6 Limit + return / supply 64
J1-31 19 Input - opto isolated (bi-directional) Axis 1 Limit - (shared by Axis 5 Limit -) 31
J1-65 Axis 1/5 Limit - return / supply 65
J1-32 23 Input - opto isolated (bi-directional) Axis 2 Limit - (shared by Axis 6 Limit -) 32
J1-66 Axis 2/6 Limit - return / supply 66
J1-33 Analog Input #1 (option) 33
J1-67 Analog In #1 return / An. Ground 67
J1-34 Analog Input #2 (option) 34
J1-68 Analog In #2 return / An. Ground 68

MultiFlex PCI 1000 Series User's Manual 181

Connectors, I/0 and Schematics

Connector Pinout — MultiFlex PCI 1440 (continued)

Connector J2 (Analog Command Axes 3 & 4, Dig. inputs 5-8, Dig. outputs 5-8, A/D inputs 3 & 4)

VHDCI | Digital I/O N Description (default Adam-3968
. Circuit Type . X .
Pin # Channel configuration) Pin #
J2-1 Axis 3 Servo Command (+/- 10V) 1
J2-35 Axis 3 return / Analog Ground 35
J2-2 Axis 4 Servo Command (+/- 10V) 2
J2-36 Axis 4 return / Analog Ground 36
J2-3 3
J2-37 37
J2-4 61 Output - open collector driver Axis 4 Amp. Enable output 4
J2-38 +5VDC 38
J2-5 57 Output - open collector driver Axis 3 Amp. Enable output 5
J2-39 +5VDC 39
J2-6 59 Output - open collector driver #3 PWM out / #3 Direction / #7 Full Current out 6
J2-40 +5VDC 40
J2-7 63 Output - open collector driver #4 PWM out / #4 Direction / #8 Full Current out 7
J2-41 +5VDC 41
J2-8 8
J2-42 42
J2-9 +12 VDC 9
J2-43 +12 VDC 43
J2-10 Axis 3/4 Encoder Ref. (1.5V) 10
J2-44 Axis 3/4 Encoder Ref. (1.5V) 44
J2-11 Axis 3 Encoder Phase A+ 11
J2-45 Axis 3 Encoder Phase A- 45
J2-12 Axis 3 Encoder Phase B+ 12
J2 - 46 Axis 3 Encoder Phase B- 46
J2-13 Axis 3 Encoder Phase Z+ 13
J2-47 Axis 3 Encoder Phase Z - 47
J2-14 Axis 4 Encoder Phase A+ 14
J2-48 Axis 4 Encoder Phase A- 48
J2-15 Axis 4 Encoder Phase B+ 15
J2-49 Axis 4 Encoder Phase B- 49
J2-16 Axis 4 Encoder Phase Z+ 16
J2-50 Axis 4 Encoder Phase Z - 50
J2-17 28 Input - opto isolated (bi-directional) Axis 3 Amp. Fault input (shared by Axis 7 Drive 17
J2-51 Axis 4/8 Amp Fault supply / return 51
J2-18 32 Input - opto isolated (bi-directional) Axis 4 Amp. Fault input (shared by Axis 8 Drive 18
J2-52 Axis 4/8 Amp Fault supply / return 52
J2-19 37 Output - TTL Digital Output #5 19
J2-53 +5VDC 53
J2-20 38 Output - TTL Digital Output #6 20
J2-54 +5VDC 54
J2-21 39 Output - TTL Digital Output #7 21
J2-55 +5VDC 55
J2-22 40 Output - TTL Digital Output #8 22
J2 - 56 +5VDC 56
J2-23 5 Input - TTL Dig. In. #5 / Axis 3 & 4 Position Capture (Latch) 23
J2-57 Ground 57
J2-24 6 Input - TTL Digital Input #6 24
J2-58 Ground 58
J2-25 7 Input - TTL Digital Input #7 25
J2-59 Ground 59
J2-26 8 Input - TTL Digital Input #8 26
J2-60 Ground 60
J2-27 25 Input - opto isolated (bi-directional) Axis 3 Coarse Home (shared by Axis 7 Home) 27
J2-61 Axis 3/7 Coarse Home / Home return / supply 61
J2-28 29 Input - opto isolated (bi-directional) Axis 4 Coarse Home / Axis 8 Stepper Home 28
J2-62 Axis 4 Coarse Home (shared by Axis 8 Home) 62
J2-29 26 Input - opto isolated (bi-directional) Axis 3 Limit + (shared by Axis 7 Limit +) 29
J2-63 Axis 3/7 Limit + return / supply 63
J2-30 30 Input - opto isolated (bi-directional) Axis 4 Limit + (shared by Axis 8 Limit +) 30
J2-64 Axis 4/8 Limit + return / supply 64
J2-31 27 Input - opto isolated (bi-directional) Axis 3 Limit - (shared by Axis 7 Limit -) 31
J2-65 Axis 3/7 Limit - return / supply 65
J2-32 31 Input - opto isolated (bi-directional) Axis 4 Limit - (shared by Axis 8 Limit -) 32
J2-66 Axis 4/8 Limit - return / supply 66
J2-33 Analog Input #3 (option) 33
J2 -67 Analog In #3 return / An. Ground 67
J2-34 Analog Input #4 (option) 34
J2-68 Analog In #4 return / An. Ground 68
182 Precision MicroControl Corp.

Connectors, I/0 and Schematics

Connector Pinout — MultiFlex PCI 1440 (continued)

Connector J3 (Pulse Command Axes 5 & 6, Dig. inputs 9-12, Dig. outputs 9-12, A/D inputs 5 & 6)

VHDCI | Digital I/O N Description (default Adam-3968
. Circuit Type . X .
Pin # Channel configuration) Pin #
J3-1 50 Output - open collector driver Axis 5 All Windings Off output 1
J3-35 +5VDC 35
J3-2 Axis 5 Step / CCW Pulse 2
J3-36 +5VDC 36
J3-3 Axis 5 Direction / CW Pulse 3
J3-37 +5VDC 37
J3-4 51 Output - open collector driver Axis 5 Full Current / Axis 1 Unipolar Direction output 4
J3-38 +5VDC 38
J3-5 55 Output - open collector driver Axis 6 Full Current / Axis 2 Unipolar Direction output 5
J3 -39 +5VDC 39
J3-6 54 Output - open collector driver Axis 6 All Windings Off output 6
J3-40 +5 VDC 40
J3-7 Axis 6 Step / CCW Pulse 7
J3-41 +5VDC 41
J3-8 Axis 6 Direction / CW Pulse 8
J3-42 +5VDC 42
J3-9 +12 VDC 9
J3-43 +12 VDC 43
J3-10 Axis 5/6 Encoder Ref. (1.5V) 10
J3-44 Axis 5/6 Encoder Ref. (1.5V) 44
J3-11 Axis 5 Encoder Phase A+ 11
J3-45 Axis 5 Encoder Phase A- 45
J3-12 Axis 5 Encoder Phase B+ 12
J3-46 Axis 5 Encoder Phase B- 46
J3-13 Axis 5 Encoder Phase Z+ 13
J3-47 Axis 5 Encoder Phase Z - 47
J3-14 Axis 6 Encoder Phase A+ 14
J3-48 Axis 6 Encoder Phase A- 48
J3-15 Axis 6 Encoder Phase B+ 15
J3-49 Axis 6 Encoder Phase B- 49
J3-16 Axis 6 Encoder Phase Z+ 16
J3-50 Axis 6 Encoder Phase Z - 50
J3-17 20 Input - opto isolated (bi-directional) Axis 5 Drive Fault input (shared by Axis 1 Amp 17
J3-51 Axis 1/5 Amp Fault supply / return 51
J3-18 24 Input - opto isolated (bi-directional) Axis 6 Drive Fault input (shared by Axis 2 Amp 18
J3-52 Axis 2/6 Amp Fault supply / return 52
J3-19 41 Output - TTL Digital Out #9 / Axis 5 - 8 Position Compare 19
J3-53 +5VDC 53
J3-20 42 Output - TTL Digital Output #10 20
J3-54 +5VDC 54
J3-21 43 Output - TTL Digital Output #11 21
J3-55 +5VDC 55
J3-22 44 Output - TTL Digital Output #12 22
J3 - 56 +5VDC 56
J3-23 9 Input - TTL Dig. In. #9 / Axis 5 & 6 Position Capture (Latch) 23
J3-57 Ground 57
J3-24 10 Input - TTL Digital Input #10 24
J3-58 Ground 58
J3-25 11 Input - TTL Digital Input #11 25
J3-59 Ground 59
J3-26 12 Input - TTL Digital Input #12 26
J3-60 Ground 60
J3-27 17 Input - opto isolated (bi-directional) Axis 5 Home (shared by Axis 1 Coarse Home) 27
J3-61 Axis 1/5 Coarse Home / Home return / supply 61
J3-28 21 Input - opto isolated (bi-directional) Axis 6 Home (shared by Axis 6 Coarse Home) 28
J3-62 Axis 2/6 Coarse Home / Home return / supply 62
J3-29 18 Input - opto isolated (bi-directional) Axis 5 Limit + (shared by Axis 1 Limit +) 29
J3-63 Axis 1/5 Limit + return / supply 63
J3-30 22 Input - opto isolated (bi-directional) Axis 6 Limit + (shared by Axis 2 Limit +) 30
J3-64 Axis 2/6 Limit + return / supply 64
J3-31 19 Input - opto isolated (bi-directional) Axis 5 Limit - (shared by Axis 1 Limit -) 31
J3-65 Axis 1/5 Limit - return / supply 65
J3-32 23 Input - opto isolated (bi-directional) Axis 6 Limit - (shared by Axis 2 Limit -) 32
J3-66 Axis 2/6 Limit - return / supply 66
J3-33 Analog Input #5 (option) 33
J3-67 Analog In #5 return / An. Ground 67
J3-34 Analog Input #6 (option) 34
J3-68 Analog In #6 return / An. Ground 68

MultiFlex PCI 1000 Series User's Manual

183

Connectors, I/0 and Schematics

Connector Pinout — MultiFlex PCI 1440 (continued)

Connector J4 (Pulse Command Axes 7 & 8, Dig. inputs 13-16, Dig. outputs 13-16, A/D inputs 7 & 8)

VHDCI @ Digital I/O N Description (default Adam-3968
. Circuit Type . X .
Pin # Channel configuration) Pin #
J4-1 58 Output — open-collector driver Axis 7 All Windings Off output 1
J4-35 +5 VDC 35
J4-2 Axis 7 Step / CCW Pulse 2
J4 - 36 +5VDC 36
J4-3 Axis 7 Direction / CW Pulse 3
J4 - 37 +5VDC 37
J4-4 59 Output - open collector driver Axis 7 Full Current / Axis 3 Unipolar Direction output 4
J4 - 38 +5VDC 38
J4-5 63 Output - open collector driver Axis 8 Full Current / Axis 4 Unipolar Direction output 5
J4 -39 +5VDC 39
J4-6 62 Output - open collector driver Axis 8 All Windings Off output 6
J4 - 40 +5 VDC 40
Ja-7 Axis 8 Step / CCW Pulse 7
J4-41 +5VDC 41
J4-8 Axis 8 Direction / CW Pulse 8
J4 - 42 +5VDC 42
J4-9 +12 VDC 9
J4 - 43 +12 VDC 43
J4-10 Axis 7/8 Encoder Ref. (1.5V) 10
J4 - 44 Axis 7/8 Encoder Ref. (1.5V) 44
J4-11 Axis 7 Encoder Phase A+ 11
J4 — 45 Axis 7 Encoder Phase A- 45
J4-12 Axis 7 Encoder Phase B+ 12
J4 - 46 Axis 7 Encoder Phase B- 46
J4-13 Axis 7 Encoder Phase Z+ 13
J4 - 47 Axis 7 Encoder Phase Z - 47
J4-14 Axis 8 Encoder Phase A+ 14
J4 - 48 Axis 8 Encoder Phase A- 48
J4-15 Axis 8 Encoder Phase B+ 15
J4-49 Axis 8 Encoder Phase B- 49
J4-16 Axis 8 Encoder Phase Z+ 16
J4 - 50 Axis 8 Encoder Phase Z - 50
J4-17 28 Input - opto isolated (bi-directional) Axis 7 Drive Fault input (shared by Axis 3 Amp 17
J4-51 Axis 3/7 Amp Fault supply / return 51
J4-18 32 Input - opto isolated (bi-directional) Axis 8 Amp. Fault input (shared by Axis 8 Amp 18
J4 - 52 Axis 4/8 Amp Fault supply / return 52
J4-19 45 Output - TTL Digital Output #13 19
J4 -53 +5VDC 53
J4-20 46 Output - TTL Digital Output #14 20
J4-54 +5VDC 54
J4-21 47 Output - TTL Digital Output #15 21
J4 —55 +5VDC 55
J4-22 48 Output - TTL Digital Output #16 22
J4 - 56 +5VDC 56
J4-23 13 Input - TTL Dig. In. #13 / Axis 7 & 8 Position Capture (Latch) 23
J4 - 57 Ground 57
J4-24 14 Input - TTL Digital Input #14 24
J4 - 58 Ground 58
J4-25 15 Input - TTL Digital Input #15 25
J4 - 59 Ground 59
J4 - 26 16 Input - TTL Digital Input #16 26
J4 - 60 Ground 60
J4-27 25 Input - opto isolated (bi-directional) Axis 7 Home (shared by Axis 3 Coarse Home) 27
J4-61 Axis 3/7 Coarse Home / Home return / supply 61
J4-28 29 Input - opto isolated (bi-directional) Axis 8 Home (shared by Axis 4 Coarse Home) 28
J4 - 62 Axis 4/8 Coarse Home / Home return / supply 62
J4-29 26 Input - opto isolated (bi-directional) Axis 7 Limit + (shared by Axis 3 Limit +) 29
J4-63 Axis 3/7 Limit + return / supply 63
J4-30 30 Input - opto isolated (bi-directional) Axis 8 Limit + (shared by Axis 4 Limit +) 30
J4 - 64 Axis 4/8 Limit + return / supply 64
J4-31 27 Input - opto isolated (bi-directional) Axis 7 Limit - (shared by Axis 7 Limit -) 31
J4 - 65 Axis 3/7 Limit - return / supply 65
J4 - 32 31 Input - opto isolated (bi-directional) Axis 8 Limit - (shared by Axis 8 Limit -) 32
J4 - 66 Axis 4/8 Limit - return / supply 66
J4-33 Analog Input #7 (option) 33
J4 - 67 Analog In #7 return / An. Ground 67
J4-34 Analog Input #8 (option) 34
J4 - 68 Analog In #8 return / An. Ground 68

184 Precision MicroControl Corp.

Connectors, I/0 and Schematics

Connector Pinout — MultiFlex PCI 1040

Connector J1 (Digital inputs 1-4, Digital outputs 1-4, A/D inputs 1 & 2)

VHDCI | Digital I/O - Description (default Adam-3968
. Circuit Type . ; ;
Pin # Channel configuration) Pin #
Jl-1 1
J1-35 35
J1-2 2
J1-36 36
J1-3 3
J1-37 37
Jl1-4 53 Output - open collector driver 4
J1-38 +5VDC 38
J1-5 49 Output - open collector driver 5
J1-39 +5VDC 39
J1-6 51 Output - open collector driver Axis 1 Full Current output 6
J1-40 +5VDC 40
J1-7 55 Output - open collector driver Axis 2 Full Current output 7
Jl1-41 +5VDC 41
J1-8 8
Jl1-42 42
J1-9 +12 VDC 9
J1-43 +12 VDC 43
Ji1-10 10
J1-44 44
Ji-11 11
J1-45 45
Jl1-12 12
J1-46 46
J1-13 13
J1-47 47
J1-14 14
J1-48 48
J1-15 15
J1-49 49
J1-16 16
J1-50 50
J1-17 17
J1-51 51
J1-18 18
J1-52 52
Ji-19 33 Output - TTL Digital Out #1 19
J1-53 +5VDC 53
J1-20 34 Output - TTL Digital Output #2 20
J1-54 +5VDC 54
Ji1-21 35 Output - TTL Digital Output #3 21
J1-55 +5VDC 55
J1-22 36 Output - TTL Digital Output #4 22
J1-56 +5VDC 56
J1-23 1 Input - TTL Digital Input #1 23
J1-57 Ground 57
J1-24 2 Input - TTL Digital Input #2 24
J1-58 Ground 58
J1-25 3 Input - TTL Digital Input #3 25
J1-59 Ground 59
J1-26 4 Input - TTL Digital Input #4 26
J1-60 Ground 60
J1-27 27
Jl1-61 61
J1-28 28
J1-62 62
J1-29 29
J1-63 63
J1-30 30
J1-64 64
J1-31 31
J1-65 65
J1-32 32
J1-66 66
J1-33 Analog Input #1 (option) 33
J1-67 Analog In #1 return / An. Ground 67
J1-34 Analog Input #2 (option) 34
J1-68 Analog In #2 return / An. Ground 68

MultiFlex PCI 1000 Series User's Manual 185

Connectors, I/0 and Schematics

Connector Pinout — MultiFlex PCI 1040 (continued)

Connector J2 (Digital inputs 5-8, Digital outputs 5-8, A/D inputs 3 & 4)

VHDCI | Digital I/O Circuit Tvpe Description (default Adam-3968
Pin# | Channel yp configuration) Pin #
J2-1 1
J2-35 35
J2-2 2
J2-36 36
J2-3 3
J2 - 37 37
J2-4 61 Output - open collector driver 4
J2-38 +5VDC 38
J2-5 57 Output - open collector driver 5
J2-39 +5VDC 39
J2-6 59 Output - open collector driver Axis 3 Full Current output 6
J2-40 +5 VDC 40
J2-7 63 Output - open collector driver Axis 4 Full Current output 7
J2-41 +5 VDC 41
J2-8 8
J2-42 42
J2-9 +12 VDC 9
J2-43 +12 VDC 43
J2-10 10
J2-44 44
J2-11 11
J2-45 45
J2-12 12
J2 - 46 46
J2-13 13
J2 - 47 47
J2-14 14
J2-48 48
J2-15 15
J2-49 49
J2-16 16
J2 -50 50
J2-17 17
J2-51 51
J2-18 18
J2 - 52 52
J2-19 37 Output - TTL Digital Output #5 19
J2-53 +5 VDC 53
J2-20 38 Output - TTL Digital Output #6 20
J2-54 +5 VDC 54
J2-21 39 Output - TTL Digital Output #7 21
J2-55 +5 VDC 55
J2-22 40 Output - TTL Digital Output #8 22
J2 - 56 +5VDC 56
J2-23 5 Input - TTL Digital Input #5 23
J2-57 Ground 57
J2-24 6 Input - TTL Digital Input #6 24
J2-58 Ground 58
J2-25 7 Input - TTL Digital Input #7 25
J2 - 59 Ground 59
J2-26 8 Input - TTL Digital Input #8 26
J2-60 Ground 60
J2-27 27
J2-61 61
J2-28 28
J2-62 62
J2-29 29
J2-63 63
J2-30 30
J2 - 64 64
J2-31 31
J2 - 65 65
J2-32 32
J2 - 66 66
J2-33 Analog Input #3 (option) 33
J2 - 67 Analog In #3 return / An. Ground 67
J2-34 Analog Input #4 (option) 34
J2 - 68 Analog In #4 return / An. Ground 68
186 Precision MicroControl Corp.

Connectors, I/0 and Schematics

Connector Pinout — MultiFlex PCI 1040 (continued)

Connector J3 (Pulse Command Axes 1 & 2, Dig. I/0 9-12, An. in 5 & 6)

VHDCI | Digital I/O N Description (default Adam-3968
: Circuit Type . : :
Pin # Channel configuration) Pin #
J3-1 50 Output - open collector driver Axis 1 All Windings Off output 1
J3-35 +5 VDC 35
J3-2 Axis 1 Step / CCW Pulse 2
J3-36 +5 VDC 36
J3-3 Axis 1 Direction / CW Pulse 3
J3-37 +5 VDC 37
J3-4 51 Output - open collector driver Axis 1 Full Current 4
J3-38 +5VDC 38
J3-5 55 Output - open collector driver Axis 2 Full Current 5
J3-39 +5VDC 39
J3-6 54 Output - open collector driver Axis 2 All Windings Off output 6
J3-40 +5 VDC 40
J3-7 Axis 2 Step /| CCW Pulse 7
J3-41 +5 VDC 41
J3-8 Axis 2 Direction / CW Pulse 8
J3-42 +5 VDC 42
J3-9 +12 VDC 9
J3-43 +12 VDC 43
J3-10 Axis 1/2 Encoder Ref. (1.5V) 10
J3-44 Axis 1/2 Encoder Ref. (1.5V) 44
J3-11 Axis 1 Encoder Phase A+ 11
J3-45 Axis 1 Encoder Phase A- 45
J3-12 Axis 1 Encoder Phase B+ 12
J3-46 Axis 1 Encoder Phase B- 46
J3-13 Axis 1 Encoder Phase Z+ 13
J3-47 Axis 1 Encoder Phase Z - 47
J3-14 Axis 2 Encoder Phase A+ 14
J3-48 Axis 2 Encoder Phase A- 48
J3-15 Axis 2 Encoder Phase B+ 15
J3-49 Axis 2 Encoder Phase B- 49
J3-16 Axis 2 Encoder Phase Z+ 16
J3-50 Axis 2 Encoder Phase Z - 50
J3-17 20 Input - opto isolated (bi-directional) Axis 1 Drive Fault input 17
J3-51 Axis 1 Drive Fault supply / return 51
J3-18 24 Input - opto isolated (bi-directional) Axis 2 Drive Fault input 18
J3-52 Axis 2 Drive Fault supply / return 52
J3-19 41 Output - TTL Digital Out #9 / Axis 1 - 4 Position Compare 19
J3-53 +5 VDC 53
J3-20 42 Output - TTL Digital Output #10 20
J3-54 +5 VDC 54
J3-21 43 Output - TTL Digital Output #11 21
J3-55 +5 VDC 55
J3-22 44 Output - TTL Digital Output #12 22
J3-56 +5VDC 56
J3-23 9 Input - TTL Dig. In. #9 / Axis 1 & 2 Position Capture (Latch) 23
J3-57 Ground 57
J3-24 10 Input - TTL Digital Input #10 24
J3-58 Ground 58
J3-25 11 Input - TTL Digital Input #11 25
J3-59 Ground 59
J3-26 12 Input - TTL Digital Input #12 26
J3-60 Ground 60
J3-27 17 Input - opto isolated (bi-directional) Axis 1 Home 27
J3-61 Axis 1 Home return / supply 61
J3-28 21 Input - opto isolated (bi-directional) Axis 2 Home 28
J3-62 Axis 2 Home return / supply 62
J3-29 18 Input - opto isolated (bi-directional) Axis 1 Limit + 29
J3-63 Axis 1 Limit + return / supply 63
J3-30 22 Input - opto isolated (bi-directional) Axis 2 Limit + 30
J3-64 AXxis 2 Limit + return / supply 64
J3-31 19 Input - opto isolated (bi-directional) Axis 1 Limit - 31
J3-65 Axis 1 Limit - return / supply 65
J3-32 23 Input - opto isolated (bi-directional) Axis 2 Limit - 32
J3-66 Axis 2 Limit - return / supply 66
J3-33 Analog Input #5 (option) 33
J3-67 Analog In #5 return / An. Ground 67
J3-34 Analog Input #6 (option) 34
J3-68 Analog In #6 return / An. Ground 68

MultiFlex PCI 1000 Series User's Manual

187

Connectors, I/0 and Schematics

Connector Pinout — MultiFlex PCI 1040 (continued)

Connector J4 (Pulse Command Axes 3 & 4, Dig. I/0 13-16, An.in 7 & 8)

VHDCI | Digital I/O S Description (default Adam-3968
: Circuit Type . : :
Pin # Channel configuration) Pin #
J4-1 58 Output - open collector driver Axis 3 All Windings Off output 1
J4-35 +5 VDC 35
J4 -2 Axis 3 Step / CCW Pulse 2
J4 - 36 +5 VDC 36
J4-3 Axis 3 Direction / CW Pulse 3
J4 - 37 +5 VDC 37
J4-4 59 Output - open collector driver Axis 3 Full Current 4
J4-38 +5VDC 38
J4-5 63 Output - open collector driver Axis 4 Full Current 5
J4 -39 +5VDC 39
J4-6 62 Output - open collector driver Axis 4 All Windings Off output 6
J4-40 +5 VDC 40
J4-7 Axis 4 Step / CCW Pulse 7
J4—-41 +5 VDC 41
J4-8 Axis 4 Direction / CW Pulse 8
J4—42 +5 VDC 42
J4-9 +12 VDC 9
J4 - 43 +12 VDC 43
J4-10 Axis 3/4 Encoder Ref. (1.5V) 10
J4—44 Axis 3/4 Encoder Ref. (1.5V) 44
J4-11 Axis 3 Encoder Phase A+ 11
J4 - 45 Axis 3 Encoder Phase A- 45
J4-12 Axis 3 Encoder Phase B+ 12
J4 - 46 Axis 3 Encoder Phase B- 46
J4-13 Axis 3 Encoder Phase Z+ 13
J4 - 47 Axis 3 Encoder Phase Z - 47
J4-14 Axis 4 Encoder Phase A+ 14
J4 - 48 Axis 4 Encoder Phase A- 48
J4-15 Axis 4 Encoder Phase B+ 15
J4 - 49 Axis 4 Encoder Phase B- 49
J4-16 Axis 4 Encoder Phase Z+ 16
J4 -50 Axis 4 Encoder Phase Z - 50
J4-17 28 Input - opto isolated (bi-directional) Axis 3 Drive Fault input 17
J4-51 Axis 3 Drive Fault supply / return 51
J4-18 32 Input - opto isolated (bi-directional) Axis 4 Drive Fault input 18
J4 - 52 Axis 4 Drive Fault supply / return 52
J4-19 45 Output - TTL Digital Output #13 19
J4 -53 +5 VDC 53
J4-20 46 Output - TTL Digital Output #14 20
J4 —-54 +5 VDC 54
J4-21 47 Output - TTL Digital Output #15 21
J4 - 55 +5 VDC 55
J4-22 48 Output - TTL Digital Output #16 22
J4 - 56 +5VDC 56
J4-23 13 Input - TTL Dig. In. #13 / Axis 3 & 4 Position Capture (Latch) 23
J4 -57 Ground 57
J4-24 14 Input - TTL Digital Input #14 24
J4 - 58 Ground 58
J4-25 15 Input - TTL Digital Input #15 25
J4 - 59 Ground 59
J4 - 26 16 Input - TTL Digital Input #16 26
J4-60 Ground 60
J4-27 25 Input - opto isolated (bi-directional) Axis 3 Home 27
J4-61 Axis 3 Home return / supply 61
J4 - 28 29 Input - opto isolated (bi-directional) Axis 4 Home 28
J4 - 62 Axis 4 Home return / supply 62
J4-29 26 Input - opto isolated (bi-directional) Axis 3 Limit + 29
J4-63 Axis 3 Limit + return / supply 63
J4 -30 30 Input - opto isolated (bi-directional) Axis 4 Limit + 30
J4 - 64 Axis 4 Limit + return / supply 64
J4-31 27 Input - opto isolated (bi-directional) Axis 3 Limit - 31
J4 - 65 Axis 3 Limit - return / supply 65
J4-32 31 Input - opto isolated (bi-directional) Axis 4 Limit - 32
J4 - 66 Axis 4 Limit - return / supply 66
J4-33 Analog Input #7 (option) 33
J4 - 67 Analog In #7 return / An. Ground 67
J4-34 Analog Input #8 (option) 34
J4 - 68 Analog In #8 return / An. Ground 68
188 Precision MicroControl Corp.

Connectors, I/0 and Schematics

Other Connectors
Connector J5 - Reserved for factory use
Connector J7 - Reserved for factory use

Connector J8 - Watchdog relay contacts

The watchdog relay will be energized anytime the Run LED (D3) is on. When the relay is energized, the
normally open contact (J8 pin 1) will be connected to the relay 'common’ (J8 pin 2). These signals can be
brought out to the 'outside world' allowing external components to monitor the 'basic status' of the motion
controller.

Watchdog Relay Contacts
Pin1 Pin2

/
I |lJB

J8 Mating connector:

Pin Housing: Molex P/N 22-01-3027
Crimp pin: Molex P/N 08-50-0114

MultiFlex PCI 1000 Series User's Manual 189

Connectors, I/0O and Schematics

Signal Descriptions

Motor Command Signals

+/- 10 Analog Command Outputs

signal type: +/- 10V analog, 16 bit

notes: Connects to servo amplifier motor command input (Ref+)

explanation: This output signal is used to control the servo amplifier's output. When connected to the
command input of a velocity mode amplifier, the voltage level on this signal should cause
the amplifier to drive the servo at a proportional velocity. For current mode amplifiers, the
voltage level should cause a proportional current to be supplied to the servo. The range
of the signal is -10 to +10 volts (with 16 bit resolution), with O volts being the null output
level. Positive voltages indicate a desired velocity or current in one direction. Negative
voltages indicate velocity or current in the opposite direction. The maximum drive current
of this signal is +/-10 milliamps.

By using the function MCSetModuleOutputMode(), the output can be changed to Unipolar, where the
analog signal range is 0 to +10 volts, and a separate signal (Unipolar Direction) is used to indicate the
desired direction of velocity or current.

Pulse and Direction Command Outputs

signal type: Open collector, current sink, 100ma max. current sink, 30V max.

notes: External pull-up may be required

explanation: In the control of a stepper motor or Pulse command servo, the two primary control signals
are Pulse and Direction (or CW Pulse and CCW Pulse). These signals are connected to
the external driver that supplies current to the motor windings.

Both of these signals are driven by high current open collector drivers and are suitable for direct
connection to optically isolated inputs commonly found on stepper motor drivers. Because of the
characteristics of open collector drivers, no measurable voltages will be present on these output signals
unless a pull-up path to a supply voltage is provided.

Pulse: The motor driver should advance the motor by one increment for each pulse. The motor may
advance a full step or a micro step. This is determined by the mode of the stepper motor driver. The
Pulse signal is normally high, and is pulled low at the beginning of a step. It stays low for one half the step
period (50% duty cycle), and then goes back high. When it is time for the next step, the signal will be
pulled low again.

Direction: This signal indicates the direction the motor will move. When the stepper is incrementing the
current position (moving positive) this signal will remain high (pulled up). When the stepper is
decrementing the current position (moving negative) this signal will be pulled low. For a servo motor
configured for uniploar mode, this output is used to indicated the commanded direction of the servo.

The function MCSetModuleOutputMode() is used to change the operation of these signals to CW and
CCW. In this mode, pulses will be generated on the CW output when the current position is increasing,
and on the CCW output when the current position is decreasing.

190 Precision MicroControl Corp.

Connectors, I/0O and Schematics

Encoder Feedback Signals

Encoder Inputs (Phase A+, Phase A-, Phase B+, Phase B-, Z+, Z-)

signal type: TTL or Differential driver output
Minimum signal differential (Phase + to Phase -) = 200mV
Maximum range = (-25V to +25V)

notes: For single ended encoders connect the Encoder Reference Output (1.5V) to all unused
encoder (A-, B-, Z-) inputs

explanation: These input signals should be connected to an incremental quadrature encoder for
supplying position feedback information for the Analog Command axes (1 - 4). The plus
(+) and minus (-) signs refer to the two sides of differential inputs. If no index is being
used connect Z+ and Z- to the Encoder Reference Output.

Encoder - Reference Output

signal type: 1.5 VDC (output from resistor voltage divider)

notes:

explanation: This output is made available so that any unconnected encoder inputs can be properly
terminated. Most typically this output would be used to terminate the phase '-' inputs of a
single ended encoders.

Default Axis Inputs

The default configuration for the controller is for an Analog Command axis and
a Pulse Command axis to share opto isolated inputs and open collector drivers.
The user can change any of the default I/O function assignments by using the
I/0O Configuration Panel, described on pages 10 and 165.

Amp. / Drive Fault Input

signal type: Bi-directional optical isolator, 0.25 mA min., 3.0V — 25.0V range

notes:

explanation: This input is designed to be connected to the Fault or Error output signal of a servo
amplifier or stepper driver. The state of this signal will appear as a status bit in the axis
status word. By default this input is shared by an Analog command axis and a Pulse
command axis.

The EnableAmpFault member of the MCMotion structure will enable the axis to be disabled if the Amp /
Drive Fault input is activated. No further motion will occur until the fault signal is deactivated and the axis
has been enabled. The input device is a bi-directional optical isolator. The allowable voltage range for this
signal is 3.0 VDC to 25.0 VDC. For I/O systems operating outside of this range consult the factory.

MultiFlex PCI 1000 Series User's Manual 191

Connectors, I/0O and Schematics

Coarse Home / Stepper Home Input

signal type: Bi-directional optical isolator, 0.25 mA min., 3.0V — 25.0V range

notes: The Home operation of a Pulse command axis cannot be re-assigned to use a different
controllerinput

explanation: This input is used to determine the proper zero position of an axis. By default this input is
shared by an Analog command axis and a Pulse command axis.

Servo systems: If a rotary encoders with index outputs is used, an index pulse will be asserted once per
rotation of the encoder. While this signal occurs at a very repeatable angular position on the encoder, it
may occur many times within the motion range of the servo. In these cases, a Coarse Home switch is
required to qualify which index pulse is to be the true zero position of the servo.

The Coarse Home switch should be installed (and the encoder adjusted) so that while the switch is active,
the index pulse that is to be used to define the ‘home position' will be asserted.

The input device for this signal is a bi-directional optical isolator. The allowable voltage range for this
signal is 3.0 VDC to 25.0 VDC. For I/O systems operating outside of this range please contact the factory.
For additional information on homing a servo axis please refer to the section titted Homing Axes in the
Motion Control chapter. Typical wiring examples for the Coarse Home / Stepper Home Input can be
found in Chapter 5.

Stepper systems: This input is used to set the zero position of an open loop stepper axis. It is typically
connected to a sensor/switch that is activated at a fixed position in the motor’s range of motion. The input
device is a bi-directional optical isolator. The allowable voltage range for this signal is 3.0 VDC to 25.0
VDC.

The allowable voltage range for this signal is 3.0 VDC to 25.0 VDC. For I/O systems operating outside of
this range please contact the factory. For additional information on homing a stepper axis please refer to
the section titled Homing Axes in the Motion Control chapter. Typical wiring examples for the Coarse

Home / Stepper Home Input can be found in Chapter 5.

Limit Positive Input

signal type: Bi-directional optical isolator, 0.25 mA min., 3.0V — 25.0V range

notes:

explanation: The limit switch inputs are used to cause the controller to stop the motion of a servo or
stepper axis when it reaches the end of travel. By default this input is shared by both an
Analog command axis and a Pulse command axis. In Position and Velocity mode the
response to an activated limit input is direction sensitive, the axis will only be stopped if it
is moving in the direction of the activated limit switch. In Contour mode, the response to
an activated limit input is not direction sensitive, the axis will be stopped regardless of the
direction it is moving if either limit switch is activated. In Torque mode, the controller will
ignore the activation of a limit input, the axis will continue to move. For I/O systems
operating outside the range of 3V to 25V contact the factory.

There are three modes of stopping (decelerate to a stop, stop immediately, turn off the axis) that can be
configured by the function MCSetLimits(). The limit switch inputs can be enabled and disabled by
MCSetLimits(). See the description of Motion Limits in the Motion Control chapter.

192 Precision MicroControl Corp.

Connectors, I/0O and Schematics

Limit Negative Input

signal type: Bi-directional optical isolator, 0.25 mA min., 3.0V — 25.0V range

notes:

explanation: The limit switch inputs are used to cause the controller to stop the motion of a servo or
stepper axis when it reaches the end of travel. By default this input is shared by both an
Analog command axis and a Pulse command axis. In Position and Velocity mode the
response to an activated limit input is direction sensitive, the axis will only be stopped if it
is moving in the direction of the activated limit switch. In Contour mode, the response to
an activated limit input is not direction sensitive, the axis will be stopped regardless of the
direction it is moving if either limit switch is activated. In Torque mode, the controller will
ignore the activation of a limit input, the axis will continue to move. For I/O systems
operating outside the range of 3V to 25V contact the factory.

There are three modes of stopping (decelerate to a stop, stop immediately, turn off the axis) that can be
configured by the function MCSetLimits(). The limit switch inputs can be enabled and disabled by
MCSetLimits(). See the description of Motion Limits in the Motion Control chapter.

Position Capture (Latch) Input

signal type: TTL (buffered by 74LS541)
Active level = Rising edge, (TTL high, > 2.4 volts)
Minimum pulse duration = 100 nano second
Maximum re-trigger frequency = 1 KHz
TTL high level input min. voltage = 2.0V
TTL high level input max. voltage = 5.0V
TTL low level input min. voltage = 0.0V
TTL low level input max. voltage = 0.6V
notes: Dual purpose signal, can also be used as a general purpose TTL digital input
explanation: Used to initiate the capture of position data. See the description of Position Capture in
the Application Solutions chapter.

Default Axis Outputs

The default configuration for the controller is for an Analog Command axis and
a Pulse Command axis to share opto isolated inputs and open collector drivers.
The user can change any of the default I/O function assignments by using the
I/0 Configuration Panel, described on pages 10 and 165.

MultiFlex PCI 1000 Series User's Manual 193

Connectors, I/0O and Schematics

Drive Disable

signal type:
notes:
explanation:

Open collector, current sink, 100ma max. current sink, 30V max.

External pull-up may be required

This output signal should be connected to the disable input of the stepper driver or
servo amplifier. When the axis is disabled (or the controller is reset) the open collector
driver will be turned on, sinking current through the interface device of the stepper driver /
servo amplifier. When the axis is turned on this signal will immediately go to its' inactive
high level. Anytime there is an error on the respective axis, including exceeding the
following error, a limit switch input activated or the Amplifier / Driver Fault input
activated, the Driver Disable signal will be activated.

This signal is driven by a high current open collector driver and is suitable for direct connection to optically
isolated inputs commonly found on a amplifier / driver. Because of the characteristics of open collector
drivers, no voltages will be present on these output signals unless signals unless a pull-up path to a
supply voltage is provided.

Amplifier / Driver Enable

signal type:
notes:
explanation:

Open collector, current sink, 100ma max. current sink, 30V max.

External pull-up may be required

This output signal should be connected to the enable input of the servo amplifier or
stepper driver. When the axis is enabled the open collector driver will be turned on,
sinking current through the interface device of the servo amplifier / stepper driver. When
the axis is turned off (or the controller is reset) this signal will immediately go to its'
inactive high level. Anytime there is an error on the respective axis, including exceeding
the following error, a limit switch input activated or the Amplifier / Driver Fault
input activated, the Amplifier Enable signal will be deactivated.

This signal is driven by a high current open collector driver and is suitable for direct connection to optically
isolated inputs commonly found on a amplifier / driver. Because of the characteristics of open collector
drivers, no voltages will be present on these output signals unless a pull-up path to a supply voltage is

provided.

Position Compare Output

signal type:

notes:
explanation:

TTL (buffered by 74LS541)

Active level = programmable, default = TTL high

Minimum pulse duration (one Shot mode) = 1 msec. (+/- 0.5 msec.)
Servo Maximum re-trigger frequency = 4 KHz

Stepper Maximum re-trigger frequency = 1 KHz

TTL low level current sink max. = 24 mA

TTL high level current source max. = 15 mA

TTL high level output min. voltage = 2.4V

TTL high level output max. voltage = 5.0V

TTL low level output min. voltage = 0.0V

TTL low level output max. voltage = 0.5V

Dual purpose, also can be used for general purpose TTL digital output
Used to indicate when a position compare event has occurred. See the description of
Position Compare in the Application Solutions chapter.

194

Precision MicroControl Corp.

Connectors, I/0O and Schematics

Full/Half Current & Unipolar Direction Output

signal type:
notes:
explanation:

Open collector, current sink, 100ma max. current sink, 30V max.

External pull-up may be required

(Full/Half current) This signal is used if the stepper driver has a digital input for current
control. The default condition of this signal is to be inactive (pulled high). Setting the
MC_CURRENT_FULL parameter of the MCMotion structure will cause the signal to be
pulled low.

This signal is driven by a high current open collector driver and is suitable for direct connection to optically
isolated inputs commonly found on a amplifier / driver. Because of the characteristics of open collector
drivers, no voltages will be present on these output signals unless a pull-up path to a supply voltage is

provided.

explanation (Unipolar Direction): For servo drives requiring a Unipolar output. The velocity or current
command input consists of a magnitude signal and a separate direction signal . The magnitude signal is
provided by the modules Analog Command Signal, while this signal provides a digital direction command.

Default Configuration of General Purpose 1/O

The default configuration for the controller is for a Analog Command axis and a

0 Pulse Command axis to share opto isolated inputs and open collector drivers.

The user can change any of the default I/0 function assignments by using the
I/0 Configuration Panel, described on pages 10 and 165.

TTL Digital Inputs

signal type:

notes:

explanation:

TTL (buffered by 74LS541)

Active level = programmable

TTL high level input min. voltage = 2.0V

TTL high level input max. voltage = 5.0V

TTL low level input min. voltage = 0.0V

TTL low level input max. voltage = 0.6V

Dual purpose, channels 1, 5, 9, and 13 can also be used for capturing the position of
axes 1/2, 3/4, 5/6, and 7/8

Two 74L.S541 octal buffers are used to provide 16 TTL level digital inputs that allow the
user to monitor external events. For additional information please refer to the General
Purpose I/O chapter.

MultiFlex PCI 1000 Series User's Manual 195

Connectors, I/0O and Schematics

TTL Digital Outputs

signal type:

notes:

explanation:

TTL (buffered by 74LS541)

Active level = programmable, default = TTL high
TTL low level current sink max. = 24 mA

TTL high level current source max. = 15 mA
TTL high level output min. voltage = 2.4V

TTL high level output max. voltage = 5.0V

TTL low level output min. voltage = 0.0V

TTL low level output max. voltage = 0.5V

Dual purpose, channels 1 and 9 can also be used for indicating when a position compare
event has occurred on axes 1 - 8

Two 74LS541 octal buffers are used to provide 16 TTL level digital outputs that allow the
user to control external devices. For additional information please refer to the General
Purpose I/O chapter.

Analog Inputs (optional)

signal type: Analog input range: -10.0V to +10.0V (default) or 0.0V to +4.0V (special order)
A/D resolution = 14 bit
Nominal read rates:
From a Windows program = ~200 usec's
From on-board MCCL routine = ~42 usec's
notes: Reported value = 0 to 65536 corresponding to the available input range
explanation: Eight (8) 14 bit analog inputs that allow the user to monitor external events. For additional
information please refer to the General Purpose I/O chapter.
196

Precision MicroControl Corp.

Connectors, I/0O and Schematics

Circuit Schematics

+/- 10V servo command circuit schematic

(connector pin-outs reference connectors on the controller)

+VREF AN
POT1 %q—l +12v
7
A%

Axis 1 +/- 10V output

MultiFlex PCI 1000 Series User's Manual

+ Ji-1
DAC) — J1-35
(4 channel, 16 bit)
-12v
+VREF AN
POT2 %q-l t1zv
+ .
> Axis 2 +/- 10V output J1-2
VWV -
_ L ﬁ J1-36
-12v
+VREF AN
POT3 %q—l +l‘gv
+
Axis 3 +/- 10V output 2-1
Yy — —
—<rl>4 <7—< J2-35
-12v
+VREF A A
POT4 ><h *1lav
7
Axis 4 +/- 10V output 2.2
——— A —— —
ﬁ J2-36
-12v
197

Connectors, I/0O and Schematics

Pulse Command Circuit Schematic

(connector pin-outs reference connectors on the controller)

+5VDC

47K SN75453B

i/\ Axis 1 Step / CCW 3.2

+5VDC —e 3336

47K SN75453B

Axis 1 Direction / CW J13-3

MJ?’-"’W

+5VDC

47K g SN754538
‘);J\ Axis 2 Step / CCW J3-7

+5vDC M J3-41

SN75453B

@%

Axis 2 Direction / CW J3-8

MJ3.42

+5VDC

4.7K

‘]

SN75453B

Axis 3 Step / CCW J4-2

+5VDC M J4 - 36

47K g SN75453B

Axis 3 Direction / CW J4-3

+5VDC < J4-37

+5VDC

47K SN754538

iJ\ Axis 4 Step / CCW 34-7

+5VDC M J4-41

47K SN75453B

Axis 4 Direction / CW J4-8

+5VDC < J4-42

198 Precision MicroControl Corp.

Connectors, I/0O and Schematics

AXxis I/O circuit schematic

(connector pin-outs reference connectors on the controller)

fl/.\% Axis 5 Limit + J13-29
. 4J\7/|\,(Axis 1 Limit + J1-29
::] k Zgjz Axes 1/5 Limit + return /
stupply J1-63,J3-63
ILD256 ‘}/\7)\6 Axis 5 Limit - J3-31
4.7K i imit -
i AN Axis 1 Limit J1-31
::] k ZSSZ Axes 1/5 Limit - return / supply J1-65,J3-65
% Axis 5 Home 13-27
. @\% Axis 1 Coarse Home J1-27
::] k ZS§Z Axis 1/5 Home return / supply J1-61,J3-61
ILD256 AJZK, Axis 5 Home 13-17
i 3\3*((Axis 1 Amp Fault J1-17
] k Z§§Z Axis 1/5 Amp Fault return / s_uggl< J1-51
+5VDC +5VDC
47K SN754538 47K SN754538
Axis 1 Amp Enable Axis 5

Axis 1 Enc A J1-11
MAX3097

J1-45

Axis 1 Enc B J1-12
J1-46

Axis 1 Enc Z Axis 1 Phase 113
Axis 1 Enc. Errol = J1-47

+5vDe_ 200

All Windings Off

Encoder Reference (1.5V)

__AXis5ENcA |
MAX3097
__AXis5EncB |
__ Axis5EncZ | Axis 5 Phase
_Axis 5 Enc. Erroy
J1-10

<
+—< 1310
<

J1-44

J3-44

J3-11

J3-45

J3-12

J3 - 46

J3-13

J3-47

MultiFlex PCI 1000 Series User's Manual

199

Connectors, I/0O and Schematics

18

General-Purpose 1/0 Circuit Schematic
(connector pin-outs reference connectors on the controller)

D

g. Out #1 / 1- 4 Pos. Compare

hg Dig. Out #5

J1-19 J2-19
7415541 Z s 7415541 Z s
17__Dig. Out #2 J1-20 17 Dig. Out #6 32-20
—<J1-54 ——<2-54
16 Dig. Out #3 J1-21 16 Dig. Out #7 32-21
-%31-55 .%32-55
15 Dig. Out #4 J1-22 15 Dig. Out #8 32-22
—< J1-56 ¢—< J2-56
+5 VDC +5VDC
+5VDC +5VDC
%NK 10K
2 Dig. In#1/ Ax 1&2 Pos. Captur J1-23 6 Dig. In #5/ Ax 3&4 Pos. Captur 12-23
741.S541 +5VDC 74L.S541 +5 VDG
10k ——<_J1-57 1ok [——<_92-57
3 Dig. In#2 J1-24 7__Dig. In #6 12-24
+5 VDC +5 VDC
10K —< J1-58 10K 1—< J2-58
4 Dig. In#3 J1-25 8 Dig. In #7 J2-25
+5VDC +5VDC
10K % J1-59 10K ¢% J2-59
5 Dig. In #4 11-26 o Dig. In #8 12-26
-—< J1-60 «—< J2-60
Optional A/D inputs
+12
G}z VvDe Crvee—
Iy Al Neg cH Al Pos
G_% o5 VDC
Al Pos Analog In Al Pos Analog In
J1-34 J1-33
Aln1 —Aln2, —Alnl
A/D ,ns Al B <r< J1-68 Al i €< J1-67
(8 channel, Aln2
14 bit) Aln3
Al Pos Analog In Al Pos Analog In
|Alnd J2-34 J2-33
Aln4 Aln3
Al _] €<J2-68 R ~ <7—<J2-67

200

Precision MicroControl Corp.

Chapter

10

Troubleshooting

On the following pages you will find troubleshooting flow charts to assist the with diagnosis of motion
control system failures.

The steps described in these flow charts will direct you to programs installed with PMC’s Motion Control
API (Motion Integrator, Motor Mover, CWDemo, Servo Tuning, WinControl, etc.). These programs can be
used to help diagnose and resolve system problems.

MultiFlex PCI 1000 Series User's Manual 201

Troubleshooting

System Troubleshooting

Yes

Servo motors working
as expected?

Yes

Stepper motors working
as expected?

Yes

Axis 1/O (Limits,
Home, Index, Amp
Enable, Amp Fault)

yorking as expected

Yes

General
purpose /O (digital /O
and/or analog 1/0) working
as expected?

Yes

Is the
controller operating as
expected?

Go to the
Communications

Troubleshooting flow
chart

Go to the Servo
Motor
Troubleshooting flow
charts

Go to the Stepper
Motor
Troubleshooting flow
charts

Go to the Limits and
Home
Troubleshooting flow
charts

Go to the General
Purpose 1/0
Troubleshooting flow
charts

Go to the
Miscellaneous
operation
Troubleshooting flow
charts

202

Precision MicroControl Corp.

Troubleshooting

Communications Troubleshooting

Open the
Windows Motion Does the
Control Panel (Control status of the Yes
Panel / Motion Control). controller = OK?
Is the controller
listed?

) Go to the Controller
Verify Initialization

_ the _ Troubleshooting
Driver version. flowchart.

Open MCAPI Readme.txt.
(Program Flles/Motion Control/
Motion Control API/
Readme.txt.

Version >= 4.1

Yes

Update the drivers
(MCAPI). Uninstall
the old MCAPI, then
install the current
MCAPI. Refer to
chapter 3 of the
user's manual.

MultiFlex PCI 1000 Series User's Manual 203

Troubleshooting

Controller Initialization Troubleshooting

The controller
requires +5 & +/- 12
VDC power. Check

your power supply or
call PMC.

Is the controller's' power
OK" LED on?

Within 1
second does the The controller is not
controller's 'Reset' LED turn properly '‘coming out
off? of Reset'.

By the time
that Windows has
completed loading has the
controller's'Run' LED
turned on?

The controller has Does the
failed to load and/or controller 'show up' in the
launch its motion Windows Device
control code. Manager?

Yes Yes

Are PMC's
Windows Drivers (MCAPI
4.1.X or higher)
installed?

Yes

Shutdown the PC
and disconnect the
controller. Follow the
installation
procedures in
chapter 3.

204 Precision MicroControl Corp.

Troubleshooting

Troubleshooting - Tuning a Servo Motor

Does motion
occur without
errors?

If the axis errors out, either:

1) Velocity is too high

2) Accel / decel too high

2) Proportional gain too
low

3) Following error too low

Does the
axis reach the
target?

Increase the Proportional
gain and/or Integral gain

Does the axis
oscillate?

Either:

1) Increase Derivative gain
2) Decrease the
proportional gain.

3) Decrease Integral gain

Do you hear a
grinding noise?

Yes

Derivative gain may be
gain too high. Either:

1) Decrease derivative
gain

2) Increase the derivative
sampling period

Near but not
at target?

Yes

Increase the Integral gain /
Integral limit.

MultiFlex PCI 1000 Series User's Manual

205

Troubleshooting

Troubleshooting - Servo Motion chart #1

Is the
motor on?

Turn the motor on
MCEnable Axis()

Resolve the error
condition (limit+/-,
following error,
amp fault, ...)

Does
the motor resist
rotation?

Yes

The encoder may
have failed, refer to
Motion Integrator
encoder checkout

Did
the encoder
checkout?

Replace the
encoder

Tune the
servo using
the Servo
Tuning utility

The servo control system

Is the has failed.

i 2
elieln) @1 Contact PMC technical

support

Yes

206

Precision MicroControl Corp.

Troubleshooting

Troubleshooting - Servo Motion chart #2

Encoder

properly
phased?

Change encoder
phasing or 'swap' the
encoder inputs
(AtoB,BtoA).

Any red
error LED's
on?

e
encoder or
W MES

failed,
remove and

MultiFlex PCI 1000 Series User's Manual

207

Troubleshooting

Troubleshooting - Servo Motion chart #3

Tune the
servo using
the Servo
Tuning utility

occur without
errors?

Yes

Friction may
be present in mechanical Clean and
components. Has mechanical adjust
system operation been mechanics
optimized?

The commanded
maximum velocity,
accel, or decel exceeds

the system capability.

Reduce the trajectory
parameters

208

Precision MicroControl Corp.

Troubleshooting

Troubleshooting - Stepper Motion chart #1

Is the Turn the motor
motor turned on
on? MCEnableAxis

Resolve the
error condition
(limit+, Limit -)

Any errors
present

Yes

Verify wiring/operation.
Referring to chpater 5
Is the stepper connect a voltmeter and
driver enabled? verify the operation of
the Drive Enable/
Disable.

From
CWDemo; zero position,
move relative 50 steps. Did
the motor move

Yes
Yes

MultiFlex PCI 1000 Series User's Manual 209

Do the Actual,
Optimal, and Target position
readouts all display 50?

Troubleshooting

Problem
with a Limit

No

Troubleshooting - Limits and Home

input?

Yes

Limit
input wired

Refer to
the User's
Manual for

wiring
examples

Connect
voltmeter across the 2
Limit pins. Activate Limit
sensor. Voltage 5 to
24volts?

Yes

With sensor
active, does the Motion
Integrator Test Panel
indicate that the Limit
sensor is active?

Yes

Input voltage range
is 5 to 24 volts. Min.
current for is 10ma.
Contact PMC
technical support.

controller's sensor
input circuit has
failed.

Contact PMC
technical support

Home
input wired
correctly

Refer to
User's
Manual for
wiring
examples

Connect
voltmeter across
the 2 Home pins. Activate
Limit sensor. Voltage 5 to
24volts?

Yes

With sensor
active, does the Motion
Integrator Test Panel
indicate that the Home
sensor is active?

Yes

move command
toward home sensor,
followed by Find Index/

Find Edge and Stop. Did

the motor stop?

Yes

Input voltage range
is 5 to 24 volts. Min.
current for is 10ma.
Contact PMC
technical support.

controller's sensor
input circuit has
failed.

Contact PMC
technical support

Contact PMC
technical support

210

Precision MicroControl Corp.

Chapter

11

Controller Error Codes

Both the Motion Control API functions and the Motion Control Command Language (MCCL) provide error
code and interface status information to the user.

MultiFlex PCI 1000 Series User's Manual 211

Controller Error Codes

Motion Control API Error Codes

Motion Control API defined error messages are listed numerically in the table below. Where possible
corrective action is included in the description column. Please note that many Motion Control API function
descriptions also include information regarding errors that are specific to that function.

Error Constant Description

0 MCERR_NOERROR No error has occurred

1 MCERR_NO_CONTROLLER No controller assigned at this ID. Use MCSETUP to configure a controller.
Motion Control API driver out of handles. The driver is limited to 32 open

2 MCERR_OUT OF HANDLES handles. Apphganons tha.t do not call MCClose() when they exit may leave
handles unavailable, forcing a reboot.

3 MCERR_OPEN_EXCLUSIVE Cannot open - another application has the controller opened for exclusive use
Controller already open in different mode. Some controller types can only be

4 MCERR_MODE_UNAVAIL open in one mode (ASCII or binary) at a time

5 MCERR_UNSUPPORTED_MODE = Controller doesn't support this mode for MCOpen() - i.e. ASCII or binary

6 MCERR_INIT_DRIVER Couldn't initialize the device driver

7 MCERR_NOT_PRESENT Controller hardware not present
Memory allocation error. This is an internal memory allocation problem with the

8 MCERR_ALLOC_MEM DLL, contact Technical Support for assistance

9 MCERR_WINDOWSERROR Qe\{\girllgows function returned an error - use GetLastError () under WIN32 for

10 reserved

11 MCERR_NOTSUPPORTED Controller doesn't support this feature

12 MCERR_OBSOLETE Function is obsolete

13 MCERR_AXIS_TYPE Axis type doesn't support this feature

14 MCERR_CONTROLLER Invalid controller handle

15 MCERR_WINDOW Invalid window handle

16 MCERR_AXIS_NUMBER Axis number out of range

17 MCERR_ALL_AXES Cannot use MC_ALL_AXES for this function

18 MCERR_RANGE Parameter was out of range

19 MCERR_CONSTANT Constant value inappropriate

20 MCERR_UNKNOWN_REPLY Unexpected or unknown reply

21 MCERR_NO_REPLY Controller failed to reply

22 MCERR_REPLY_SIZE Reply size incorrect

23 MCERR_REPLY_AXIS Wrong axis for reply

24 MCERR_REPLY_COMMAND Reply is for different command

25 MCERR_TIMEOUT Controller failed to respond
Block mode error. Caused by calling MCBIlockEnd() without first calling

26 MCERR_BLOCK_MODE MCBlockBegin() o begin the block

27 MCERR_COMM_PORT Communications port (RS232) driver reported an error
User canceled action (such as when an MCDLG dialog box is dismissed with

28 MCERR_CANCEL the CANCEL button

29 MCERR_NOT_INITIALIZED Feature was not correctly initialized before being enabled or used

212 Precision MicroControl Corp.

Controller Error Codes

MCCL Error Codes

When executing MCCL (Motion Control Command Language) command sequences the command
interpreter will report the following error code when appropriate:

Table 7. MCCL Error Codes

Description Error code
No error 0
Unrecognized command 1
Bad command format 2
I/O error 3
Command string to long 4
Command Parameter Error -1
Command Code Invalid -2
Negative Repeat Count -3
Macro Define Command Not First -4
Macro Number Out of Range -5
Macro Doesn't Exist -6
Command Canceled by User -7
Contour Path Command Not First -8
Contour Path Command Parameter Invalid -9
Contour Path Command Doesn't Specify an AXIS -10
Axis error (over travel error, max. following error exceeded -13
No axis specified -14
AXxis not assigned -15
Axis already assigned -16
Axis duplicate assigned -17
Insufficient memory -18
Unrecognized variable name -19
Invalid background task 1D -20
Command not supported -21

Many error code reports will not only include the error code but also the offending command. In the
following example the Reset Macro command was issued. This command clears all macro’s from
memory. The next command sequence turns on 3 motors and then calls macro 10. The command MC10
is a valid command but with no macros in memory error code —6 is displayed.

" WinControl32 =]

File Edt Help

O | & e -l e
>AM

>1MN,2MN, 3MN,MC10

26

{C3) MC10

>

>
>
>
E

MultiFlex PCI 1000 Series User's Manual 213

Controller Error Codes

214 Precision MicroControl Corp.

Glossary

Accuracy - A measure of the difference between the expected position and actual position of a motion
system.

Actuator - Device that creates mechanical motion by converting energy to mechanical energy.

Axis Phasing - An axis is properly phased when a commanded move in the positive direction causes the
encoder decode circuitry of the controller to increment the reported position of the axis.

Back EMF - The voltage generated when a permanent magnet motor is rotated. This voltage is
proportional to motor speed and is present regardless of whether the motor windings are energized or de-
energized.

Closed Loop - A broadly applied term, relating to any system in which the output is measured and
compared to the input. The output is then adjusted to reach the desired condition. In motion control, the
term typically describes a system utilizing a velocity and/or position transducer to generate correction
signals in relation to desired parameters.

Command Set — Defines the operations that can be executed by the motion controller

Commutation - The action of applying currents or voltages to the proper motor phases in order to produce
optimum motor torque.

Critical Damping - A system is critically damped when the response to a step change in desired velocity
or position is achieved in the minimum possible time with little or no overshoot.

DAC - The digital-to-analog converter (DAC) is the electrical interface between the motion controller and
the motor amplifier. It converts the digital voltage value computed by the motion controller into an analog
voltage. The more DAC bits, the finer the analog voltage resolution. DACs are available in three common
sizes: 8, 12, and 16 bit. The bit count partitions the total peak-to-peak output voltage swing into 256,
4096, or 65536 DAC steps, respectively.

Dead Band - A range of input signals for which there is no system response.

Driver - Electronics that convert step and direction inputs to high power currents and voltages to drive a
step motor. The step motor driver is analogous to the servo motor amplifier.

MultiFlex PCI 1000 Series User's Manual 215

Glossary

Dual Loop Servo — A servo system that combines a velocity mode amplifier/tachometer with a position
loop controller/encoder. It is recommended that the encoder not be directly coupled to the motor. The
linear scale encoder should be mounted on the external mechanics, as closely coupled as possible to the
‘end effector’

Duty Cycle - For a repetitive cycle, the ratio of on time to total time:

Efficiency - The ratio of power output to power input.

Encoder - A type of feedback device that converts mechanical motion into electrical signals to indicate
actuator position or velocity.

End Effector — The point of focus of a motion system. The tools with which a motion system will work.

Example: The leading edge of the knife is the end effector of a three axis (XYZ) system designed to cut
patterns from vinyl.

Feed Forward - Defines a specific voltage level output from a motion controller, which in turn commands
a velocity mode amplifier to rotate the motor at a specific velocity.

Following Error - The difference between the calculated desired trajectory position and the actual position.
Friction - A resistance to motion caused by contacting surfaces. Friction can be constant with varying

speed (Coulomb friction) or proportional to speed (viscous friction).

Holding Torque - Sometimes called static torque, holding torque specifies the maximum external torque
that can be applied to a stopped, energized motor without causing the rotor to rotate continuously.

Inertia - The measure of an object's resistance to a change in its current velocity. Inertia is a function of
the object's mass and shape.

Kd - K is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant. The
lower case ‘d’ designates derivative gain.

Ki - K is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant. The
lower case ‘I designates integral gain.

Kp - K is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant. The

lower case ‘p’ designates proportional gain.

Limits - Motion system sensors (hard limits) or user programmable range (soft limits) that alert the motion
controller that the physical end of travel is being approached and that motion should stop.

MCAPI - The Motion Control Application Programming Interface - this is the programming interface used
by Windows programmers to control PMC's family of motion control cards.

MCCL - Motion Control Command Language - this is the command language used to program PMC's
family of motion control cards.

216 Precision MicroControl Corp.

Glossary

Micro-Stepping - Stepper drive systems have a fixed number of electromechanical detents or steps. Micro
stepping is an electronic technique to break each detent or step into smaller parts. This results in higher
positional resolution and smoother operation.

Open Loop — A control system in which the control output is not referenced or scaled to an external
feedback.

Position Error - see following error.

Position Move - Unlike a velocity move, a position move includes a predefined stopping position. The
trajectory generator will determine when to begin deceleration in order to ensure the actual stopping point
is at the desired target position.

PWM - Pulse Width Modulation is a method of controlling the average current in a motor’s phase
windings by varying the duty cycle of transistor switches.

Repeatability - The degree to which the positioning accuracy for a given move performed repetitively can

be duplicated.

Resonance - A condition resulting from energizing a motor at a frequency at or close to the motor's
natural frequency.

Resolution - The smallest positioning increment that can be achieved.
Resolver - A type of feedback device that converts mechanical position into an electrical signal. A

resolver is a variable transformer that divides the impressed AC signal into sine and cosine output
signals. The amplitude of these signals represents the absolute position of the resolver shaft.

Servo - An automatic system in which the output is constantly compared with the input through some form
of feedback. The error (or difference) between the two quantities can be used to bring about the desired
amount of control.

Servo tuning — the process in which the appropriate gain values for the PID filter are determined

Slew - That portion of a move made at constant, non-zero velocity.

Step Response - An instantaneous command to a new position. Typically used for tuning a closed loop
system, ramping (velocity, acceleration, and deceleration) is not applied nor calculated for the move.

Tachometer - A device attached to a moving shaft that generates a voltage signal directly proportional to
rotational speed.

Torque -
Velocity Mode Amplifier — An amplifier that requires a tachometer to provide the feedback used to close
the velocity loop within the amplifier.

Velocity Move - A move where no final stopping position is given to the motion controller. When a start
command is issued the motor will rotate indefinitely until it is commanded to stop.

MultiFlex PCI 1000 Series User's Manual 217

218 Precision MicroControl Corp.

Appendix

Default Axis Configuration Settings

Table 8. Default Axis Configuration Settings

Description Setting
Programmed Velocity 10,000
Programmed Acceleration 10,000
Programmed Deceleration 10,000
Minimum Velocity 1,000
Current Velocity 0
Velocity Gain 0
Acceleration Gain 0
Deceleration Gain 0
Velocity Override 1
Torque Limit 10
Proportional Gain .2
Derivative Gain A
Integral Gain .01
Integration Limit 50
Maximum Following Error 1024
Motion Limits disabled
Low Limit of Movement 0

High Limit of Movement 0

Servo Loop Rate HS (High)
Stepper Pulse Range HS (High)

Position Count
Optimal Count
Index Count
Auxiliary Status
Position

Target

Optimal Position
Breakpoint Position
Position Dead band

OO O0OO0O0O0O0OO0oO0o

MultiFlex PCI 1000 Series User's Manual 219

Appendix

User Scale

User Zero

User Offset

User Rate Conversion
User Output Constant

Sampling Frequency
Slave Ratio

==

4 KHz

220

Precision MicroControl Corp.

Index

Contour buffer ... 92
enable.........cc 94
A on the fly changesccccccciiiiiiine 97
) Vector accelerationccccveeeeeee i, 91
A/D inputs Vector decelerationc.ceeeeeeeeveeeeerennnn, 91
dg§cr|pt|on .. 170 VECHOT VEIOCIY v 91
WIFING oo 63 At target
Acceleration COMMANAING ... 118
default Unitsccveeeiiie e 86 Lo e] $1110) PO 117
dISQb|e .. 42 Auto Initialize
s_ettlng 8,37,67,77, 86 loading user defined settings 130
Active level Auxiliary encoder
Mt SWILCNES ..o 103 SEEPPET ..o 143
Amplifier ESHNG ..o 145
Torque Modeccoooviiiiiiiii 25 Axis 1/O
VeI_0_0|ty MOAE ... 25 CONNECLOr PiN OUL.......veveveeeeeeeeeeean 181, 185
Amplifier fault Axis settings
WIFING Lo 55 saving user defined settings.............. 122, 129
Analog command offset potentiometer 180
Analog I/0O
(o0) 110 [0 11 o [P 170 B
L1S1S] 1] o R 170
Analog /O test panels.........cocceevvieeeiviiee e, 41 Backlash compensation
Analog input AESCHIPLIONevveiiiiiee et 123
FEPONLING .evveeiiiieee ettt 171 enable.......o 123
Analog inputs
conNector Pin QULccceveeeeeiiiinnnne. 181, 185
deSCHPLONeeeiiiieieiiiiieee e 170 C
signal description...........ccovveeveiniieeeiniiieenn, 196 _
SPECIfICALIONSocveveeeceeeeeee e 176 Ce+ Programmingcoeeevenissisinisisisinene. 32
Anplifier Enable Capture data
WIFING v 52,54 actual PoSition ..., 150
Application program samples... 8, 32, 33, 34, 35, DAC (_)utput ... 150
37 following error............cccoevvvieiiiiiiiic, 150
Application programming optimal POSItioN ..o 150
CH e 32 Capture PoSItion..........ccooeiiiniiiiiis 140
Delphicccceieiic e 34 Closed !OOD mode
LabVIEW oo 35 desCribed......ccoooeviiieiee 20
ViSU@l BASICceeiieeiiieeiiie e 33 Closed [oop stepper control
AIC MOLION .. 91 deSCrDed. ... 80
221

MultiFlex PCI 1000 Series User's Manual

WIFING e 80
Coarse home sensor

WIFING e 60
Coarse Home switch/sensor

VOltage range.......cevvveiiiiiieiiiiiee e 192
Command format

MECCL. it 17
Compare output

described ... 141

mode,

t00GIE e 141

mode, ONE-ShOt..........cooevvvieeiiiiiieiieee e 141

Mode, PEriod........cccuvveiieiee e 141
Connector

mating connector, J1 - J4cccccceevieeninnns 179

mating connector, J8ccccveeeeennn. 64, 189
Connector pinout

MultiFlex PCl 1440ccccoeevciveeeeiiieee e 185

MultiFlex PCl 1440ccccceevvciieeeiiiee e 181
Contour buffer

desCriptioncceveeeiiiiiiiieeee e, 92

tell contour countcccevveviiieee e, 92
Cubic spline interpolation...........cccccvveeevivnnnen. 97
D
DAC output

PIOttING .. 42
Debug application programscccoeecvvvveeen. 36
Deceleration

default unitsooevveeeiii, 86

disable ... 42

SEttNGg .vvvee i 8,37,67,77,86
Default Settingsccceeeriiiiiiiiiieeeeeeii 219
Delphi programming............cccuveeeeeieeennnniiinneen. 34
Derivative gain

(o 1= ETor 1] 0] 1] o 13
Digital I1/0

configuraing as an overtravel limit................ 14

CONFIGUIING v 167

connector Pin OUt........ccccvvveveeeeeeeeeinns 181, 185

[o =X Tod o] (o] o NPT 165

reconfigure........ooccveeeeiee e, 148, 166

SPECIfiCationSccovveiieiiiiiee e 176

TESHNG . 167

TUMN Off.eeeee 168

TUMN ONLiiiiee e 168
Digital I/O test panels.........cccouveeeeeieiiiniiiiinen, 41
Digital inputs

signal description...........ccovevveveviiieee e, 195

WITING vt neeeee s 61
Digital outputs

signal description.........ccccccveveiiiiiciiiieeeeen, 196

WIFING v 62
Direction

configure for Unipolar PWMccccuee.. 148

SELHNG .eeeee it 90

Documentation

MultiFlex PCI 1000 Series controllers.......... 3
Driver disable

WITING et 53
Driver fault

WIFING ettt 55
E
Encoder

AUXIIAIY e 143

CheckoUt..........coovvviiiiiiiieeeeeeeeeeeee, 65

checkout, Stepper.........cccceeeeeieeiiiiiiiieeeenn 80

AESCrIPLION ..veve e 14

Lo [EYol 111 o] o] o H PSPPI 24

faUlt. ... 14, 24,57

reverse phased........cccccccevviviiiienee e, 83

FOHOVET ... 127

wiring, differentialcccovevveee i 56

wiring, single endedococceiiiiiiiiinninnen. 57
Encoder Index

checkout..........cccco 105

AESCHIPLION ..eeeieiiiiiee e 24
Error codes

MCAP ... 212

MCCL ittt 213
Error LED'S......uuuiii e 179
E-stop

ENADIE.....coi i 125

EXAMPIES ... 125

hard wired..........ccovieeiii e 125
Example

homing routine..........ccccccveeee e 114
F
Fail safe operation

watchdog CIFCUIL........coeeeeiiiiiiiiiiieeee e 163
Fault

eNCOAErocoovviiiiiiii 14, 24, 57
Feed forward..........cocceevviiieeeiiinnnenns 71,120, 162

acceleration.......ccccovcveeiiciee e 76,121

calculatingeeeeveiiiiiiiii s 72,120

deceleration.........cccccovvvieviiviiicie i, 76,121

described.......cccoooiiiiiii 71

L= 11 o R 72,120
Firmware

UPAALE . 44

V=1 (1 o] o R 43
Following error

default setting ..o 66

AESCHIPLION ..eeeiiiiiice e 66

disable ... 66

PIOLHING ..o 42
FrCHON .. 76
Frictionless servo

using output deadband.............cccccceeeeernnns 76

G inverting active level..............ccccueee... 102, 103
normally closed switchc........ 102, 103
Gearing programmablecccoceiiiiiiein 102
ENADIE oo 100 TTL vs. 0pto isolated.........cooovwweciiererirneeeeen 14
SELNG FAtOcvovvevveeeeceeeeeeeeer e 100 WIMNG ..o, 58, 59, 102
TEIMINALE.....cveeeeeeeee e 100 Linear interpolation ..., 91
Contour buffer ..., 92
enable..........ceeeiii 93, 133
H on the fly changesccccceveeveveveececnene. 97
SPECITYING oo 91
Home sensor Vector accelerationcccccvvveeviiiieennnnnnn. 91
checkoutcoeevviieeii e, 105 Vector decelerationcccccvveeeeeeeeiicnnnee, 91
WIFING weveieeiee e 60, 105 Vector VEIOCIYcveeveeeeece e 91
Home switch/sensor
Voltage range.......ccccceeeeviiiiiiiiieeee e 192
Homing an axis M
closed loop Stepperccceeveeeeiiiiiiiiiieeee, 107
eNCOAEr INAEXc.vvveeereeeeeeeeeeersreeeeas 109 Macro command
NOME SENSONevveeeeeeeee e, 113 as background task ... 137
MUt SENSO .o 111, 115 defining ... 135
SEIVO oo 27,105, 107 described.......cccoovieeii 135
SEEPPET .ttt 27 MEMOTY SIZE ... 136
Stepper, open |Oop ________________________________ 27,112 reporting ... 135
Host interrupt support resetting (deleting) 136
[iMit SWItChESoveeee e 103 single stepping a program................c.cc..... 152
VOIALIIE ... 136
Manual POSItioNINGcccoeeeiiiiiiiiiiiiieeeeeiees 101
| Master / Slave
(0 [=EYod €10 [0] o R 100
I/O Configuration Panel............ccoovvinnnnnn 14 ENADIE......oveeeeeeeeee e 100
Integral gain Slave ratio........coevveeeeeeeeeeeeiiieieeeeeeeeeeeeeeeeaas 100
AeSCrIPLON ... 13 termMiNatioN.......ccvveeeeeeee e 100
disable while movingccccccciiiiiinn. 156 Mating connector
Interrupt PCI host JL =T 179
limit SWItChesccceiiiiiiii e 103 B e 64, 189
MCAPI
VEISION ittt 43
J MCCL command
) Move absolutecceeviviiiiieie e, 7
Jogging MCCL commands
de§cr|pt|on e, 101 single Stepping a Program.............coovvvv..... 152
Joystick controlled motion...........ccccoccveeeenee 101 MCCL mnemonic
VA s 7
L MCSpy
debug application programs............cccccceenne 36
LabVIEW programming.........cccceeevevveeeeinieneennns 35 Minimum PC requIrementsciviesssssssssssses 6
LeArNiNG POINS ...vveeeeeeeeeeeeeereeeeereeeeerseeeeeen, 133 Motion complete
LED's attarget ... 117
EITOT <o 179 ESCIPUON . .ocovvvv 117
Limit switch/sensor trgjectory complete.......oeveviiiiieiieee e, 117
voltage range.......ccccccveeeeeviiceiiieenennnn. 192, 193 Motion control .
Limiting the servo command output.............. 154 backlash COMPENSALION. ..o, 123
Limits Constant velocity moveccccceeeeeeennnne 90
active level.........ccoo 103 Conto.ur MOVE............... S 91
CheCKOULcoeiiiiiiei e 102 Learning / Teaching points....................... 133
AISADIE ..o 102 MASIEI / SIAVE ...vvvso v 100
enable.........ccccc 102 Poin_t to poinp """"""""""""""""""""""""" 89
hard (SWItch / SENSOF) w.v...evvveeeereeeeeseeee. 102 required settmgg ... 86
hOMING AN AXISv.veeeeeeeeeeeereeeean. 111, 115 theory of OPEration ... 13,14
223

MultiFlex PCI 1000 Series User's Manual

TOrque MOAEcveveeeieiiiieieeeee e 154
Motion Control

defined ... 11
Motion Integrator
AESCHIPLION ..eeeiiiiiiiee e 40
digital /O .. 167
encoder checkoutcveeeviieiiiiiiiiiieeeeen, 65
encoder index checkout..............cccveeeeeeeenn. 105
home sensor checkoutcccccceeiiis 105
limit sensor checkout.............cccccceeiiiinns 102
troubleshootingccccceevvvciiiiience e, 201
Motor control output
MG e 154
Move
ADSOIULE ... 7
Moving motors
Motor Mover program............ccccveeeeeeennn. 77,85
required Settingsccoovvereiniiiee e 18
SErvVO MOLOF ..o 65
Stepper MOLOroooevvviiiiiiiiiieee 78, 79
MultiFlex command (MCCL)
desCriptioncceveeeiiiiiiiieeee e, 17
pausing a command / sequence 19
(=] 0L<T= 1] oo [PPSR 18
single steppinNg....cccccevvcvvieeeee e, 152
terminating a command / sequence.............. 19
MultiFlex motion command language (MCCL)
format........coooeiiei 17
MultiFlex PCI
documentationcccccvieiieree e 3
FESELHING ..vvvee et 151
MultiFlex PCI 1440
€CONNECLOr PINOUL........coeiiiiiiieeeeeeeee 181, 185
Multiple moves sequences
SEIVO tUNING -.evieiiiieeeee e 70
Multi-tasking
commands not supported...........cccceeeeeennn. 137
CPU UtiliZationcccveeiiieeee e 138
described ..., 137
examplecccceeeeeviiiiiiienee, 7,137,138, 139
global data registerscccccceevvvcvvvieeeneeennn. 138
passing data between............cccccceeieeiiinnns 138
private data registers...........ccoceevvveeiieeenn 138
termination.........ccccevee e 139
TESHING e 137
N
Normally closed limit switch 102, 103
o
On the fly changes
arc and linear motion.........ccccocceveeviiieeeenne, 97
Constant velocity motioncccccceeeeeenn. 119
Point to PoiNt........ccccvveeieeee e 119
Trapezoidal velocity profile.........ccccccovuneeen. 119

Open loop mode
described.......ccceeviiii 20

Operating SYStEMSccooviieeeeiiiiieeiiieee e 6
Opto isolated inputs

171 o 58, 59, 60
P
Parabolic velocity profile

AESCHIPLION ..eeeiiiiieie et 88
Pausing

MCCL command / sequence..............cccc.... 19
PC requirements

MINIMUMS L 6
Phasing

OULPUL/ENCOAEN ..o 66
PID digital filter................... See Tuning the servo

algorithm........eevveeiiii e, 13

D7 HBIM et 13

AESCHIPLION ..veviiiiiiie e 13

T IO M s 13

PHIEIM s 13

restoring Settings..........occevveeviveeeenee 122,129
Pin out

ANalog iINPULS.......ccveeieiiiieeeieee 181, 185

AXIS IO i 181, 185

Digital /O.....covcvivieeiiiiiee e 181, 185

Watchdog relaycccccooviiiiiiiiiiinnniinns 189
Point to point motion

EXECULION ...t 89
Position

(Y=ot] (o [0 To [SRR 150
Position capture

desCriptioncceeevevee i 140
Position Capture

signal descriptioncccovcvvveeeiiiiene e, 193
Position compare

AESCHPLIONeeeeiiiiee e 141

fixed increment distances................cccuue.. 141

user defined poSitionscccoveiiiiveeeenenn. 141
Position Compare

signal descriptioncccceeeeeiiiiiiiiiiieennn. 194
Position mode

ENADIE.....coiiiii 89
Position verification

open l0op StePPeroocccvvvveeeeeee e 21,79

L] (=] o] o= . 143
Potentiometers: ..., 180
Program samples................. 8, 32, 33, 34, 35, 37
Proportional gain

AESCHIPLION ..eeeiiiiiiieecieee e 13
Pulse command servo

described........ccoociiiiii 20, 175
PWM command

deSCriPioNvvvieiiiie e 147

WIFING ettt 49
PWM direction

CONfIQUIE.....cciiee e 148

R analog command axiscccccceeeeiiiiiieeeenn. 174
aNalog iINPULS ...coveeeee e 176
Recording position dataccccceeeevvvenvvnnen. 150 digital VO ..., 176
Registry pulse command axiScccocccvvvviereeennnnnns 175
updating 1/0 configuringccceevvenee. 167 stepper CONrol........ceevviecciiiiiieee e 175
Relay StatuS LED'S ..cooeeeiiiiiiiieeeeee e 179
FESEL ...oviieieeveteieieiee e 151 Status Panel utility 67,103, 117
Repeating Stepper motor
command OF SEQUENCEccveveveevereerernanns 18 reverse phased..........cccooieeieiiiiie e 83
Report Stepper motor control
axis 'at target........ccocoveveveveverereeeeeeeenn 118 changing the direction of motor.................... 79
captured data.............cocoeveeeeeeeeeeennnns 150 closed 100p ..o 80, 107
current position of axis...................... 17,18, 79 encoder position verification................... 21,79
StatuS Of @XiS .. ovoneee e, 103, 104 homing .. 27,112
trajectory completecocccvvveeeieeiiccii, 117 (o] o114 [(o]0 o TP 78
Reset SPECIfiCAtiONS....ccvvveeeieciiieeeee e 175
FEIAY .eeeeiiieee e 151
the controller...........evveveveeivieiiiiieeeeiviieieieianns 151 T
Restore
controller Settingscccovvcvveeeeiiiinenen. 122,129 . .
Restoring user defined axis settings.............. 122 Teachmg_ POINTS....coiiiiiiiiieie e 133
Reverse phased Terminating
ENCOUET ...ttt 83 T Mt%(él_ command / SEqUENCe........oouwwwvvvveeeee 19
es
Roellr?goe(;er ... 127 digIal VO wvvvvvvvvvsssvssvssssssssisssssissssssssnnsnnsnene 167
Torque mode amplifier........ccccevviieeiiiiieeeenee 25
Trajectory complete
S descriptioncceeveveee i 117
Trajectory generator
Saving user defined axis Settings 122, 129 description .. 13,14
Scaling Trapezoidal velocity profile
defining User unitsccoeeeeeveeveecveeceeenee. 159 Lo 1= ETor 1] o] 1T o S 88
S-curve velocity profile Troubleshooting
AESCHPLON ..o 88 axis reverse phased..............coocviiiiin, 22
Servo - Pulse control COMMUNICAtiONScooevviiiiiiiiiieieeeeeeeeeeeas 203
deSCHDE ... 20 encoder Checkout.............c.cooiiiiiinn, 65
SPECIfICALIONSovvveecerceeeeeeee e 175 encoder checkout, stepper............c..c.oeene. 80
WITING ©ovveeeee et en e 51 general ... 202
Servo command output iNtialiZationcoooeveeeie 204
NG, .o 154 NO MOtION DY & SBIVO ..o 22
Servo control oscillation by a servo........cccccceeeeeiiiiiiiinnnnn. 22
AESCHIPHON w..eeeee e 13 SErVO MOtION......oviiirr 206, 208
SPECIfICALIONS ... 174 SEIVO tUNING...ovviieiise e 205
Servo motor control StatUS LED'S ..covviiiieiieeee 179
ROMING ..o, 27,105, 107 Troubleshooting application programs
tuning TN SEIVO oo, 68 MCSpy .. 36
Single stepping a programcoeeeveveueann. 152 TTL inputs
Software WIFING ettt 61
DEemO Programs...........ccceveveeveueevseenannn. 37,38 TTL outputs
FIASH WiZA e 44 WIFING ettt 62
Game Port JOYStCK.......cooveveveereeieer e 44 Tuning the servo
Motion Integrator 40, 102, 167, 201 desCriptionuueeeiiieiiiiiiieeee s 22,68
MOLOF MOVET ...t 77,85 multiple Move SeqUENCES.............oviies 70
o e 38 range of slide CONtrOISooovvrrvvrsvo 70
Servo Tuning Utilitycooovveeveveeeecene, 68 saving Settings..........cococvvnnnninnnen 69, 76
SOUICE COUE ..ot 37, 38 Servo tuning Utility ..o 68
Status Panel ...ovvivevee 45, 67, 103, 117 Velocity mode amplifier........ccccceveeeiiviinnnnnen, 71
WiInControl..........ccevvvvvevveeeeveeeinnnnns 43,152, 213
Specifications
225

MultiFlex PCI 1000 Series User's Manual

U
Update
fIrMWare ..., 44
User units
controller time baseccccccceevviiiiiiienenenn, 160
AeSCHPLIONeviiiiiieeiiee e 159
MAChing Zero.......ccccvveeviieeiiiiieee e 161
output constant..............ccoee, 162
PAIt ZErO ..o 161
SELHNG .eveeeeiieiee et 159
trajectory timeccccevviiiiiiiiieee 160
USEI SCAlE ...vvveeiieeieeiieeee e 159, 160
V
Vector accelerationcoccccveevvciieeeeniiien e, 91
Vector decelerationccoccecveevvcieeeeiiiene e, 91
V2T (o] AR =1 0T 91
Velocity
default Unitsccveeeiiiiie e 86
disable ... 42
restoring Settingsoccevevvvveeeeeninen. 122,129
St to0 high ...coooiieiiii 66
SEHING cevveeeiiie e 8,37, 77
VeloCity gaiN......c.eeeeiiiiiieiiieeeeeee e 162
Velocity mode
enable. ... 90
Velocity mode amplifier........ccccccoviiiiiiiennnnnnn. 25
desCriptionccceeeeviiiiiiiiieeee e 71, 120
TUNING e 71
Velocity mode move
EXECULION ..vvveeeiiieie et saeee e 90
setting the directioncccccceevvviiiiiieenneenn, 90
5] 2= Lt (] o S 90
Velocity profiles
Contour mode motioNcccccvveeereeeeeiinnns 91
ParaboliC.........ccoovvviiiiiieeie 88
S-CUI'VE o 88
Trapezoidal........ccccevviiiiiiiiiieeeee 88
Velocity, maximum
SELHNG vvveeiiiee e 67, 86

Version

MCAP ... 43
Visual Basic programmingccccoeeevvvvveeennnn. 33
W
Wait

for'attarget' ..., 118

for trajectory complete...........ccccoeoviineennnn 117
Watchdog circuit

AESCHPLION ...evvieiiieee e 163
Watchdog relay

CONLACES PIN OUL ...ceveviiiiiiiiiiiieee e 189

WIFING ettt 64
Windows

registry, updating 1/O configuring.............. 167
Wiring

+/- 10V command output..........ccceeeervieeenee. 48

AD INPUES ... 63

Anplifier Enable output............cccocceeeene 52, 54

Anplifier Fault inputcccoociiiiie, 55

closed 100p StEPPEr.....ccovviveiiriiieeeiee e 80

Driver Disable output.............ccveverinneee. 53, 54

Driver Enable output ... 54

Driver Fault input.........cccccoviiiiiiiiiieeinee 55

encoder, differential..............coocciine. 56

encoder, single ended.............ccccoveeeeeennn, 57

E-StOP v 125

hOMe SENSOr.......ccociieeiiiieeeee e 105

home sensor iNPUtS...........coccvvvveeeeeee e, 60

Limit +/- INPULS ... 58, 59

[IMIt SENSON ... 102

Opto isolated iNPULSccceeeeeerinnnens 58, 59, 60

Pulse command outputcccceeviiieeennee 51

PWM command OUtpUL...........ccceverriiieeeennnen 49

servo, analog command...............c......... 48, 51

servo, pulse commandcccceeeeveviiviieeeennn. 51

servo, PWM command.........ccccccovvuviineennn. 49

stepper, pulse command..............cccvveeeeeennn. 51

TTL digital iNputS......oooiiiiiieeeiieeen 61

TTL digital outputs.........ccccvvveeeeeeeiiiiiiiieee. 62

watchdog relaycccceeeeeviciiiieeeee e, 64

MultiFlex PCI 1000 Series User's Manual 227

ERPMC

Precision MicroControl Corporation
2075-N Corte del Nogal
Carlsbad, CA 92009-1415 USA

Tel: (760) 930-0101
Fax: (760) 930-0222

WWW.pmccorp.com

Information: info@pmccorp.com
Technical Support: support@pmccorp.com

	Prologue
	Introduction
	Processor
	PC computer minimum requirements
	Programming
	Motion Control API example
	MCCL command example
	Programming Tools
	Software Tools & Utilities
	I/O Configuration Panel

	Motion Control Primer
	Motion Control Architecture
	Motion Controller Functional Block Diagram
	Motion Controller Tasks
	+/- 10 Volt Analog Servo Control
	PID Filter
	Position Feedback via Incremental Encoder
	Pulse (Step/Dir/CW/CCW) Command for Stepper or Pulsed Servo Systems
	Position Feedback via Incremental Encoder
	Axis I/O
	Digital I/O
	High-speed I/O

	The Command Set - the heart of the motion controller
	Executing Operations with MCCL
	Closed loop, open loop, and position verification
	Closed loop control
	Open Loop control
	Open loop with position verification

	Why does a servo need to be tuned?
	Position Feedback - Quadrature Incremental Encoder
	Servo Amplifiers: Current Mode versus Velocity Mode
	Current Mode amplifier (sometimes called Torque Mode)
	Velocity Mode amplifier

	Stepper Motors - Full Step versus Micro Step
	Homing - Why, When, and How
	Homing closed loop systems
	Homing open loop systems

	Software, Programming and Utilities
	Controller Interface Types
	Building Application Programs using Motion Control API
	C/C++ Programming
	Visual Basic Programming
	Delphi Programming
	LabVIEW Programming

	MCSpy - application program diagnostic tool
	PMC Sample Programs
	Motion Control API On-line Help
	Motion Integrator
	Digital and Analog I/O Test Panels
	Tuning servo’s with Motion Integrator

	PMC Utilities
	Motion Control Panel
	WinControl – MCCL (Motion Control Command Language) command set interface utility
	Flash Wizard
	Joystick Applet
	Status Panel

	Connecting to the Controller
	+/- 10V Analog Servo Command Connections
	PWM (Pulse Width Modulation) Command Connections
	Unipolar PWM

	Pulse Command Connections
	Amplifier / Driver Enable Connections - Low Active
	Driver Disable Connections - Low Active
	Amplifier / Driver Enable Connections - High Active
	Amplifier / Driver Fault Connections
	Differential Incremental Encoder Connections
	Single Ended Incremental Encoder Connections
	Over-Travel Limit Connections
	Sourcing Sensor
	Sinking Sensor

	Home Sensor Connections
	TTL Digital Input Connections
	TTL Digital Output Connections
	A/D Input Connections wiring example
	Watchdog Relay Connections

	Motion Control
	Servo (analog command) Axis Setup
	Verify proper encoder operation
	Define trajectory parameters

	Tuning the Servo
	Saving the Tuning Parameters
	Changing the Scale of the Slide Controls
	Executing cycle operations from the Servo Tuning program.
	Tuning Velocity Mode Amplifier Servo Systems
	Tuning the Servo
	Saving the Tuning Parameters
	Acceleration and Deceleration Feed Forward
	Systems with Electrical or Mechanical Deadband

	Moving Servo Axes with Motor Mover
	Stepper (pulse command) Axis Setup
	Open Loop Pulse Command Motion with Position Verification Encoder
	Closed Loop Steppers
	Define the motor steps per rotation / encoder counts per rotation ratio
	Set the trajectory parameters
	Tune the axis
	Reverse Phasing of a closed loop stepper
	Closed loop stepper example

	Moving Stepper Axes with Motor Mover
	Defining the Characteristics of a Move
	Velocity Profiles
	Point to Point Motion
	Constant Velocity Motion

	Contour Motion (arcs and lines)
	Define the contour group
	Define the trajectory parameters
	Define the type of contour move
	Loading the Contour Buffer for Continuous Path Contouring
	Multi Axis Linear Interpolated moves
	Arc Motion
	Arc motions by specifying the center point and end point
	Arc motions by specifying the radius and end point
	Arc motions by specifying the center point and ending angle
	Changing the velocity ‘on the fly’
	Cubic Spline Interpolation of linear moves
	User Defined Contour path
	Special case: setting the Maximum Velocity of an Axis

	Electronic Gearing
	Jogging
	Jogging without writing software
	Using the Joystick Demo in your application program

	Defining Motion Limits
	Hard Limits
	Soft Limits

	Homing Axes
	Connecting a Home Sensor
	Verifying the operation of the Index Mark of an Encoder
	Programming Homing Routines
	Homing a Rotary Stage (closed loop servo or closed loop stepper) with the Encoder Index
	Homing a Closed Loop Axis with Coarse Home and Encoder Index Inputs
	Homing a Closed Loop Axis with a Limit sensor
	Homing open loop steppers
	Homing a Open Loop Stepper with a Limit sensor

	Motion Complete Indicators
	On the Fly changes
	Feed Forward (Velocity, Acceleration, Deceleration)
	Acceleration and Deceleration Feed Forward

	Save and Restore Axis Configuration Settings

	Application Solutions
	Backlash Compensation
	Emergency Stop
	E-stop switch connected to Amplifier Fault servo module input

	Encoder Rollover
	Flash Memory Firmware Update
	Saving and Restoring Axis Configuration Settings
	Saving and restoring configuration settings using PMC application programs
	Saving and restoring configuration settings using the MCDLG functions
	Saving and restoring configuration settings via individual function or MCCL calls

	Learning/Teaching Points
	Building MCCL Macro Sequences
	MCCL Multi-Tasking
	Position Capture
	Position Compare
	Compare predefined positions
	Compare at incremental distances
	Compare frequency and output latency
	Compare output signal configuration

	Position Verification of an Open Loop Pulse Axis
	Homing the auxiliary encoder of an open loop stepper
	Verifying the Operation of the encoder of an open loop stepper

	PWM Servo Command
	Configuring PWM operation

	Record Motion Data
	Resetting the Controller
	Single Stepping MCCL Programs
	Torque Mode Output Control
	Analog Command output channels as simple D/A output with encoder reader

	Turning off Integral gain during a move
	Defining User Units
	MCScale Data Structure
	Setting Move (Encoder/Step) Units
	Trajectory Time Base
	Defining the Time Base for Wait commands
	Defining a System/Machine zero
	Defining a Part Zero
	Defining the output constant for velocity gain

	 Watchdog Circuit

	General Purpose I/O
	Digital I/O
	I/O Configuration Panel

	Configuring and Exercising the Digital I/O
	Using the Digital I/O
	Enable Digital IO
	Get Digital IO
	Wait for Digital IO

	A/D Inputs
	Using the A/D inputs
	Get Analog

	Specifications
	Motion Control Board
	Analog Command Axis Specifications
	Pulse Command Axis Specifications
	General Purpose I/O Specifications

	Connectors, I/O and Schematics
	VHDCI Connectors
	VHDCI SCSI mating connectors and cables

	Controller Status LED Indicators
	Controller Potentiometers
	Connector Pinout – MultiFlex PCI 1440
	Connector Pinout – MultiFlex PCI 1040
	Connector J5 - Reserved for factory use
	Connector J7 - Reserved for factory use
	Connector J8 - Watchdog relay contacts

	Signal Descriptions
	Motor Command Signals
	+/- 10 Analog Command Outputs
	Pulse and Direction Command Outputs

	Encoder Feedback Signals
	Encoder Inputs (Phase A+, Phase A-, Phase B+, Phase B-, Z+, Z-)
	Encoder - Reference Output

	Default Axis Inputs
	Amp. / Drive Fault Input
	Coarse Home / Stepper Home Input
	Limit Positive Input
	Limit Negative Input
	Position Capture (Latch) Input

	Default Axis Outputs
	Drive Disable
	Amplifier / Driver Enable
	Position Compare Output
	Full/Half Current & Unipolar Direction Output

	Default Configuration of General Purpose I/O
	TTL Digital Inputs
	TTL Digital Outputs
	Analog Inputs (optional)

	Circuit Schematics

	Troubleshooting
	Controller Error Codes
	Motion Control API Error Codes
	MCCL Error Codes

	Glossary
	Appendix
	Default Axis Configuration Settings

	Index

