DCX-PCI300

Modular Multi-Axis Motion Control System

Introduction and Installation Guide Revision 1.2d

Precision MicroControl Corporation 2075-N Corte del Nogal Carlsbad, CA 92009-1415 USA

> *Tel:* (760) 930-0101 *Fax:* (760) 930-0222

www.pmccorp.com

Information: info@pmccorp.com Technical Support: support@pmccorp.com

LIMITED WARRANTY

All products manufactured by PRECISION MICROCONTROL CORPORATION are guaranteed to be free from defects in material and workmanship, for a period of five years from the date of shipment. Liability is limited to FOB Factory repair, or replacement, of the product. Other products supplied as part of the system carry the warranty of the manufacturer.

PRECISION MICROCONTROL CORPORATION does not assume any liability for improper use or installation or consequential damage.

(c)Copyright Precision Micro Control Corporation, 1994-2001. All rights reserved.

Information in this document is subject to change without notice.

IBM and IBM-AT are registered trademarks of International Business Machines Corporation. Intel and is a registered trademark of Intel Corporation. Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corporation. Acrobat and Acrobat Reader are registered trademarks of Adobe Corporation.

Precision MicroControl

2075-N Corte del Nogal Carlsbad, CA 92009-1415

Phone: (760)930-0101 Fax: (760)930-0222 World Wide Web: www.pmccorp.com Email: Information: info@pmccorp.com Technical support: support@pmccorp.com Sales: sales@pmccorp.com

Table of Contents

Prologue	ii
Introduction	3
The Modular DCX System	5
DCX-PCI300 Offers Two Connection Options	9
Controller and Software Installation	
DCX Motion Control System Installation	
Installing the DCX-PCI300 Motion Control Motherboard	
Installing the DCX Software (MCAPI)	24
Installing and Wiring DCX Modules	
Connections – High Density versus Ribbon Cable	
Installing DCX Modules onto the DCX-PCI300 Motion Control Motherboard	
DCX-MC300 – Servo Motor Module Installation	
DCX-MC302 – Dual Axis Servo Motor Module Installation	
DCX-MC320 – Brushless Servo Motor Module Installation	
DCX-MC360 – Stepper Motor Module Installation	
DCX-MC362 – Dual Axis Stepper Motor Module Installation	51
DCX-MC400 – Digital I/O Expansion Module Installation	53
DCX-MC500 – Analog I/O Expansion Module Installation	54
Programming, Software and Utilities	57
Controller Interface Types	
Building Application Programs using Motion Control API	59
PMC Sample Programs	
Motion Integrator	65
PMC Utilities	
MCAPI On-line Help	
DCX Specifications	
Motherboard: DCX-PCI300	
DCX-MC300 - +/- 10 Volt Analog Servo Motor Control Module	
DCX-MC302 – Dual +/- 10 Volt Servo Motor Control Module	
DCX-MC320 - Brushless Servo Commutation Control Module	
DCX-MC360 - Stepper Motor Control Module	
DCX-MC362 – Dual Stepper Motor Control Module	80
DCX-MC400 - 16 channel Digital I/O Module	
DCX-MC5X0 - Analog I/O Module	
Connectors, Jumpers, and Schematics	
DCX-PCI300 Motion Control Motherboard	
DCX-MC300 +/- 10V Servo Motor Control Module	
DCX-MC302 Dual Axis +/- 10V Servo Motor Control Module	
DCX-MC320 Brushless Servo Commutation Control Module	
DCX-MC360 Stepper Motor Control Module	
DCX-MC362 Dual Axis Stepper Motor Control Module	
DCX-MC400 Digital I/O Module	
DCX-MC500/510/520 Analog I/O Module	
DCX-BF022 Relay Rack Interface	
DCX-BF3XX-H High Density Breakout Assembly	
DCX-BF300-R Servo Module Breakout Assembly	
DCX-BF320-R Servo Module Breakout Assembly	
DCX-BF360-R Stepper Module Breakout Assembly	
Printing a PDF Document	
Index	

Revision	Date	Description
1.0 Pre	3/12/2001	Preliminary release
	4/6/2001	Added preliminary pinouts for –H (high density) MC3XX modules
	5/2/2001	Edited controller and MCAPI installation descriptions
	5/13/2001	BF3XX-H pinouts and high density connectors module mapping
	5/14/2001	BF320 pinouts
1.0	5/22/2001	Initial release
1.1	7/26/2001	Added Motion Integrator support
1.2	1/15/2002	Added Dual Axis Motion Control Modules (DCX-MC302-H, DCX-MC362-H)
		Emphasized high density connections throughout document
	1/15/2002	Added Windows XP as a supported operating system
	1/16/2002	Changed module opto isolated inputs to 5 volt (from 12V – 24V)
	1/17/2002	Added MCAPI Status Panel utility
1.2c	8/16/2002	Edited -H/-R typos on pages 8 and 13
		Updated ribbon cable connector manufacturer part number
	7/3/2003	Fixed typo (MC360-R Aux. Encoder Power J3-10)
		Edited MC360-R wiring example
1.2d	12/19/2003	Added J5 connector label to DCX-PCI300 motherboard drawing

Document Revision history

Contact us at:

Precision MicroControl

2075-N Corte del Nogal Carlsbad, CA 92009-1415

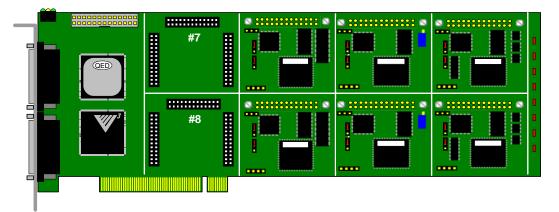
Phone: (760)930-0101 Fax: (760)930-0222 World Wide Web: www.pmccorp.com Email: Information: info@pmccorp.com Technical support: support@pmccorp.com Sales: sales@pmccorp.com

Prologue

The documentation set for the DCX-PCI300 is divided into four volumes. The titles of each of the individual volumes are:

DCX-PCI300 Introduction and Installation Guide DCX-PCI300 User's Manual Motion Control Application Programming Interface (MCAPI) Reference Manual Motion Control Command Language (MCCL) Reference Manual

Al four volumes of the documentation set are available on PMC's **MotionCD**. In addition to PDF versions of the DCX-PCI300 documentation set the **MotionCD** includes:


- Tutorials (PowerPoint presentations)

 An Introduction to PMC Motion Control
 Installing a PMC Motion Controller (Does not Address PCI bus controllers)
 Introduction to Motion Control Programming with the Motion Control API
 Servo Systems Primer
 DCX Servo Tuning
- PMC AppNOTES detailed descriptions of specific motion control applications
- PMC TechNOTES one page technical support documents
- PMC Product catalogs and brochures

Introduction

Motion controller - a device that uses a digital processor to coordinate the movement of mechanical systems.

The DCX-PCI300 is an Intel compatible PC computer based servo motor, stepper motor, and I/O controller.

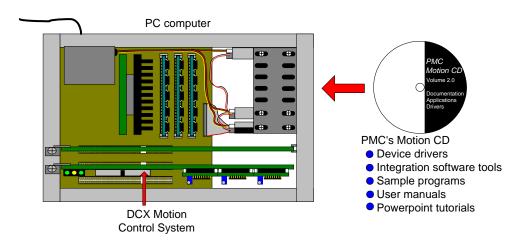
In Windows XP/2000/Me/98 systems the DCX-PCI 300 is a true PCI 'plug and play' card. When the PC is turned on, the DCX-PCI300 is *dynamically addressed* into the memory map of the PC. The PC communicates with the motion controller via dual ported memory on the DCX-PCI300. The PC can issue commands (move a motor, change the velocity, etc.) to the controller, and retrieve data from the controller (report to position of an axis, report the state of a digital input, etc.) without interrupting the basic operations of the controller.

But a hardware based motion control card provides only one half of the overall motion control solution. State of the art motion control systems typically require sophisticated multi-threaded application programs and eye catching operator interfaces. PMC's **Motion Control Application Programming Interface (MCAPI)** provides the machine designer with device drivers and a powerful function library for Windows XP/2000/NT/Me/98 based applications.

-	Lise the apple	nice to configure and fact motion controller
-	anden	
T)	7288	Searghan
	0/349/2100	Area (-4 ()-4 serva, 5 k 8 desper)
	All	-thomas - thomas -

Figure 2: PMC's Windows Motion Control Panel

<pre>MCEnableAxis(HCTRLR hCtlr, Word xAxis, short int bState)</pre>	;
MCMoveRelative(HCTRLR hCtlr, Word xAxis, double Distance);
MCIsStopped(HCTRLR hCtlr, Word xAxis, double Timeout);	


Figure 3: Function Library examples

The MCAPI supports today's popular programming environments including:

- C/C++
- Visual Basic
- Delphi
- LabVIEW

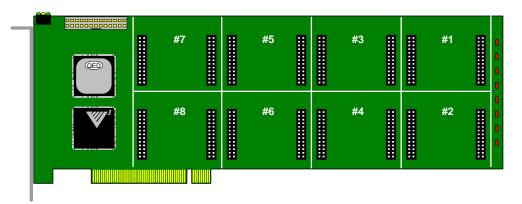
The DCX-PCI300 Motion Controller can be installed in most any Windows PC computer. It executes motion functions independent of the host, so other than the minimum requirements for the selected operating environment (XP/2000/NT/ME/98), the DCX-PCI300 **does not require or use any additional PC resources** (CPU speed, PC memory, hard disk space, etc...).

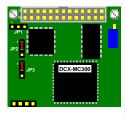
All documentation, tutorials, and software (drivers, function library, diagnostics and utilities) are available on PMC's **MotionCD**.

The Modular DCX System

The modular architecture of the DCX system allows the user to '**mix and match**' DCX components to meet the **specific requirements of each application**. The DCX system controls the motion of any combination of servos and stepper motors simultaneously. In addition the DCX modular system supports expandable digital I/O and analog I/O.

The term **DCX** refers to a system consisting of from 1 to 9 circuit boards assembled together to form a motion control assembly. The platform of a DCX system is the DCX-PCI300 "motherboard". It is a 'full' size (approximately 4" x 12.25") PCI peripheral card. It communicates with the PC host via the PCI bus. On board dual ported memory is used to pass motion commands and report data between the DCX controller and the PC. The on board CPU (**192MHz MIPS**) allows the DCX to operate autonomously from the PC, freeing the host to process critical events while the DCX handles all motion control. But please note - the DCX-PCI300 motherboard is the processing / communication / synchronizing engine of the DCX system, but on its own it provides no actual motion control.




Figure 4: The ribbon cable connector version of the DCX-PCI300 Motion Control Motherboard

To complete the DCX Modular Motion Control System, on to the DCX-PCI300 motherboard the user installs as many as eight, 2 inch square "daughter boards" known as "DCX modules" . DCX motion control modules provide:

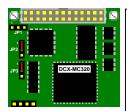
- The motion control command output +/- 10V(single or dual) or Step/Dir / CW/CCW (single or dual)
- PID filter with velocity, acceleration and deceleration feed forward (servo's modules only)
- On board commutation (sine commutation servo only)
- Buffering and monitoring of axis I/O (+/- Limits, Home, Amp/Driver enable)
- Encoder interface and decode

The DCX-PCI300 motherboard currently supports five DCX modules, three for motion control and two for general purpose I/O. A key feature of the DCX system is its ability to sense which DCX modules are present. This results in easy system configuration; simply install whatever modules the application calls for. The logic on the motherboard will adjust its' operation accordingly.

DCX Motion Control Modules

DCX-MC300 Servo Motor Control Module DCX-MC300-H (for high density cabling)

DCX-MC300-R (for ribbon cable connections)


Supported motor type: DC Brushless, Brush, Hydraulic Servo Valves, Pneumatic Servo Valves

Command output: +/- 10 volt, 16 bit analog for use with servo amplifier

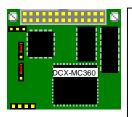
I/O

Inputs (opto isolated)- Encoder Coarse Home, Limit +, and Limit -, Amplifier Fault Output (opto isolated) – Amplifier Enable Feedback: Quadrature Incremental Encoder Interface, 10 MHz Primary - Quadrature Incremental Encoder, 10MHz, Single ended (A, B, Z) or Differential (A+, A-, B+, B-, Z+, Z-)

Auxiliary - Quadrature Incremental Encoder, 10 MHz, Single ended (A, B, Z+, Z-)

DCX-MC320 AC Brushless Servo Motor Control Module with on-board Sine Commutation DCX-MC320-H (for high density cabling)

DCX-MC320-H (for ribbon cable connections)


Supported motor type: Brushless AC Servo, Linear Motor

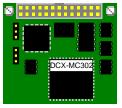
Command output: dual +/- 10 volt, 16 bit analog for use with servo amplifier

I/O

Inputs (opto isolated) - Encoder Coarse Home, Limit +, and Limit -, Amplifier Fault Output (opto isolated) – Amplifier Enable Feedback: Primary - Quadrature Incremental Encoder, 10 MHz, Single ended (A, B, Z) or Differential (A+, A-, B+, B-, Z+, Z-)

Auxiliary - Hall Effect Sensors (A, B, C)

DCX-MC360 Stepper Motor Control Module DCX-MC300-H (for high density cabling) DCX-MC300-R (for ribbon cable connections)

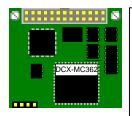

Supported motor type: Open loop stepper, Closed loop stepper, Step/Dir controlled servo

Command output: Step/Direction or CW/CCW (software programmable), open collector drivers (+5 to +30 volts @ 125 ma)

I/O

Inputs (opto isolated)- Home, Limit +, and Limit -, Null Outputs (open collector driver) – Drive Enable, Half/Full step, Full/Half current Feedback (optional): Quadrature Incremental Encoder, 10MHz, Single ended (A, B, Z) or Differential (A+, A-, B+, B-, Z+, Z-)

DCX Motion Control Modules (continued)


DCX-MC302-H Dual Servo Motor Control Module

Supported motor type: DC Brushless, Brush, Hydraulic Servo Valves, Pneumatic Servo Valves

Command output: Dual +/- 10 volt, 16 bit analog for use with servo amplifier

I/O

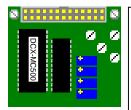
Inputs (opto isolated)- Dual Encoder Coarse Home, Dual Limit +, Dual Limit -, Dual Amp. Fault Output (opto isolated) – Dual Amplifier Enable Feedback: Dual Quadrature Incremental Encoder Interface, 10 MHz Single ended (A, B, Z) or Differential (A+, A-, B+, B-, Z+, Z-)

DCX-MC362-H Dual Stepper Motor Control Module

Supported motor type: Open loop stepper or Step/Dir controlled servo

Command output: Dual Step/Direction or CW/CCW (software programmable), open collector drivers (+5 to +30 volts @ 125 ma)

I/O

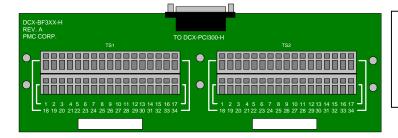

Inputs (opto isolated)- Dual Home, Dual Limit +, Dual Limit -, Dual Drive Fault Outputs (open collector driver) – Dual Drive Enable, Dual Full/Half current

DCX General Purpose I/O Modules

DCX-MC400 - 16 Channel Digital I/O Expansion module DCX-MC400-H (for high density cabling) DCX-MC400-R (for ribbon cable connections)

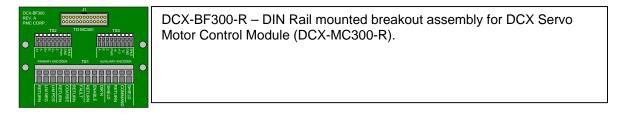
Each channel is individually programmable as either an input or output TTL level (0 - 5 volt, 2 ma sink/source)

DCX-MC500 – 4 Channel Analog I/O Expansion module


MC500-H – 4 input channels & 4 output channels (high density cabling)

- MC510-H 4 input channels only (high density cabling) MC520-H – 4 output channels only (high density cabling)
- MC500-R 4 input channels & 4 output channels (ribbon cable connections)
- MC510-H 4 input channels only (ribbon cable connections)
- MC520-H 4 output channels only (ribbon cable connections)

Inputs – 4 channels, 0 - 5 volts, 12 bit Outputs – 4 channels, 0 - 5 volts and/or –10 - +10 volts, 12 bit


DCX Motion Control Breakout Assemblies

High Density Connection Breakouts

DCX-BF3XX-H – DIN Rail mounted breakout assembly for all -H DCX Modules. Each unit DCX-BF3XX-H breakouts out all signals for 2 DCX module locations.

Ribbon Cable Connection Breakouts

DCC-M2-300	DCX-BF360-R – DIN Rail mounted breakout assembly for DCX Stepper
RMC_OORS J1 TO TO TO TO Image: Second S	Motor Control Module (DCX-MC360-R).
z 0 0 WIZ 19	

DCX-PCI300 Offers Two Connection Options

For years the traditional method of connecting a PC based motion controller to the 'outside world' (amplifier/driver, sensors, switches, encoders, etc.) has been to use ribbon cables. Besides the fact that the component and labor costs of ribbon cables are very low, the tooling costs are even less. Who doesn't have a small vice in their workshop?

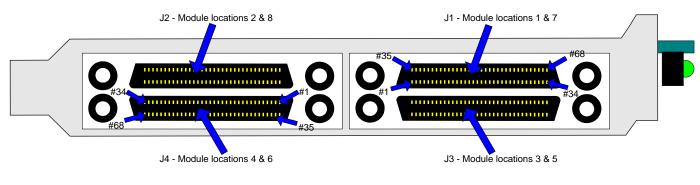
But in today's world of 'smaller, faster, better, and cheaper' the connection requirements placed upon the PC based motion controller have increased due to:

- Increasing demands for maximum reliability
- Tighter packaging requirements
- Government standards compliance

For these reasons the DCX-PCI300 motion controller is available with two different connection solutions:

- High density connections using VHDCI Ultra SCSI cables
- Ribbon cable connections with 26 conductor cables

High Density connector version – DCX-PCI300-H


The DCX-PCI300-H motion controller uses high density shielded connectors (AMP P/N 787962-2) that mate with 'off the shelf' cables used by **RAID** (Redundant **A**rray of Independent **D**isks) network servers. The connector is known as **VHDCI 0.8mm** (sometimes called **SCSI V** or **Ultra SCSI**). The module I/O signals are routed from the J3 connector on the DCX modules, through the DCX motherboard, to the VHDCI connectors. Appending a **-H** to the end of the part number identifies the high density connector version of the DCX-PCI300 motion controller.

		H			1		1		
Two double stacked VHDCI connectors, which exit the back	ŒD		#7	#5		#3		#1	
of the PC,		_ 88							
connections for as many as 8 DCX modules			#8	#6		#4		#2	
									_

Figure 5: High density connector version of the DCX-PCI300 (DCX-PCI300-H)

Following the SCSI specification, the VHDCI connector has 68 contacts, and the shielded mating cable twists conductors 1 & 64, 2 & 63 and so on. The DCX-PCI300-H uses two double stacked VHDCI connectors, resulting in a total of four 68 pin connectors (272 contacts)

All I/O signals from the J3 connector of the DCX modules are routed through the PCI300-H printed circuit board to the 4 VHDCI connectors. As with the PCI300-H motherboard, to specify a high density connector version of a DCX module, append a **-H** to the end of the module part number. The pinout for the VHDCI connectors is available in chapter 6 **Connectors, Jumpers, and Schematics**.

VHDCI connectors as viewed from the back of the computer (component side down)

High density accessories

The PCI300-H is designed to be used by OEM machine builders who would build their own cables and signal breakouts. First time users and low volume OEM's can purchase all necessary accessories for completing DCX-PCI300-H motion control system.

- 6 foot long high density cable (P/N DCX-PCICBL-H). Each of the four 68 pin connectors on the DCX-PCI300-H provides I/O connections for 2 axes. To route all signals for eight / fifteen axes requires four high density cables.
- High density cable signal breakout (P/N DCX-BF3XX-H) works with all –H DCX modules

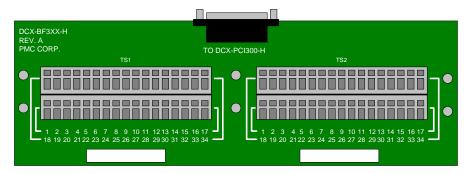
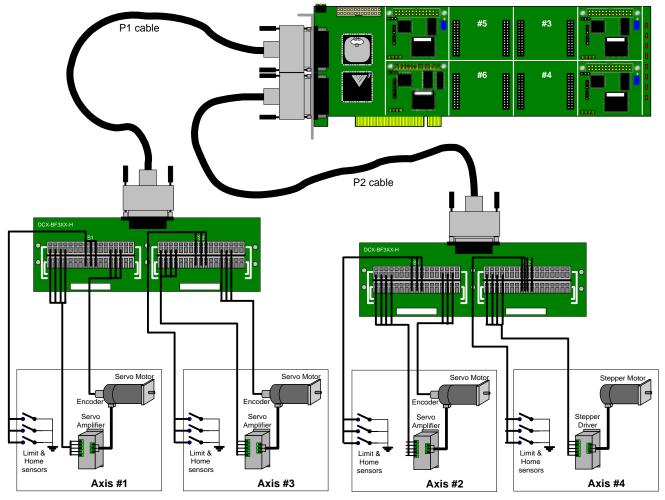
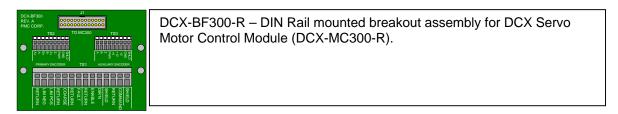
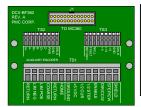


Figure 7: The DCX-BF3XX-H breakout is compatible with all -H versions of DCX modules. One DCX-BF3XX-H provides clamp type connections for two DCX modules




Figure 8: Typical connections for a 4 axis DCX-PCI300-H system (modules in locations 1, 2, 7, & 8)


Ribbon cable version – DCX-PCI300-R

The $-\mathbf{R}$ version of the DCX-PCI300 allows the user to connect to the outside world with simple 26 conductor ribbon cables. Each $-\mathbf{R}$ DCX module has a 26 pin shrouded and polarized header into which the ribbon cable connector is inserted. From here the machine designer has two options:

- Option #1 the other end of the ribbon cable can be directly connected to the 'outside world'
- Option #2 an externally mounted breakout card can be used to transition from the light duty 28AWG. ribbon cable conductors to a more rugged wire type. For this option PMC does offer breakout assemblies (DCX-BF300-R, DCX-BF320-R, and DCX-BF360-R) or the user can design his/her own.

DCX Motion Control Breakout Assemblies

DCX-BF360-R – DIN Rail mounted breakout assembly for DCX Stepper Motor Control Module (DCX-MC360-R).

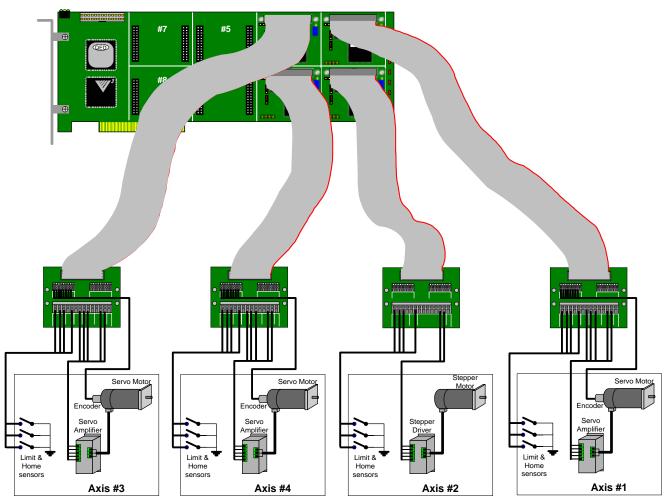


Figure 9:Typical connections for a 4 axis DCX-PCI300-R-system connected via ribbon cable and PMC BF300-R breakout assemblies

Chapter Contents

- DCX Motion Control System Installation
- Installing the DCX-PCI300 Motion Control Motherboard
- Installing the DCX Software (MCAPI)

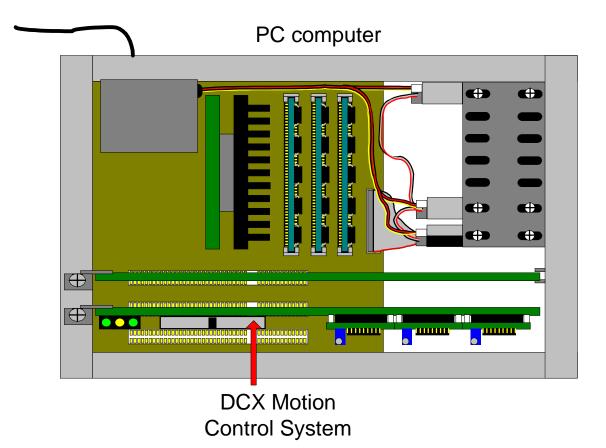
Controller and Software Installation

The DCX-PCI300 is installed in a PCI slot of a PC computer or the passive back plane of an industrial computer. Power (+5V, +12V, and –12V), Ground reference, and communication (Address, Data, and Read/Write control signals) is supplied via the PCI edge connector. The DCX-PCI300 motion controller supports Windows XP/2000/NT/ME/98 operating systems, **the DCX-PCI300 does not support Windows 95 or 3.X**.

DCX Motion Control System Installation

The basic steps for a **new** installation of the DCX-PCI300 motion controller for PC based applications are as follows:

- Install DCX motion control and/or I/O expansion modules onto the DCX-PCI300 motherboard
- With PC power turned off, install the DCX controller into an available PCI slot
- Turn on the computer, during the loading of Windows (except for NT4) the operating system should recognize that a new PCI card has been installed
- Use the Windows New Hardware Wizard to select the DCX-PCI300 device driver
- Install the PMC's motion control software (MCAPI) from the MotionCD or from PMC's web site www.pmccorp.com
- Restart the computer to complete the installation
- The DCX motion control system is now ready for testing


Installing the DCX-PCI300 Motion Control Motherboard

The DCX-PCI300 is 'Plug and Play' (Windows XP/2000/98/Me) compatible, there are no jumpers or switches to be configured. The DCX can be installed in any of the PC's available PCI slots. The DCX modules and cabling may interfere with a card installed in the slot next to the DCX, so it is recommended that the slot next to the DCX be left open. Make sure to attach the bracket of the DCX to the back panel of the PC.

Make sure that the PC computer power is turned off before installing the DCX-PCI300 motion controller.

For new installations, to verify communication between the PC, MCAPI, and the DCX it is recommended that the DCX-PCI300 motherboard first be installed without any DCX modules.

Installing the motion controller in a Plug & Play system (Windows XP/2000/98/Me)

The following section describes the basic steps for installing the DCX-PCI300 motion controller into plug and play PC computers. For step by step installation procedures please refer to the MCAPI readme file :\MotionCD\Windows\MCAPI\Readme.txt

After installing the DCX-PCI300, power up the PC. The operating will detect a new PCI device, and will launch the **Windows Found new Hardware Wizard**.

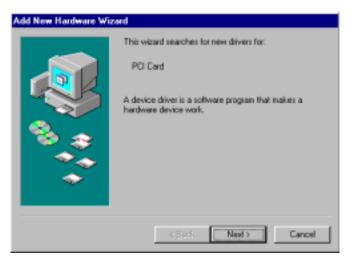


Figure 10: Windows New Hardware Wizard

Figure 11: Select Search for the best driver for your device

Figure 12: Select Specify a location. Insert the Motion CD into the CD-ROM drive. Browse to :\MotionCD\WIndows\MCAPI\Current\Win2000 or:\MotionCD\WIndows\MCAPI\Current\Win98. Select the *.inf file

Figure 13: Select Next to install the device driver

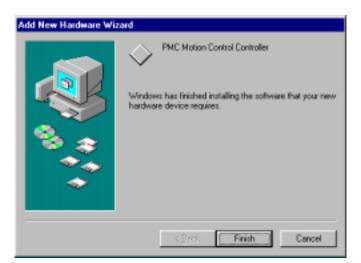


Figure 14: Select finish to complete the DCX-PCI300 device driver installation

To complete the installation of a DCX-PCI300 motion controller you must install PMC's motion control software, the Motion Control API (MCAPI). Please proceed to the section titled, **Installing the DCX Software** (MCAPI)

Installing the motion controller in a Windows NT system

There are no jumpers or switches to be configured prior to installing the DCX-PCI300 in a Windows NT PC. The DCX can be installed in any of the PC's available PCI slots. The DCX modules and cabling may interfere with a card installed in the slot next to the DCX, so It is recommended that the slot next to the DCX be left open. Make sure to attach the bracket of the DCX to the back panel of the PC.

Make sure that the PC computer power is turned off before installing the DCX-PCI300 motion controller.

For new installations, to verify communication between the PC, MCAPI, and the DCX it is recommended that the DCX-PCI300 motherboard first be installed without any DCX modules. After installing the DCX-PCI300, turn on the PC and log on to the Windows NT system as the **system administrator**.

To install PMC's motion control software, the MCAPI, the user must be logged on as the system administrator.

For assistance with installing the MCAPI please refer to the section titled **Installing the DCX Software (MCAPI)**.

Windows NT is **not a 'plug & play' operating system**. the user must configure the MCAPI device driver for the type and quantity of DCX-PCI300 controllers installed in the computer. The next few pages describe the steps required to configure the MCAPI.

Launch PMC's **New Controller Wizard** by selecting the Motion Control icon from the Windows Control Panel or from the Windows **Start** menu (Motion Control\Motion Control API\MCAPI Setup).

Figure 15:For NT systems launch Motion Control from the Windows Control Panel

Do not attempt to setup the Motion Control API without a DCX-PCI300 motion controller installed in the PC. The last step of the **New Controller Wizard** verifies communication between the DCX controller and the PC.

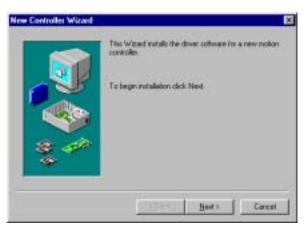


Figure 16:PMC's New Controller Wizard

Controller ID

Each PMC motion controller installed in your PC requires an individual Controller ID number. The MCAPI supports controller ID's between 0 and 15, supporting applications with as many as 16 DCX controllers in a single computer. Typically the Controller ID is set to zero (ID=0). If more than one DCX controller is to be installed usually the DCX-PCI300 upon which the primary axes reside is set to ID0.

Figure 17: Setting the Controller ID

Controller Type

The MCAPI supports mixing and matching various PMC controllers (DCX-PCI300, DCX-PC100, and DC2-PC) within a single PC. A list of PMC controllers that are supported by the MCAPI will be displayed. Select the DCX-PCI300.

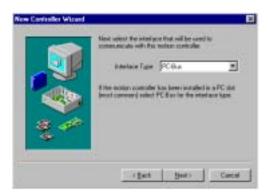
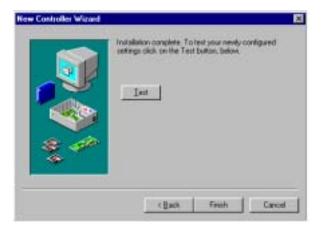
Figure 18: Selecting the Controller Type

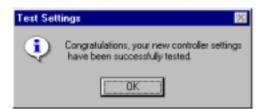
Description

Allows the user to enter comments about the controller. An example of a completed General setup of a DCX-PCI300 follows:

Communications Interface

A list of supported controller interfaces will be displayed. Select the PC-Bus.


Figure 19: Selecting the communication Interface

Testing the Installation

The final step of the New Controller Wizard is to test the communication between the Motion Control API and the DCX motion controller.

A successful controller communication test will result in the following displays:

If the test fails and the New Controller Wizard is unable to verify communication between the controller and the Motion Control API refer to the troubleshooting guide in the **DCX-PCI300 User's Manual**.

To complete the New Controller Wizard select OK. If you need to configure another controller select Add.

Motion Ca	ntrol Panel		×
and the	Use this applica	ation to configure and test motion controllers.	
Motion 0	Controllers		
ID	Туре	Description	
5 00	DCX-PCI300	Axes 1-6 (1-4 servo, 5 & 6 stepper)	
	Add	Remove Properties	
		OK Help	

Installing the DCX Software (MCAPI)

DCX controllers ship with PMC's MotionCD, which includes the Motion Control API software. For the **most recent version** of the MCAPI please check the support page of PMC's website **www.pmccorp.com**

Installation from PMC's Motion CD

To install the Motion Control API software which includes: device drivers, function library, controller setup utilities, communication utilities, and program samples, place the PMC Motion CD into the PC computer CD drive. If the Motion CD does not auto start, browse the CD and select the file STARTUP.EXE.

Due to Windows Plug and Play issues, the MCAPI should not be installed 'on top of' previous installations. Please refer to **Removing the Motion Control API later** in this chapter.

The following windows should be displayed:

Step #1 - Select "Software and Manuals"

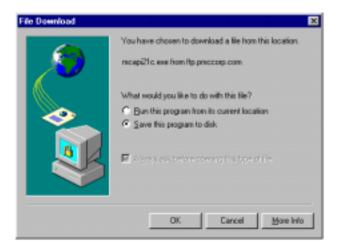
Step #2 - Select "PCI Bus Controllers"

Step 3) Select "DCX-PCI300 Controller"

Step #4) Choose Motion Control API

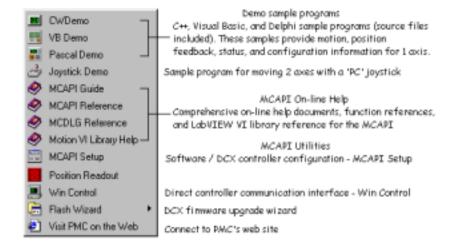
Madao Cantroi APT Version 3.00 ** ggTA **

Step 5) Install Motion Control API


Step #6) Follow the on screen instructions

Downloading the Most Recent release of the Motion Control API from PMC's web site

Due to the dated nature of a CD, it is recommended that the user check PMC's web (www.pmccorp.com) site for the most recent release of the MCAPI. Go to the support page and select the link to the Motion Control API page.


Selecting the Motion Control API will begin the file download of this self extracting zip file. As shown in the following graphic, it is recommended that the file be saved to disk.

The installation of the MCAPI will begin upon launching the downloaded file. Follow the on screen instructions.

Motion Control API Components

Upon successful installation of PMC's Motion Control API, the Motion Control Panel will be available from the Windows Control Panel and the following components will be available from the Windows **Start** menu. For additional information on individual MCAPI components please refer to the **Software** and **Utilities** section of the **Programming**, **Software**, **and Utilities** chapter of this manual.

PMC MCAPI Components

Reporting Software and Firmware Versions

From the Motion Control panel you can view the installed versions of the Motion Control API and the on-board firmware of the DCX-PCI300 controller. To report the software and firmware versions select **Properties** and then **Info**. The MCAPI will query the DCX controller for its firmware version. If the Motion Control Panel is unable to acquire this information the version will be reported as unknown.

Motion Controller Properties	? ×
General Interface Advanced Info	
Motion Controller Controller Model: dcx-pci300 Firmware Version: pm1 Revision: 1.0a	
Motion Control API	=1
MCAPI DLL Version: 3.00.0000 (mcapi32.dl)	
Driver DLL Version: 3.00.0000 (prropoi.dl)	
Config DLL Version: 3.00.0000 (cfgpci3.dl)	
DK. Cancel Ap	ply

Figure 20: Checking firmware and MCAPI version

Removing the Motion Control API

Prior to uninstalling the MCAPI you **must remove all configured motion controllers** from the **Windows Motion Control Panel**. From the Windows Control panel launch Motion Control.

rtion Cor	strol Panel		
14	Use this appli	cation to configure and test motion controllers.	
Motion C	ontrollers		
D	Туре	Description	
0	DCX-PCI300		
		[
	Add	Remove Properties	
		DK Help	
		and map	

Figure 21: Select the controller and then click Remove

To remove the MCAPI, launch the Add/Remove Programs applet in the Windows Control Panel. After the Uninstall Shield has removed the MCAPI you will need to restart the computer to remove active .dll's.

Add/Renc	ove Programs Properties 🛛 👔	×
Instal/Un	install Windows Setup Statup Disk	
2	To install a new program from a floppy disk or CD-ROM drive, click Install.	
	jrstel	
3	The following toffware can be automatically removed by Window: To remove a program or to modify its installed components, select it from the list and click Add/Remove.	
Molifee Microso Microso Microso Microso	Win Modem (REMOVE DNLY) VirusScan v4.0.2 (Retail/0EM) oft Office 2000 Protectional oft Project 98 oft Web Publishing Wizard 1.5 oft Windows 98 Resource Kit Tools Proto Nat Library - October 1939	
Protel 9		
	OK Cancel Accel	

Figure 22: Windows Add/Remove programs

Chapter Contents

- Installing DCX Modules onto the DCX-PCI300 Motion Control Motherboard
- DCX-MC300 Servo Motor (+/- 10V output) Module Installation
- DCX-MC302 Dual Axis Servo Motor (+/- 10V output) Module Installation
- DCX-MC320 Brushless Servo Commutation Module Installation
- DCX-MC360 Stepper Motor Module Installation
- DCX-MC362 Dual Axis Stepper Motor Module Installation
- DCX-MC400 Digital I/O Expansion Module Installation
- DCX-MC500 Analog I/O Expansion Module Installation

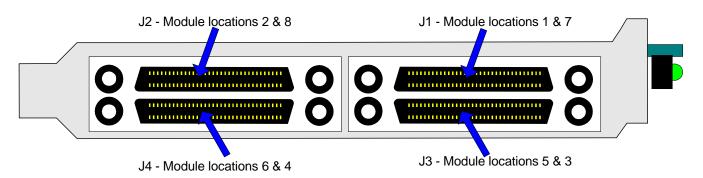
Installing and Wiring DCX Modules

The basic steps for competing the installation of the DCX-PCI300 motion controller are:

- Install and wire DCX servo and/or stepper motion control modules
- Install and wire digital and/or analog I/O modules
- If servo's are being used verify servo operation (refer to DCX Servo Basics section in the Motion Control chapter of the DCX-PCI300 User Manual)
- If steppers are being used verify stepper operation (refer to DCX Stepper Basics section in the Motion Control chapter of the DCX-PCI300 User Manual)
- If general purpose I/O (analog or digital) is being used Verify I/O operation (refer to DCX General Purpose I/O chapter of the DCX-PCI300 User Manual)

Connections – High Density versus Ribbon Cable

The DCX-PCI300 motion control system offers the user two connection options:


- The –H version (DCX-PCI300-H, DCX-MC300-H, etc...): high density connections via Ultra SCSI 68 pin connectors
- The –R version (DCX-PCI300-R, DCX-MC300-R, etc...): Dual row shrouded header- 26 pin, 0.1 inch spacing for use with standard ribbon cables

Similarities (-H vs. –R)

100% functional compatibility - The high density (-H) and ribbon cable (-R) DCX modules are 100% functionally compatible. Once a system is properly wired, any application program that works with a –R DCX module will work exactly the same when a –H module is used.

Differences

- Pinout The –R version uses a 26 pin header shrouded (13 pins X 2 rows), the –H version uses 34 pins of a 68 pin connector
- For the most efficient use of cabling the -H modules would typically be installed in different locations than -R modules - The DCX module I/O signals are routed through the DCX-PCI300-H motherboard to the four high density connectors. To maintain maximum signal integrity motherboard module locations connect to the high density connectors as follows:

VHDCI connectors as viewed from the back of the computer (component side down)

DCX-PCI300-H Module location	High Density connector #	Interconnect cable #
1	J1	P1
7	J1	P1
5	J3	P3
3	J3	P3
6	J4	P4
4	J4	P4
2	J2	P2
8	J2	P2

As demonstrated by the graphic and table, one high density connector provides the I/O signals for **2 axes**, where as the -R modules require one cable per installed axis. Lets look at a typical four axis application. When connecting to the external system components via ribbon cable (R version), the four motion control modules would typically be installed in locations 1, 2, 3, and four. The system connections would look like this:

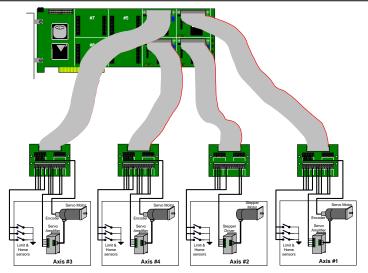


Figure 23: Typical 4 axis -R system, modules in locations 1 - 4

When configuring the same four axis system using high density connectors, installing modules in locations 1, 2, 3, and 4 would require the use of **four high density cables**. The most efficient cabling solution is to install the four DCX modules into locations 1, 2, 7, and 8.

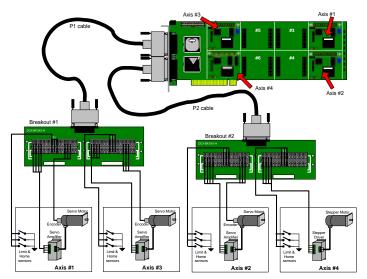


Figure 24: Typical four axis -H system, modules in locations 1, 2, 7, & 8

Different breakout assemblies – For systems connected with ribbon cable, PMC offers three different DIN rail mounted breakout assemblies (DCX-BF300-R, DCX-BF320-R, DCX-BF360-R) that provide convenient connection points.

1 1	CCV 67900 PMC CORP PMC CORP Tage TO MC300 Tage To MC300 T	DCX.45700 PKC A PMC CORP. TO MO300 TS2: TO MO300 TS3: TO MO300 TS3: TO MO300 TS3: TO MO300 TS3: TO MO300 TS3: TS3: TO MO300 TS3: TS
	Provide a constant of the second	Alternative statement of the statem

It is assumed that most OEM's using the DCX-PCI300-H controller will build breakout assemblies specific to the packaging requirements of the application. Detailed PCB layout drawings for the single or dual 0.8mm Ultra SCSI connectors can be found on the MotionCD (browse to \PCI300/Manuals\Intro&Install\). For initial system evaluations and low volume applications, PMC offers the DCX-BF3XX-H breakout assembly. This DIN rail mounted, two axis/module general purpose breakout can be used with all five DCX –H modules.

Figure 25: DCX-BF3XX-H breakout

Module type	Mechanical connection	Page #
DCX-MC300-H	Directly to the high density connector	92
DCX-MC300-H	To the DCX-BF3XX breakout	147
DCX-MC300-R	Directly to the module – no breakout	93
DCX-MC300-R	To the DCX-BF300 breakout	151
DCX-MC302-H	Directly to the high density connector	101
DCX-MC302-H	Directly to the high density connector To the DCX-BF3XX breakout	149
		149
DCX-MC320-H	Directly to the high density connector	109
DCX-MC320-H	To the DCX-BF3XX breakout	147
DCX-MC320-R	Directly to the module – no breakout	110
DCX-MC320-R	To the DCX-BF320 breakout	154
DCX-MC360-H	Directly to the high density connector	119
DCX-MC360-H	To the DCX-BF3XX breakout	147
DCX-MC360-R	Directly to the module – no breakout	120
DCX-MC360-R	To the DCX-BF360 breakout	157
DCX-MC362-H	Directly to the high density connector	128
DCX-MC362-H	To the DCX-BF3XX breakout	149
DCX-MC400-H	Directly to the high density connector	134
DCX-MC400-H	To the DCX-BF3XX breakout	147
DCX-MC400-R	Directly to the module – no breakout	135
DCX-MC500-R	Directly to the module he breakout	137
	Directly to the module – no breakout	
DCX-MC500-H	Directly to the high density connector	138
DCX-MC500-H	To the DCX-BF3XX breakout	147

Installing DCX Modules onto the DCX-PCI300 Motion Control Motherboard

DCX Modules can be placed in any open module position (1 - 8) on the DCX motherboard. Each time PC power is applied, the DCX motherboard allocates axis numbers based on the physical location in which the DCX motion control modules are installed. The DCX motion control module installed in the lowest motherboard module location will be defined as axis #1, the motion control module in the next lowest module location will be defined as axis #2.

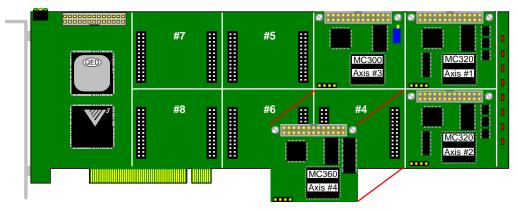


Figure 26: Allocating axis numbers to DCX motion control modules

In the example in figure 25 DCX modules are installed in module locations 1, 2, 3, and 4 and the axis numbers are allocated in that same order. In the example depicted in figure 26 DCX modules are installed in module locations 1, 3, 5, and 7.

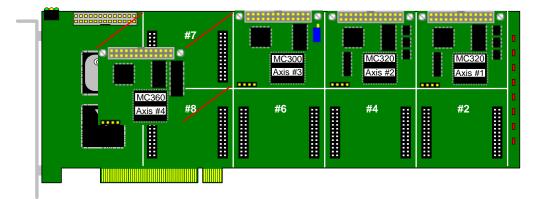


Figure 27: Allocating axis numbers to DCX motion control modules

Motherboard module location	Figure 25 Module type	Figure 25 axis #	Figure 26 module type	Figure 26 axis #
Location #1	DCX-MC320	1	DCX-MC320	1
Location #2	DCX-MC320	2		
Location #3	DCX-MC300	3	DCX-MC320	2
Location #4	DCX-MC360	4		
Location #5			DCX-MC300	3
Location #6				
Location #7			DCX-MC360	4
Location #8				

Axis allocation examples (figures 7 & 8)

If a group of motors will be used to perform multi-axis contouring (interpolated lines and/or arcs), one axis of the group should be assigned to axis 1. This will be the controlling axis for the group. Other groups of axes on the controller can also perform contouring motion, but will be limited in the number of motion segments that can be stored on the board. For additional information on multi-axis contouring please see the description of **Contouring Motion (arcs and lines)** in the **Motion Control** chapter of the **DCX-PCI 300 User's Manual**.

To install DCX modules, lay the DCX-PCI300 motherboard on a flat static free surface, component side up. Place each DCX module in the desired position, aligning the connectors and mounting holes with their respective mates on the DCX motherboard. When you are satisfied that the module is properly aligned, carefully press the module into the DCX. The header pins of the module should seat completely into the mating connectors on the DCX motherboard. Two nylon mounting screws are supplied with each DCX module. These should be installed from the backside of the motherboard, into the standoffs on the modules. Repeat this process for installing modules on the DCX until all modules are in place.

Next the DCX should be re-installed in the PC chassis and interfacing cables connected.

For first time installations - after installing the DCX modules, it is **strongly recommended** that communication between the DCX controller and the PC be verified **before connecting** the cabling to the external motion components

Refer to the following sections in this chapter for specific wiring and jumper information for the types of modules that are being used. After connecting the DCX to the external motion components, turn on power to the PC and use the **Motion Integrator** program to verify the operation of the system.

(TOP SIDE VIEW)

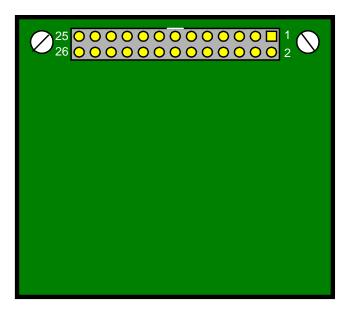


Figure 28: DCX module J3 connector pin numbering

All ribbon cable versions of the DCX modules (-R suffix) provide a 26 pin, shrouded, center polarized header for I/O connections. The pins of this connector are numbered from 1 to 26. The diagram above shows the location of pins 1, 2, 25 and 26. The other 22 pins are numbered and located respectively.

i

For pin numbering and pinout for High Density versions of DCX modules please refer to the Connectors, Jumpers, and Schematics section of this manual.

DCX-MC300 – Servo Motor Module Installation

Installation of a DCX-MC300 Servo Motor Control Module includes setting three jumpers (JP1, JP2, and JP3). These jumpers are used to configure the module for the type of incremental encoder that will be used. These jumpers are configured by installing shorting blocks on the pins of the jumpers, or leaving them open. Note that the pins of the three jumpers are numbered sequentially from 1 to 3, with pin 1 being shown as a square.

JP1 JP2 1	
JP3	

Jumper JP1 configures the module's encoder phase inputs for 'single ended' (A and B) or 'differential' (A+, A-, B+, and B-) signals. For single ended outputs, install the 3 hole shorting block (supplied with the module) across all 3 pins of jumper JP1. Connect the A and B signals from the encoder to the A+ and B+ inputs of the module. If an encoder with differential phase outputs is to be connected to the module, jumper JP1 should be left open (no shorting block installed).

Jumper JP2 is used to configure the module's encoder index input. Either a single ended or differential index signal can be connected to the module. The table below lists the possible combinations.

Signal Name	Input Type	Active Level	Jumper JP2	J3 connections
Index +	Single ended	High	1 to 2	Pin 8
Index -	Single ended	Low	2 to 3	Pin 25
Index +/-	Differential	N/A	None	Pins 8(+) & 25(-)

MC300 Module Encoder Index Configuration

The MC300 provides a user selectable Encoder Power supply by routing +5V or +12V from the PC supply to connector J3 pin 17. The Encoder Power supply can provide up to 500ma of current.

MC300 Encoder Power Selection Jumper

Jumper	Setting	Encoder Power Supply (JP3 pin 17)
JP3	Pins 1 to 2	+5VDC
JP3	Pins 2 to 3	+12 VDC
JP3	Open	Open

Note: The DCX-MC300 provides the Encoder Power output as a convenience, It is **not required** that it be used to power the encoder. If an external +5 volts or +12 volts supply is used to power the encoder, jumper JP3 **must still be configured** to match the voltage level (+5 volts or +12 volts) of the external supply.

After configuring the jumpers of the module, the servo encoder, amplifier and limit switches can be connected to the module. Wiring diagrams on the next two pages depict typical installations using ribbon cable. The first diagram details direct connection of the MC300 to the external components (servo amplifier, encoder, and sensors). The second diagram details typical connections when a **DCX-BF300 Breakout Assembly** is used.

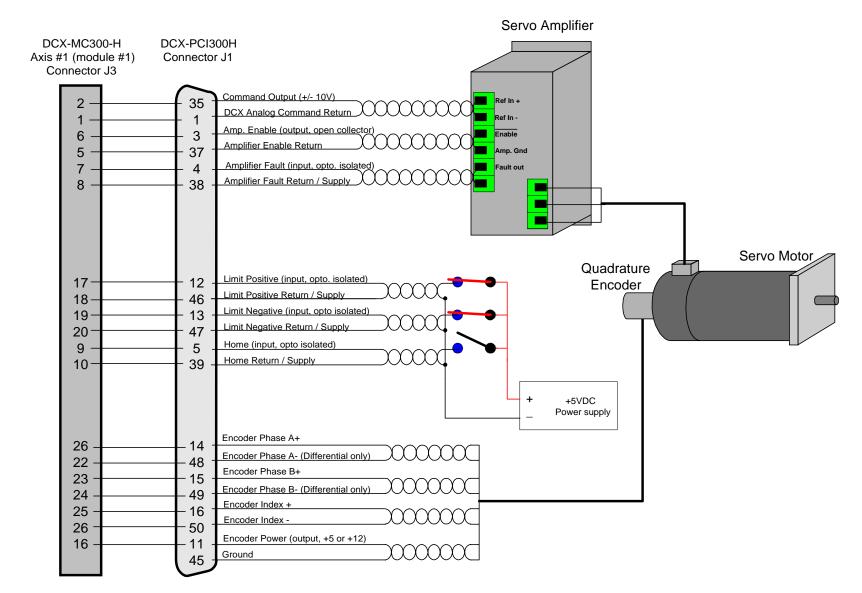


Figure 29: Typical connections for DCX-MC300-H Servo Motor Control Module

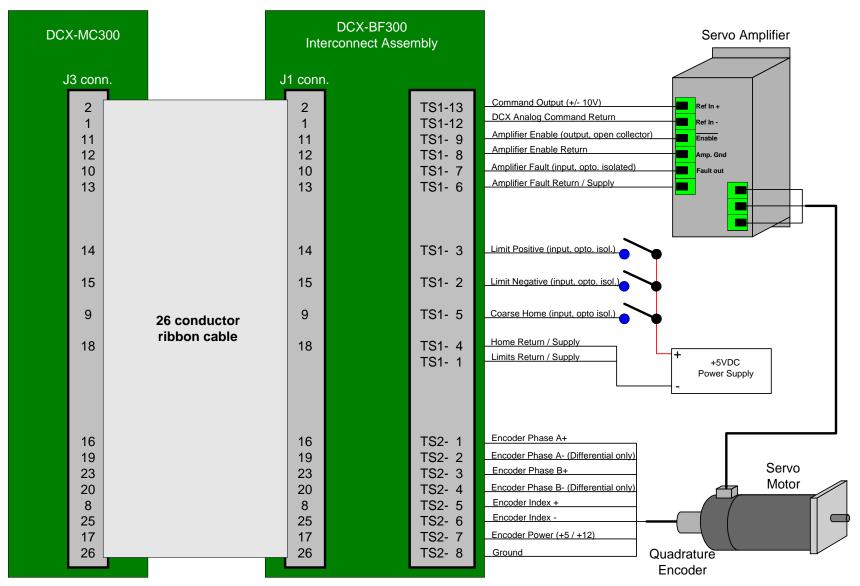
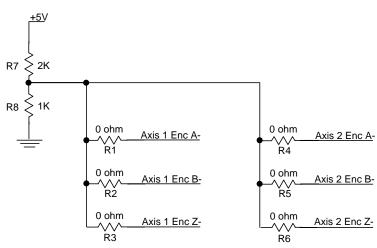
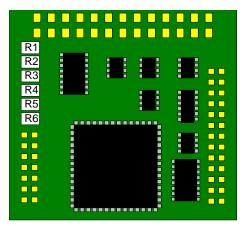


Figure 30: Typical connections for DCX-MC300-R Servo Motor Control Module (and DCX-BF300 breakout)


DCX-MC302 – Dual Axis Servo Motor Module Installation

Installation of a DCX-MC302 Dual Axis Servo Motor Control Module includes:

- 1) Configuring the encoder inputs
- 2) Setting the encoder Power voltage level


Configuring the encoder inputs

The DCX-MC302 default configuration supports differential encoder inputs (A+, A-, B+, B-, Z+, & Z-). If single ended encoders are used inputs channels A-, B-, and Z- must be terminated. To terminate the appropriate unconnected encoder inputs install 0 ohm resistors R1 – R3 for axis #1 and 0 ohm resistors R4 – R6 for axis #2.

DCX-MC302 Single Ended Encoder Termination Circuit

Figure 31: DCX-MC302 single ended encoder terminations

DCX-MC302 bottom side: For single ended encoders add resistors R1 – R3 (axis 1) and/or R4 – R6 (axis 2)

Configuring encoder Power jumpers

Jumpers JP1 and JP2 are used to configure the Encoder Power Output for each axis. JP1 and JP2 are configured by installing shorting blocks on the pins of the jumpers, or leaving them open. Note that the pins of the three jumpers are numbered sequentially from 1 to 3, with pin 1 being shown as a square.

Note: The DCX-MC302 provides the Encoder Power output as a convenience, It is **not required** that it be used to power the encoder. If an external +5 volts or +12 volts supply is used to power the encoder, remove the shorting blocks from JP1 & JP2.

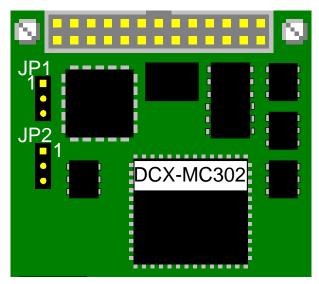


Figure 32: Configure jumpers JP1 & JP2 if an encoder power output is required

DCX-MC302 Encoder Power Selection Jumpers

Jumper	Setting	Encoder Power Supply (JP3 pin 17)
JP1	Pins 1 to 2	Axis 1 Encoder Power Output (J3 pin 8) = +5VDC
JP1	Pins 2 to 3	Axis 1 Encoder Power Output (J3 pin 8) = +12VDC
JP1	Open	No connect
JP2	Pins 1 to 2	Axis 2 Encoder Power Output (J3 pin 8) = +5VDC
JP2	Pins 2 to 3	Axis 2 Encoder Power Output (J3 pin 8) = +12VDC
JP2	Open	No connect

The wiring diagram on the next page depicts the typical wiring connections.

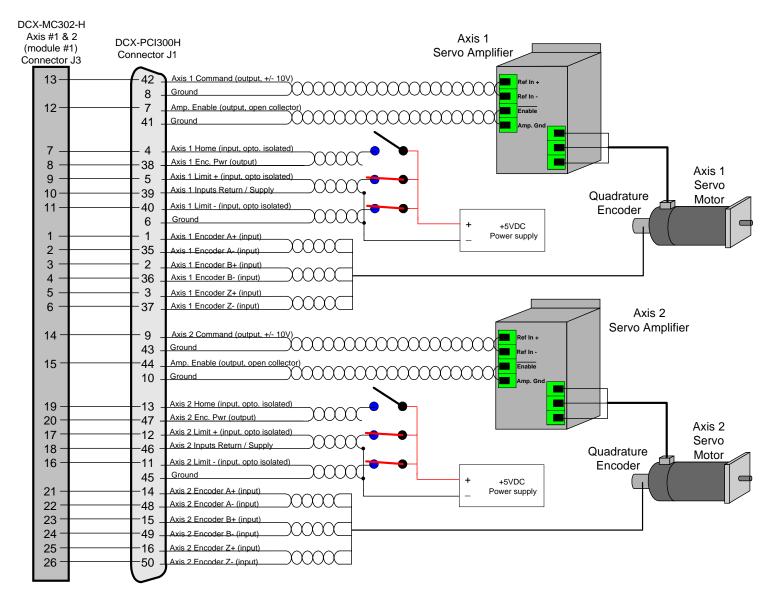


Figure 33: Typical connections for DCX-MC302-H Dual Servo Motor Control Module

DCX-MC320 – Brushless Servo Motor Module Installation

Installation of a DCX-MC320 Servo Motor Control Module includes setting three jumpers (JP1, JP2, and JP3). These jumpers are used to configure the module for the type of incremental encoder that will be used. These jumpers are configured by installing shorting blocks on the pins of the jumpers, or leaving them open. Note that the pins of the three jumpers are numbered sequentially from 1 to 3, with pin 1 being shown as a square.

SJP1	
JP2 1	
JP3 1	

Jumper JP1 configures the module's encoder phase inputs for 'single ended' (A and B) or 'differential' (A+, A-, B+, and B-) signals. For single ended outputs, install the 3 hole shorting block (supplied with the module) across all 3 pins of jumper JP1. Connect the A and B signals from the encoder to the A+ and B+ inputs of the module. If an encoder with differential phase outputs is to be connected to the module, jumper JP1 should be left open (no shorting block installed).

Jumper JP2 is used to configure the module's encoder index input. Either a single ended or differential index signal can be connected to the module. The table below lists the possible combinations.

Signal Name	Input Type	Active Level	Jumper JP2	J3 connections
Index +	Single ended	High	1 to 2	Pin 8
Index -	Single ended	Low	2 to 3	Pin 25
Index +/-	Differential	N/A	None	Pins 8(+) & 25(-)

Table 2: MC320 Module Encoder Index Configuration

The MC320 provides a user selectable Encoder Power supply by routing +5V or +12V from the PC supply to connector J3 pin 17. The Encoder Power supply can provide up to 500ma of current.

MC320 Encoder Power Selection Jumper

Jumper	Setting	Encoder Power Supply (JP3 pin 17)
JP3	Pins 1 to 2	+5VDC
JP3	Pins 2 to 3	+12 VDC
JP3	Open	Open

Note: The DCX-MC320 provides the Encoder Power output as a convenience, It is **not required** that it be used to power the encoder. If an external +5 volts or +12 volts supply is used to power the encoder, jumper JP3 **must still be configured** to match the voltage level (+5 volts or +12 volts) of the external supply.

After configuring the jumpers of the module, the servo encoder, motor and limit switches can be connected to the module. Wiring diagrams on the next two pages depict typical ribbon cable installations. The first diagram details direct connection of the MC320 to the external components (servo motor, sine drive, encoder, and sensors). The second diagram details typical connections when the **DCX-BF320 Breakout Assembly** is used.

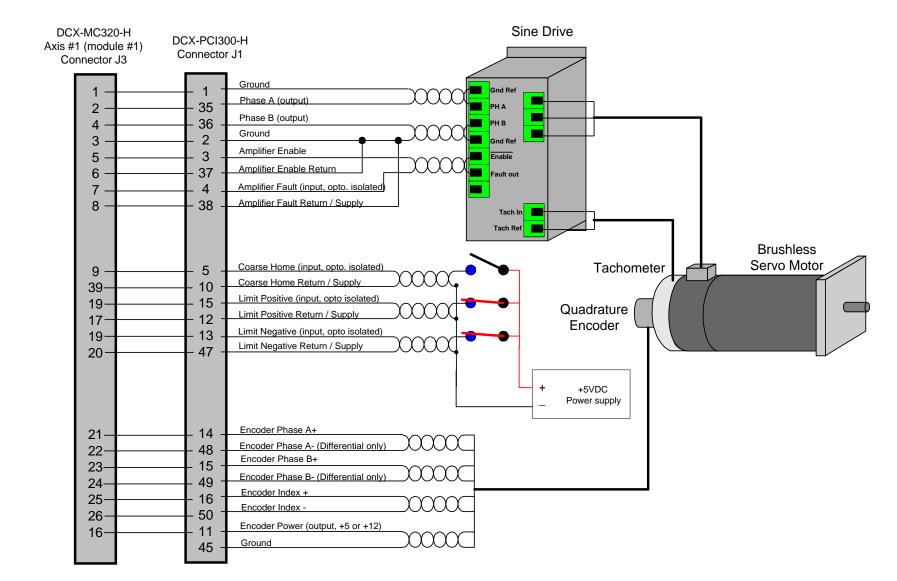


Figure 34: Typical connections for DCX-MC320-H Brushless Servo Motor Control Module

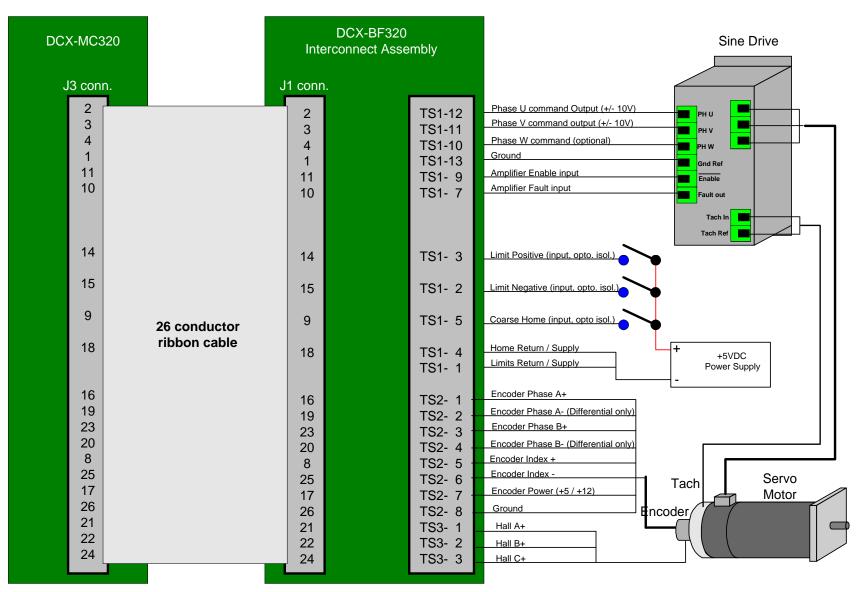
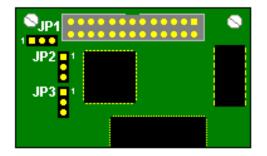



Figure 35: Typical connections for DCX-MC320-R Brushless Servo Motor Control Module (and DCX-BF320 breakout)

DCX-MC360 – Stepper Motor Module Installation

Installation of a DCX-MC360 Stepper Motor Control Module includes setting jumper JP1if an incremental encoder will be used for position feedback.

Jumper JP1 configures the module's encoder phase inputs for 'single ended' (A and B) or 'differential' (A+, A-, B+, and B-) signals. For single ended outputs, a 3 hole shorting block (supplied with the module) should be installed across all 3 pins of jumper JP1. In this case, the A and B signals from the encoder should be connected to the A+ and B+ inputs of the module. If an encoder with differential phase outputs is to be connected to the module, jumper JP1 should be left open (no shorting block installed).

Jumper JP2 is used to configure the module's encoder index input. Either a single ended or differential index signal can be connected to the module. The table below lists the possible combinations.

MC360 Module Encoder Index Configuration

Signal Name	Input Type	Active Level	Jumper JP2	J3 connections
Index +	Single ended	High	1 to 2	Pin 22
Index -	Single ended	Low	2 to 3	Pin 23
Index +/-	Differential	N/A	None	Pins 22(+) & 22(-)

The MC360 provides a user selectable Encoder Power supply by routing +5V or +12V from the PC supply to connector J3 pin 10. The Encoder Power supply can provide up to 500ma of current.

MC360 Encoder Power Selection Jumper

Jumper	Setting	Encoder Power Supply (JP3 pin 10)
JP3	Pins 1 to 2	+5VDC
JP3	Pins 2 to 3	+12 VDC
JP3	Open	Open

Note: The DCX-MC360 provides the Encoder Power output as a convenience, It is **not required** that it be used to power the encoder. If an external +5 volts or +12 volts supply is used to power the encoder, jumper JP3 **must still be configured** to match the voltage level (+5 volts or +12 volts) of the external supply.

After configuring the jumper of the module, the stepper driver, limit switches and optional encoder can be connected to the module. Wiring diagrams on the next two pages depict typical ribbon cable installations. The first diagram details direct connection of the MC360 to the external components (stepper driver, sensors, and optional encoder). The second diagram details typical connections when the **DCX-BF360 Breakout Assembly** is used.

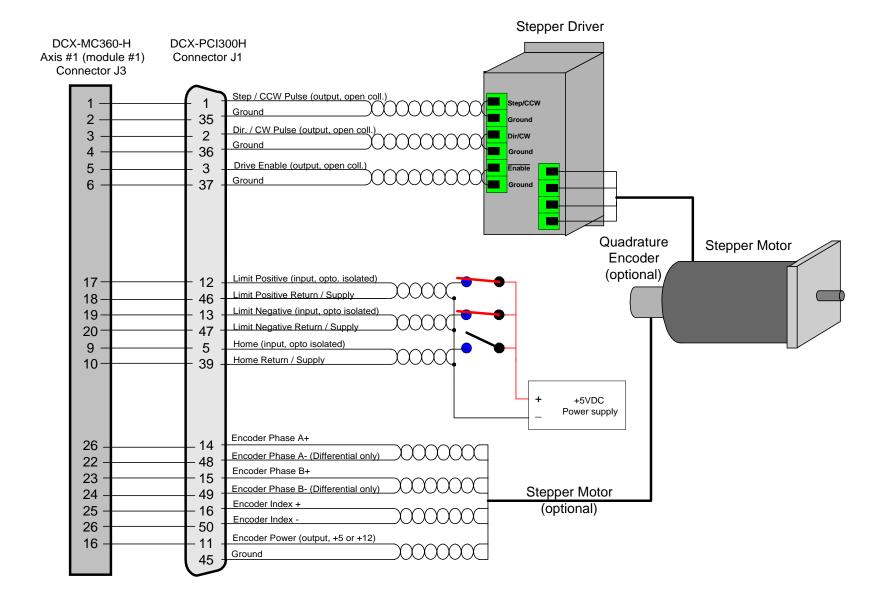


Figure 36: Typical connections for DCX-MC360-H Stepper Motor Control Module

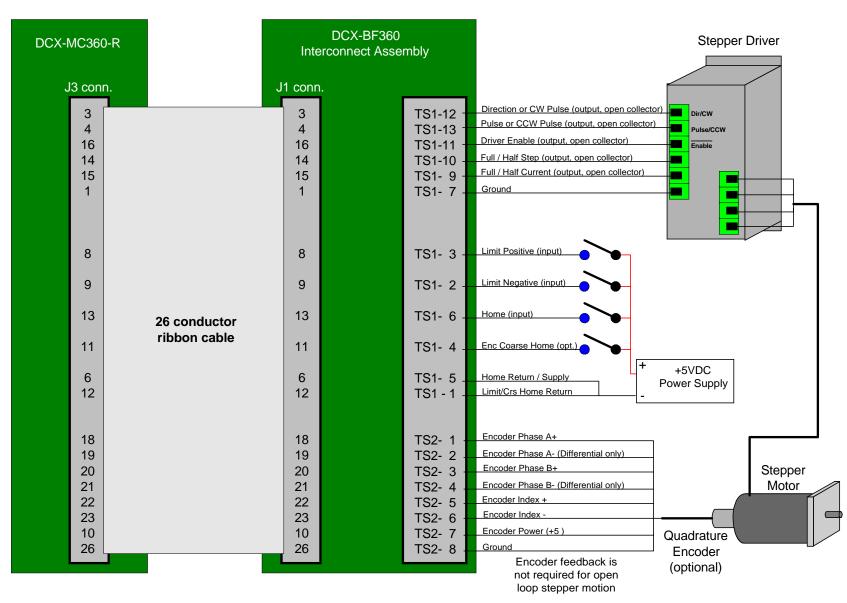


Figure 37: Typical connections for DCX-MC360-R Stepper Motor Control Module (and DCX-BF360 breakout)

DCX-MC362 – Dual Axis Stepper Motor Module Installation

The DCX-MC362 Dual Axis Stepper Motor Control Module has no configuration jumpers. The diagram on the next page depicts the typical wiring connections.

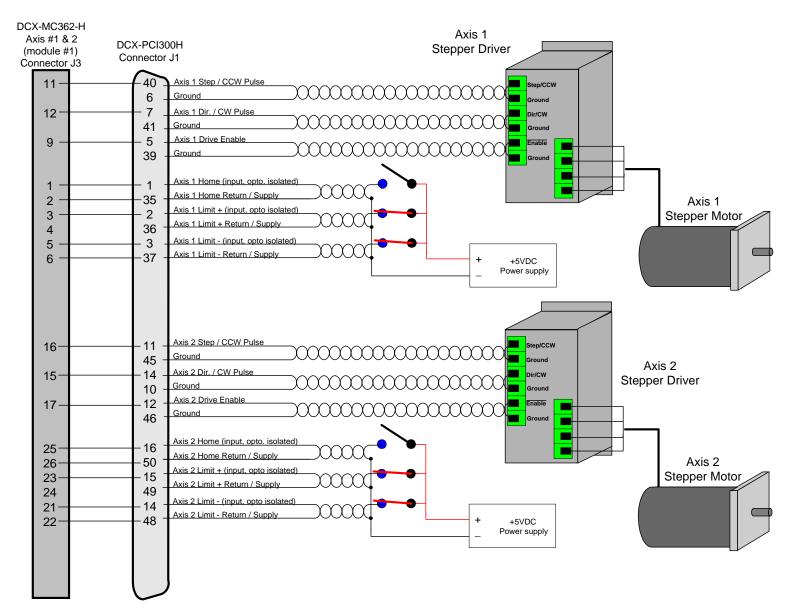


Figure 38: Typical connections for DCX-MC362-H Dual Stepper Motor Control Module

DCX-MC400 – Digital I/O Expansion Module Installation

One or more MC400 digital I/O modules can be installed on the DCX. There are no jumpers on this module to be configured. The module's TTL digital I/O signals can be connected directly to the external circuits if output loading (1ma maximum sink/source) and input voltages (0.0V to +5.0V) are within acceptable limits. Alternatively, PMC's DCX-BFO22 interface board can be used to connect the module's I/O to a relay rack in order to provide optically isolated inputs and outputs.

The DCX-BFO22 interface board provides a convenient means of connecting the MC400's TTL digital I/O channels to a 16 position relay rack available from two manufacturers, Opto22 (P/N PB16H) and Grayhill (P/N 70RCK16-HL). These relay racks accept up to 16 optically isolated input or output modules for interfacing with external electrical systems. Using one of these relay racks and a BFO22, an optically isolated I/O module can be connected to each of the MC400's digital I/O channels.

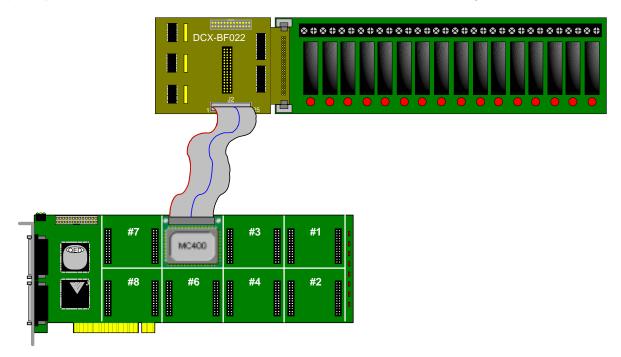
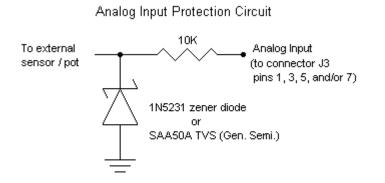


Figure 39: A DCX-BF022 is used to interface DCX digital I/O to an OPTO22 relay rack

As shown above, the BFO22 plugs directly into the relay rack's 50 pin header connector and then connects to the MC400 via a 26 conductor ribbon cable. Note that the relays are numbered sequentially starting from 0, while the DCX digital I/O channels are numbered sequentially starting with 1.

Although the relay rack has screw terminals for connecting a logic supply, it is not necessary to make this connection. By installing a shorting block on jumper JP17 of the BFO22, the 5 volt supply of the DCX will be supplied to the relay rack.


For detailed information on configuring the DCX-BF022, please refer to the schematic and jumper table in the DCX-BF022 Appendix in this user manual.

DCX-MC500 – Analog I/O Expansion Module Installation

One or more MC500 analog I/O modules can be installed in the DCX as described in the first section of this chapter. There are no jumpers on this module to be configured. The module's I/O signals can be connected directly to the user's external circuits as long as output loading is not excessive and input voltages are maintained within the specified limits (see the MC500 appendix).

A voltage level greater than 5.6 volts will damage DCX-MC500 analog input channels. The schematic below is recommended to protect an analog input from damage due to an over voltage condition. This circuit will limit the maximum voltage applied to the A/D converter to 5.6 VDC.

Chapter Contents

- Introduction to the Motion Control Application Programming Interface (MCAPI)
- Controller Interface Types
- Building Application Programs using MCAPI C++ programming Visual Basic Programming Delphi Programming LabVIEW programming
- PMC Sample Programs
- Motion Integrator System Integration Wizards Servo Tuning tool Embeddable OLE servers
 - PMC Utilities MCAPI Setup WinControl FlashWizard Joystick Applet Position Readout

•

 MCAPI On-line Help MCAPI Users Guide MCAPI on-line function reference MCAPI Common Dialog help LabVIEW Motion VI Library Help

Programming, Software and Utilities

The DCX motion control system integrates seamlessly into high performance, Windows applications. The **Motion Control Application Programming Interface** (**MCAPI**) provides support for all popular high level languages. Additionally, the board level command set (MCCL) allows the machine designer to execute local 'macro' routines independent of the PC host and its application programs.

PMC's Motion Control API (MCAPI) is a group of Windows components that, taken together, provide a consistent, high level, Applications Programming Interface (API) for PMC's motion controllers. The difficulties of interfacing to new controllers, as well as resolving controller specific details, are handled by the API, leaving the applications programmer free to concentrate on the application program.

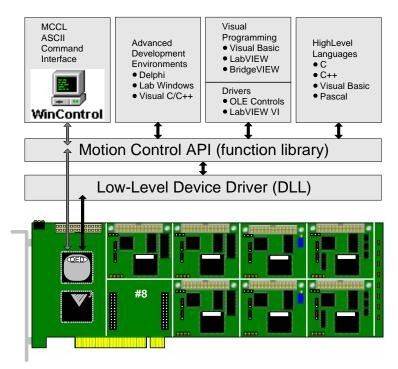


Figure 40: MCAPI and DCX-PCI300 architectural diagram

Programming, Software, and Utilities

The API has been constructed with a layered approach. As new versions of Windows operating systems and new PMC motion controllers become available API support is provided by simply replacing one or more of these layers. Because the public API (the part the applications programmer sees) is above these layers, few or no changes to applications programs will be required to support new version of the MCAPI.

The API itself is implemented in three parts. The low level device driver provides communications with the motion controller, in a way that is compatible with the Microsoft Windows operating system. The MCAPI low level driver passes binary MCCL commands (Motion Control Command Language – the instruction set of the DCX motion controller) to the DCX. By placing the operating system specific portions of the API here it will be possible to replace this component in the future to support new operating systems without breaking application programs, which rely on the upper layers of the API.

Sitting above that, and communicating with the driver is the API Dynamic Link Library (DLL). The DLL layer implements the high level motion functions that make up the API. This layer also handles the differences in operation of the various PMC Motion Controllers, making these differences virtually transparent to users of the API.

At the highest level are environment specific drivers and support files. These components support specific features of that particular environment or development system.

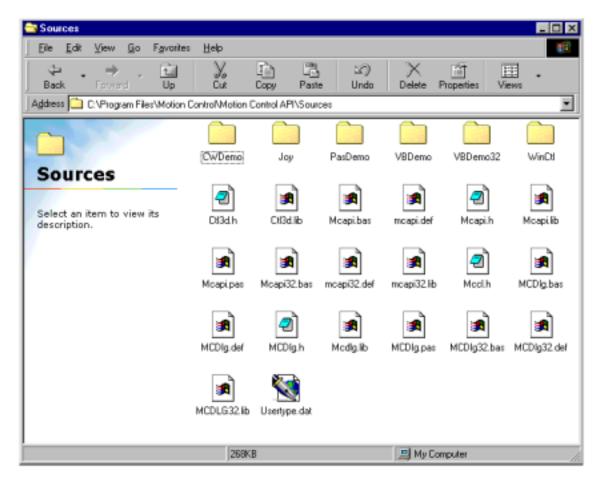
Care has been exercised in the construction of the API to ensure it meets with Windows interface guidelines. Consistency with the Windows guidelines makes the API accessible to any application that can use standard Windows components - even those that were developed after the Motion Control API! Please refer to the **Motion Control Application Programming Interface (MCAPI Reference Manual** for additional information on adapting the MCAPI to other development environments.

Controller Interface Types

The DCX controller supports two onboard interfaces, an ASCII (text) based interface and a binary interface. The binary interface is used for high speed command operation, and the ASCII interface is used for interactive text based operation. The high level sample programs (CWDEMO and VBDEMO) use the binary interface, PMC WinControl uses the ASCII interface.

Application programs must indicate which interface they intend to use when they open a handle for a particular controller. A controller may have more than one handle open at a time, but all open handles for a particular controller must specify the same interface (all must be open with the binary interface or all must be open with the ASCII interface). The open mode is specified by setting the second argument of the *MCOpen()* function to either **MC_OPEN_ASCII** or **MC_OPEN_BINARY**.

Note that not all functions are available in the ASCII mode of operation, this mode is intended primarily for use with the *pmcgetc()*, *pmcgets()*, *pmcputc()*, and *pmcputs()* character based functions (these 4 functions are not available in binary mode). This restriction will be eliminated in a future release of the API.


Building Application Programs using Motion Control API

The Motion Control Application Programming Interface (MCAPI) is designed to allow a programmer to quickly develop sophisticated application programs using popular development tools. The MCAPI provides high level function calls for:

- Configuring the controller (servo tuning parameters, velocity and ramping, motion limits, etc.)
- Defining on-board user scaling (encoder/step units, velocity units, dwell time units, user and part zero)
- Commanding motion (Point to Point, Constant velocity, Electronic Gearing, Lines and Arcs, Joystick control)
- Reporting controller data (motor status, position, following error, current settings)
- Monitoring Digital and Analog I/O
- Driver functions (open controller handle, close controller handle, set timeout)

A complete description of all MCAPI functions can be found in the **Motion Control Application Programming Interface (MCAPI) Reference Manual**.

Included with the installation of the MCAPI is the Sources 'folder'. In this folder are complete program sample source files for C++, VisualBasic, and Delphi.

C/C++ Programming

Included with each of the C program samples (CWDemo. Joystick demo, and WinControl) is a read me file (readme.txt) that describes how to build the sample program. The following text was reprinted from the readme.txt file for the CWDemo program sample.

Contents

- How to build the sample
- LIB file issues

- Contacting technical support

How to build the sample

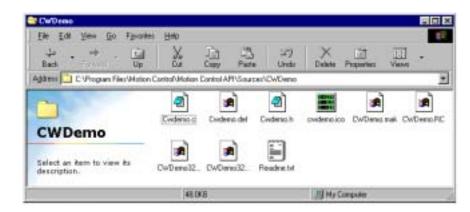
To build the samples you will need to create a new project or make file within your C/C++ development tool. Include the following files in your project:

CWDemo.c CWDemo.def CWDemo.rc

For 16-bit development you will also need:

- ..\mcapi.lib
- ..\mcdlg.lib
- ..\ctl3d.lib

For 32-bit development you will also need:


- ..\mcapi32.lib
- ..\mcdig32.lib

If your compiler does not define the _WIN32 constant for 32-bit projects you will need to define it at the top of the source file (before the header files are included).

LIB File Issues

Library (LIB) files are included with MCAPI for all the DLLs that comprise the user portion of the API (MCAPI.DLL, MCAPI32.DLL, MCDLG.DLL, and MCDLG32.DLL). These LIB files make it easy to resolve references to functions in the DLL using static linking (typical of C/C++). Unfortunately, under WIN32 the format of the LIB files varies from compiler vendor to compiler vendor. If you cannot use the included LIB files with your compiler you will need to add an IMPORTS section to your projects DEF file. We have included skeleton DEF files for all of the DLLs for which we also include a LIB file (MCAPI.DEF, MCAPI32.DEF, MCDLG.DEF, and MCDLG32.DEF).

The 16-bit LIB files were built with Microsoft Visual C/C++ Version 1.52, and the 32-bit LIB files Microsoft Visual Studio Version 5.

Visual Basic Programming

Included with each of the Visual Basic program samples (VBDemo. VBDemo32) is a read me file (readme.txt) that describes how to build the sample program. The following text was reprinted from the readme.txt file for the VBDemo32 program sample.

Contents
======
- About the sample - How to build the sample - Contacting technical support
About the sample
This sample demonstrates a simple user interface to one axis of a motion controller. The user may program moves and interact with the motion in a number of ways (stop it, abort it, etc.). Sample forms demonstrate how to configure servo or stepper motor axes. A number of the new MCDialog functions (such as a full-featured, ready-to-run axis configuration dialog) are also demonstrated.
How to build the sample
To build the samples you will need to create a new project or use the Visual Basic project file (created with Visual Basic v6.0) included with the sample. Include the following files if you create your own project:
About32.frm Main32.frm Servo32.frm Step32.frm VBDemo.bas
\mcapi32.bas \mcdlg32.bas
Set frmMain as the startup object for the project.

Delphi Programming

Included with each of the Delphi program sample (PasDemo) is a read me file (readme.txt) that describes how to build the sample program. The following text was reprinted from the readme.txt file for the PasDemo program sample.

Contents	
- About the sample - How to build the sample - Contacting technical support	
About the sample	
This sample demonstrates a simple user interface to one axis of a motion controller. The user may program moves and interact with the motion in a number of ways (stop it, abort it, etc.). Sample forms demonstrate how to configure servo or stepper motor axes. A number of the new MCDialog functions (such as a full-featured, ready-to-run axis configuration dialog) are also demonstrated.	
How to build the sample	
To build the samples you will need to create a new project or use the Delphi project files included with the sample (Pdemo.dpr for 16-bit, Pdemo32.dpr for 32-bit). Include the following files if you create your own project:	Э
About.pas Global.pas PasDemo.pas Servo.pas Stepper.pas	
For 16-bit projects you will also need:	
\mcapi.pas \mcdlg.pas	
For 32-bit projects you will also need:	
\mcapi32.pas \mcdlg32.pas	
→ → . End X. End = X End = En	
Back Up Cut Copy Paste Undo Detete Properties Views Addets C CVProgram Files Wation Control APR/Sources/PasDeno	

2

About par

F

Reading M

57.37.8

PasDemo

description.

Select an item to view its

Global per

.

Sevepe

٠

1 Pdeno32.dpr

Pdemo.ico

1

Pdeno, dpl

My Completer

1

Pastena pas

1

Stepper par

LabVIEW Programming PMC's LabVIEW Virtual Instrument Library includes an On-Line help with a Getting Started guide.

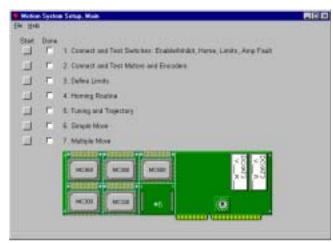
S Motion VI Library Help	
Elle Edit Bookmark Options Help	
Contents Index Back Print 34 22	
Getting Started	
-Dinstrument Drivers This is necessary so that the N	Library you must first install LabVIEW version 5.0 for Windows 95 / 98 / NT. fotion VI Library can add its function and control palettes to the LabVIEW nline help where LabVIEW can locate it.
You also need to have the 32-b using the Motion VIs. The curre	it Motion Control API (MCAPI) installed and configured before you can begin nt MCAPI release is available from the PMC World Wide Web site and may install the Motion VI Library. For full functionality you must use MCAPI
sample provides an interactive panel for moving an axis and monitorin machine and execute multiple moves under program control (the stat	te first, SIMPLE.VI, shows how to execute a simple move. The SAMPLE.VI g the status of that axis. CYCLE.VI demonstrates how to implement a state e machine approach makes it easy to monitor the status of axes while the f the auxiliary analog inputs available on most PMC motion controllers.
	in a number of logically arranged sub-palettes. To better see how the VIs , select the INSTR.LIB directory, then the MOTION CONTROL directory, and
the Motion VIs. When the program completes the handle should be p	oller, using the MCOpen VI. This handle is used in all subsequent calls to assed to the MCClose VI to ensure the motion controller is properly closed. ten using the Motion VI Library. The following wiring diagram, from the controller, perform a simple move, and close the motion controller:
controller, mov	an sample - opens a motion as axis one 1500.0 counts in action, and closes the handle.
Axis Number	
Distance 1	00.00

PMC Sample Programs

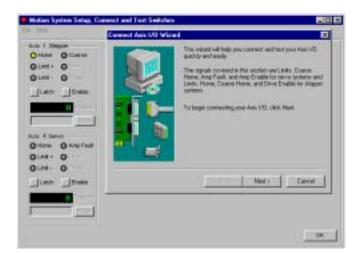
Sample programs with full source code are supplied with the MCAPI. These C++, Visual Basic, and Delphi sample programs allow the user to:

- Move an axis (servo or stepper)
- Monitor the actual, target, and optimal positions of an axis
- Monitor axis I/O (Limits +/-, Home, Index, an Amplifier Enable)
- Define or change move parameters (Maximum velocity, acceleration/deceleration)
- Define or change the servo PID parameters

HCAPI 32-bit Delphi Example			3		
Zetup Help			Servo Setup		×
Actual Position 2192	On O	Error O	Axis 1 - DCX-MC300		
Optimal Position 2192	Traj O	+ Lim 🔘	Mation	PID Filter	
Target Position 2192	Dir - O Home O	- Lim O Amp O	Acceleration 5000.000000	Integral Gain 0.000000	
Following Error	Index O	Phase O	Deceleration 5000.000000	Integration Limit 50.000000	
	-		Max. Velocity 1000000.000000	Derivative Gain 2.4000000	
Distance 10100	00	ot	Max. Torque 10.000000	Deriv. Sampling 0.001000	
C Absolute C Relative	Move	Home	Proportional Gain 1.4000000	Fallowing Error 1024.000000	
	Stop	Abort		Velocity Gain 0.000000	
Axis Number 1	Ze	ro	V 0K	X Cancel	

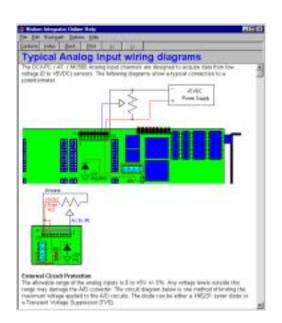

Motion Control API 'C' Sample	×		
<u>S</u> etup <u>H</u> elp		Axis 1 - MC360 Advanced Stepper	Position
Actual Position -5100 Optimal Position -5100	On Error Traj Lim + O Dir - O Lim - O	Acceleration 10000.000000 Deceleration 10000.000000	Current -5100.000000
Target Position -5100 Following Error 0	Home O Amp O Index O Phase O	Max. Velocity 1000.000000 Min. Velocity 100.000000	Find Linits
Target 5100 • Absolute • Relative • Cycle Axis Number Axis 1	On Off Move + Move - Stop Abort Home Zero	Rate Composed High Profile Trapezoid Construction Parabola Miscellaneous Half Step Composed Low Current	Limit Mode Off Soft Limits + Limit Enable Limit 0.000000 - Limit Enable Limit 0.000000 Limit Mode Off
		OK	Cancel

Motion Integrator


PMC's Motion Integrator program is just like having your own 'Systems Integrator' to assist you with every step of the integration process. Motion Integrator is a suite of powerful Windows tools that are used to:

- Configure the DCX motion control system
- Verify the operation of the control system
- Execute and plot the results of single and/or multi-axes moves
- Connect and test I/O Axis I/O (Home, Limits, Enable) General purpose Digital I/O General purpose Analog I/O
- Tune the servo axes
- Diagnose controller failures
- View comprehensive on-line help including detailed wiring diagrams

For first time PMC motion control users, Motion Integrator can be run as a series of Windows Wizards


The Motion System Setup program opens with a picture of the DCX controller and a listing of the recommended integration steps

The Axis I/O wizard allows the user to verify the operation of the Limits, Home, and Amp/Drive Enable

San Westy
and the second se
nom Velocity
4111111111
USIN Weisely
· ·····
som industry
A COLUMN AND A COLUMN A DOCUMENT
ř,

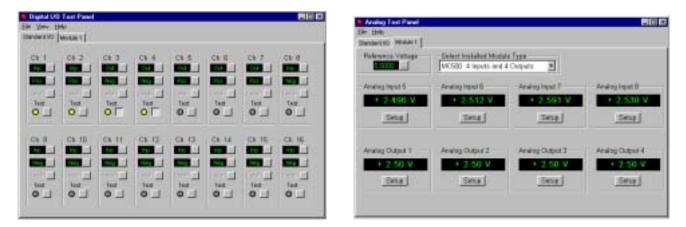
Once the systems has been tested and tuned (servo's only) PMC's Motor Mover allows users to: move any or all motors, change velocities on the fly, define cycling routines, monitor position and status

The on-line help provides detailed information, wiring diagrams, and application examples.


Tuning servo's with Motion Integrator

Motion Integrator provides a powerful and easy to use tool for 'dialing in' the performance of servo systems. From simple current/torque mode amplifiers to sophisticated Digital Drives, Motion Integrator makes tuning a servo is quick and easy.

By disabling the Trajectory generator, the user can execute repeated Gain mode (no ramping - maximum velocity or acceleration/deceleration) step responses to determine the optimal PID filter parameters:


Proportional gain Derivative gain Derivative sampling period Integral gain Integration Limit

With the Trajectory generator turned on, the user can execute 'real world' moves displaying the calculated position, actual position, following error, and DAC output plots.

Digital and Analog I/O Test Panels

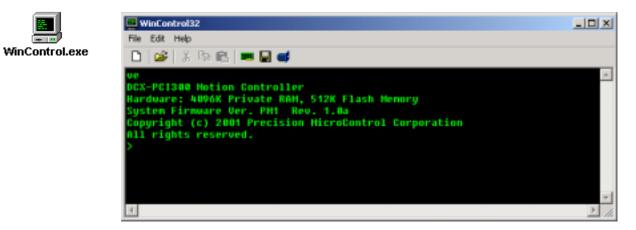
Motion Integrator Digital I/O, and Analog I/O allow the user to verify the operation of general purpose I/O.

PMC Utilities

A powerful suite of utilities are included with the Motion Control API. These tools allow the user:

- Query motion control system version information
- Issue native language (MCCL) commands directly to the DCX controller
- Upgrade the firmware of the DCX controller
- Manually position axes with a game port joystick
- Display the Status of an axis

PMC's Motion Control Panel


The Motion Control Panel is used to query the motion control system for firmware and software (MCAPI) version information, and remove a controller. It can be launched either from the Windows **Start** menu or by selecting the Motion Control icon from the Windows Control Panel.

Matian Cantolia Controller Model da	*90300	
Farmware Versions per	100000	inim 1.0a
Materi Cantol API		
MCAPIELL Version:	3.00.0000	(mcspi32.dl)
DeverDLL Version	100.0000	(propri-dl)
Carelig DLL Vessory	3.00.0000	(Digsci).dll

744	(secular)
DC14C100	
an I	

WinControl – MCCL (Motion Control Command Language) command set interface utility

This utility provides the user with a direct communication interface with the DCX-PCI300 in its native language (MCCL). This tool is extremely useful not only during initial controller integration but also as a debug tool during application software development. Two methods of executing MCCL commands are supported: A PC keyboard key stroke is passed directly to the DCX controller, and/or download a MCCL command text file via the **File – Open** menu options

Flash Wizard

To increase CPU efficiency and reduce cost the DCX-PCI300 uses primarily SDRAM. All operational program code (otherwise known as firmware) for the DCX-PCI300 is stored on the hard drive during installation of the MCAPI. When the PC is first powered the MCAPI writes this program code into the on-board SDRAM in a process called Dynamically Loaded Firmware (DLF).

PMC's Flash Wizard is a windows utility that allows the user to easily upgrade the program code from file downloaded from PMC's web site **www.pmccorp.com**.

Joystick Applet

Allows the user to manually position two axes using a joystick connected to the game port of a PC. Full source code for this applet is provided.

Motion Joystick (32-bit)	KCAPI Joystick Demo Help File Edit Bookmark Options Help
× Pos -5100 On Off Zero Y Pos O On Off Zero Position Point Storage Index 1 + Index 1 Index 1 Learn Forget Clear Rewind Stop Run	Life Life Dookmak Depuision Life Contents Search Back Print ∠ >> Motion Control API Joystick Demo Image: Content of the search Demos of the search Demos of the search Demos of the search Image: Contents Search Back Print ∠ >> Image: Contents Search Back Print ∠ >> Image: Contents Search Back Print ∠ >> Image: Content of the search The Joystick demo program demonstrates velocity mode operation and point store / move to point operation using MCAPI functions. Image: Content of the search Image: Content of t
	NOTE: This application requires the MC260 or MC360

Status Panel

Allows the user to monitor the status any or all axes (servo or stepper).


MCAPI On-line Help

Complete and up to date (from PMC website www.pmccorp.com) On-line help for PMC's MCAPI (Motion Control Application Programming Interface). Help documents include; installation and basic usage, complete function call reference and examples, high level dialog descriptions, and LabVIEW VI Library reference.

The MCAPI Users Guide On-line Help describes the basics of PMC's MCAPI. This should be the '**first stop**' for any questions about the MCAPI.



The MCAPI On-line Help provides a complete listing and description of all MCAPI functions. Function calls are grouped both alphabetically and by functional groups (Motion, Setup, Reporting, Gearing, etc...). Source code examples are provided for C++, Visual Basic, and Delphi.

The MCAPI Common Dialog On-line Help describes the high level MCAPI Dialog functions. These operations include: Save and Restore axis configurations (PID and Trajectory), Windows Class Position and Status displays, Scaling, and I/O configuration.

The Motion VI Library On-line Help provides installation assistance and detailed descriptions of available VI's.

Chapter Contents

- Motherboard: DCX-PCI300
- DCX-MC300 +/- 10 Volt Analog Servo Motor Control Module
- DCX-MC302 Dual +/- 10 Volt Analog Servo Motor Control Module
- DCX-MC320 Brushless Servo Commutation Control Module
- DCX-MC360 Stepper Motor Control Module
- DCX-MC362 Dual Stepper Motor Control Module
- DCX-MC400 16 channel Digital I/O Module
- DCX-MC5X0 Analog I/O Module

Chapter 5

DCX Specifications

Motherboard: DCX-PCI300

Function	15 Axis Motion Controller
Installation	Intel PC compatible computer
Configuration	8 User Installed Modules
Main Processor	QED 5231 200MHz MIPS RISC
Processor Clock	192 MHz
Memory	512k x 8 bit Flash Memory
	1Meg X 32 Synchronous Dynamic Ram
Processor Fault Detection	Watchdog Circuit with Reset Relay
Status LED's	Power, Reset, Run, General Purpose (8)
Standard Communication Interface	PCI Bus
	4 Kilobytes dual ported memory in Memory Address Space
	'Plug and Play' dynamic addressing
Undedicated Digital I/O Channels	16 TTL (0 – 5 VDC), 1ma max. sink/source with 4.7K ohm pull
	up to $+5V$
	2 groups (8 inputs, 8 outputs)
Connection options	DCX-PCI300-H - VHDCI Ultra SCSI (SCSI V)
	DCX-PCI300-R – 26 conductor, dual row, ribbon cable
Required Supply Voltages	+5,+12 and -12 vdc
Form Factor	Full Size PCI card (4.2" x 12.28")
Operating Temperature range	0 degrees C to 60 degrees C
Weight	10 oz + 1.2 oz per module (approx.)

DCX-MC300 - +/- 10 Volt Analog Servo Motor Control Module

Function	Closed Loop Servo Controller with Dual Encoder Inputs		
Installation	DCX-PCI300 Motion Control Motherboard		
Operating Modes	Position, Velocity, Contouring, Torque, and Gain		
Filter Algorithm	PID with Velocity and Acceleration Feed-Forwards		
Filter Update Rate	8, 4 or 2 KHz, software selectable		
Trajectory Generator	8, 4 or 2 KHz, software selectable Trapezoidal, Parabolic or S-Curve		
Hajectory Generator	Independent Acceleration and Deceleration		
Command output	Analog Signal (+/- 10 vdc @ 10 ma, 16 bit)		
Position Feedback	Incremental Encoder with Index		
Position and Velocity Resolution	32 bit		
Primary Encoder			
Encoder and Index Inputs	Differential or single ended, -7 to +7 vdc max.		
Encoder Count Rate	10,000,000 Quadrature Counts/Sec.		
Encoder Supply Voltage	+5 or +12 vdc, jumper selectable		
Auxiliary Encoder			
Encoder and Index Inputs	Differential or single ended, -7 to +7 vdc max.		
Encoder Count Rate	10,000,000 Quadrature Counts/Sec.		
Encoder Supply Voltage	+5 or +12 vdc, jumper selectable		
Axis Inputs	Limit+, Limit-, Coarse Home, Amplifier Fault Optically isolated (Motorola MOC256)		
Voltage range	+2.5V to +7.5V		
Minimum current required	10 ma		
Axis Outputs	Amplifier Enable, Direction Optically isolated Open Collector (Motorola MOC223)		
Maximum voltage	30V		
Maximum current sink	125ma		
Connection options	DCX-MC300-H - VHDCI Ultra SCSI (SCSI V)		
	DCX-MC300-R – 26 conductor, dual row, ribbon cable		
Operating Temperature range	0 degrees C to 60 degrees C		

DCX-MC302 – Dual +/- 10 Volt Servo Motor Control Module

Function	Dual Closed Loop Servo Controller	
Installation	DCX-PCI300 Motion Control Motherboard	
Operating Modes	Position, Velocity, Contouring, Torque, and Gain	
Filter Algorithm	PID with Velocity and Acceleration Feed-Forwards	
Filter Update Rate	8, 4 or 2 KHz, software selectable	
Trajectory Generator	Trapezoidal, Parabolic or S-Curve	
	Independent Acceleration and Deceleration	
Command output	Axis 1 - Analog Signal (+/- 10 vdc @ 10 ma, 16 bit)	
	Axis 2 - Analog Signal (+/- 10 vdc @ 10 ma, 16 bit)	
Position Feedback	Incremental Encoder with Index	
Position and Velocity Resolution	32 bit	
Encoder		
Encoder and Index Inputs	Axis 1 - Differential or single ended, -7 to +7 vdc max.	
	Axis 2 - Differential or single ended, -7 to +7 vdc max.	
Encoder Count Rate	10,000,000 Quadrature Counts/Sec.	
Encoder Supply Voltage	Axis 1 - +5 or +12 vdc, jumper selectable	
	Axis 2 - +5 or +12 vdc, jumper selectable	
Axis Inputs	Axis 1 - Limit+, Limit-, Coarse Home, Amplifier Fault	
	Optically isolated (Seimens ILDC256)	
	Axis 2 - Limit+, Limit-, Coarse Home, Amplifier Fault	
Voltago rango	Optically isolated (Seimens ILDC256) +2.5V to +7.5V	
Voltage range	10 ma	
Minimum current required		
Axis Outputs	Axis 1 - Amplifier Enable Open Collector (TI 75453B)	
	Axis 2 - Amplifier Enable Open Collector (TI 75453B)	
Maximum voltage	30V	
Maximum current sink	125ma	
Connection entires		
Connection options	DCX-MC302-H - VHDCI Ultra SCSI (SCSI V)	
Operating Temperature range	0 degrees C to 60 degrees C	

DCX-MC320 - Brushless Servo Commutation Control Module

Function	Closed Loop Servo Controller with Dual Encoder Inputs			
Installation	DCX-PCI300 Motion Control Motherboard			
Operating Modes	Position, Velocity, Contouring, Torque, and Gain			
Filter Algorithm	PID with Velocity and Acceleration Feed-Forwards			
Filter Update Rate	8, 4 or 2 KHz, software selectable			
Trajectory Generator	Trapezoidal, Parabolic or S-Curve			
	Independent Acceleration and Deceleration			
Command output	Phase A (+/- 10 vdc @ 10 ma, 16 bit)			
Command Odiput	Phase B (+/- 10 vdc @ 10 ma, 16 bit)			
Position Feedback	Incremental Encoder with Index			
Position and Velocity Resolution	32 bit			
Primary Encoder				
Encoder and Index Inputs	Differential or single ended, -7 to +7 vdc max.			
Encoder Count Rate	10,000,000 Quadrature Counts/Sec.			
Encoder Supply Voltage	+5 or +12 vdc, jumper selectable			
Hall Sensor / Auxiliary Encoder				
Encoder and Index Inputs	Differential or single ended, -7 to +7 vdc max.			
Encoder Count Rate	10,000,000 Quadrature Counts/Sec.			
Encoder Supply Voltage	+5 or +12 vdc, jumper selectable			
Axis Inputs	Limit+, Limit-, Coarse Home, Amplifier Fault Optically isolated (Motorola MOC256)			
Voltage range	+2.5V to +7.5V			
Minimum current required	10 ma			
Axis Outputs	Amplifier Enable, Optically isolated Open Collector (Motorola MOC223)			
Maximum voltage	30V			
Maximum current sink	125ma			
Connection options	DCX-MC320-H - VHDCI Ultra SCSI (SCSI V) DCX-MC320-R – 26 conductor, dual row, ribbon cable			
Operating Temperature range	0 degrees C to 60 degrees C			

DCX-MC360 - Stepper Motor Control Module

Function	Open or Closed Loop Stepper Controller
Installation	DCX-PCI300 Motion Control Motherboard
Operating Modes	Position, Velocity, and Contouring
Trajectory Generator	Trapezoidal, Parabolic or S-Curve
	Independent Acceleration and Deceleration
Position Feedback	Incremental Encoder with Index (for closed loop stepper
	operation or position verification of an open loop stepper)
Position and Velocity Resolution	32 bit
Step Outputs	Pulse/Direction or CW/CCW (software selectable),
	50% duty cycle open collector drivers (max. 30V, 125ma
	current sink)
Step Rates (Software Selectable)	High Speed - 153 Steps/Sec 5.0M Steps/Sec.
	Medium Speed - 20 Steps/Sec 625K Steps/Sec.
	Low Speed1 Steps/Sec. – 78K Steps/Sec.
Axis Inputs	Limit+, Limit-, Home, Drive Fault (Optically isolated Motorola MOC256)
Voltage range	+2.5V to +7.5V
Minimum current required	10 ma
Axis Outputs	Drive Enable, Full/Half Current (Open Collector TI 75453B)
Maximum voltage	30V
Maximum current sink	125ma
Connection options	DCX-MC360-H - VHDCI Ultra SCSI (SCSI V)
	DCX-MC360-R – 26 conductor, dual row, ribbon cable
Operating Temperature range	0 degrees C to 60 degrees C

DCX-MC362 – Dual Stepper Motor Control Module

Function	Dual Open Loop Stepper Controller
Installation	DCX-PCI300 Motion Control Motherboard
Operating Modes	Position, Velocity, and Contouring
Trajectory Generator	Trapezoidal, Parabolic or S-Curve
	Independent Acceleration and Deceleration
Position Feedback	None
Position and Velocity Resolution	32 bit
Step Outputs	 Axis 1 - Pulse/Direction or CW/CCW (software selectable), 50% duty cycle, open collector drivers (max. 30V, 125ma current sink) Axis 2 - Pulse/Direction or CW/CCW (software selectable), 50% duty cycle, open collector drivers (max. 30V, 125ma current sink)
Step Rates (Software Selectable)	High Speed - 153 Steps/Sec 5.0M Steps/Sec. Medium Speed - 20 Steps/Sec 625K Steps/Sec. Low Speed1 Steps/Sec. – 78K Steps/Sec.
Axis Inputs	Axis 1 - Limit+, Limit-, Home, Drive Fault Optically isolated (Motorola MOC256) Axis 2 - Limit+, Limit-, Home, Drive Fault Optically isolated (Motorola MOC256)
Voltage range	+2.5V to +7.5V
Minimum current required	10 ma
Axis Outputs	Axis 1 - Drive Enable, Full/Half Current, Open Collector (TI 75453B) Axis 2 - Drive Enable, Full/Half Current, Open Collector (TI 75453B)
Maximum voltage	30V
Maximum current sink	125ma
Connection options	DCX-MC362-H - VHDCI Ultra SCSI (SCSI V)
Operating Temperature range	0 degrees C to 60 degrees C

DCX-MC400 - 16 channel Digital I/O Module

Function	16 Channel Digital I/O module
Installation	DCX-PCI300 Motion Control Motherboard
Channels	16, individually programmable as input s or outputs
Output low voltage (min)	0.0 volt
Output high voltage (min)	2.4 volt
Current sink	1 ma max
Current source	1 ma max.
Input Low voltage	-0.3V min. to 0.8V max.
Input High voltage	2.0V min. to 5.3V max.
Input termination	4.7K ohm pull up to +5V per channel
Relay rack interface	DCX-BF022
Connection options	DCX-MC400-H - VHDCI Ultra SCSI (SCSI V)
	DCX-MC400-R – 26 conductor, dual row, ribbon cable
Operating Temperature range	0 degrees C to 60 degrees C

DCX-MC5X0 - Analog I/O Module

Function	DCX-MC500 – 4 A/D channels, 4 D/A channels
	DCX-MC510 – 4 A/D channels
	DCX-MC520 – 4 D/A channels
Installation	DCX-PCI300 Motion Control Motherboard
Inputs resolution	12 bit
Input voltage range	0.0V to +5.0V
Output resolution	12 bit
Output voltage range	0.0V to +5.0V (@ 5ma), -10V to +10V (@ 5ma)
Output Offset Adjustment	20 turn trim pot
Output Full Scale Adjustment	single turn trim pot
Connection options	DCX-MC50-H - VHDCI Ultra SCSI (SCSI V) DCX-MC50-R – 26 conductor, dual row, ribbon cable
Operating Temperature range	0 degrees C to 60 degrees C

DCX-MC500 Electrical Specifications

Parameter	Min.	Max	Unit
Input Resolution	12		Bits
Input Conversion Rate		10	KHz
Input Zero Error			
Using Internal Reference		+/- 3	LSB
Using External Reference		+/- 1/2	LSB
Input Full-Scale Error			
Using Internal Reference		+/- 15	LSB
Using External Reference		+/- 1/2	LSB
Input Zero Temp. Coefficient		0.5	ppm/C
Input Differential Nonlinearity		+/- 1	LSB
Input Total Unadjusted Error			
Using Internal Reference		+/- 15	
Using External Reference		+/- 1	
Input Voltage Range			
Using Internal Reference	0.0	5.0	
Using External Reference	0.0	Vref	
Input Capacitance		8	
Input Leakage Current		100	
External Reference Voltage	4.0	6.0	

Parameter	Min.	Max	Unit
Output Resolution	12		Bits
Output Zero Code Error *			LSB
Output Full Scale Error *			LSB
Output Nonlinearity *			LSB
Output Total Unadjusted Error *			LSB
Output Voltage Range	0.0	5.0	V
	-10.0	+10.0	V

* These values are for 0 to +5.0 volt outputs

Chapter Contents

- DCX-PCI300 Motion Control Motherboard
- DCX-MC300 +/- 10V Servo Motor Control Module
- DCX-MC302 Dual +/- 10 Volt Analog Servo Motor Control Module
- DCX-MC320 Brushless Servo Commutation Control Module
- DCX-MC360 Stepper Motor Control Module
- DCX-MC362 Dual Stepper Motor Control Module
- DCX-MC400 Digital I/O Module
- DCX-MC500/MC510/MC520 Analog I/O Module
- DCX-BF022 Relay Rack Interface
- DCX-BF3XX-H High Density Cable Breakout
- DCX-BF300-R Servo Module Breakout Assembly
- DCX-BF320-R Servo Module Breakout Assembly
- DCX-BF360-R Stepper Module Breakout Assembly

Chapter 6

Connectors, Jumpers, and Schematics

DCX-PCI300 Motion Control Motherboard

Status LED Indicators

LED #	Color	Description
D1	Green	+5 VDC logic supply OK
D2	Yellow	DCX Reset active
D3	Green	Run (processor fault or watchdog tripped if off)
L1	Red	Motor Module #1 initialization error (will blink when reset)
L2	Red	Motor Module #2 initialization error (will blink when reset)
L3	Red	Motor Module #3 initialization error (will blink when reset)
L4	Red	Motor Module #4 initialization error (will blink when reset)
L5	Red	Motor Module #5 initialization error (will blink when reset)
L6	Red	Motor Module #6 initialization error (will blink when reset)
L7	Red	Motor Module #7 initialization error (will blink when reset)
L8	Red	Motor Module #8 initialization error (will blink when reset)

(Refer to diagram at the end of this appendix)

General Purpose I/O (Digital I/O and Analog inputs) Connector J5

Pin #	Description
1	+5 VDC
2	RESET RELAY CONTACT #1 *
3	DIGITAL OUTPUT CHANNEL 16
4	RESET RELAY CONTACT #2 *
5	DIGITAL OUTPUT, CHANNEL 15
6	DIGITAL OUTPUT, CHANNEL 14
7	DIGITAL OUTPUT, CHANNEL 13
8	DIGITAL OUTPUT, CHANNEL 12
9	DIGITAL OUTPUT, CHANNEL 11
10	DIGITAL OUTPUT, CHANNEL 10
11	DIGITAL OUTPUT, CHANNEL 09
12	DIGITAL INPUT, CHANNEL 08
13	DIGITAL INPUT, CHANNEL 07
14	DIGITAL INPUT, CHANNEL 06
15	DIGITAL INPUT, CHANNEL 05
16	DIGITAL INPUT, CHANNEL 04
17	DIGITAL INPUT, CHANNEL 03
18	DIGITAL INPUT, CHANNEL 02
19	DIGITAL INPUT, CHANNEL 01
20	NO CONNECT
21	+12 VDC
22	NO CONNECT
23	NO CONNECT
24	GROUND
25	-12 VDC
26	GROUND

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

* - Reset Relay contacts (normally open). The relay is energized (contacts 1 and 2 connected) when the DCX-PCI300 is held in reset.

Alternative +12 volt supply connector (not supported at this time)

Pin #	Description
1	
2	
3	
4	
Mating (Connector:

J31 – +12 volt supply input select

Pins	Description
Open	+12 volt supply provided via connector J33
2 to 3	+12 volt supply provided via PCI bus

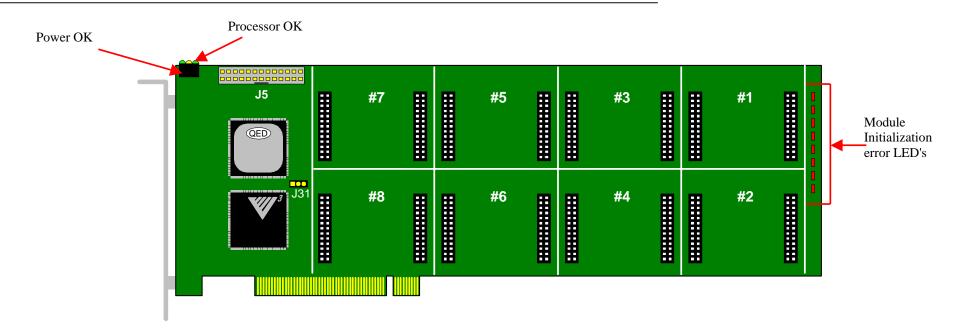


Figure 41: DCX-PCI300-R motherboard (ribbon cable version)

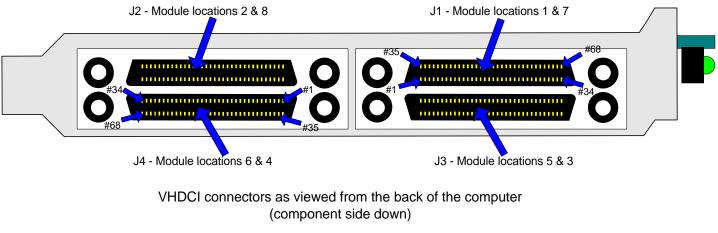


Figure 42: DCX-PCI300-H high density connectors pin numbering

DCX-MC300 +/- 10V Servo Motor Control Module

SIGNAL DESCRIPTIONS:

Analog Command Return

connection point. MC300-H J3 - pin 1, MC300-R J3 - pin 1 signal type: around notes:

explanation: Provides the signal ground for the modules Analog Command Signal output. This return path is common to the ground plane of the DCX motherboard, but is connected in such a way as to reduce digital noise. Typical servo amplifiers will have a connection for the analog command (or Ref-) return where this signal should be connected.

Analog Command Output

connection point. MC300-H J3 - pin 2, MC300-R J3 - pin 2 +/- 10V analog, 16 bit signal type: notes: connects to servo amplifier motor command input (Ref+) explanation: This module output signal is used to control the servo amplifier's output. When connected to the command input of a velocity mode amplifier, the voltage level on this signal should cause the amplifier to drive the servo at a proportional velocity. For current mode amplifiers, the voltage level should cause a proportional current to be supplied to the servo. In its default Bipolar output mode, the module provides an analog signal that is in the range -10 to +10 volts, with 0 volts being the null output level. Positive voltages indicate a desired velocity or current in one direction. Negative voltages indicate velocity or current in the opposite direction. By using the Output Mode command, the output can be changed to Unipolar, where the analog signal range is 0 to +10 volts, and a separate signal is used to indicate the desired direction of velocity or current. The maximum drive current of this signal is +/-10 milliamps.

Compare / Direction Output

connection point. MC300-H J3 - pin 3, MC300-R J3 - pin 7 Open collector, current sink, 100ma max. current sink, 30V max. signal type: notes: external pull-up required

explanation:

Compare - Used to indicate when a position compare event has occurred. See the description of Position Compare in the Application Solutions chapter.

Direction - For servo drives requiring a Unipolar output. The velocity or current command input consists of a magnitude signal and a separate direction signal. The magnitude signal is provided by the modules Analog Command Signal (J3 pin 2) previously described, while this signal provides a digital direction command.

This signal is driven by a high current open collector driver and is suitable for direct connection to optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open collector drivers, no voltages will be present on these output signals unless pull-up resistors are connected to them. When the axis is moving in the positive direction the output will be pulled low. When the axis is moving in the negative direction the open collector driver will be turned off and the output will be pulled high.

Coarse Home Input	
connection point.	MC300-H J3 - pin 9, MC300-R J3 - pin 9
signal type:	Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes:	Supply/Return using INPRET (J3 pin 18)
· · · ·	

explanation: This module input is used to determine the proper zero position of the servo. In servo systems that use rotary encoders with index outputs, an index pulse is generated once per rotation of the encoder. While this signal occurs at a very repeatable angular position on the encoder, it may occur many times within the motion range of the servo. In these cases, a Coarse Home switch connected to this module input can be used to qualify which index pulse is the true zero position of the servo. By setting this switch to be activated near the end of travel of the servo, and using DCX motion commands to position the servo within this region prior to searching for the index pulse, a unique zero position for the servo can be determined. The input device is a bi-directional optical isolator. The allowable voltage range for this signal is **2.5 VDC to 7.5 VDC**. For I/O systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W). The minimum current required to turn on the optical isolator is **10ma**. Bi-directional optical isolator wiring examples are provided later in this section.

Amplifier Fault Input

connection point:MC300-H J3 - pin 7, MC300-R J3 - pin 10signal type:Bi-directional optical isolator, 10ma min. 2.5V - 7.5V rangenotes:Supply/Return using AMPFRET (J3 pin 13)explanation:- This module input is designed to be connected to the servo amplifiers Fault or Erroroutput signal. The state of this signal will appear as a status bit in the servo's status word. TheEnableAmpFaultmember of the MCMotionEnableAmpFaultmember of the MCMotion structure will enable the module to shut off the axis if theAmplifier Fault input is active. No further servo motion will occur until the fail signal is deactivated andthe axis is enabled. The input device is a bi-directional optical isolator. The allowable voltage range forthis signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an externalresistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Amplifier Enable Output

connection point: MC300-H J3 - pin 5, MC300-R J3 - pin 11
 signal type: Open collector, current sink, 100ma max. current sink, 30V max.
 notes: external pull-up required
 explanation: - This module output signal should be connected to the enable input of the servo amplifier. When the DCX is turned on or reset, this signal will immediately go to its' inactive high level.
 When the MCEnableAxis() is called, this signal will go to its' active low level. Anytime there is an error on the respective servo axis, including exceeding the following error, a limit switch input activated or the Amplifier Fault input activated, the Amplifier Enable signal will be deactivated.

This signal can also be deactivated by the Motor oFf command.

This signal is driven by a high current open collector driver and is suitable for direct connection to optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open collector drivers, no voltages will be present on these output signals unless pull-up resistors are connected to them.

Limit Positive and Limit Negative Inputs

connection point:	Limit Positive: MC300-H J3 - pin 17, MC300-R J3 - pin 14
	Limit Negative: MC300-H J3 - pin 19, MC300-R J3 - pin 15
signal type:	Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes:	MC300-H Limit Positive Supply/Return J3 pin 18
	MC300-H Limit Negative Supply/Return J3 pin 20
	MC300-R Limits Supply/Return J3 pin 18

explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of the direction it is moving if either limit switch is activated. There are three modes of stopping (decelerate to a stop, stop immediately, turn off the axis) that can be configured by the **MCSetLimits(**). The limit switch inputs can be enabled and disabled by **MCSetLimits(**). See the description of **Motion Limits** in the **Motion Control** chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is **2.5 VDC to 7.5 VDC**. For I/O systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

 Position Capture / Auxiliary Encoder Index +

 connection point.
 MC300-H J3 - pin 15, MC300-R J3 - pin 24

 signal type:
 TTL or Differential driver output (-7V to +7V)

 notes:
 explanation:

 Position Capture – Used to initiate the capture of position data. See the description of Position

 Capture in the Application Solutions chapter.

Auxiliary Encoder Index + - This input signal can be used to define the home position of an auxiliary encoder.

Primary Encoder Inputs (Phase A+, Phase -, Phase B+, Phase B-, Index+, Index-)connection point:see pin-out tablesignal type:TTL or Differential driver output (-7V to +7V)notes:The encoder power jumper JP3 sets the 'mid point' for the differential receiverexplanation:These input signals should be connected to an incremental quadrature encoder forsupplying position feedback information for the servo controller. The plus (+) and minus (-) signs referto the two sides of differential inputs. By setting jumpers JP1 and JP2 appropriately, the plus signalinputs can be configured for single ended inputs.

Auxiliary Encoder Inputs (Phase A, Phase B, Index+, Index-)connection point:see pin-out tablesignal type:TTL or Differential driver output (-7V to +7V)notes:explanation: - These input signals can be used for an auxiliary encoder.

Encoder Power Output

connection point.MC300-H J3 - pin 16, MC300-R J3 - pin 17signal type:+5 VDC PC power supply output or +12 VDC PC power supply outputnotes:The encoder power jumper JP3 selects +5VDC or +12VDC (max. load 250 mA).explanation:This module pin provides a convenient supply voltage connection for the encoders. Thejumper JP3 located on the module can be used to connect either the +5 or +12 volt supply to theEncoder Power pin.The setting of this jumper also selects the threshold voltage for the module'ssingle ended phase and index encoder inputs.When JP1 is set for +5 volts, the threshold will be 2.5volts, for +12 volts, the threshold will be +6 volts.The threshold voltage determines at what voltagethe input changes between on and off.

SUPPLY CONNECTIONS (+5, +12, -12, GROUND) - These module pins provide access to the DCX supply voltages.

DCX-MC300-H High	Density connector	signal map
------------------	--------------------------	------------

Module #1	Module #2	Module #3	Module #4	Module #5	Module #6	Module #7	Module #8	J3 Pin #	Description
J1 – 1	J2 – 1	J3 - 19	J4 - 19	J3 – 1	J4 – 1	J1 – 19	J2 - 19	1	Analog Command return
J1 – 35	J2 - 35	J3 – 53	J4 – 53	J3 – 35	J4 – 35	J1 – 53	J2 – 53	2	Analog Command output
J1 – 2	J2 – 2	J3 – 20	J4 – 20	J3 – 2	J4 – 2	J1 – 20	J2 – 20	3	Compare / Direction: output
J1 – 36	J2 - 36	J3 – 54	J4 – 54	J3 – 36	J4 – 36	J1 – 54	J2 – 54	4	Compare / Direction return
J1 – 3	J2 – 3	J3 - 21	J4 - 21	J3 – 3	J4 – 3	J1 – 21	J2 - 21	5	Amplifier Enable: output
J1 – 37	J2 - 37	J3 – 55	J4 – 55	J3 – 37	J4 – 37	J1 – 55	J2 – 55	6	Amp Enable return
J1 – 4	J2 – 4	J3 – 22	J4 – 22	J3 – 4	J4 – 4	J1 – 22	J2 – 22	7	Amplifier Fault: input
J1 – 38	J2 - 38	J3 – 56	J4 – 56	J3 – 38	J4 – 38	J1 – 56	J2 – 56	8	Amp Fault opto isolator supply/return
J1 – 5	J2 – 5	J3 – 23	J4 – 23	J3 – 5	J4 – 5	J1 – 23	J2 – 23	9	Coarse Home: input
J1 – 39	J2 - 39	J3 – 57	J4 – 57	J3 – 39	J4 – 39	J1 – 57	J2 – 57	10	Coarse Home return
J1 – 6	J2 – 6	J3 – 24	J4 – 24	J3 – 6	J4 – 6	J1 – 24	J2 – 24		Ground
J1 – 40	J2 - 40	J3 – 58	J4 – 58	J3 – 40	J4 – 40	J1 – 58	J2 – 58	11	Reserved
J1 – 7	J2 – 7	J3 – 25	J4 – 25	J3 – 7	J4 – 7	J1 – 25	J2 – 25	12	Reserved
J1 – 41	J2 - 41	J3 – 59	J4 – 59	J3 – 41	J4 – 41	J1 – 59	J2 – 59		Ground
J1 – 8	J2 – 8	J3 – 26	J4 – 26	J3 – 8	J4 – 8	J1 – 26	J2 – 26		Ground
J1 – 42	J2 - 42	J3 – 60	J4 – 60	J3 – 42	J4 – 42	J1 – 60	J2 – 60	13	Auxiliary Encoder Phase A+: input
J1 – 9	J2 – 9	J3 – 27	J4 – 27	J3 – 9	J4 – 9	J1 – 27	J2 – 27	14	Auxiliary Encoder Phase B+: input
J1 – 43	J2 - 43	J3 – 61	J4 – 61	J3 – 43	J4 – 43	J1 – 61	J2 – 61		Ground
J1 – 10	J2 - 10	J3 – 28	J4 – 28	J3 – 10	J4 – 10	J1 – 28	J2 – 28		Ground
J1 – 44	J2 - 44	J3 – 62	J4 – 62	J3 – 44	J4 – 44	J1 – 62	J2 – 62	15	Position Capture + / Aux. Encoder Index+
J1 – 11	J2 - 11	J3 - 29	J4 - 29	J3 – 11	J4 – 11	J1 – 29	J2 - 29	16	Encoder Power: output (max. load 250 mA)
J1 – 45	J2 - 45	J3 – 63	J4 – 63	J3 – 45	J4 – 45	J1 – 63	J2 – 63		Ground
J1 – 12	J2 - 12	J3 – 30	J4 – 30	J3 – 12	J4 – 12	J1 – 30	J2 – 30	17	Limit Positive: input
J1 – 46	J2 - 46	J3 – 64	J4 – 64	J3 – 46	J4 – 46	J1 – 64	J2 – 64	18	Limit Positive opto isolator supply/return
J1 – 13	J2 - 13	J3 – 31	J4 – 31	J3 – 13	J4 – 13	J1 – 31	J2 – 31	19	Limit Negative: input
J1 – 47	J2 - 47	J3 – 65	J4 – 65	J3 – 47	J4 – 47	J1 – 65	J2 – 65	20	Limit Negative opto isolator supply/return
J1 – 14	J2 - 14	J3 – 32	J4 – 32	J3 – 14	J4 – 14	J1 – 32	J2 – 32	21	Primary Encoder Phase A+: input *
J1 – 48	J2 - 48	J3 – 66	J4 – 66	J3 – 48	J4 – 48	J1 – 66	J2 – 66	22	Primary Encoder Phase A-: input
J1 – 15	J2 - 15	J3 – 33	J4 – 33	J3 – 15	J4 – 15	J1 – 33	J2 – 33	23	Primary Encoder Phase B+: input*
J1 – 49	J2 - 49	J3 – 67	J4 – 67	J3 – 49	J4 – 49	J1 – 67	J2 – 67	24	Primary Encoder Phase B-: input
J1 – 16	J2 - 16	J3 – 34	J4 – 34	J3 – 16	J4 – 16	J1 – 34	J2 – 34	25	Primary Encoder Index +:input
J1 – 50	J2 - 50	J3 – 68	J4 – 68	J3 – 50	J4 – 50	J1 – 68	J2 – 68	26	Primary Encoder Index -:input
J1 – 17	J2 – 17			J3 – 17	J4 – 17				Ground
J1 – 51	J2 - 51			J3 – 51	J4 – 51				Ground
J1 – 18	J2 – 18			J3 – 18	J4 – 18				Ground
J1 – 52	J3 – 52			J3 – 52	J4 – 52				Ground

For a more complete signal description please refer to the previous five pages Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

DCX-MC300-R Module connector

Pin #	Description
1	Analog Command return (analog ground)
2	Analog Command output (output, +/-10 V)
3	+12 VDC (250 mA max.)
4	-12 VDC (50 mA max.)
5	Ground
6	+5 VDC (250 mA max.)
7	Compare / Direction: output (open collector, 100ma max., 30V max.)
8	Primary Encoder Index +:input (active high)
9	Coarse Home: input (optically isolated, 12V – 24V, 15ma min.)
10	Amplifier Fault: input (optically isolated, 12V – 24V, 15ma min.)
11	Amplifier Enable: output (open collector, 100ma max., 30V max.)
12	Amp Enable & Direction return
13	Amp Fault opto isolator supply/return
14	Limit Positive: input (optically isolated, 12V – 24V, 15ma min.)
15	Limit Negative: input (optically isolated, 12V – 24V, 15ma min.)
16	Primary Encoder Phase A+: input *
17	Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (max. load 250 mA)
18	Coarse Home & Limits opto isolator supply/return
19	Primary Encoder Phase A-: input
20	Primary Encoder Phase B-: input
21	Auxiliary Encoder Phase A+: input
22	Auxiliary Encoder Phase B+: input
23	Primary Encoder Phase B+: input*
24	Position Capture + / Auxiliary Encoder Index+: input (active high)
25	Primary Encoder Index-: input (active low)
26	Ground

J3 connector pin-out (Motor command, encoders, and axis I/O)

* Use A+ and B+ for single-ended ENCODER INPUTS

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

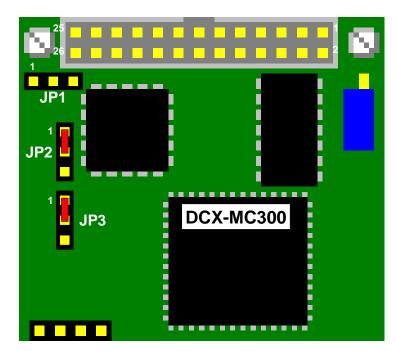
DCX-MC300 Module Configuration Jumpers - configuration in **bold type** denotes default factory shipping configuration

JP1 – Encoder type (single ended or differential)

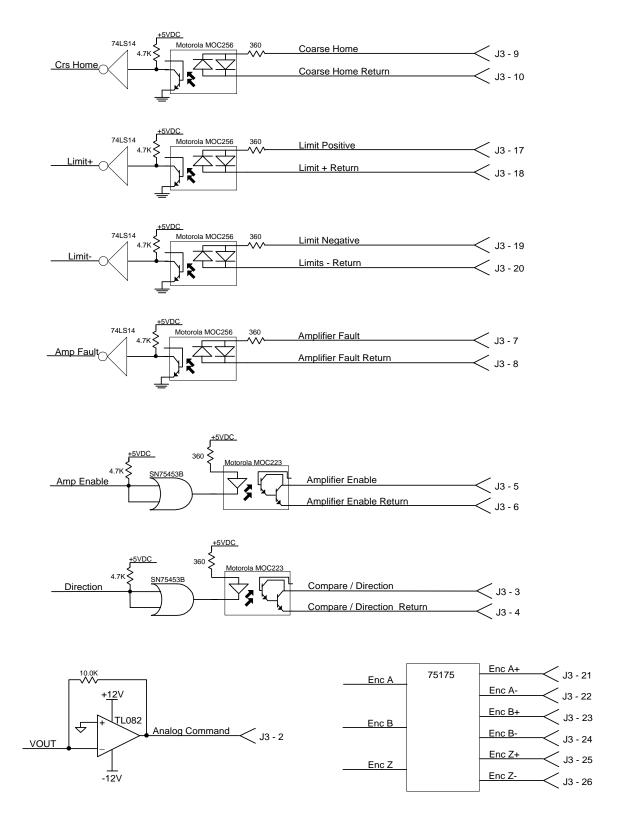
Pins	Description
1 to 2 to 3	Single ended encoder, A, B, Z (three pin jumper provided)
open	Differential encoder, A+, A-, B+, B-

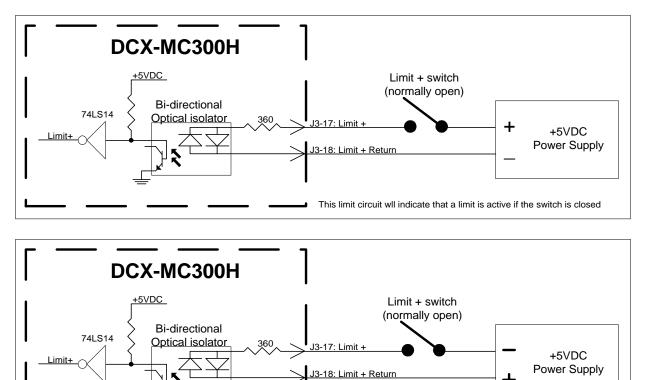
JP2 – Encoder Index Active Level Select)

Pins	Description
1 to 2	Single ended Index, Z+ (Active high)
2 to 3	Single ended Index, Z- (active low)
open	Differential Index, Z+ and Z-

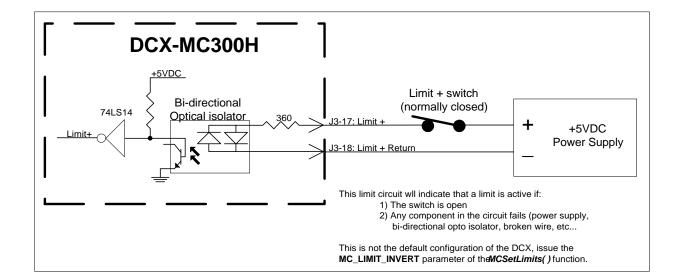

JP3 – Encoder Power Select (+5VDC or +12 VDC)

Pins	Description
1 to 2	+5 VDC encoder supply on J3 pin 16/17 (250 mA max.)
2 to 3	+12 VDC encoder supply on J3 pin 16/17 (250 mA max.)

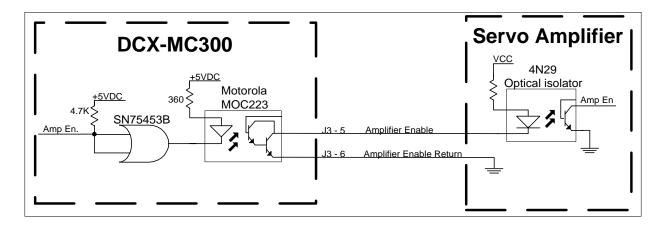

DCX-MC300 Module Output Offset Potentiometer


This multi-turn trimming potentiometer can be used to add an offset to the module's analog output. The range of this adjustment is approximately +/-1.0 volts.

DCX-MC300 Module Layout



DCX-MC300H Axis I/O Interface Schematic


DCX-MC300H Optically Isolated Inputs Wiring Examples

+

This limit circuit wll indicate that a limit is active if the switch is closed

DCX-MC302 Dual Axis +/- 10V Servo Motor Control Module

SIGNAL DESCRIPTIONS:

Analog Command Return

connection point:Axis 1: VHDCI connector pin 8 (no connection on module J3 connector)
Axis 2: VHDCI connector pin 43 (no connection on module J3 connector)
groundsignal type:ground

notes:

explanation: Provides the signal ground for the modules Analog Command Signal output. This return path is common to the ground plane of the DCX motherboard, but is connected in such a way as to reduce digital noise. Typical servo amplifiers will have a connection for the analog command (or Ref-) return where this signal should be connected.

Analog Command Output

connection point.	Axis 1: J3 - pin 13
-	Axis 2: J3 – pin 14
signal type:	+/- 10V analog, 16 bit
notes:	connects to servo amplifier motor command input (Ref+)
ovalanation: This m	adule output signal is used to control the conversibilities's

explanation: This module output signal is used to control the servo amplifier's output. When connected to the command input of a velocity mode amplifier, the voltage level on this signal should cause the amplifier to drive the servo at a proportional velocity. For current mode amplifiers, the voltage level should cause a proportional current to be supplied to the servo. In its default Bipolar output mode, the module provides an analog signal that is in the range -10 to +10 volts, with 0 volts being the null output level. Positive voltages indicate a desired velocity or current in one direction. Negative voltages indicate velocity or current in the opposite direction. The maximum drive current of this signal is +/-10 milliamps.

Coarse Home Input	
connection point.	Axis 1: J3 - pin 7
	Axis 2: J3 – pin 19
signal type:	Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes:	Axis 1 Supply/Return: A1Limret (J3 pin 10)
	Axis 2 Supply/Return: A2Limret (J3 pin 18)

explanation: This module input is used to determine the proper zero position of the servo. In servo systems that use rotary encoders with index outputs, an index pulse is generated once per rotation of the encoder. While this signal occurs at a very repeatable angular position on the encoder, it may occur many times within the motion range of the servo. In these cases, a Coarse Home switch connected to this module input can be used to qualify which index pulse is the true zero position of the servo. By setting this switch to be activated near the end of travel of the servo, and using DCX motion commands to position the servo within this region prior to searching for the index pulse, a unique zero position for the servo can be determined. The input device is a bi-directional optical isolator. The allowable voltage range for this signal is **2.5 VDC to 7.5 VDC**. For I/O systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Amplifier Enable Output

 connection point:
 Axis 1: J3 - pin 12

 Axis 2: J3 - pin 15
 Axis 2: J3 - pin 15

 signal type:
 Open collector, current sink, 100ma max. current sink, 30V max.

 notes:
 external pull-up required

 explanation:
 - This module output signal should be connected to the enable input of the servo

amplifier. When the DCX is turned on or reset, this signal will immediately go to its' inactive high level. When the **MCEnableAxis()** is called, this signal will go to its' active low level. Anytime there is an error on the respective servo axis, including **exceeding the following error, a limit switch input activated or the Amplifier Fault input activated**, the Amplifier Enable signal will be deactivated. This signal can also be deactivated by the **M**otor o**F**f command.

This signal is driven by a high current open collector driver and is suitable for direct connection to optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open collector drivers, no voltages will be present on these output signals unless pull-up resistors are connected to them.

Limit Positive and Limit Negative Inputs

connection point.	Axis 1 Limit Positive: J3 - pin 9, Axis 2 Limit Positive: J3 - pin 17
	Axis 1 Limit Negative: J3 - pin 11, Axis 2 Limit Positive: J3 - pin 16
signal type:	Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes:	Axis 1 Limits +/- Supply/Return: A1Limret (J3 pin 10)
	Axis 2 Limits +/- Supply/Return: A2Limret (J3 pin 18)

explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of the direction it is moving if either limit switch is activated. There are three modes of stopping (decelerate to a stop, stop immediately, turn off the axis) that can be configured by the **MCSetLimits(**). The limit switch inputs can be enabled and disabled by **MCSetLimits(**). See the description of **Motion Limits** in the **Motion Control** chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is **2.5 VDC to 7.5 VDC**. For I/O systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Encoder Inputs (Phase A+, Phase A-, Phase B+, Phase B-, Index+, Index-) connection point: see pin-out tables signal type: TTL or Differential driver output (-7V to +7V) notes:

explanation: These input signals should be connected to an incremental quadrature encoder for supplying position feedback information for the servo controller. The plus (+) and minus (-) signs refer to the two sides of differential inputs. The default shipping configuration is for using a differential encoder. For a single ended encoder add 0 ohm resistors (Axis 1- R1, R2, R3; Axis 2-R4, R5, R6).

Encoder Power Output

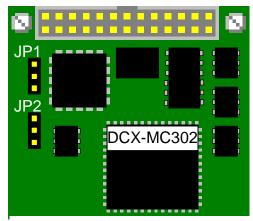
connection point.	Axis 1: J3 - pin 8
	Axis 2: J3 – pin 20
signal type:	+5 VDC PC power supply output or +12 VDC PC power supply output
notes:	Axis 1: jumper JP1 selects +5VDC or +12VDC (max. load 250 mA)
	Axis 2: jumper JP2 selects +5VDC or +12VDC (max. load 250 mA)
	a distance in a second state of a second state o

explanation: This module pin provides a convenient supply voltage connection for the encoders. The jumper can be used to connect either the +5 or +12 volt supply to the Encoder Power pin.

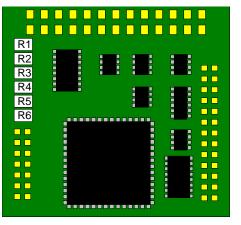
DCX-MC302-H High Density connector signal map

Module #1	Module #2	Module #3	Module #4	Module #5	Module #6	Module #7	Module #8	J3 Pin #	Description
J1 – 1	J2 – 1	J3 - 19	J4 - 19	J3 – 1	J4 – 1	J1 – 19	J2 - 19	1	Axis 1 Encoder Phase A+: input *
J1 – 35	J2 - 35	J3 – 53	J4 – 53	J3 – 35	J4 – 35	J1 – 53	J2 – 53	2	Axis 1 Encoder Phase A-: input
J1 – 2	J2 – 2	J3 – 20	J4 – 20	J3 – 2	J4 – 2	J1 – 20	J2 – 20	3	Axis 1 Encoder Phase B+: input*
J1 – 36	J2 - 36	J3 – 54	J4 – 54	J3 – 36	J4 – 36	J1 – 54	J2 – 54	4	Axis 1 Encoder Phase B-: input
J1 – 3	J2 – 3	J3 - 21	J4 - 21	J3 – 3	J4 – 3	J1 – 21	J2 - 21	5	Axis 1 Encoder Index +:input
J1 – 37	J2 - 37	J3 – 55	J4 – 55	J3 – 37	J4 – 37	J1 – 55	J2 – 55	6	Axis 1 Encoder Index-: input
J1 – 4	J2 – 4	J3 – 22	J4 – 22	J3 – 4	J4 – 4	J1 – 22	J2 – 22	7	Axis 1 Coarse Home: input (optically isolated)
J1 – 38	J2 - 38	J3 – 56	J4 – 56	J3 – 38	J4 – 38	J1 – 56	J2 – 56	8	Axis 1 Encoder Power (+5/+12) (250 mA max.)
J1 – 5	J2 – 5	J3 – 23	J4 – 23	J3 – 5	J4 – 5	J1 – 23	J2 – 23	9	Axis 1 Limit Positive: input (optically isolated)
J1 – 39	J2 - 39	J3 – 57	J4 – 57	J3 – 39	J4 – 39	J1 – 57	J2 – 57	10	Axis 1 Coarse Home & Limits supply/return
J1 – 6	J2 – 6	J3 – 24	J4 – 24	J3 – 6	J4 – 6	J1 – 24	J2 – 24		Ground
J1 – 40	J2 - 40	J3 – 58	J4 – 58	J3 – 40	J4 – 40	J1 – 58	J2 – 58	11	Axis 1 Limit Negative: input (optically isolated)
J1 – 7	J2 – 7	J3 – 25	J4 – 25	J3 – 7	J4 – 7	J1 – 25	J2 – 25	12	Axis 1 Amplifier Enable: output (open collector)
J1 – 41	J2 - 41	J3 – 59	J4 – 59	J3 – 41	J4 – 41	J1 – 59	J2 – 59		Ground
J1 – 8	J2 – 8	J3 – 26	J4 – 26	J3 – 8	J4 – 8	J1 – 26	J2 – 26		Ground
J1 – 42	J2 - 42	J3 – 60	J4 – 60	J3 – 42	J4 – 42	J1 – 60	J2 – 60	13	Axis 1 Analog Command output (+/-10 V)
J1 – 9	J2 – 9	J3 – 27	J4 – 27	J3 – 9	J4 – 9	J1 – 27	J2 – 27	14	Axis 2 Analog Command output (+/-10 V)
J1 – 43	J2 - 43	J3 – 61	J4 – 61	J3 – 43	J4 – 43	J1 – 61	J2 – 61		Ground
J1 – 10	J2 - 10	J3 – 28	J4 – 28	J3 – 10	J4 – 10	J1 – 28	J2 – 28		Ground
J1 – 44	J2 - 44	J3 – 62	J4 – 62	J3 – 44	J4 – 44	J1 – 62	J2 – 62	15	Axis 2 Amplifier Enable: output (open collector)
J1 – 11	J2 - 11	J3 - 29	J4 - 29	J3 – 11	J4 – 11	J1 – 29	J2 - 29	16	Axis 2 Limit Negative: input (optically isolated)
J1 – 45	J2 - 45	J3 – 63	J4 – 63	J3 – 45	J4 – 45	J1 – 63	J2 – 63		Ground
J1 – 12	J2 - 12	J3 – 30	J4 – 30	J3 – 12	J4 – 12	J1 – 30	J2 – 30	17	Axis 2 Limit Positive: input (optically isolated)
J1 – 46	J2 - 46	J3 – 64	J4 – 64	J3 – 46	J4 – 46	J1 – 64	J2 – 64	18	Axis 2 Coarse Home & Limits supply/return
J1 – 13	J2 - 13	J3 – 31	J4 – 31	J3 – 13	J4 – 13	J1 – 31	J2 – 31	19	Axis 2 Coarse Home: input (optically isolated)
J1 – 47	J2 - 47	J3 – 65	J4 – 65	J3 – 47	J4 – 47	J1 – 65	J2 – 65	20	Axis 2 Encoder Power (+5/+12) (250 mA max.)
J1 – 14	J2 - 14	J3 – 32	J4 – 32	J3 – 14	J4 – 14	J1 – 32	J2 – 32	21	Axis 2 Encoder Phase A+: input *
J1 – 48	J2 - 48	J3 – 66	J4 – 66	J3 – 48	J4 – 48	J1 – 66	J2 – 66	22	Axis 2 Encoder Phase A-: input
J1 – 15	J2 - 15	J3 – 33	J4 – 33	J3 – 15	J4 – 15	J1 – 33	J2 – 33	23	Axis 2 Encoder Phase B+: input*
J1 – 49	J2 - 49	J3 – 67	J4 – 67	J3 – 49	J4 – 49	J1 – 67	J2 – 67	24	Axis 2 Encoder Phase B-: input
J1 – 16	J2 - 16	J3 – 34	J4 – 34	J3 – 16	J4 – 16	J1 – 34	J2 – 34	25	Axis 2 Encoder Index +:input
J1 – 50	J2 - 50	J3 – 68	J4 – 68	J3 – 50	J4 – 50	J1 – 68	J2 – 68	26	Axis 2 Encoder Index-: input
J1 – 17	J2 – 17			J3 – 17	J4 – 17				Ground
J1 – 51	J2 - 51			J3 – 51	J4 – 51				Ground
J1 – 18	J2 – 18			J3 – 18	J4 – 18				Ground
J1 – 52	J3 – 52			J3 – 52	J4 – 52				Ground

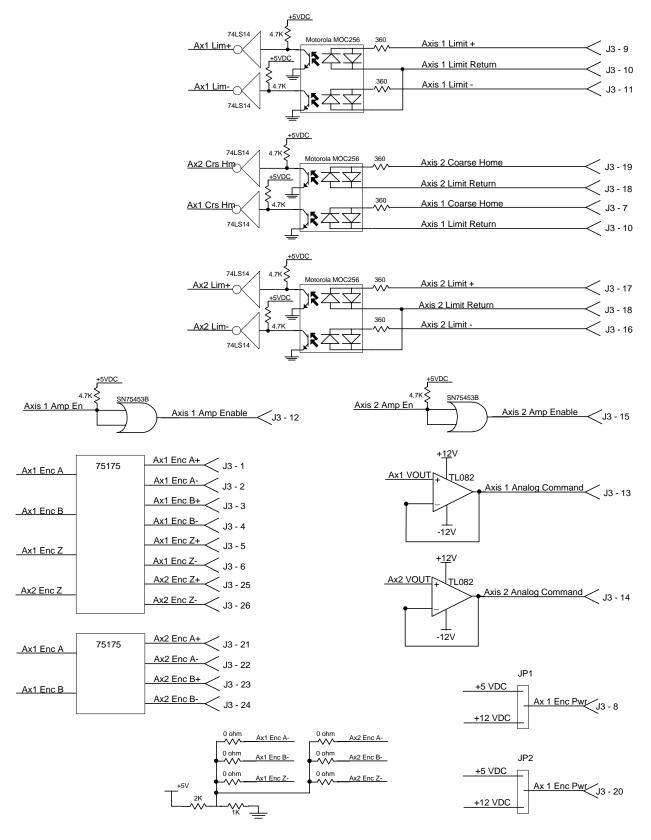
For a more complete signal description please refer to the previous five pages Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset) **DCX-MC302 Module Configuration Jumpers -** configuration in **bold type** denotes default factory shipping configuration

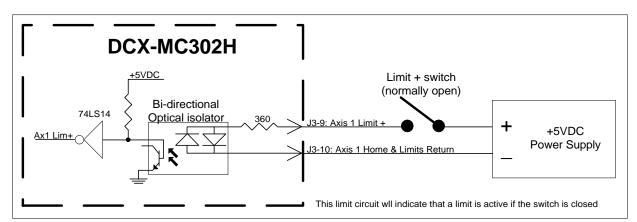

JP1 – Axis 1 Encoder Power Select (+5VDC or +12 VDC)

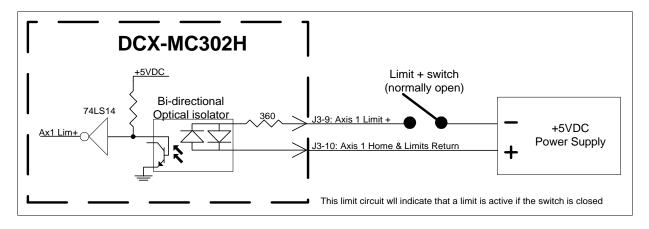
Pins	Description
1 to 2	+5 VDC encoder supply on J3 pin 8 (250 mA max.)
2 to 3	+12 VDC encoder supply on J3 pin 8 (250 mA max.)

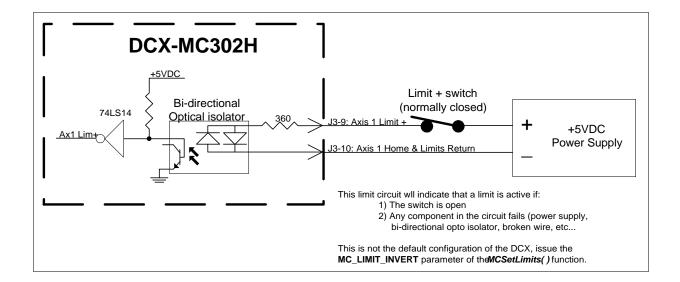

JP2 – Axis 2 Encoder Power Select (+5VDC or +12 VDC)

Pins	Description
1 to 2	+5 VDC encoder supply on J3 pin 20 (250 mA max.)
2 to 3	+12 VDC encoder supply on J3 pin 20 (250 mA max.)

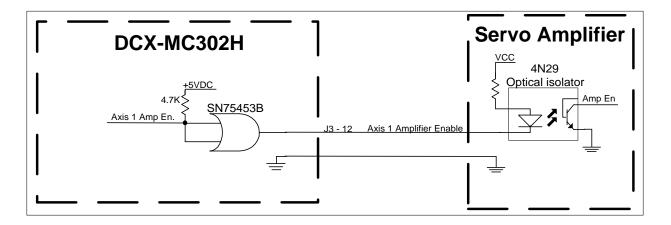

DCX-MC302 Module Layout


DCX-MC302 top side


DCX-MC302 bottom side: remove R1 – R6 for differential encoder



DCX-MC302H Axis I/O Interface Schematic



DCX-MC302 Optically Isolated Inputs Wiring Examples

DCX-MC302H Open Collector Driver Wiring Examples

DCX-MC320 Brushless Servo Commutation Control Module

The description of how to set up and operate the MC320 Commutation module was not available when this document was printed.

Please refer to Application Note **AN1004** - **Brushless AC Motor Commutation**. This PDF document is available on PMC's **MotionCD** (Other Docs and Tools/AppNOTES/Explore AppNOTES/AN1004.PDF) or from PMC's web site (www.pmccorp.com)

SIGNAL DESCRIPTIONS:

Analog Command Return

connection point:MC320-H J3 - pin 1 & 3, MC320-R J3 - pin 1signal type:ground

notes:

explanation: Provides the signal ground for the modules Analog Command Signal output. This return path is common to the ground plane of the DCX motherboard, but is connected in such a way as to reduce digital noise. Typical servo amplifiers will have a connection for the analog command (or Ref-) return where this signal should be connected.

Phase U Torque Command Output

connection point:MC320-H J3 - pin 2, MC320-R J3 - pin 2signal type:+/- 10V analog, 16 bitnotes:connects to servo amplifier motor command input (Ref+)explanation:This module output signal is used to control the torque of the U winding of a brushlessservo.The maximum drive current of this signal is +/-10 milliamps.

Phase V Torque Command Output

connection point:MC320-H J3 - pin 4, MC320-R J3 - pin 3signal type:+/- 10V analog, 16 bitnotes:connects to servo amplifier motor command input (Ref+)explanation:This module output signal is used to control the torque of the V winding of a brushlessservo.The maximum drive current of this signal is +/-10 milliamps.

Phase W Torque Command Output

connection point:MC320-H not supported, MC320-R J3 - pin 1J3 - pin 4signal type:+/- 10V analog, 16 bitnotes:connects to servo amplifier motor command input (Ref+)explanation:This module output signal is used to control the torque of the W winding of a brushlessservo.The maximum drive current of this signal is +/-10 milliamps.

Coarse Home Input	
connection point.	MC320-H J3 - pin 9, MC320-R J3 - pin 9
signal type:	Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes:	MC320-H Supply/Return J3 pin 10
	MC320-R Supply/Return J3 pin 18

explanation: This module input is used to determine the proper zero position of the servo. In servo systems that use rotary encoders with index outputs, an index pulse is generated once per rotation of the encoder. While this signal occurs at a very repeatable angular position on the encoder, it may occur many times within the motion range of the servo. In these cases, a Coarse Home switch connected to this module input can be used to qualify which index pulse is the true zero position of the servo. By setting this switch to be activated near the end of travel of the servo, and using DCX motion commands to position the servo within this region prior to searching for the index pulse, a unique zero position for the servo can be determined. The input device is a bi-directional optical isolator. The allowable voltage range for this signal is **2.5 VDC to 7.5 VDC**. For I/O systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Amplifier Fault Input

connection point	MC320-H J3 - pin 7, MC320-R J3 – pin 10
signal type:	Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes:	MC320-H Supply/Return J3 pin 8
	MC320-R Supply/Return J3 pin 13

explanation: - This module input is designed to be connected to the servo amplifiers Fault or Error output signal. The state of this signal will appear as a status bit in the servo's status word. The **EnableAmpFault** member of the **MCMotion** structure will enable the module to shut off the axis if the Amplifier Fault input is active. No further motion will occur until the fail signal is deactivated and the axis is enabled. The input device is a bi-directional optical isolator. The allowable voltage range for this signal is **2.5 VDC to 7.5 VDC**. For I/O systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Amplifier Enable Output

connection point:MC320-H J3 - pin 5, MC320-R J3 - pin 11signal type:Open collector, current sink, 100ma max. current sink, 30V max.notes:external pull-up required

explanation: - This module output signal should be connected to the enable input of the servo amplifier. When the DCX is turned on or reset, this signal will immediately go to its' inactive high level. When the **MCEnableAxis()** is called, this signal will go to its' active low level. Anytime there is an error on the respective servo axis, including **exceeding the following error, a limit switch input activated**, the Amplifier **Fault input activated**, the Amplifier Enable signal will be deactivated. This signal can also be deactivated by the Motor oFf command.

This signal is driven by a high current open collector driver and is suitable for direct connection to optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open collector drivers, no voltages will be present on these output signals unless pull-up resistors are connected to them.

Limit Positive and Limit Negative Inputs

connection point.	Limit Positive: MC320-H J3 - pin 17, MC320-R J3 - pin 14
	Limit Negative: MC320-H J3 - pin 19, MC320-R J3 - pin 15
signal type:	Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes:	MC320-H Limit Positive Supply/Return J3 pin 18
	MC320-H Limit Negative Supply/Return J3 pin 20
	MC320-R Limits Supply/Return J3 pin 18

explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of the direction it is moving if either limit switch is activated. There are three modes of stopping (decelerate to a stop, stop immediately, turn off the axis) that can be configured by the **MCSetLimits(**). The limit switch inputs can be enabled and disabled by **MCSetLimits(**). See the description of **Motion Limits** in the **Motion Control** chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is **2.5 VDC to 7.5 VDC**. For I/O systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Primary Encoder Inputs (Phase A+, Phase -, Phase B+, Phase B-, Index+, Index-)

connection point: see pin-out table

signal type: TTL or Differential driver output (-7V to +7V)

notes: The encoder power jumper JP3 sets the 'mid point' for the differential receiver **explanation**: These input signals should be connected to an incremental quadrature encoder for supplying position feedback information for the servo controller. The plus (+) and minus (-) signs refer to the two sides of differential inputs. By setting jumpers JP1 and JP2 appropriately, the plus signal inputs can be configured for single ended inputs.

Hall Effect Sensor A, B, and C Inputs

connection point:see pin-out tablesignal type:TTL or Differential driver output (-7V to +7V)notes:explanation: - These input signals can be used for interfacing to Hall effect sensors.

Encoder Power Output

connection point. MC300-H J3 - pin 16, MC300-R J3 - pin 17

signal type: +5 VDC PC power supply output or +12 VDC PC power supply output notes: The encoder power jumper JP3 selects +5VDC or +12VDC (250 mA max.) **explanation**: This module pin provides a convenient supply voltage connection for the encoders. The jumper JP3 located on the module can be used to connect either the +5 or +12 volt supply to the Encoder Power pin. The setting of this jumper also selects the threshold voltage for the module's single ended phase and index encoder inputs. When JP1 is set for +5 volts, the threshold will be 2.5 volts, for +12 volts, the threshold will be +6 volts. The threshold voltage determines at what voltage the input changes between on and off.

SUPPLY CONNECTIONS (+5, GROUND) - These module pins provide access to the DCX supply voltages.

DCX-MC320-H High Density connector signal map

Module #1	Module #2	Module #3	Module #4	Module #5	Module #6	Module #7	Module #8	J3 Pin #	Description
J1 – 1	J2 – 1	J3 - 19	J4 - 19	J3 – 1	J4 – 1	J1 – 19	J2 - 19	1	Ground
J1 – 35	J2 - 35	J3 – 53	J4 – 53	J3 – 35	J4 – 35	J1 – 53	J2 – 53	2	Phase U Torque Command: output
J1 – 2	J2 – 2	J3 – 20	J4 – 20	J3 – 2	J4 – 2	J1 – 20	J2 – 20	3	Ground
J1 – 36	J2 - 36	J3 – 54	J4 – 54	J3 – 36	J4 – 36	J1 – 54	J2 – 54	4	Phase V Torque Command: output
J1 – 3	J2 – 3	J3 - 21	J4 - 21	J3 – 3	J4 – 3	J1 – 21	J2 - 21	5	Amplifier Enable: output
J1 – 37	J2 - 37	J3 – 55	J4 – 55	J3 – 37	J4 – 37	J1 – 55	J2 – 55	6	Amplifier Enable return
J1 – 4	J2 – 4	J3 – 22	J4 – 22	J3 – 4	J4 – 4	J1 – 22	J2 – 22	7	Amplifier Fault: input
J1 – 38	J2 - 38	J3 – 56	J4 – 56	J3 – 38	J4 – 38	J1 – 56	J2 – 56	8	Amplifier Fault return
J1 – 5	J2 – 5	J3 – 23	J4 – 23	J3 – 5	J4 – 5	J1 – 23	J2 – 23	9	Coarse Home: input
J1 – 39	J2 - 39	J3 – 57	J4 – 57	J3 – 39	J4 – 39	J1 – 57	J2 – 57	10	Coarse Home return
J1 – 6	J2 – 6	J3 – 24	J4 – 24	J3 – 6	J4 – 6	J1 – 24	J2 – 24		Ground
J1 – 40	J2 - 40	J3 – 58	J4 – 58	J3 – 40	J4 – 40	J1 – 58	J2 – 58	11	Reserved
J1 – 7	J2 – 7	J3 – 25	J4 – 25	J3 – 7	J4 – 7	J1 – 25	J2 – 25	12	Reserved
J1 – 41	J2 - 41	J3 – 59	J4 – 59	J3 – 41	J4 – 41	J1 – 59	J2 – 59		Ground
J1 – 8	J2 – 8	J3 – 26	J4 – 26	J3 – 8	J4 – 8	J1 – 26	J2 – 26		Ground
J1 – 42	J2 - 42	J3 – 60	J4 – 60	J3 – 42	J4 – 42	J1 – 60	J2 – 60	13	Hall sensor A+ / Aux. Encoder Phase A+
J1 – 9	J2 – 9	J3 – 27	J4 – 27	J3 – 9	J4 – 9	J1 – 27	J2 – 27	14	Hall sensor B+ / Aux. Encoder Phase B+
J1 – 43	J2 - 43	J3 – 61	J4 – 61	J3 – 43	J4 – 43	J1 – 61	J2 – 61		Ground
J1 – 10	J2 - 10	J3 – 28	J4 – 28	J3 – 10	J4 – 10	J1 – 28	J2 – 28		Ground
J1 – 44	J2 - 44	J3 – 62	J4 – 62	J3 – 44	J4 – 44	J1 – 62	J2 – 62	15	Hall Sensor C+
J1 – 11	J2 - 11	J3 - 29	J4 - 29	J3 – 11	J4 – 11	J1 – 29	J2 - 29	16	Encoder Power: output (max. load 250 mA)
J1 – 45	J2 - 45	J3 – 63	J4 – 63	J3 – 45	J4 – 45	J1 – 63	J2 – 63		Ground
J1 – 12	J2 - 12	J3 – 30	J4 – 30	J3 – 12	J4 – 12	J1 – 30	J2 – 30	17	Limit Positive: input
J1 – 46	J2 - 46	J3 – 64	J4 – 64	J3 – 46	J4 – 46	J1 – 64	J2 – 64	18	Limit Positive return
J1 – 13	J2 - 13	J3 – 31	J4 – 31	J3 – 13	J4 – 13	J1 – 31	J2 – 31	19	Limit Negative: input
J1 – 47	J2 - 47	J3 – 65	J4 – 65	J3 – 47	J4 – 47	J1 – 65	J2 – 65	20	Limit Negative return
J1 – 14	J2 - 14	J3 – 32	J4 – 32	J3 – 14	J4 – 14	J1 – 32	J2 – 32	21	Primary Encoder Phase A+: input *
J1 – 48	J2 - 48	J3 – 66	J4 – 66	J3 – 48	J4 – 48	J1 – 66	J2 – 66	22	Primary Encoder Phase A-: input
J1 – 15	J2 - 15	J3 – 33	J4 – 33	J3 – 15	J4 – 15	J1 – 33	J2 – 33	23	Primary Encoder Phase B+: input*
J1 – 49	J2 - 49	J3 – 67	J4 – 67	J3 – 49	J4 – 49	J1 – 67	J2 – 67	24	Primary Encoder Phase B-: input
J1 – 16	J2 - 16	J3 – 34	J4 – 34	J3 – 16	J4 – 16	J1 – 34	J2 – 34	25	Primary Encoder Index +:input
J1 – 50	J2 - 50	J3 – 68	J4 – 68	J3 – 50	J4 – 50	J1 – 68	J2 – 68	26	Primary Encoder Index-: input
J1 – 17	J2 – 17			J3 – 17	J4 – 17				Ground
J1 – 51	J2 - 51			J3 – 51	J4 – 51				Ground
J1 – 18	J2 – 18			J3 – 18	J4 – 18				Ground
J1 – 52	J3 – 52			J3 – 52	J4 – 52				Ground

For a more complete signal description please refer to the previous five pages Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

DCX-MC320-R Module connector

J3 connector	pin-out ((Motor	command,	encoders,	and axis I/O)

Pin #	Description
1	Torque Command Return (Ground)
2	Phase U Torque Command: output (10ma max.)
3	Phase V Torque Command: output (10ma max.)
4	Phase W Torque Command: output (10ma max.)
5	Ground
6	+5 VDC (250 mA max.)
7	Reserved
8	Primary Encoder Index +: input (active high)
9	Coarse Home: input (optically isolated, 12V – 24V, 15ma min.)
10	Amplifier Fault: input (optically isolated, 12V – 24V, 15ma min.)
11	Amplifier Enable: output (open collector, 100ma max., 30V max.)
12	Amp Enable & Direction return
13	Amp Fault opto isolator supply/return
14	Limit Positive: input (optically isolated, 12V – 24V, 15ma min.)
15	Limit Negative: input (optically isolated, 12V – 24V, 15ma min.)
16	Primary Encoder Phase A+: input *
17	Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (250 mA max.)
18	Coarse Home & Limits opto isolator supply/return
19	Primary Encoder Phase A-: input
20	Primary Encoder Phase B-: input
21	Hall sensor A+
22	Hall sensor B+
23	Primary Encoder Phase B+: input*
24	Hall Sensor C+
25	Primary Encoder Index-: input (active low)
26	Ground

* Use A+ and B+ for single-ended Encoder inputs

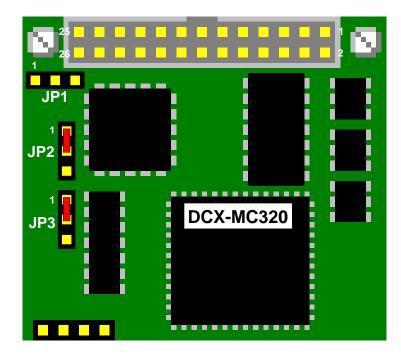
Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

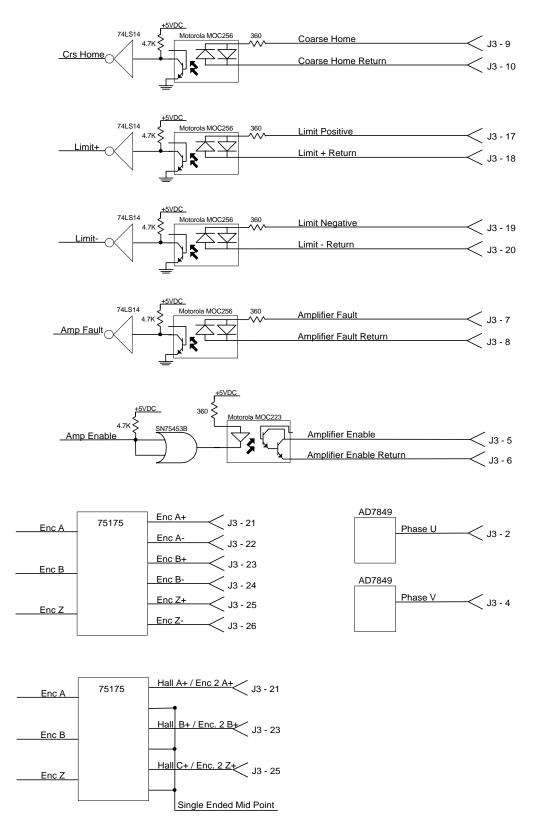
DCX-MC320 Module Configuration Jumpers - configuration in **bold type**

denotes default factory shipping configuration

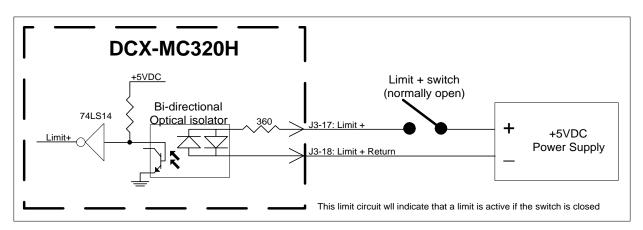
JP1 – Encoder type (single ended or differential)

Pins	Description
1 to 2 to 3	Single ended encoder, A, B, Z (three pin jumper provided)
open	Differential encoder, A+, A-, B+, B-

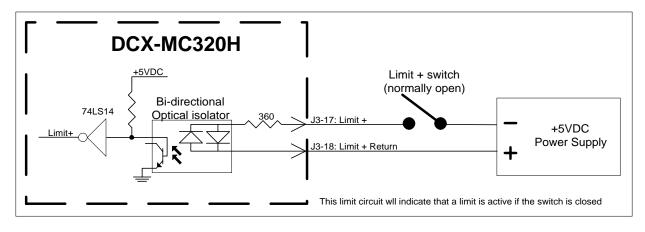

JP2 – Encoder Index Active Level Select)

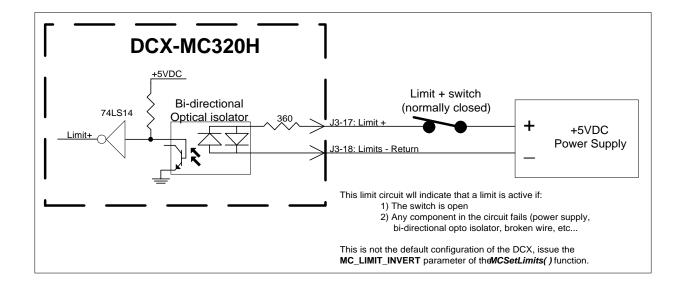

Pins	Description
1 to 2	Single ended Index, Z+ (Active high)
2 to 3	Single ended Index, Z- (active low)
open	Differential Index, Z+ and Z-

JP3 – Encoder Power Select (+5VDC or +12 VDC)

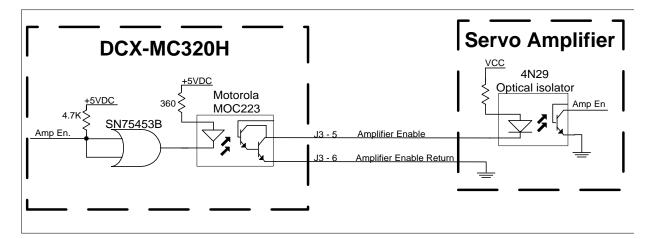

Pins	Description
1 to 2	+5 VDC encoder supply on J3 pin 16/17 (250 mA max.)
2 to 3	+12 VDC encoder supply on J3 pin 16/17 (250 mA max.)

DCX-MC320 Module Layout





DCX-MC320H Axis I/O Interface Schematic



DCX-MC320H Optically Isolated Inputs Wiring Examples

DCX-MC320H Open Collector Driver Wiring Examples

DCX-MC360 Stepper Motor Control Module

SIGNAL DESCRIPTIONS:

Pulse and Direction Outputs

connection point.	Direction / CW: MC360-H J3 - pin 3, MC360-R J3 - pin 3	
	Pulse / CCW: MC360-H J3 - pin 1, MC360-R J3 - pin 4	
signal type:	Open collector, current sink, 100ma max. current sink, 30V max.	
notes:	external pull-up required	
explanation: In the control of a stepper motor, the two primary control signals are Pulse and		
Direction (or CW Pulse and CCW Pulse). These signals are connected to the external stepper motor		
driver that supplies current to the motor windings. In order for the stepper module to move the motor		
one step, a pulse is generated on one of these signals.		

Both of these signals are driven by high current open collector drivers and are suitable for direct connection to optically isolated inputs commonly found on stepper motor drivers. Because of the characteristics of open collector drivers, no voltages will be present on these output signals unless pull-up resistors are connected to them.

Pulse: The motor driver should advance the motor by one increment for each pulse. The motor may advance a full step, a half step, or a micro step. This is determined by the mode of the stepper motor driver. The Pulse signal is normally high, and is pulled low at the beginning of a step. It stays low for one half the step period (50% duty cycle), and then goes back high. When it is time for the next step, the signal will be pulled low again.

Direction: This signal indicates the direction the motor will move. When the stepper is incrementing the current position (moving positive) this signal will remain high (pulled up). When the stepper is decrementing the current position (moving negative) this signal will be pulled low.

The function *MCSetModuleOutputMode()* is used to change the operation of these signals to CW and CCW Pulse. In this mode, pulses will be generated on the CW Pulse output when the current position is increasing, and on the CCW Pulse output when the current position is decreasing.

Drive Enable Output

connection point.MC360-H J3 - pin 5, MC360-R J3 - pin 16signal type:Open collector, current sink, 100ma max. current sink, 30V max.notes:external pull-up requiredexplanation:This output will be pulled low when an axis is enabled (*MCEnableAxis()*). It will remainlow until:the axis is disabled or an error condition exists (limits tripped).

This signal is driven by a high current open collector driver and is suitable for direct connection to optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open collector drivers, no voltages will be present on these output signals unless pull-up resistors are connected to them.

Limit Positive and Limit Negative Inputs

connection point.	Limit Positive: MC360-H J3 - pin 17, MC320-R J3 - pin 8
	Limit Negative: MC360-H J3 - pin 19, MC320-R J3 - pin 9
signal type:	Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes:	MC360-H Limit Positive Supply/Return J3 pin 18
	MC360-H Limit Negative Supply/Return J3 pin 20
	MC360-R Limits Supply/Return J3 pin 6

explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of the direction it is moving if either limit switch is activated. There are three modes of stopping (decelerate to a stop, stop immediately, turn off the axis) that can be configured by the **MCSetLimits**(). The limit switch inputs can be enabled and disabled by MCSetLimits(). See the description of Motion Limits in the Motion Control chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Home Input

connection point	MC360-H J3 - pin 9, MC360-R J3 - 13
signal type:	Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes:	MC360-H Home Supply/Return J3 pin 10
	MC360-R Home Supply/Return J3 pin 12

explanation: This input is used to set the zero position of a stepper motor. It is typically connected to a sensor/switch that is activated at a fixed position in the motor's range of motion. The input device is a bi-directional optical isolator. The allowable voltage range for this signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Compare / Full/Half Step Output

connection point	MC360-H J3 - pin 13, MC360-R J3 - 14
signal type:	Open collector, current sink, 100ma max. current sink, 30V max.
notes:	external pull-up required
explanation	

explanation

Compare – Used to indicate when a position compare event has occurred. See the description of Position Compare in the Application Solutions chapter.

Full/Half Step - This signal is used if the stepper driver has a digital input to select between or full/micro (or full/half) step modes. The default condition of this signal is to be inactive (pulled high). Setting the MC_STEP_FULL parameter of the MCMotion structure will cause the signal to be pulled low.

This signal is driven by a high current open collector driver and is suitable for direct connection to optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open collector drivers, no voltages will be present on these output signals unless pull-up resistors are connected to them.

Full/Half Current Output

connection point:MC360-H J3 - pin 14, MC360-R J3 - 15signal type:Open collector, current sink, 100ma max. current sink, 30V max.notes:external pull-up requiredexplanation:This signal is used if the stepper driver has a digital input for current control. The defaultcondition of this signal is to be inactive (pulled high). Setting theMC_CURRENT_FULL parameter ofthe MCMotion structure will cause the signal to be pulled low.

This signal is driven by a high current open collector driver and is suitable for direct connection to optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open collector drivers, no voltages will be present on these output signals unless pull-up resistors are connected to them.

Drive Fault Input	
connection point.	MC360-H J3 - pin 7, MC360-R J3 - 7
signal type:	Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes:	MC360-H Drive Fault Supply/Return J3 pin 8
	MC360-R Drive Fault Supply/Return J3 pin 5

explanation: This module input is designed to be connected to the Fault or Error output signal of a stepper driver. The state of this signal will appear as a status bit in the servo's status word. The **EnableAmpFault** member of the **MCMotion** structure will enable the module to shut off the axis if the Drive Fault input is active. No further motion will occur until the fault signal is deactivated and the axis has been enabled. The input device is a bi-directional optical isolator. The allowable voltage range for this signal is **2.5 VDC to 7.5 VDC**. For I/O systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Null Input	
connection point.	MC360-H J3 - pin 12, MC360-R J3 - 17
signal type:	Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes:	MC360-H Null VHDCI connector pin 41 (no connect on module J3 connector)
	MC360-R Null Supply/Return J3 pin 5

explanation: In order to switch from micro stepping to full stepping without the motor shifting position, the motor should be micro stepped to the "Null" Position. This is the position where the output of the amplifier will not change if it is switched between full and micro stepping. If the stepper amplifier provides an output signal that indicates when the motor is at a null position, the DCX can monitor this signal on the Null Position input of the module.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is **2.5 VDC to 7.5 VDC**. For I/O systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Position Capture +/- / Auxiliary Encoder Index +/-

connection point: Position Cap. + / Aux. Enc. Index+: MC360-H J3 - pin 25, MC320-R J3 - pin 22
 Position Cap. - / Aux. Enc. Index-: MC360-H J3 - pin 26, MC320-R J3 - pin 23
 signal type: TTL or Differential driver output (-7V to +7V)

notes:

explanation: -

Position Capture +/- – Used to initiate the capture of position data. See the description of **Position Capture** in the **Application Solutions chapter**.

Auxiliary Encoder Index +/- - This input signal can be used to define the home position of an auxiliary encoder.

Auxiliary Encoder Coarse Home Input

connection point:MC360-H J3 - pin 15, MC360-R J3 - 11signal type:Bi-directional optical isolator, 15ma min. 12V – 24V rangenotes:MC360-H Coarse Home VHDCI connector pin 10 (no connect on module J3
connector)MC360-R Null Supply/Return J3 pin 6

explanation: This input is used to 'home' the auxiliary encoder by qualifying the index mark. It is typically connected to a switch that is activated at a fixed position in the motors motion range. See the description of **Homing an Axis** in the **Motion Control** chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is 12VDC to 24VDC. The minimum current required to turn on the optical isolator is 10ma. Bi-directional optical isolator wiring examples are provided later in this section.

 Auxiliary Encoder Inputs (Phase A, Phase B, Index+, Index-)

 connection point:
 see pin-out table

 signal type:
 TTL or Differential driver output (-7V to +7V)

 notes:
 explanation: - These input signals can be used for an auxiliary encoder.

Auxiliary Encoder Power Output

connection point:MC300-H J3 - pin 16, MC300-R J3 - pin 10signal type:+5 VDC PC power supply output or +12 VDC PC power supply outputnotes:The encoder power jumper JP3 selects +5VDC or +12VDC (250 mA max.)explanation:This module pin provides a convenient supply voltage connection for the auxiliaryencoder.The jumper JP3 located on the module can be used to connect either the +5 or +12 voltsupply to the Encoder Power pin.The setting of this jumper also selects the threshold voltage for themodule's single ended phase and index encoder inputs.When JP1 is set for +5 volts, the thresholdwill be 2.5 volts, for +12 volts, the threshold will be +6 volts.The threshold voltage determines at whatvoltage the input changes between on and off.

SUPPLY CONNECTIONS (+5, +12, -12, GROUND) - These module pins provide access to the DCX supply voltages.

DCX-MC360-H High Density connector signal map

Module #1	Module #2	Module #3	Module #4	Module #5	Module #6	Module #7	Module #8	J3 Pin #	Description
J1 – 1	J2 – 1	J3 - 19	J4 - 19	J3 – 1	J4 – 1	J1 – 19	J2 - 19	1	Step or CCW Pulse: output
J1 – 35	J2 - 35	J3 – 53	J4 – 53	J3 – 35	J4 – 35	J1 – 53	J2 – 53	2	Ground
J1 – 2	J2 – 2	J3 – 20	J4 – 20	J3 – 2	J4 – 2	J1 – 20	J2 – 20	3	Direction or CW Pulse: output
J1 – 36	J2 - 36	J3 – 54	J4 – 54	J3 – 36	J4 – 36	J1 – 54	J2 – 54	4	Ground
J1 – 3	J2 – 3	J3 - 21	J4 - 21	J3 – 3	J4 – 3	J1 – 21	J2 - 21	5	Driver Enable: output
J1 – 37	J2 - 37	J3 – 55	J4 – 55	J3 – 37	J4 – 37	J1 – 55	J2 – 55	6	Ground
J1 – 4	J2 – 4	J3 – 22	J4 – 22	J3 – 4	J4 – 4	J1 – 22	J2 – 22	7	Drive Fault: input
J1 – 38	J2 - 38	J3 – 56	J4 – 56	J3 – 38	J4 – 38	J1 – 56	J2 – 56	8	Drive Fault return
J1 – 5	J2 – 5	J3 – 23	J4 – 23	J3 – 5	J4 – 5	J1 – 23	J2 – 23	9	Home: input
J1 – 39	J2 - 39	J3 – 57	J4 – 57	J3 – 39	J4 – 39	J1 – 57	J2 – 57	10	Home return
J1 – 6	J2 – 6	J3 – 24	J4 – 24	J3 – 6	J4 – 6	J1 – 24	J2 – 24		Ground
J1 – 40	J2 - 40	J3 – 58	J4 – 58	J3 – 40	J4 – 40	J1 – 58	J2 – 58	11	Reserved
J1 – 7	J2 – 7	J3 – 25	J4 – 25	J3 – 7	J4 – 7	J1 – 25	J2 – 25	12	Null Position: input
J1 – 41	J2 - 41	J3 – 59	J4 – 59	J3 – 41	J4 – 41	J1 – 59	J2 – 59		Ground
J1 – 8	J2 – 8	J3 – 26	J4 – 26	J3 – 8	J4 – 8	J1 – 26	J2 – 26		Ground
J1 – 42	J2 - 42	J3 – 60	J4 – 60	J3 – 42	J4 – 42	J1 – 60	J2 – 60	13	Compare / Full/Half Step: output
J1 – 9	J2 – 9	J3 – 27	J4 – 27	J3 – 9	J4 – 9	J1 – 27	J2 – 27	14	Full/Half Current: output
J1 – 43	J2 - 43	J3 – 61	J4 – 61	J3 – 43	J4 – 43	J1 – 61	J2 – 61		Ground
J1 – 10	J2 - 10	J3 – 28	J4 – 28	J3 – 10	J4 – 10	J1 – 28	J2 – 28		Ground
J1 – 44	J2 - 44	J3 – 62	J4 – 62	J3 – 44	J4 – 44	J1 – 62	J2 – 62	15	Aux. Encoder Coarse Home: input
J1 – 11	J2 - 11	J3 - 29	J4 - 29	J3 – 11	J4 – 11	J1 – 29	J2 - 29	16	Aux. Enc. Power: output (max. load 250 mA)
J1 – 45	J2 - 45	J3 – 63	J4 – 63	J3 – 45	J4 – 45	J1 – 63	J2 – 63		Ground
J1 – 12	J2 - 12	J3 – 30	J4 – 30	J3 – 12	J4 – 12	J1 – 30	J2 – 30	17	Limit Positive: input
J1 – 46	J2 - 46	J3 – 64	J4 – 64	J3 – 46	J4 – 46	J1 – 64	J2 – 64	18	Limit Positive return
J1 – 13	J2 - 13	J3 – 31	J4 – 31	J3 – 13	J4 – 13	J1 – 31	J2 – 31	19	Limit Negative: input
J1 – 47	J2 - 47	J3 – 65	J4 – 65	J3 – 47	J4 – 47	J1 – 65	J2 – 65	20	Limit Negative return
J1 – 14	J2 - 14	J3 – 32	J4 – 32	J3 – 14	J4 – 14	J1 – 32	J2 – 32	21	Auxiliary Encoder Phase A+: input
J1 – 48	J2 - 48	J3 – 66	J4 – 66	J3 – 48	J4 – 48	J1 – 66	J2 – 66	22	Auxiliary Encoder Phase A-: input
J1 – 15	J2 - 15	J3 – 33	J4 – 33	J3 – 15	J4 – 15	J1 – 33	J2 – 33	23	Auxiliary Encoder Phase B+: input
J1 – 49	J2 - 49	J3 – 67	J4 – 67	J3 – 49	J4 – 49	J1 – 67	J2 – 67	24	Auxiliary Encoder Phase B-: input
J1 – 16	J2 - 16	J3 – 34	J4 – 34	J3 – 16	J4 – 16	J1 – 34	J2 – 34	25	Position Capture + / Aux. Encoder Index+: input
J1 – 50	J2 - 50	J3 – 68	J4 – 68	J3 – 50	J4 – 50	J1 – 68	J2 – 68	26	Position Capture - / Aux. Encoder Index-: input
J1 – 17	J2 – 17			J3 – 17	J4 – 17				Ground
J1 – 51	J2 - 51			J3 – 51	J4 – 51				Ground
J1 – 18	J2 – 18			J3 – 18	J4 – 18				Ground
J1 – 52	J3 – 52			J3 – 52	J4 – 52				Ground

For a more complete signal description please refer to the previous five pages Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

DCX-MC360-R Module connector

1Ground2+5 VDC (max. load 250 mA)3Direction or CW Pulse: output (open collector, 100ma max., 30V max.) *4Pulse or CCW Pulse: output (open collector, 100ma max., 30V max.) *5FNRET: Drive Fault and Null opto isolator supply/return6LIMCRSRET: Coarse Home & Limits opto isolator supply/return7Drive Fault: input (opto isolator, 15ma min. current, 30V max.)8Limit Positive: input (opto isolator, 15ma min. current, 30V max.)9Limit Negative: input (opto isolator, 15ma min. current, 30V max.)10Auxiliary Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (max. load 250 mA11Aux. Encoder Coarse Home: input (opto isolator, 15ma min. current, 30V max.)12HOMRET: Home opto isolator supply/return13Home: input (opto isolator, 15ma min. current, 30V max.)	
 Direction or CW Pulse: output (open collector, 100ma max., 30V max.) * Pulse or CCW Pulse: output (open collector, 100ma max., 30V max.) * FNRET: Drive Fault and Null opto isolator supply/return LIMCRSRET: Coarse Home & Limits opto isolator supply/return Drive Fault: input (opto isolator, 15ma min. current, 30V max.) Limit Positive: input (opto isolator, 15ma min. current, 30V max.) Limit Negative: input (opto isolator, 15ma min. current, 30V max.) Auxiliary Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (max. load 250 mA Aux. Encoder Coarse Home: input (opto isolator, 15ma min. current, 30V max.) HOMRET: Home opto isolator supply/return Home: input (opto isolator, 15ma min. current, 30V max.) 	
 Pulse or CCW Pulse: output (open collector, 100ma max., 30V max.) * FNRET: Drive Fault and Null opto isolator supply/return LIMCRSRET: Coarse Home & Limits opto isolator supply/return Drive Fault: input (opto isolator, 15ma min. current, 30V max.) Limit Positive: input (opto isolator, 15ma min. current, 30V max.) Limit Negative: input (opto isolator, 15ma min. current, 30V max.) Auxiliary Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (max. load 250 mA Aux. Encoder Coarse Home: input (opto isolator, 15ma min. current, 30V max.) HOMRET: Home opto isolator supply/return Home: input (opto isolator, 15ma min. current, 30V max.) 	
 5 FNRET: Drive Fault and Null opto isolator supply/return 6 LIMCRSRET: Coarse Home & Limits opto isolator supply/return 7 Drive Fault: input (opto isolator, 15ma min. current, 30V max.) 8 Limit Positive: input (opto isolator, 15ma min. current, 30V max.) 9 Limit Negative: input (opto isolator, 15ma min. current, 30V max.) 10 Auxiliary Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (max. load 250 mA 11 Aux. Encoder Coarse Home: input (opto isolator, 15ma min. current, 30V max.) 12 HOMRET: Home opto isolator supply/return 13 Home: input (opto isolator, 15ma min. current, 30V max.) 	
 6 LIMCRSRET: Coarse Home & Limits opto isolator supply/return 7 Drive Fault: input (opto isolator, 15ma min. current, 30V max.) 8 Limit Positive: input (opto isolator, 15ma min. current, 30V max.) 9 Limit Negative: input (opto isolator, 15ma min. current, 30V max.) 10 Auxiliary Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (max. load 250 mA 11 Aux. Encoder Coarse Home: input (opto isolator, 15ma min. current, 30V max.) 12 HOMRET: Home opto isolator supply/return 13 Home: input (opto isolator, 15ma min. current, 30V max.) 	
 7 Drive Fault: input (opto isolator, 15ma min. current, 30V max.) 8 Limit Positive: input (opto isolator, 15ma min. current, 30V max.) 9 Limit Negative: input (opto isolator, 15ma min. current, 30V max.) 10 Auxiliary Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (max. load 250 mA 11 Aux. Encoder Coarse Home: input (opto isolator, 15ma min. current, 30V max.) 12 HOMRET: Home opto isolator supply/return 13 Home: input (opto isolator, 15ma min. current, 30V max.) 	
 8 Limit Positive: input (opto isolator, 15ma min. current, 30V max.) 9 Limit Negative: input (opto isolator, 15ma min. current, 30V max.) 10 Auxiliary Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (max. load 250 mA 11 Aux. Encoder Coarse Home: input (opto isolator, 15ma min. current, 30V max.) 12 HOMRET: Home opto isolator supply/return 13 Home: input (opto isolator, 15ma min. current, 30V max.) 	
 9 Limit Negative: input (opto isolator, 15ma min. current, 30V max.) 10 Auxiliary Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (max. load 250 mA 11 Aux. Encoder Coarse Home: input (opto isolator, 15ma min. current, 30V max.) 12 HOMRET: Home opto isolator supply/return 13 Home: input (opto isolator, 15ma min. current, 30V max.) 	
 Auxiliary Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (max. load 250 mA Aux. Encoder Coarse Home: input (opto isolator, 15ma min. current, 30V max.) HOMRET: Home opto isolator supply/return Home: input (opto isolator, 15ma min. current, 30V max.) 	
11Aux. Encoder Coarse Home: input (opto isolator, 15ma min. current, 30V max.)12HOMRET: Home opto isolator supply/return13Home: input (opto isolator, 15ma min. current, 30V max.)	
12HOMRET: Home opto isolator supply/return13Home: input (opto isolator, 15ma min. current, 30V max.))
13 Home: input (opto isolator, 15ma min. current, 30V max.)	
14 Compare / Full/Half Step: output (open collector, 100ma max., 30V max.)	
15 Full/Half Current: output (open collector, 100ma max., 30V max.)	
16 Driver Enable: output (open collector, 100ma max., 30V max.)	
17 Null Position: input (opto isolator, 15ma min. current, 30V max.)	
18 Auxiliary Encoder Phase A+: input	
19 Auxiliary Encoder Phase A-: input	
20 Auxiliary Encoder Phase B+: input	
21 Auxiliary Encoder Phase B-: input	
22 Position Capture + / Auxiliary Encoder Index+: input (active high)	
23 Position Capture - / Auxiliary Encoder Index-: input (active low)	
24 +12 VDC (max. load 250 mA)	
25 -12 VDC (max. load 50 mA)	
26 Ground	

J3 connector pin-out (Motor command, encoders, and axis I/O)

* These signals default to DIRECTION and PULSE, use *MCSetModuleOutputMode()* to change to CW and CCW PULSE.

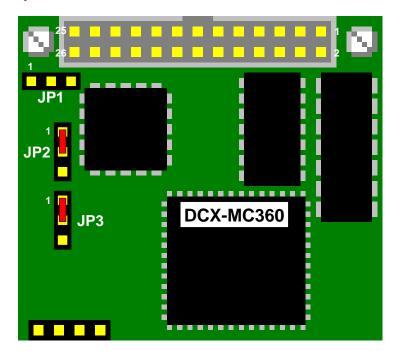
Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

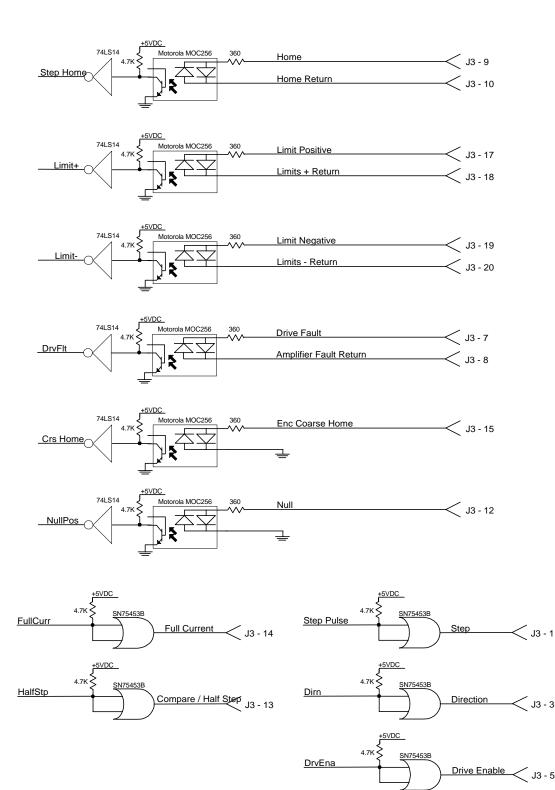
DCX-MC360 Module Configuration Jumpers - configuration in bold type

denotes default factory shipping configuration

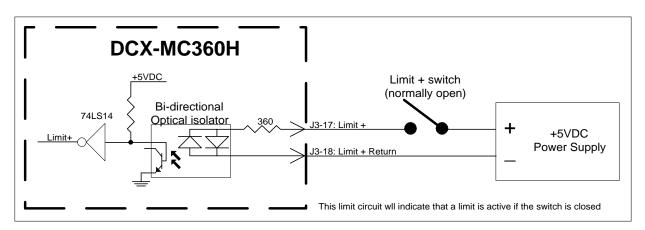
JP1 – Encoder type (single ended or differential)

Pins	Description
1 to 2 to 3	Single ended encoder, A, B, Z (three pin jumper provided)
open	Differential encoder, A+, A-, B+, B-

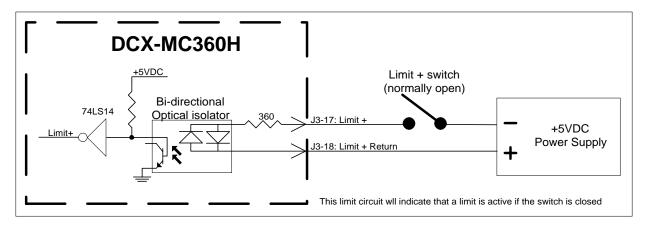

JP2 – Auxiliary Encoder Index Active Level Select

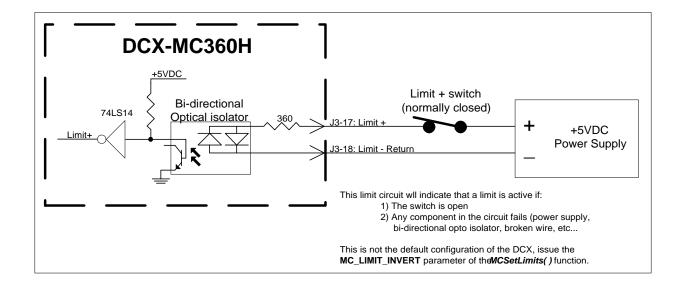

Pins	Description
1 to 2	Single ended Index, Z+ (Active high)
2 to 3	Single ended Index, Z- (active low)
open	Differential Index, Z+ and Z-

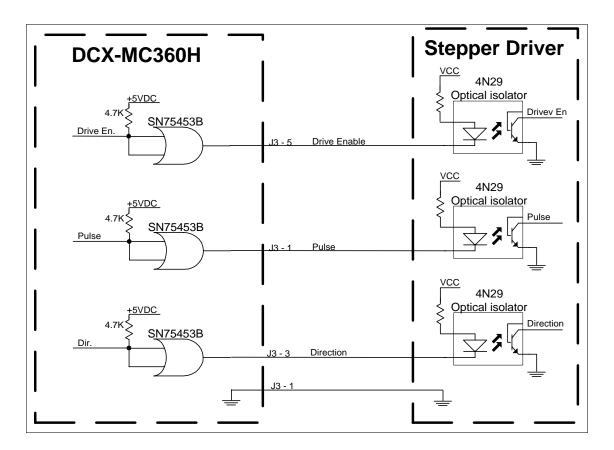
JP3 – Auxiliary Encoder Power Select (+5VDC or +12 VDC)


Pins	Description
1 to 2	+5 VDC encoder supply on J3 pin 16/10 (max. load 250 mA)
2 to 3	+12 VDC encoder supply on J3 pin 16/10 (max. load 250 mA)

DCX-MC360 Module Layout






DCX-MC360H Axis I/O Interface Schematic

DCX-MC360H Optically Isolated Inputs Wiring Examples

DCX-MC360H Open Collector Driver Wiring Examples

DCX-MC362 Dual Axis Stepper Motor Control Module

SIGNAL DESCRIPTIONS:

Pulse and Di	ection Outputs
connection p	oint. Axis 1 Direction/CW – J3 pin 12
	Axis 1 Pulse/CCW – J3 pin 11
	Axis 2 Direction/CW – J3 pin 15
	Axis 2 Pulse/CCW – J3 pin 16
signal type:	Open collector, current sink, 100ma max. current sink, 30V max.
notes:	external pull-up required
explanation:	In the control of a stepper motor, the two primary control signals are Puls

explanation: In the control of a stepper motor, the two primary control signals are Pulse and Direction (or CW Pulse and CCW Pulse). These signals are connected to the external stepper motor driver that supplies current to the motor windings. In order for the stepper module to move the motor one step, a pulse is generated on one of these signals.

Both of these signals are driven by high current open collector drivers and are suitable for direct connection to optically isolated inputs commonly found on stepper motor drivers. Because of the characteristics of open collector drivers, no voltages will be present on these output signals unless pull-up resistors are connected to them.

Pulse: The motor driver should advance the motor by one increment for each pulse. The motor may advance a full step, a half step, or a micro step. This is determined by the mode of the stepper motor driver. The Pulse signal is normally high, and is pulled low at the beginning of a step. It stays low for one half the step period (50% duty cycle), and then goes back high. When it is time for the next step, the signal will be pulled low again.

Direction: This signal indicates the direction the motor will move. When the stepper is incrementing the current position (moving positive) this signal will remain high (pulled up). When the stepper is decrementing the current position (moving negative) this signal will be pulled low.

The function *MCSetModuleOutputMode()* is used to change the operation of these signals to CW and CCW Pulse. In this mode, pulses will be generated on the CW Pulse output when the current position is increasing, and on the CCW Pulse output when the current position is decreasing.

Drive Enable Output

connection point. Axis 1 - J3 pin 9

Axis21 - J3 pin 17signal type:Open collector, current sink, 100ma max. current sink, 30V max.notes:external pull-up requiredexplanation:This output will be pulled low when an axis is enabled (*MCEnableAxis()*). It will remainlow until:the axis is disabled or an error condition exists (limits tripped).

This signal is driven by a high current open collector driver and is suitable for direct connection to optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open collector drivers, no voltages will be present on these output signals unless pull-up resistors are connected to them.

Limit Positive and Limit Negative Inputs

Axis 1 Limit Positive – J3 pin 3
Axis 1 Limit Negative – J3 pin 5
Axis 2 Limit Positive – J3 pin 23
Axis 2 Limit Negative – J3 pin 21
Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
Axis 1 Limit + Supply/Return - J3 pin 4
Axis 1 Limit - Supply/Return - J3 pin 6
Axis 2 Limit + Supply/Return - J3 pin 24
Axis 2 Limit - Supply/Return - J3 pin 22

explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of the direction it is moving if either limit switch is activated. There are three modes of stopping (decelerate to a stop, stop immediately, turn off the axis) that can be configured by the **MCSetLimits(**). The limit switch inputs can be enabled and disabled by **MCSetLimits(**). See the description of **Motion Limits** in the **Motion Control** chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is **2.5 VDC to 7.5 VDC**. For I/O systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Home Input

connection point	Axis 1 - J3 - pin 1
	Axis 2 - J3 - pin 25
signal type:	Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes:	Axis 1 Supply/Return - J3 pin 2
	Axis 2 Supply/Return - J3 pin 26

explanation: This input is used to set the zero position of a stepper motor. It is typically connected to a sensor/switch that is activated at a fixed position in the motor's range of motion. The input device is a bi-directional optical isolator. The allowable voltage range for this signal is **2.5 VDC to 7.5 VDC**. For I/O systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W).

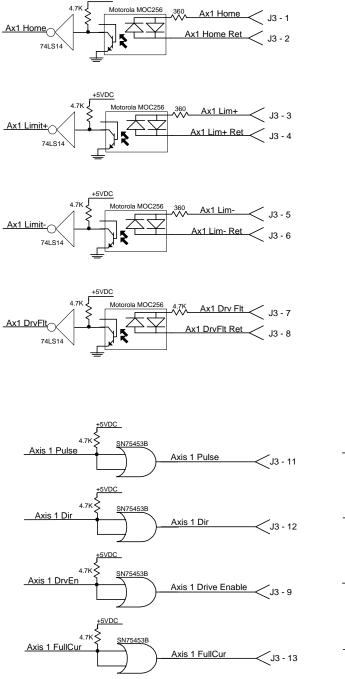
Drive Fault Input	
connection point.	Axis 1 - J3 - pin 7
	Axis 2 - J3 - pin 19
signal type:	Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes:	Axis 1 Supply/Return - J3 pin 8
	Axis 2 Supply/Return - J3 pin 19

explanation: This module input is designed to be connected to the Fault or Error output signal of a stepper driver. The state of this signal will appear as a status bit in the servo's status word. The **EnableAmpFault** member of the **MCMotion** structure will enable the module to shut off the axis if the Drive Fault input is active. No further motion will occur until the fault signal is deactivated and the axis has been enabled. The input device is a bi-directional optical isolator. The allowable voltage range for this signal is **2.5 VDC to 7.5 VDC**. For I/O systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Full/Half Current Output

connection point:Axis 1 - J3 - pin 13
Axis 2 - J3 - pin 14signal type:Open collector, current sink, 100ma max. current sink, 30V max.
external pull-up required

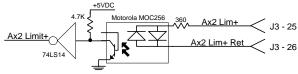
explanation: This signal is used if the stepper driver has a digital input for current control. The default condition of this signal is to be inactive (pulled high). Setting the **MC_CURRENT_FULL** parameter of the **MCMotion** structure will cause the signal to be pulled low.


This signal is driven by a high current open collector driver and is suitable for direct connection to optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open collector drivers, no voltages will be present on these output signals unless pull-up resistors are connected to them.

Module #1	Module #2	Module #3	Module #4	Module #5	Module #6	Module #7	Module #8	J3 Pin #	Description
J1 – 1	J2 – 1	J3 - 19	J4 - 19	J3 – 1	J4 – 1	J1 – 19	J2 - 19	1	Axis 1 Home: input (optically isolated)
J1 – 35	J2 - 35	J3 – 53	J4 – 53	J3 – 35	J4 – 35	J1 – 53	J2 – 53	2	Axis 1 Home opto isolator supply/return
J1 – 2	J2 – 2	J3 – 20	J4 – 20	J3 – 2	J4 – 2	J1 – 20	J2 – 20	3	Axis 1 Limit Positive: input (optically isolated)
J1 – 36	J2 - 36	J3 – 54	J4 – 54	J3 – 36	J4 – 36	J1 – 54	J2 – 54	4	Axis 1 Limit Positive opto isolator supply/return
J1 – 3	J2 – 3	J3 - 21	J4 - 21	J3 – 3	J4 – 3	J1 – 21	J2 - 21	5	Axis 1 Limit Negative: input (optically isolated)
J1 – 37	J2 - 37	J3 – 55	J4 – 55	J3 – 37	J4 – 37	J1 – 55	J2 – 55	6	Axis 1 Limit Negative opto isolator supply/return
J1 – 4	J2 – 4	J3 – 22	J4 – 22	J3 – 4	J4 – 4	J1 – 22	J2 – 22	7	Axis 1 Drive Fault: input (optically isolated)
J1 – 38	J2 - 38	J3 – 56	J4 – 56	J3 – 38	J4 – 38	J1 – 56	J2 – 56	8	Axis 1 Drive Fault opto isolator supply/return
J1 – 5	J2 – 5	J3 – 23	J4 – 23	J3 – 5	J4 – 5	J1 – 23	J2 – 23	9	Axis 1 Driver Enable: output (open collector)
J1 – 39	J2 - 39	J3 – 57	J4 – 57	J3 – 39	J4 – 39	J1 – 57	J2 – 57	10	Ground
J1 – 6	J2 – 6	J3 – 24	J4 – 24	J3 – 6	J4 – 6	J1 – 24	J2 – 24		Ground
J1 – 40	J2 - 40	J3 – 58	J4 – 58	J3 – 40	J4 – 40	J1 – 58	J2 – 58	11	Axis 1 Pulse or CCW Pulse: output
J1 – 7	J2 – 7	J3 – 25	J4 – 25	J3 – 7	J4 – 7	J1 – 25	J2 – 25	12	Axis 1 Direction or CW Pulse: output
J1 – 41	J2 - 41	J3 – 59	J4 – 59	J3 – 41	J4 – 41	J1 – 59	J2 – 59		Ground
J1 – 8	J2 – 8	J3 – 26	J4 – 26	J3 – 8	J4 – 8	J1 – 26	J2 – 26		Ground
J1 – 42	J2 - 42	J3 – 60	J4 – 60	J3 – 42	J4 – 42	J1 – 60	J2 – 60	13	Axis 1 Full/Half Current: output
J1 – 9	J2 – 9	J3 – 27	J4 – 27	J3 – 9	J4 – 9	J1 – 27	J2 – 27	14	Axis 2 Full/Half Current: output
J1 – 43	J2 - 43	J3 – 61	J4 – 61	J3 – 43	J4 – 43	J1 – 61	J2 – 61		Ground
J1 – 10	J2 - 10	J3 – 28	J4 – 28	J3 – 10	J4 – 10	J1 – 28	J2 – 28		Ground
J1 – 44	J2 - 44	J3 – 62	J4 – 62	J3 – 44	J4 – 44	J1 – 62	J2 – 62	15	Axis 2 Direction or CW Pulse: output
J1 – 11	J2 - 11	J3 - 29	J4 - 29	J3 – 11	J4 – 11	J1 – 29	J2 - 29	16	Axis 2 Pulse or CCW Pulse: output
J1 – 45	J2 - 45	J3 – 63	J4 – 63	J3 – 45	J4 – 45	J1 – 63	J2 – 63		Ground
J1 – 12	J2 - 12	J3 – 30	J4 – 30	J3 – 12	J4 – 12	J1 – 30	J2 – 30	17	Axis 2 Driver Enable: output
J1 – 46	J2 - 46	J3 – 64	J4 – 64	J3 – 46	J4 – 46	J1 – 64	J2 – 64	18	Ground
J1 – 13	J2 - 13	J3 – 31	J4 – 31	J3 – 13	J4 – 13	J1 – 31	J2 – 31	19	Axis 2 Drive Fault: input (optically isolated)
J1 – 47	J2 - 47	J3 – 65	J4 – 65	J3 – 47	J4 – 47	J1 – 65	J2 – 65	20	Axis 2 Drive Fault opto isolator supply/return
J1 – 14	J2 - 14	J3 – 32	J4 – 32	J3 – 14	J4 – 14	J1 – 32	J2 – 32	21	Axis 2 Limit Negative: input (optically isolated)
J1 – 48	J2 - 48	J3 – 66	J4 – 66	J3 – 48	J4 – 48	J1 – 66	J2 – 66	22	Axis 2 Limit Negative opto isolator supply/return
J1 – 15	J2 - 15	J3 – 33	J4 – 33	J3 – 15	J4 – 15	J1 – 33	J2 – 33	23	Axis 2 Limit Positive: input (optically isolated)
J1 – 49	J2 - 49	J3 – 67	J4 – 67	J3 – 49	J4 – 49	J1 – 67	J2 – 67	24	Axis 2 Limit Positive opto isolator supply/return
J1 – 16	J2 - 16	J3 – 34	J4 – 34	J3 – 16	J4 – 16	J1 – 34	J2 – 34	25	Axis 2 Home: input (optically isolated)
J1 – 50	J2 - 50	J3 – 68	J4 – 68	J3 – 50	J4 – 50	J1 – 68	J2 – 68	26	Axis 2 Home opto isolator supply/return
J1 – 17	J2 – 17			J3 – 17	J4 – 17				Ground
J1 – 51	J2 - 51			J3 – 51	J4 – 51				Ground
J1 – 18	J2 – 18			J3 – 18	J4 – 18				Ground
J1 – 52	J3 – 52			J3 – 52	J4 – 52				Ground

For a more complete signal description please refer to the previous five pages Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

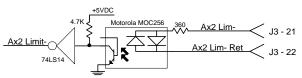
DCX-MC362 Module Layout

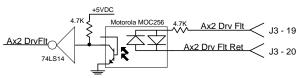


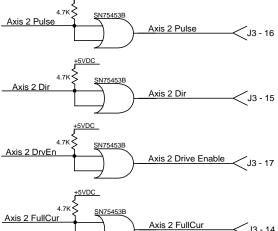
DCX-MC362H Axis I/O Interface Schematic

Ax2 Home

74LS1

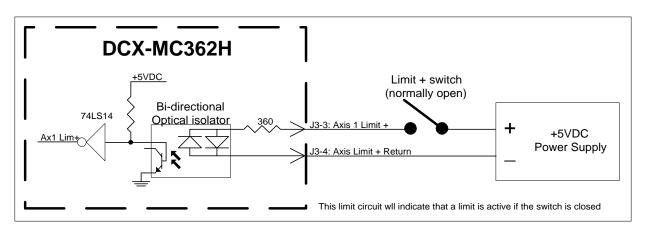

torola MOC256

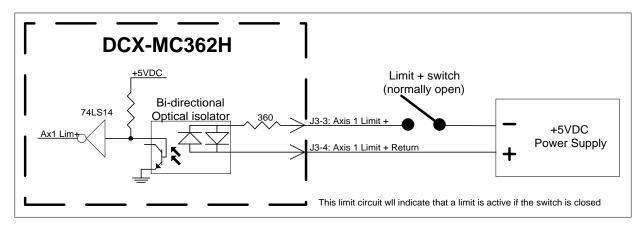

Ax2 Hom

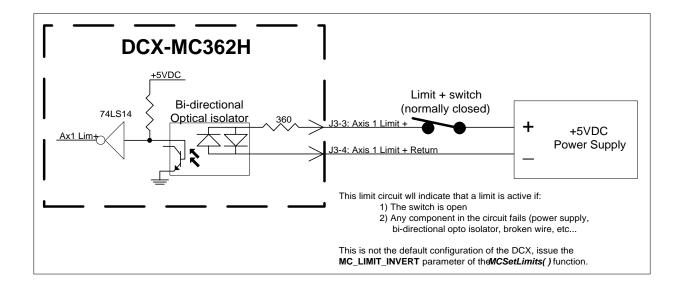

Ax2 Home Ret

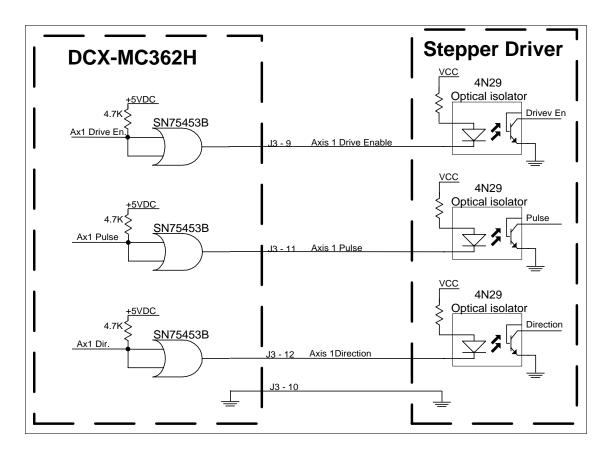
J3 - 25

J3 - 26






-5VDC


J3 - 14

DCX-MC36H Optically Isolated Inputs Wiring Examples

DCX-MC362H Open Collector Driver Wiring Examples

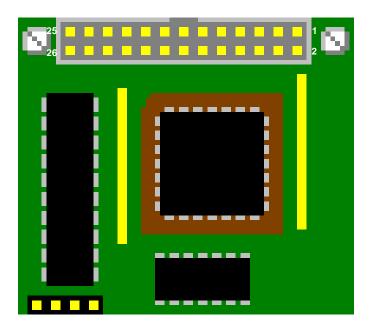
DCX-MC400 Digital I/O Module

DCX-MC400 Electrical Specifications

Parameter	Min.	Max	Unit
Digital Input – High voltage	2.0	5.3	V
Digital Input – Low voltage	-0.3	0.8	V
Digital Output – High voltage	2.4		V (current source 0.25ma)
Digital Output – Low voltage		0.4	V (current source 2.0ma)
Input leakage		+/- 10.0	uA

DCX-MC400-H High	Density connector	signal map
------------------	--------------------------	------------

Module #1	Module #2	Module #3	Module #4	Module #5	Module #6	Module #7	Module #8	J3 Pin #	Description
J1 – 1	J2 – 1	J3 - 19	J4 - 19	J3 – 1	J4 – 1	J1 – 19	J2 - 19	1	Ground
J1 – 35	J2 - 35	J3 – 53	J4 – 53	J3 – 35	J4 – 35	J1 – 53	J2 – 53	2	Digital I/O channel #1
J1 – 2	J2 – 2	J3 – 20	J4 – 20	J3 – 2	J4 – 2	J1 – 20	J2 – 20	3	Ground
J1 – 36	J2 - 36	J3 – 54	J4 – 54	J3 – 36	J4 – 36	J1 – 54	J2 – 54	4	Digital I/O channel #2
J1 – 3	J2 – 3	J3 - 21	J4 - 21	J3 – 3	J4 – 3	J1 – 21	J2 - 21	5	Ground
J1 – 37	J2 - 37	J3 – 55	J4 – 55	J3 – 37	J4 – 37	J1 – 55	J2 – 55	6	Digital I/O channel #3
J1 – 4	J2 – 4	J3 – 22	J4 – 22	J3 – 4	J4 – 4	J1 – 22	J2 – 22	7	Ground
J1 – 38	J2 - 38	J3 – 56	J4 – 56	J3 – 38	J4 – 38	J1 – 56	J2 – 56	8	Digital I/O channel #4
J1 – 5	J2 – 5	J3 – 23	J4 – 23	J3 – 5	J4 – 5	J1 – 23	J2 – 23	9	Ground
J1 – 39	J2 - 39	J3 – 57	J4 – 57	J3 – 39	J4 – 39	J1 – 57	J2 – 57	10	Digital I/O channel #5
J1 – 6	J2 – 6	J3 – 24	J4 – 24	J3 – 6	J4 – 6	J1 – 24	J2 – 24		Ground
J1 – 40	J2 - 40	J3 – 58	J4 – 58	J3 – 40	J4 – 40	J1 – 58	J2 – 58	11	Digital I/O channel #6
J1 – 7	J2 – 7	J3 – 25	J4 – 25	J3 – 7	J4 – 7	J1 – 25	J2 – 25	12	Digital I/O channel #7
J1 – 41	J2 - 41	J3 – 59	J4 – 59	J3 – 41	J4 – 41	J1 – 59	J2 – 59		Ground
J1 – 8	J2 – 8	J3 – 26	J4 – 26	J3 – 8	J4 – 8	J1 – 26	J2 – 26		Ground
J1 – 42	J2 - 42	J3 – 60	J4 – 60	J3 – 42	J4 – 42	J1 – 60	J2 – 60	13	Digital I/O channel #8
J1 – 9	J2 – 9	J3 – 27	J4 – 27	J3 – 9	J4 – 9	J1 – 27	J2 – 27	14	Digital I/O channel #9
J1 – 43	J2 - 43	J3 – 61	J4 – 61	J3 – 43	J4 – 43	J1 – 61	J2 – 61		Ground
J1 – 10	J2 - 10	J3 – 28	J4 – 28	J3 – 10	J4 – 10	J1 – 28	J2 – 28		Ground
J1 – 44	J2 - 44	J3 – 62	J4 – 62	J3 – 44	J4 – 44	J1 – 62	J2 – 62	15	Digital I/O channel #10
J1 – 11	J2 - 11	J3 - 29	J4 - 29	J3 – 11	J4 – 11	J1 – 29	J2 - 29	16	Digital I/O channel #11
J1 – 45	J2 - 45	J3 – 63	J4 – 63	J3 – 45	J4 – 45	J1 – 63	J2 – 63		Ground
J1 – 12	J2 - 12	J3 – 30	J4 – 30	J3 – 12	J4 – 12	J1 – 30	J2 – 30	17	Ground
J1 – 46	J2 - 46	J3 – 64	J4 – 64	J3 – 46	J4 – 46	J1 – 64	J2 – 64	18	Digital I/O channel #12
J1 – 13	J2 - 13	J3 – 31	J4 – 31	J3 – 13	J4 – 13	J1 – 31	J2 – 31	19	Ground
J1 – 47	J2 - 47	J3 – 65	J4 – 65	J3 – 47	J4 – 47	J1 – 65	J2 – 65	20	Digital I/O channel #13
J1 – 14	J2 - 14	J3 – 32	J4 – 32	J3 – 14	J4 – 14	J1 – 32	J2 – 32	21	Ground
J1 – 48	J2 - 48	J3 – 66	J4 – 66	J3 – 48	J4 – 48	J1 – 66	J2 – 66	22	Digital I/O channel #14
J1 – 15	J2 - 15	J3 – 33	J4 – 33	J3 – 15	J4 – 15	J1 – 33	J2 – 33	23	Ground
J1 – 49	J2 - 49	J3 – 67	J4 – 67	J3 – 49	J4 – 49	J1 – 67	J2 – 67	24	Digital I/O channel #15
J1 – 16	J2 - 16	J3 – 34	J4 – 34	J3 – 16	J4 – 16	J1 – 34	J2 – 34	25	Ground
J1 – 50	J2 - 50	J3 – 68	J4 – 68	J3 – 50	J4 – 50	J1 – 68	J2 – 68	26	Digital I/O channel #16
J1 – 17	J2 – 17			J3 – 17	J4 – 17				Ground
J1 – 51	J2 - 51			J3 – 51	J4 – 51				Ground
J1 – 18	J2 – 18			J3 – 18	J4 – 18				Ground
J1 – 52	J3 – 52			J3 – 52	J4 – 52				Ground


For a more complete signal description please refer to the previous five pages Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

Pin # Description 1 Digital I/O channel #1 2 Digital I/O channel #2 3 Digital I/O channel #3 4 Digital I/O channel #4 5 Digital I/O channel #4 6 Digital I/O channel #6 7 Digital I/O channel #7 8 Digital I/O channel #8 9 Digital I/O channel #10 11 Digital I/O channel #10 12 Digital I/O channel #12 13 Digital I/O channel #12 14 Digital I/O channel #13 14 Digital I/O channel #15 16 Digital I/O channel #15 16 Digital I/O channel #16 17 Reserved 18 Reserved 19 Reserved 20 +5 VDC 21 Ground 22 Reserved 23 Reserved 24 Reserved 25 Reserved 26 Ground		100-R connector pin-out
2 Digital I/O channel #2 3 Digital I/O channel #3 4 Digital I/O channel #4 5 Digital I/O channel #5 6 Digital I/O channel #6 7 Digital I/O channel #7 8 Digital I/O channel #8 9 Digital I/O channel #10 11 Digital I/O channel #11 12 Digital I/O channel #12 13 Digital I/O channel #13 14 Digital I/O channel #14 15 Digital I/O channel #15 16 Digital I/O channel #15 17 Reserved 18 Reserved 19 Reserved 20 +5 VDC 21 Ground 22 Reserved 23 Reserved 24 Reserved 25 Reserved	Pin #	Description
3 Digital I/O channel #3 4 Digital I/O channel #4 5 Digital I/O channel #5 6 Digital I/O channel #6 7 Digital I/O channel #7 8 Digital I/O channel #8 9 Digital I/O channel #10 10 Digital I/O channel #10 11 Digital I/O channel #11 12 Digital I/O channel #12 13 Digital I/O channel #13 14 Digital I/O channel #14 15 Digital I/O channel #16 17 Reserved 18 Reserved 20 +5 VDC 21 Ground 22 Reserved 23 Reserved 23 Reserved 24 Reserved 25 Reserved	1	Digital I/O channel #1
4 Digital I/O channel #4 5 Digital I/O channel #5 6 Digital I/O channel #6 7 Digital I/O channel #7 8 Digital I/O channel #8 9 Digital I/O channel #10 10 Digital I/O channel #10 11 Digital I/O channel #11 12 Digital I/O channel #11 13 Digital I/O channel #12 13 Digital I/O channel #13 14 Digital I/O channel #15 16 Digital I/O channel #16 17 Reserved 18 Reserved 19 Reserved 20 +5 VDC 21 Ground 22 Reserved 23 Reserved 23 Reserved 24 Reserved 25 Reserved	2	Digital I/O channel #2
5Digital I/O channel #56Digital I/O channel #67Digital I/O channel #78Digital I/O channel #89Digital I/O channel #910Digital I/O channel #1011Digital I/O channel #1112Digital I/O channel #1213Digital I/O channel #1314Digital I/O channel #1415Digital I/O channel #1516Digital I/O channel #1617Reserved18Reserved20+5 VDC21Ground22Reserved23Reserved24Reserved25Reserved	3	Digital I/O channel #3
6Digital I/O channel #67Digital I/O channel #78Digital I/O channel #89Digital I/O channel #910Digital I/O channel #1011Digital I/O channel #1112Digital I/O channel #1213Digital I/O channel #1314Digital I/O channel #1415Digital I/O channel #1516Digital I/O channel #1617Reserved18Reserved20+5 VDC21Ground22Reserved23Reserved24Reserved25Reserved	4	Digital I/O channel #4
7 Digital I/O channel #7 8 Digital I/O channel #8 9 Digital I/O channel #9 10 Digital I/O channel #10 11 Digital I/O channel #11 12 Digital I/O channel #12 13 Digital I/O channel #13 14 Digital I/O channel #14 15 Digital I/O channel #15 16 Digital I/O channel #16 17 Reserved 18 Reserved 19 Reserved 20 +5 VDC 21 Ground 22 Reserved 23 Reserved 24 Reserved 25 Reserved	5	Digital I/O channel #5
8Digital I/O channel #89Digital I/O channel #910Digital I/O channel #1011Digital I/O channel #1112Digital I/O channel #1213Digital I/O channel #1314Digital I/O channel #1415Digital I/O channel #1516Digital I/O channel #1617Reserved18Reserved20+5 VDC21Ground22Reserved23Reserved24Reserved25Reserved	6	Digital I/O channel #6
9Digital I/O channel #910Digital I/O channel #1011Digital I/O channel #1112Digital I/O channel #1213Digital I/O channel #1314Digital I/O channel #1415Digital I/O channel #1516Digital I/O channel #1617Reserved18Reserved20+5 VDC21Ground22Reserved23Reserved24Reserved25Reserved	7	
10Digital I/O channel #1011Digital I/O channel #1112Digital I/O channel #1213Digital I/O channel #1314Digital I/O channel #1415Digital I/O channel #1516Digital I/O channel #1617Reserved18Reserved19Reserved20+5 VDC21Ground22Reserved23Reserved24Reserved25Reserved	8	Digital I/O channel #8
11Digital I/O channel #1112Digital I/O channel #1213Digital I/O channel #1314Digital I/O channel #1415Digital I/O channel #1516Digital I/O channel #1617Reserved18Reserved19Reserved20+5 VDC21Ground22Reserved23Reserved24Reserved25Reserved	9	
12Digital I/O channel #1213Digital I/O channel #1314Digital I/O channel #1415Digital I/O channel #1516Digital I/O channel #1617Reserved18Reserved19Reserved20+5 VDC21Ground22Reserved23Reserved24Reserved25Reserved	10	
13Digital I/O channel #1314Digital I/O channel #1415Digital I/O channel #1516Digital I/O channel #1617Reserved18Reserved19Reserved20+5 VDC21Ground22Reserved23Reserved24Reserved25Reserved	11	
14Digital I/O channel #1415Digital I/O channel #1516Digital I/O channel #1617Reserved18Reserved19Reserved20+5 VDC21Ground22Reserved23Reserved24Reserved25Reserved	12	
15Digital I/O channel #1516Digital I/O channel #1617Reserved18Reserved19Reserved20+5 VDC21Ground22Reserved23Reserved24Reserved25Reserved	13	
16Digital I/O channel #1617Reserved18Reserved19Reserved20+5 VDC21Ground22Reserved23Reserved24Reserved25Reserved	14	Digital I/O channel #14
17Reserved18Reserved19Reserved20+5 VDC21Ground22Reserved23Reserved24Reserved25Reserved	15	Digital I/O channel #15
18Reserved19Reserved20+5 VDC21Ground22Reserved23Reserved24Reserved25Reserved		
19Reserved20+5 VDC21Ground22Reserved23Reserved24Reserved25Reserved	17	Reserved
20+5 VDC21Ground22Reserved23Reserved24Reserved25Reserved	18	Reserved
21Ground22Reserved23Reserved24Reserved25Reserved	19	Reserved
22Reserved23Reserved24Reserved25Reserved	20	+5 VDC
23Reserved24Reserved25Reserved	21	Ground
24 Reserved 25 Reserved		Reserved
25 Reserved	23	Reserved
	24	Reserved
26 Ground	25	Reserved
	26	Ground

DCX-MC400-R connector pin-out

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

DCX-MC400 Module layout

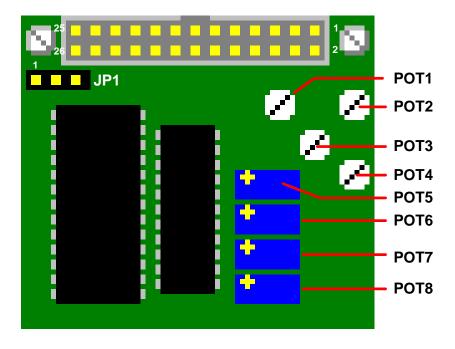
DCX-MC500/510/520 Analog I/O Module

DCX-MC500-H/510-H/520-H High Density connector signal map

Module #1	Module #2	Module #3	Module #4	Module #5	Module #6	Module #7	Module #8	J3 Pin #	Description
J1 – 1	J2 – 1	J3 - 19	J4 - 19	J3 – 1	J4 – 1	J1 – 19	J2 - 19	1	Ground
J1 – 35	J2 - 35	J3 – 53	J4 – 53	J3 – 35	J4 – 35	J1 – 53	J2 – 53	2	Channel 1 Output (-10 to +10 volts)
J1 – 2	J2 – 2	J3 – 20	J4 – 20	J3 – 2	J4 – 2	J1 – 20	J2 – 20	3	Ground
J1 – 36	J2 - 36	J3 – 54	J4 – 54	J3 – 36	J4 – 36	J1 – 54	J2 – 54	4	Channel 2 Output (-10 to +10 volts)
J1 – 3	J2 – 3	J3 - 21	J4 - 21	J3 – 3	J4 – 3	J1 – 21	J2 - 21	5	Ground
J1 – 37	J2 - 37	J3 – 55	J4 – 55	J3 – 37	J4 – 37	J1 – 55	J2 – 55	6	Channel 3 Output (-10 to +10 volts)
J1 – 4	J2 – 4	J3 – 22	J4 – 22	J3 – 4	J4 – 4	J1 – 22	J2 – 22	7	Ground
J1 – 38	J2 - 38	J3 – 56	J4 – 56	J3 – 38	J4 – 38	J1 – 56	J2 – 56	8	Channel 4 Output (-10 to +10 volts)
J1 – 5	J2 – 5	J3 – 23	J4 – 23	J3 – 5	J4 – 5	J1 – 23	J2 – 23	9	Ground
J1 – 39	J2 - 39	J3 – 57	J4 – 57	J3 – 39	J4 – 39	J1 – 57	J2 – 57	10	External A/D reference input (see jumper JP1)
J1 – 6	J2 – 6	J3 – 24	J4 – 24	J3 – 6	J4 – 6	J1 – 24	J2 – 24		Ground
J1 – 40	J2 - 40	J3 – 58	J4 – 58	J3 – 40	J4 – 40	J1 – 58	J2 – 58	11	Channel 1 Output (0 to +5 volts)
J1 – 7	J2 – 7	J3 – 25	J4 – 25	J3 – 7	J4 – 7	J1 – 25	J2 – 25	12	Channel 2 Output (0 to +5 volts)
J1 – 41	J2 - 41	J3 – 59	J4 – 59	J3 – 41	J4 – 41	J1 – 59	J2 – 59		Ground
J1 – 8	J2 – 8	J3 – 26	J4 – 26	J3 – 8	J4 – 8	J1 – 26	J2 – 26		Ground
J1 – 42	J2 - 42	J3 – 60	J4 – 60	J3 – 42	J4 – 42	J1 – 60	J2 – 60	13	Channel 3 Output (0 to +5 volts)
J1 – 9	J2 – 9	J3 – 27	J4 – 27	J3 – 9	J4 – 9	J1 – 27	J2 – 27	14	Channel 4 Output (0 to +5 volts)
J1 – 43	J2 - 43	J3 – 61	J4 – 61	J3 – 43	J4 – 43	J1 – 61	J2 – 61		Ground
J1 – 10	J2 - 10	J3 – 28	J4 – 28	J3 – 10	J4 – 10	J1 – 28	J2 – 28		Ground
J1 – 44	J2 - 44	J3 – 62	J4 – 62	J3 – 44	J4 – 44	J1 – 62	J2 – 62	15	+12 VDC
J1 – 11	J2 - 11	J3 - 29	J4 - 29	J3 – 11	J4 – 11	J1 – 29	J2 - 29	16	-12 VDC
J1 – 45	J2 - 45	J3 – 63	J4 – 63	J3 – 45	J4 – 45	J1 – 63	J2 – 63		Ground
J1 – 12	J2 - 12	J3 – 30	J4 – 30	J3 – 12	J4 – 12	J1 – 30	J2 – 30	17	No connect
J1 – 46	J2 - 46	J3 – 64	J4 – 64	J3 – 46	J4 – 46	J1 – 64	J2 – 64	18	No connect
J1 – 13	J2 - 13	J3 – 31	J4 – 31	J3 – 13	J4 – 13	J1 – 31	J2 – 31	19	Ground
J1 – 47	J2 - 47	J3 – 65	J4 – 65	J3 – 47	J4 – 47	J1 – 65	J2 – 65	20	Channel 1 Input (0 to +5 volts)
J1 – 14	J2 - 14	J3 – 32	J4 – 32	J3 – 14	J4 – 14	J1 – 32	J2 – 32	21	Ground
J1 – 48	J2 - 48	J3 – 66	J4 – 66	J3 – 48	J4 – 48	J1 – 66	J2 – 66	22	Channel 2 Input (0 to +5 volts)
J1 – 15	J2 - 15	J3 – 33	J4 – 33	J3 – 15	J4 – 15	J1 – 33	J2 – 33	23	Ground
J1 – 49	J2 - 49	J3 – 67	J4 – 67	J3 – 49	J4 – 49	J1 – 67	J2 – 67	24	Channel 3 Input (0 to +5 volts)
J1 – 16	J2 - 16	J3 – 34	J4 – 34	J3 – 16	J4 – 16	J1 – 34	J2 – 34	25	Ground
J1 – 50	J2 - 50	J3 – 68	J4 – 68	J3 – 50	J4 – 50	J1 – 68	J2 – 68	26	Channel 4 Input (0 to +5 volts)
J1 – 17	J2 – 17			J3 – 17	J4 – 17				Ground
J1 – 51	J2 - 51			J3 – 51	J4 – 51				Ground
J1 – 18	J2 – 18			J3 – 18	J4 – 18				Ground
J1 – 52	J3 – 52			J3 – 52	J4 – 52				Ground

For a more complete signal description please refer to the previous five pages Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

Pin # Description 1 Channel 1 Input (0 to +5 volts) 2 Channel 2 Input (0 to +5 volts) 3 Channel 2 Output (-10 to +10 volts) 5 Channel 3 Output (-10 to +10 volts) 6 Channel 3 Output (-10 to +10 volts) 7 Channel 4 Input (0 to +5 volts) 8 Channel 4 Output (-10 to +10 volts) 9 Reserved 10 Channel 4 Output (-10 to +10 volts) 9 Reserved 10 Channel 1 Output (0 to +5 volts) 11 Reserved 12 Channel 2 Output (0 to +5 volts) 13 Reserved 14 Channel 3 Output (0 to +5 volts) 15 Reserved 16 Channel 3 Output (0 to +5 volts) 17 Analog Ground 18 External A/D reference input (see jumper JP1) 19 +12 VDC 20 -12 VDC 21 No connect 22 No connect 23 +5 VDC 24 +5 VDC		
2 Channel 1 Output (-10 to +10 volts) 3 Channel 2 Input (0 to +5 volts) 4 Channel 2 Output (-10 to +10 volts) 5 Channel 3 Input (0 to +5 volts) 6 Channel 4 Output (-10 to +10 volts) 7 Channel 4 Input (0 to +5 volts) 8 Channel 4 Output (-10 to +10 volts) 9 Reserved 10 Channel 1 Output (0 to +5 volts) 11 Reserved 12 Channel 2 Output (0 to +5 volts) 13 Reserved 14 Channel 3 Output (0 to +5 volts) 13 Reserved 14 Channel 3 Output (0 to +5 volts) 15 Reserved 16 Channel 4 Output (0 to +5 volts) 17 Analog Ground 18 External A/D reference input (see jumper JP1) 19 +12 VDC 20 -12 VDC 21 No connect 22 No connect 23 +5 VDC 24 +5 VDC 25 Digital Ground	Pin #	Description
3 Channel 2 Input (0 to +5 volts) 4 Channel 2 Output (-10 to +10 volts) 5 Channel 3 Input (0 to +5 volts) 6 Channel 4 Input (0 to +5 volts) 7 Channel 4 Output (-10 to +10 volts) 9 Reserved 10 Channel 1 Output (-10 to +10 volts) 11 Reserved 12 Channel 1 Output (0 to +5 volts) 13 Reserved 14 Channel 2 Output (0 to +5 volts) 13 Reserved 14 Channel 3 Output (0 to +5 volts) 15 Reserved 16 Channel 4 Output (0 to +5 volts) 17 Analog Ground 18 External A/D reference input (see jumper JP1) 19 +12 VDC 20 -12 VDC 21 No connect 22 No connect 23 +5 VDC 24 +5 VDC 25 Digital Ground	1	Channel 1 Input (0 to +5 volts)
4Channel 2 Output (-10 to +10 volts)5Channel 3 Input (0 to +5 volts)6Channel 3 Output (-10 to +10 volts)7Channel 4 Input (0 to +5 volts)8Channel 4 Output (-10 to +10 volts)9Reserved10Channel 1 Output (0 to +5 volts)11Reserved12Channel 2 Output (0 to +5 volts)13Reserved14Channel 3 Output (0 to +5 volts)15Reserved16Channel 4 Output (0 to +5 volts)17Analog Ground18External A/D reference input (see jumper JP1)19+12 VDC20-12 VDC21No connect22No connect23+5 VDC24+5 VDC25Digital Ground	2	Channel 1 Output (-10 to +10 volts)
5Channel 3 Input (0 to +5 volts)6Channel 3 Output (-10 to +10 volts)7Channel 4 Input (0 to +5 volts)8Channel 4 Output (-10 to +10 volts)9Reserved10Channel 1 Output (0 to +5 volts)11Reserved12Channel 2 Output (0 to +5 volts)13Reserved14Channel 3 Output (0 to +5 volts)15Reserved16Channel 4 Output (0 to +5 volts)17Analog Ground18External A/D reference input (see jumper JP1)19+12 VDC20-12 VDC21No connect22No connect23+5 VDC24+5 VDC25Digital Ground	3	Channel 2 Input (0 to +5 volts)
6Channel 3 Output (-10 to +10 volts)7Channel 4 Input (0 to +5 volts)8Channel 4 Output (-10 to +10 volts)9Reserved10Channel 1 Output (0 to +5 volts)11Reserved12Channel 2 Output (0 to +5 volts)13Reserved14Channel 3 Output (0 to +5 volts)15Reserved16Channel 4 Output (0 to +5 volts)17Analog Ground18External A/D reference input (see jumper JP1)19+12 VDC20-12 VDC21No connect22No connect23+5 VDC24+5 VDC25Digital Ground	4	Channel 2 Output (-10 to +10 volts)
7Channel 4 Input (0 to +5 volts)8Channel 4 Output (-10 to +10 volts)9Reserved10Channel 1 Output (0 to +5 volts)11Reserved12Channel 2 Output (0 to +5 volts)13Reserved14Channel 3 Output (0 to +5 volts)15Reserved16Channel 4 Output (0 to +5 volts)17Analog Ground18External A/D reference input (see jumper JP1)19+12 VDC20-12 VDC21No connect22No connect23+5 VDC24+5 VDC25Digital Ground	5	Channel 3 Input (0 to +5 volts)
8Channel 4 Output (-10 to +10 volts)9Reserved10Channel 1 Output (0 to +5 volts)11Reserved12Channel 2 Output (0 to +5 volts)13Reserved14Channel 3 Output (0 to +5 volts)15Reserved16Channel 4 Output (0 to +5 volts)17Analog Ground18External A/D reference input (see jumper JP1)19+12 VDC20-12 VDC21No connect22No connect23+5 VDC24+5 VDC25Digital Ground	6	Channel 3 Output (-10 to +10 volts)
9Reserved10Channel 1 Output (0 to +5 volts)11Reserved12Channel 2 Output (0 to +5 volts)13Reserved14Channel 3 Output (0 to +5 volts)15Reserved16Channel 4 Output (0 to +5 volts)17Analog Ground18External A/D reference input (see jumper JP1)19+12 VDC20-12 VDC21No connect22No connect23+5 VDC24+5 VDC25Digital Ground	7	Channel 4 Input (0 to +5 volts)
10Channel 1 Output (0 to +5 volts)11Reserved12Channel 2 Output (0 to +5 volts)13Reserved14Channel 3 Output (0 to +5 volts)15Reserved16Channel 4 Output (0 to +5 volts)17Analog Ground18External A/D reference input (see jumper JP1)19+12 VDC20-12 VDC21No connect22No connect23+5 VDC24+5 VDC25Digital Ground	8	Channel 4 Output (-10 to +10 volts)
11Reserved12Channel 2 Output (0 to +5 volts)13Reserved14Channel 3 Output (0 to +5 volts)15Reserved16Channel 4 Output (0 to +5 volts)17Analog Ground18External A/D reference input (see jumper JP1)19+12 VDC20-12 VDC21No connect22No connect23+5 VDC24+5 VDC25Digital Ground	9	Reserved
12Channel 2 Output (0 to +5 volts)13Reserved14Channel 3 Output (0 to +5 volts)15Reserved16Channel 4 Output (0 to +5 volts)17Analog Ground18External A/D reference input (see jumper JP1)19+12 VDC20-12 VDC21No connect22No connect23+5 VDC24+5 VDC25Digital Ground	10	Channel 1 Output (0 to +5 volts)
13Reserved14Channel 3 Output (0 to +5 volts)15Reserved16Channel 4 Output (0 to +5 volts)17Analog Ground18External A/D reference input (see jumper JP1)19+12 VDC20-12 VDC21No connect22No connect23+5 VDC24+5 VDC25Digital Ground	11	Reserved
14Channel 3 Output (0 to +5 volts)15Reserved16Channel 4 Output (0 to +5 volts)17Analog Ground18External A/D reference input (see jumper JP1)19+12 VDC20-12 VDC21No connect22No connect23+5 VDC24+5 VDC25Digital Ground	12	Channel 2 Output (0 to +5 volts)
15Reserved16Channel 4 Output (0 to +5 volts)17Analog Ground18External A/D reference input (see jumper JP1)19+12 VDC20-12 VDC21No connect22No connect23+5 VDC24+5 VDC25Digital Ground	13	Reserved
16Channel 4 Output (0 to +5 volts)17Analog Ground18External A/D reference input (see jumper JP1)19+12 VDC20-12 VDC21No connect22No connect23+5 VDC24+5 VDC25Digital Ground	14	Channel 3 Output (0 to +5 volts)
17Analog Ground18External A/D reference input (see jumper JP1)19+12 VDC20-12 VDC21No connect22No connect23+5 VDC24+5 VDC25Digital Ground	15	Reserved
 18 External A/D reference input (see jumper JP1) 19 +12 VDC 20 -12 VDC 21 No connect 22 No connect 23 +5 VDC 24 +5 VDC 25 Digital Ground 	16	
19 +12 VDC 20 -12 VDC 21 No connect 22 No connect 23 +5 VDC 24 +5 VDC 25 Digital Ground		
20 -12 VDC 21 No connect 22 No connect 23 +5 VDC 24 +5 VDC 25 Digital Ground		
21No connect22No connect23+5 VDC24+5 VDC25Digital Ground	19	
22No connect23+5 VDC24+5 VDC25Digital Ground	20	-12 VDC
23 +5 VDC 24 +5 VDC 25 Digital Ground		No connect
24 +5 VDC 25 Digital Ground	22	No connect
25 Digital Ground		
U		
26 Digital Ground		
	26	Digital Ground


DCX-MC5X0-R connector pin-out

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

DCX-MC500/510/520 Module Configuration Jumpers - configuration in **bold** type denotes default factory shipping configuration

Pins	Description
1 to 2	Use external reference (supplied by user on J3 pin 18)
2 to 3	Use the on board +5 VDC reference

DCX-MC500 Module layout

DCX-BF022 Relay Rack Interface

J1 connector pin-out - The signals are arranged to interface the DCX-MC400 directly to an OPTO 22 relay rack.

ZZIElay		
Pin #	Description	
1	Digital I/O channel #1	
2	Digital I/O channel #2	
3	Digital I/O channel #3	
4	Digital I/O channel #4	
5	Digital I/O channel #5	
6	Digital I/O channel #6	
7	Digital I/O channel #7	
8	Digital I/O channel #8	
9	Digital I/O channel #9	
10	Digital I/O channel #10	
11	Digital I/O channel #11	
12	Digital I/O channel #12	
13	Digital I/O channel #13	
14	Digital I/O channel #14	
15	Digital I/O channel #15	
16	Digital I/O channel #16	
17	No connect	
18	No connect	
19	No connect	
20	+5 VDC	
21	Ground	
22	No connect	
23	No connect	
24	No connect	
25	No connect	
26	Ground	

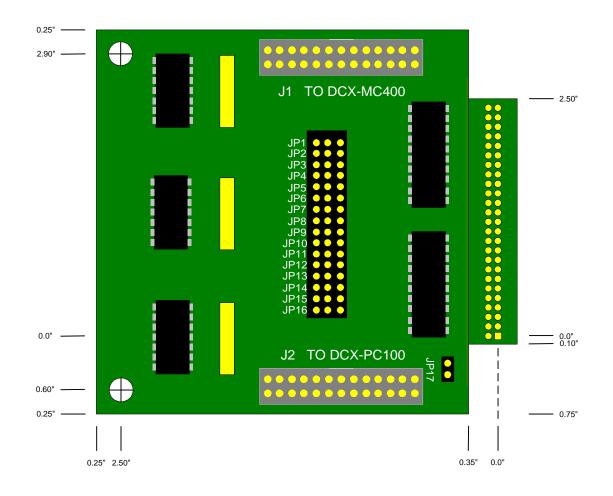
Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

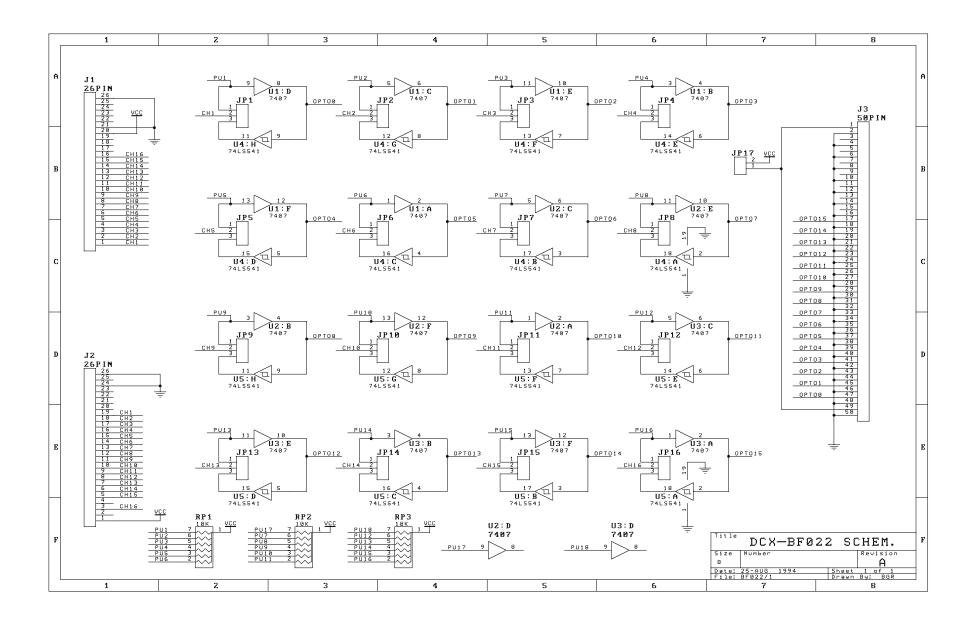
<u>```</u>	or J3) directly to an OPTO 22 relay rack.			
Pin #	Description			
1	+5 VDC			
2	No connect			
3	Digital I/O channel #16			
4	No connect			
5	Digital I/O channel #15			
6	Digital I/O channel #14			
7	Digital I/O channel #13			
8	Digital I/O channel #12			
9	Digital I/O channel #11			
10	Digital I/O channel #10			
11	Digital I/O channel #9			
12	Digital I/O channel #8			
13	Digital I/O channel #7			
14	Digital I/O channel #6			
15	Digital I/O channel #5			
16	Digital I/O channel #4			
17	Digital I/O channel #3			
18	Digital I/O channel #2			
19	Digital I/O channel #1			
20	No connect			
21	No connect			
22	No connect			
23	No connect			
24	Ground			
25	No connect			
26	Ground			

J2 connector pin-out - The signals are arranged to interface the DCX-PCI300 General Purpose I/O (connector J3) directly to an OPTO 22 relay rack.

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

DCX-BF022 Configuration Jumpers - configuration in **bold type** denotes default factory shipping configuration

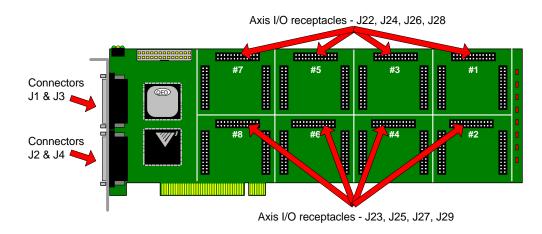

JP1 – JP16 Configure Digital channel as Input or Output


Pins	Description
1 to 2	Configure channel as Output
2 to 3	Configure channel as an Input

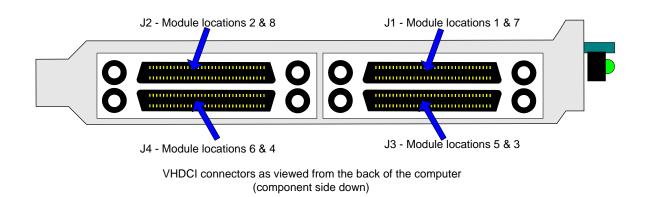
JP17 – Select Relay Rack supply source

Pins	Description
1 to 2	DCX provides +5 VDC Relay Rack supply
2 to 3	Relay Rack has separate +5 VDC supply

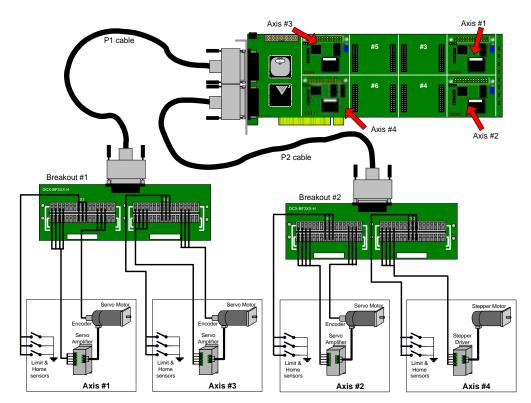
DCX-BF022 Interface layout



DCX-BF3XX-H High Density Breakout Assembly


The DCX-BF3XX-H provides easy to use terminal strip contacts for –H DCX modules (MC300-H, MC320-H, MC360-H, MC400-H, MC500-H).

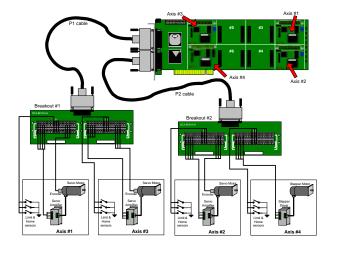
DCX modules can be installed into any one of eight module locations on the DCX-PCI300-H motherboard. The axis I/O signals travel through the inner layers of the DCX-PCI300-H to the high density connectors (J1, J2, J3, and J4). The module, receptacle, and connector locations of a DCX-PCI300-H are shown in the following graphic:


The diagram below details how the DCX-PCI300-H module locations 1 - 8 (receptacles J22 – J29) map into the high density connectors J1 – J4.

Each DCX-BF3XX-H breakout assembly provides contact points for two module locations. The following table details how DCX-PCI300-H motherboard module locations are associated with a DCX-BF3XX-H terminal strip (TS1 or TS2)

DCX-PCI300-H Module location	High Density connector #	Interconnect cable #
1	J1	P1
7	J1	P1
5	J3	P3
3	J3	P3
6	J4	P4
4	J4	P4
2	J2	P2
8	J2	P2

The following diagram details the typical interconnections for a four axis system, three servo's (DCX-MC300-H servo modules in locations 1, 2, & 7) and one stepper (DCX-MC360-H stepper module in location 8). The modules could be installed sequentially into locations #1 - #4, but the system would then require four cables and four DCX-BF3XX-H breakouts instead of two.



DCX-BF3XX-H signals pinout (when using single axis or I/O modules) The following table details the pinouts –H DCX modules.

BF3XX-H	МС300-Н	MC320-H	MC360-H	MC400-H	MC500-H
TS1 or TS2					
1	Command return	Ground	Step / CCW Pulse	Ground	Ground
18	Command output	Phase U Command	Ground	Digital I/O #1	Output 1 (-10 to +10)
2	Com./Dir. output	Ground	Dir. / CW Pulse	Ground	Ground
19	Com./Dir. return	Phase V Command	Ground	Digital I/O #2	Output 2 (-10 to +10)
3	Amp. Enable output	Amp. Enable output	Driver En. output	Ground	Ground
20	Amp Enable return	Amp. Enable return	Ground	Digital I/O #3	Output 3 (-10 to +10)
4	Amp. Fault input	Amp. Fault: input	Drive Fault: input	Ground	Ground
21	Amp Fault sup./ret.	Amp. Fault return	Drive Fault return	Digital I/O #4	Output 4 (-10 to +10)
5	Coarse Home input	Coarse Home input	Home: input	Ground	Ground
22	Coarse Home ret.	Coarse Home ret.	Home return	Digital I/O #5	External reference
6	Ground	Ground	Ground	Ground	Ground
23	Reserved	Reserved	Reserved	Digital I/O #6	Output 1 (0 to +5)
7	Reserved	Pos. Com. output	Null Position: input	Digital I/O #7	Output 2 (-10 to +10)
24	Ground	Ground	Ground	Ground	Ground
8	Ground	Ground	Ground	Ground	Ground
25	Aux. Enc. A+	Hall A+/Aux Enc A+	Compare / Full/Half Step: output	Digital I/O #8	Output 3 (0 to +5)
9	Aux. Enc. B	Hall B+/Aux Enc B+	Full/Half Current: output	Digital I/O #9	Output 4 (-10 to +10)
26	Ground	Ground	Ground	Ground	Ground
10	Ground	Ground	Ground	Ground	Ground
27	Pos. Capture + / Aux. Enc. Index+	Hall C+/ Pos Cap +	Aux. En Crs Home	Digital I/O #10	+12 VDC
11	Encoder Power	Encoder Power	Aux. Enc. Power	Digital I/O #11	-12 VDC
28	Ground	Ground	Ground	Ground	Ground
12	Limit + input	Limit + input	Limit + input	Ground	
29	Limit + sup./return	Limit + sup./return	Limit + sup/return	Digital I/O #12	
13	Limit Negative input	Limit Negative input	Limit - input	Ground	Ground
30	Limit - supply/return	Limit - supply/return	Limit – sup/return	Digital I/O #13	Input 1 (0 to +5)
14	Prim. Enc. A+	Prim. Enc. A+	Aux. Enc. A+	Ground	Ground
31	Prim. Enc. A-	Prim. Enc. A-	Aux. Enc. A-	Digital I/O #14	Input 2 (0 to +5
15	Prim. Enc. B+	Prim. Enc. B+	Aux. Enc. B+	Ground	Ground
32	Prim. Enc. B-	Prim. Enc. B-	Aux. Enc. B-	Digital I/O #15	Input 3 (0 to +5)
16	Prim. Enc. Index +	Prim. Enc. Index +	Pos. Cap. + / Aux. Enc. Index +	Ground	Ground
33	Prim. Enc. Index -	Prim. Enc. Index -	Pos. Cap / Aux. Enc. Index-	Digital I/O #16	Input 4 (0 to +5)
17	Ground	Ground	Ground	Ground	Ground
34	Ground	Ground	Ground	Ground	Ground

Example: DCX-BF3XX-H connections for a four axes system (single axis modules)

Here is an example of the typical connections for a four axes system (3 servo's and one stepper). A larger (more detailed) view of the interconnect drawing can be found earlier in this section.

BF3XX-H #1 - Contacts for axis #1 (a MC300-H installed in module location #1)

TS1	Signal
1	Axis 1 – Analog ret
18	Axis 1 – Analog ret Axis 1 – Command
2	Axis 1 – Comp. / Dir
19	Axis 1 – Com/Dir ret
3	Axis 1 – Amp En
20	Axis 1 – Amp En. ret
4	Axis 1 – Amp Fault
21	Axis 1 – Amp Flt ret
5	Axis 1 – Coarse Hm
22	Axis 1 – Crs Hm ret
6	Ground
23	
7	
24	Ground
8	Ground
25	
9	
26	Ground
10	Ground
27	Axis 1 – Pos Cap
11	Axis 1 – Enc Pwr
28	Ground
12	Axis 1 – Limit + Axis 1 – Limit + ret
29	Axis 1 – Limit + ret
13	Axis 1 – Limit -
30	Axis 1 – Limit – ret
14	Axis 1 – Encoder A+
31	Axis 1 – Encoder A+
15	Axis 1 – Encoder B+
32	Axis 1 – Encoder B-
16	Axis 1 – Index +
33	Axis 1 – Index -
17	Ground
34	Ground

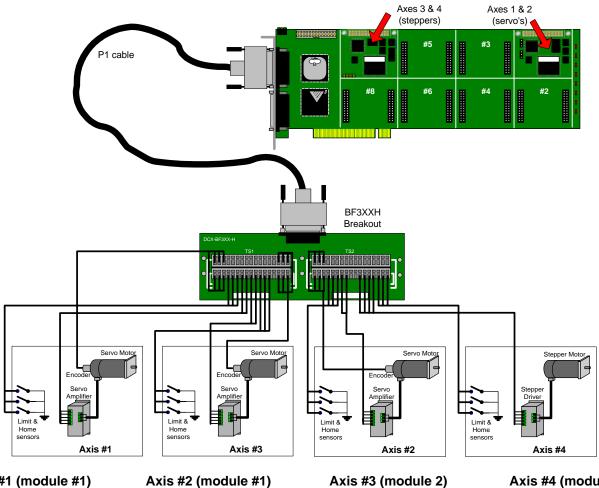
BF3XX-H #1 - Contacts for axis #3 (a MC300-H installed in module location #7)

TS2Signal1Axis 3 – Analog I	
18 Axis 3 – Comma	
2 Axis 3 – Comp. /	Dir
19 Axis 3 – Com/Dir	
3 Axis 3 – Amp En	
20 Axis 3 – Amp En	
4 Axis 3 – Amp Fa	ult
21 Axis 3 – Amp Flt	ret
5 Axis 3 – Coarse	Hm
22 Axis 3 – Crs Hm	ret
6 Ground	
23	
7	
24 Ground	
8 Ground	
25	
9	
26 Ground	
10 Ground	
27 Axis 3 – Pos Cap	
11 Axis 3 – Enc Pwi	•
28 Ground	
12 Axis 3 – Limit +	
29 Axis 3 – Limit + r	et
13 Axis 3 – Limit -	
30 Axis 3 – Limit – r	
14 Axis 3 – Encoder	
31 Axis 3 – Encoder	
15 Axis 3 – Encoder	
32 Axis 3 – Encoder	⁻ В-
16 Axis 3 – Index +	
33 Axis 3 – Index -	
17 Ground	
34 Ground	

BF3XX-H #2 - Contacts for axis #2 (a MC300-H installed in module location #2)

TS1	Signal
1	Axis 2 – Analog ret
18	Axis 2 – Command
2	Axis 2 – Comp. / Dir
19	Axis 2 – Com/Dir ret
3	Axis 2 – Amp En
20	Axis 2 – Amp En. ret
4	Axis 2 – Amp Fault
21	Axis 2 – Amp Flt ret
5	Axis 2 – Coarse Hm
22	Axis 2 – Crs Hm ret
6	Ground
23	
7	
24	Ground
8	Ground
25	
9	
26	Ground
10	Ground
27	Axis 2 – Pos Cap
11	Axis 2 – Enc Pwr
28	Ground
12	Axis 2 – Limit +
29	Axis 2 – Limit + ret
13	Axis 2 – Limit -
30	Axis 2 – Limit – ret
14	Axis 2 – Encoder A+
31	Axis 2 – Encoder A+
15	Axis 2 – Encoder B+
32	Axis 2 – Encoder B-
16	Axis 2 – Index +
33	Axis 2 – Index -
17	Ground
34	Ground

BF3XX-H #2 - Contacts for axis #4 (a MC360-H installed in module location #8)


TS2	Signal
1	Axis 4 – Step
18	Axis 4 – Ground
2	Axis 4 – Direction
19	Axis 4 – Ground
3	Axis 4 – Drive En
20	Axis 4 – Ground
4	Axis 4 – Drive Fault
21	Axis 4 – Ground
5	Axis 4 – Home
22	Axis 4 – Home ret
6	Ground
23	
7	
24	Ground
8	Ground
25	
9	Axis 4 – Full/Half cur
26	Ground
10	Ground
27	
11	
28	Ground
12	Axis 4 – Limit +
29	Axis 4 – Limit + ret
13	Axis 4 – Limit -
30	Axis 4 – Limit – ret
14	
31	
15	
32	
16	
33	
17	Ground
34	Ground

DCX-BF3XX-H signals pinout (when using dual axis modules) The following table details the pinouts of –H Dual Axis DCX modules.

BF3XX-H TS1 or TS2	МС302-Н	MC362-H
1	Axis 1 Encoder A+	Axis 1 Home
18	Axis 1 Encoder A-	Axis 1 Home sup/return
2	Axis 1 Encoder B+	Axis 1 Limit +
19	Axis 1 Encoder B-	Axis 1 Limit + sup/return
3	Axis 1 Encoder Index +	Axis 1 Limit -
20	Axis 1 Encoder Index -	Axis 1 Limit - sup/return
4	Axis 1 Coarse Home	Axis 1 Drive Fault
21	Axis 1 Encoder Power	Axis 1 Fault sup/return
5	Axis 1 Limit +	Axis 1 Drive Enable
22	Axis 1 inputs sup./return	Ground
6	Ground	Ground
23	Axis 1 Limit -	Axis 1 Pulse / CCW
7	Axis 1 Amp. Enable	Axis 1 Dir. / CW
24	Ground	Ground
8	Ground	Ground
25	Axis 1 Analog Command	Axis 1 Full Current
9	Axis 2 Analog Command	Axis 2 Full Current
26	Ground	Ground
10	Ground	Ground
27	Axis 2 Amp. Enable	Axis 2 Dir. / CW
11	Axis 2 Limit -	Axis 2 Pulse / CCW
28	Ground	Ground
12	Axis 2 Limit +	Axis 2 Drive Enable
29	Axis 2 inputs sup./return	Ground
13	Axis 2 Coarse Home	Axis 2 Drive Fault
30	Axis 2 Encoder Power	Axis 2 Fault sup/return
14	Axis 2 Encoder A+	Axis 2 Limit -
31	Axis 2 Encoder A-	Axis 2 Limit - sup/return
15	Axis 2 Encoder B+	Axis 2 Limit +
32	Axis 2 Encoder B-	Axis 2 Limit + sup/return
16	Axis 2 Encoder Index +	Axis 2 Home
33	Axis 2 Encoder Index -	Axis 2 Home sup/return
17	Ground	Ground
34	Ground	Ground

Example: DCX-BF3XX-H connections for a four axes system (dual axis modules)

Here is an example of the typical connections for a four axes system (2 servo's and 2 steppers) using dual axis modules. The DCX-MC302 (dual axis servo) is installed in module location #1 and the DCX-MC362 (dual axis stepper) is installed in module location #7.

Axis #1 (module #1) BF3XX-H TS1 contacts 1-8 & 18–25.

TS1	Signal
1	Axis 1 Encoder A+
18	Axis 1 Encoder A-
2	Axis 1 Encoder B+
-	
19	Axis 1 Encoder B-
3	Axis 1 Index +
20	Axis 1 Index -
4	Axis 1 Coarse Home
21	Axis 1 Encoder Pwr
5	Axis 1 Limit +
22	Axis 1 inputs return
6	Ground
23	Axis 1 Limit -
7	Axis 1 Amp. Enable
24	Ground
8	Ground
25	Axis 1 Command

Axis #2 (module #1) BF3XX-H TS1 contacts 9-17 & 26-34.

nable
nable
nable
nable
eturn
Home
r Pwr
r A+
r A-
r B+
r B-

Axis #3 (module 2)
BF3XX-H TS2 contacts
1-8 & 18-25.

TS1	Signal
1	Axis 3 Encoder A+
18	Axis 3 Encoder A-
2	Axis 3 Encoder B+
19	Axis 3 Encoder B-
3	Axis 3 Index +
20	Axis 3 Index -
4	Axis 3 Coarse Home
21	Axis 3 Encoder Pwr
5	Axis 3 Limit +
22	Axis 3 inputs return
6	Ground
23	Axis 3 Limit -
7	Axis 3 Amp. Enable
24	Ground
8	Ground
	Axis 3 Command

Axis #4 (module 2) BF3XX-H TS2 contacts 9-17 & 26-34.

TS2	Signal
9	Axis 2 Full Current
26	Ground
10	Ground
27	Axis 2 Dir. / CW
11	Axis 2 Pulse / CCW
28	Ground
12	Axis 2 Drive Enable
29	Ground
13	Axis 2 Drive Fault
30	Axis 2 Fault return
14	Axis 2 Limit -
31	Axis 2 Limit - return
15	Axis 2 Limit +
32	Axis 2 Limit + return
16	Axis 2 Home
33	Axis 2 Home return
17	Ground
34	Ground

J1 DCX-BF300 REV. A PMC CORP. **TO MC300** TS2 TS3 TS1 AUXILIARY ENCODER PRIMARY ENCODER LIM POS FAULT RETURN DIR'N SHIELD SHIELD RETURN COARSE ENABLE RETURN RETURN LIM NEG RETURN COMMA

DCX-BF300-R Servo Module Breakout Assembly

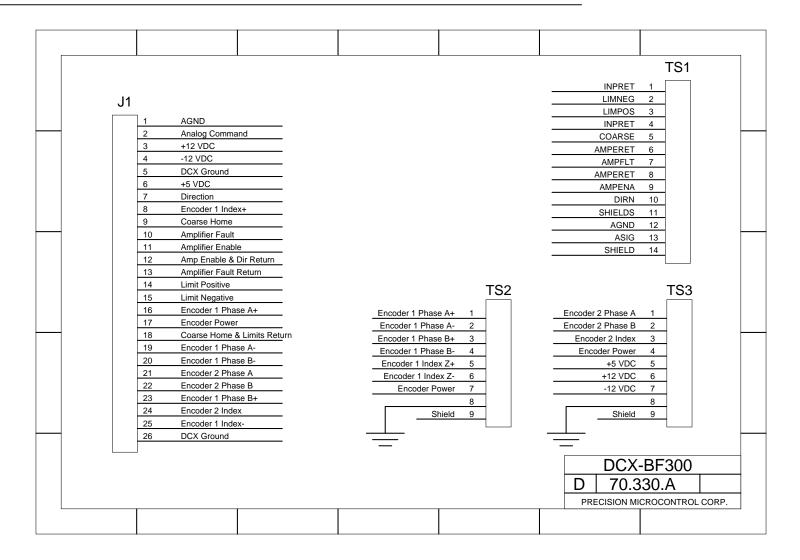
DCX-BF300-R to DCX-MC300-R Connections:

Terminal strip TS1

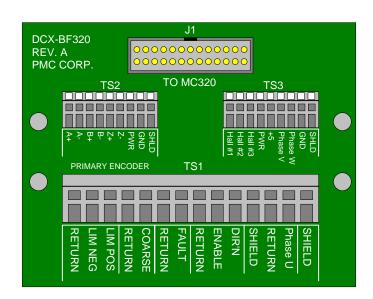
Pin	Description
1	Crs Home & Limits return
2	Limit -
3	Limit +
4	Crs Home & Limits return
5	Coarse Home
6	Amp Fault supply/return
7	Amplifier Fault
8	Amp Enable/Dir. return
9	Amplifier Enable
10	Direction
11	Shield
12	Analog Ground
13	Analog Command output
14	Shield
10 11 12 13	Direction Shield Analog Ground Analog Command output

Terminal strip TS2PinDescription1Prim. Encoder Phase A+2Prim. Encoder Phase A-3Prim. Encoder Phase B+4Prim. Encoder Phase B-5Prim. Encoder Index+

6	Prim. Encoder Index-
7	Encoder Power
8	Ground
9	Shield


Terminal strip TS3

	Description
1	Aux. Encoder Phase A+
2	Aux. Encoder Phase B+
3	Aux. Encoder Index Z+
4	Encoder Power
5	+5 VDC
6	+12 VDC
7	-12 VDC
8	Ground
9	Shield


DCX-BF300-R to DCX-MC300 Connections (continued):

Connector J1: From MC300

Pin	Description
1	Analog Ground
2	Analog Command output
3	+12 VDC
4	-12 VDC
5	Ground
6	+5 VDC
7	Direction
8	Primary Encoder Index +
9	Coarse Home
10	Amplifier Fault
11	Amplifier Enable
12	Amp Enable/Dir. return
13	Amp Fault supply/return
14	Limit +
15	Limit -
16	Prim. Encoder Phase A+
17	Encoder Power
18	Crs Home & Limits return
19	Prim. Encoder Phase A-
20	Prim. Encoder Phase B-
21	Aux. Encoder Phase A
22	Aux. Encoder Phase B
23	Prim. Encoder Phase B+
24	Aux. Encoder Index+
25	Prim. Encoder Index-
26	Ground

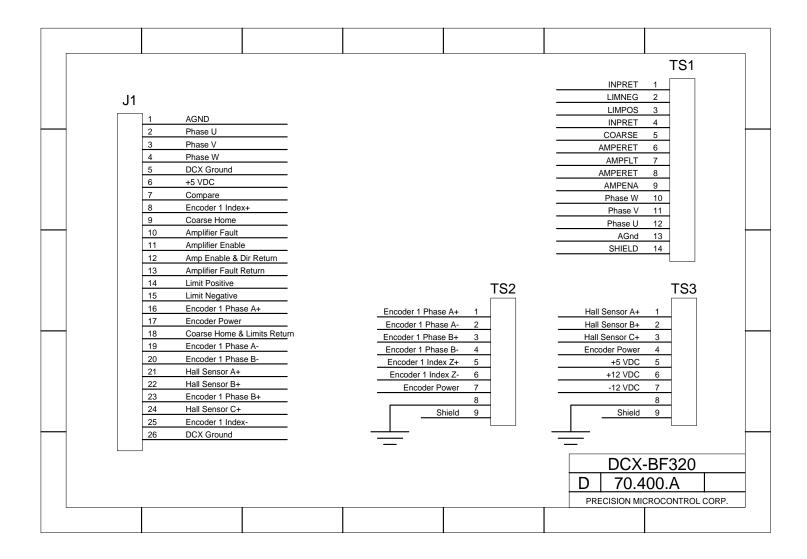
DCX-BF320-R Servo Module Breakout Assembly

DCX-BF320-R to DCX-MC320-R Connections:

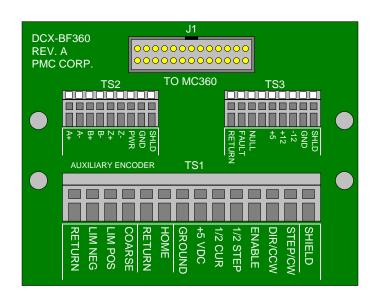
Terminal strip TS1

Pin	Description
1	Crs Home & Limits return
2	Limit -
3	Limit +
4	Crs Home & Limits return
5	Coarse Home
6	Amp Fault supply/return
7	Amplifier Fault
8	Amp Enable/Dir. return
9	Amplifier Enable
10	Phase W
11	Phase V
12	Phase U
13	Analog Ground
14	Shield

Terminal strip TS2


Pin	Description
1	Prim. Encoder Phase A+
2	Prim. Encoder Phase A-
3	Prim. Encoder Phase B+
4	Prim. Encoder Phase B-
5	Prim. Encoder Index+
6	Prim. Encoder Index-
7	Encoder Power
8	Ground
9	Shield

Terminal strip TS3


Pin	Description
1	Hall Sensor A+
2	Hall Sensor B+
3	Hall Sensor C+
4	Encoder Power
5	+5 VDC
6	+12 VDC
7	-12 VDC
8	Ground
9	Shield

DCX-BF320-R to DCX-MC320 Connections (continued):

	ector J1: From MC300
Pin	Description
1	Analog Ground
2	Phase U
3	Phase V
4	Phase W
5	Ground
6	+5 VDC
7	Compare
8	Primary Encoder Index +
9	Coarse Home
10	Amplifier Fault
11	Amplifier Enable
12	Amp Enable/Dir. return
13	Amp Fault supply/return
14	Limit +
15	Limit -
16	Prim. Encoder Phase A+
17	Encoder Power
18	Crs Home & Limits return
19	Prim. Encoder Phase A-
20	Prim. Encoder Phase B-
21	Hall Sensor A+
22	Hall Sensor B+
23	Prim. Encoder Phase B+
24	Hall Sensor C+
25	Prim. Encoder Index-
26	Ground

DCX-BF360-R Stepper Module Breakout Assembly

DCX-BF360-R to DCX-MC360-R Connections:

Terminal strip TS1

Pin	Description
1	Crs Home & Limits return
2	Limit -
3	Limit +
4	Aux Encoder Crs Home
5	Home return
6	Home
7	Ground
8	+5 VDC
9	Full/Half Current
10	Full/Half Step
11	Drive Enable
12	Direction
13	Step
14	Shield

Terminal strip TS2

Pin	Description	
1	Aux. Encoder Phase A+	
2	Aux. Encoder Phase A-	
3	Aux. Encoder Phase B+	
4	Aux. Encoder Phase B-	
5	Aux. Encoder Index+	
6	Aux. Encoder Index-	
7	Encoder Power	
8	Ground	
9	Shield	

Terminal strip TS3

Description
FNRET
Driver Fault
Null
+5 VDC
+12 VDC
-12 VDC
Ground
Shield

DCX-BF300-R to DCX-MC360 Connections (continued):

Connector J1: From MC360

Pin	Description	
1	Ground	
2	+5 VDC	
3	Direction	
4	Pulse / CCW Pulse	
5	FNRET	
6	LIMCRSRET	
7	Drive Fault	
8	Limit Positive	
9	Limit Negative	
10	Auxiliary Encoder Power	
11	Aux. Enc Coarse Home	
12	HOMRET	
13	Home	
14	Full/Half Step	
15	Full/Half Current	
16	Driver Enable	
17	Null Position	
18	Aux Encoder Phase A+	
19	Aux Encoder Phase A-	
20	Aux Encoder Phase B+	
21	Aux Encoder Phase B-	
22	Auxiliary Encoder Index+	
23	Auxiliary Encoder Index-	
24	+12 VDC	
25	-12 VDC	
26	Ground	

J1	DCX GND +5 VDC DIRN STEP			LIMCRSRET 1 Limit Negative 2 Limit Positive 3 Encoder Coarse Home 4 Home Return 5 Home 6	
5 6 7 8 9 10 11 12	FNRET LIMCRSRET Driver Fault Limit Positive Limit Negative Encoder Power Encoder Coarse Home Home Return			Driver Enable 1 DIRN 1 STEP 1	<u>}</u>
13 14 15 16 17 18 19 20 21 22 23 24 25	Home Half Step Full Current Driver Enable Null Encoder 1 Phase A+ Encoder 1 Phase A+ Encoder 1 Phase B+ Encoder 1 Phase B- Encoder 1 Index+ Encoder 1 Index+ Encoder 1 Index- +12 VDC -12 VDC	Encoder 1 Phase A+ Encoder 1 Phase A- Encoder 1 Phase B+ Encoder 1 Phase B- Encoder 1 Index Z+ Encoder 1 Index Z- Encoder Power Shield	TS2 1 2 3 4 5 6 7 8 9	Null 2 +5 VDC 5 +12 VDC 6 -12 VDC 7	2 3 4 5 7
	DCX Ground			DCX-B D 70.34	

Chapter Contents

- Introduction to PDF
- Printing a complete PDF document
- Printing selected pages of a PDF document
- Paper
- Binding
- Pricing
- Obtaining a Word 2000 version of this user manual

Printing a PDF Document

Introduction to PDF

PDF stands for Portable Document Format. It is the defacto standard for transporting electronic documents. PDF files are based on the PostScript language imaging model. This enables sharp, color-precise printing on almost all printers.

Printing a complete PDF document

It is **not recommended** that large PDF documents be printed on personal computer printers. The 'wear and tear' incurred by these units, coupled with the difficulties of two sided printing, typically resulting in degraded performance of the printer and a whole lot of wasted paper. PMC recommends that PDF document be printer by a full service print shop that uses digital (computer controlled) copy systems with paper collating/sorting capability.

Printing selected pages of a PDF document

While viewing a PDF document with Adobe Reader (or Adobe Acrobat), any page or range of pages can be printed by a personal computer printer by:

Selecting the printer icon on the tool bar Selecting **Print** from the Adobe **File** menu

Paper

The selection of the paper type to be used for printing a PDF document should be based on the target market for the document. For a user's manual with extensive graphics that is printed on both sides of a page the minimum recommended paper type is 24 pound. A heavier paper stock (26 - 30 pound) will reduce the 'bleed through' inherent with printed graphics. Typically the front and back cover pages are printed on heavy paper stock (50 to 60 pound).

Binding

Unlike the binding of a book or catalog, a user's manual distributed in as a PDF file will typically use

Printing a PDF Document

'comb' or 'coil' binding. This service is provided by most full service print shops. Coil binding is suitable for documents with no more than 100 pieces of paper (24 pound). Comb binding is acceptable for documents with as many as 300 pieces of paper (24 pound). Most print shops stock a wide variety of 'combs'. The print shop can recommend the appropriate 'comb' based on the number of pages.

Pricing

The final cost for printing and binding a PDF document is based on:

- Quantity per print run
- Number of pages
- Paper type

The price range for printing and binding a PDF document similar to this user manual will be \$5 to \$20 (printed in Black & White) in quantities of 1 to 10 pieces.

Obtaining a Word 2000 version of this user manual

This user document was written using Microsoft's Word 2000. Qualified OEM's, Distributors, and Value Added Reps (VAR's) can obtain a copy of this document for

- Editing
- Customization
- Language translation.

Please contact Precision MicroControl to obtain a Word 2000 version of this document.

Index

Α

Acceleration	
disable	66
setting	
Addressing the controller	3
Addressing the DCX-PCI300	
Analog I/O test panels	
API	
components	26
installation	24
Application program samples 60, 61, 62, 63	, 64
Application programming	,
C++	60
Delphi	
LabVIEW	
Visual Basic	61
Axis numbers	
described	33

В

BF022 mounting footprint Breakout	143
2.00.000	10
Brushless servo	
commutation	

С

C++ programming6	
Cable	
high density 1	0
Communication testing	
DCX-PCI3002	22
Commutation	
setup10)6
Connection solutions	
ribbon cable	9
Connector	
DCX-BF022141, 14	12
DCX-BF300-R15	51
DCX-BF320-R15	54
DCX-BF360-R15	57
DCX-BF3XX-H14	45
DCX-MC300-H9	92
DCX-MC300-R9	93
DCX-MC302-H 10	
DCX-MC320-H 10	
DCX-MC320-R11	
DCX-MC360-H 11	
DCX-MC360-R	20
DCX-MC362-H12	
DCX-MC400-H13	
DCX-MC400-R	
DCX-MC500-H	
DCX-MC5X0	
DCX-PCI300	
Contact Precision MicroControl	
Controller installation1	

CPU5
Current sink/source
digital output81

D

DAC output	
plotting	66
DCX Architecture	5
DCX module	
connector pin numbering	34
DCX modules	
allocation of axis numbers	
DCX system components	
DCX-System components DCX-BF022	F.0
DCX-BF300-R	
DCX-BF320-R	
DCX-BF360-R	
DCX-MC300	
DCX-MC302	7
DCX-MC320	6
DCX-MC360	6
DCX-MC362	7
DCX-MC400	
DCX-MC5X0	
DCX-PCI300	
DCX-BF3XX-H	
pinouts	147 150
DCX-MC300	147, 150
	0
features	
schematic, axis I/O	
wiring example, open collector drivers	
wiring example, opto isolators	96
DCX-MC302	
features	7
wiring example	150
wiring example, open collector drivers	104
wiring example, opto isolators	
DCX-MC320	
features	6
schematic, axis I/O	
wiring example, open collector drivers	
wiring example, opto isolators	
DCX-MC360	0
features	
schematic, axis I/O	
wiring example, open collector drivers	
wiring example, opto isolators	123, 131
DCX-MC362	
features	
schematic, axis I/O	130
wiring example	
DCX-MC400	
features	7
DCX-MC500	
features	7
DCX-PCI300	

communications testing22
documentationii
installation16
Deceleration
disable66
setting64
Default directory
MCAPI
Delphi programming62
Device drivers
Digital I/O
output, max current81
PCI300, pin out
Digital I/O test panels
Documantation
DCX-PCI300 motion controllerii

Ε

F

Firmware	
update	69
Version	68
Following error	
plotting	

Η

High density breakout	
cable	
High density PCB layout AMP 0.8mm VHDCI	22
Home switch/sensor	
voltage range	89, 98, 107, 116, 126

Ι

Installation	
DCX modules	33
DCX-BF022	53
DCX-MC300	
DCX-MC302	40
DCX-MC320	43
DCX-MC360	47
DCX-MC362	51
DCX-MC400	53
DCX-MC5X0	54
DCX-PCI300	
MCAPI	
MCAPI over a previous installation	
Software	

Windows 2000	17
Windows 98	17
Windows Me	17

J

Jumpering	
DCX-BF022	143
DCX-MC300	
DCX-MC302	
DCX-MC320	
DCX-MC360	47, 121
DCX-PCI300	

L

LabVIEW programming	63
LED's	
error	85
Limit switch/sensor	
voltage range	. 90, 99, 108, 116, 126

М

MCAPI

components	26
default directory	24
installation	
installing over a previous installation	
testing	
uninstall	
Version	
Windows NT setup	
Minimum PC requirements	
Module	
Analog I/O	7
Digital I/O	7
motion control	
Module pin numbering	
high density version	35
ribbon cable version	
Modules	5
Motherboard, motion control	5
Motion Integrator	
description	65
Mounting footprint	
BF022	143
DFVZZ	143

Ν

NT, Windows	
configuring the MCAPI19	

Operating systems 4	, 1	5
---------------------	-----	---

Ρ

0

PC requirements	
minimums	4
PCB layout	
.8mm VHDCI connectors	
PDF	
described	
document printing	161
viewing a document	161
Pin numbering	
DCX module, high density version	35
DCX module, ribbon cable	
Pin out	
DCX-BF022	
DCX-BF300-R	
DCX-BF320-R	
DCX-BF360-R	
DCX-BF3XX-H	
DCX-MC300-H	
DCX-MC300-R	
DCX-MC302-H	
DCX-MC320-H	
DCX-MC320-R	
DCX-MC360-H	
DCX-MC360-R	
DCX-MC362-H	
DCX-MC400-H	
DCX-MC400-R	
DCX-MC500-H	
DCX-MC5X0	
DCX-PCI300 gen. purpose I/O	
Plug and play	
PMC email address	
PMC web address	
Printing a PDF document	
Program samples	52, 63, 64
Programming	
tutorial	ii
Programming languages	
supported	4

R

Reporting	
firmware version	26
MCAPI version	26
Reset	
relay	86
Ribbon cable connections	. 9

s

Sales support	ii
Schematic	
MC300, axis I/O40,	94, 102
MC320, axis I/O	111
MC360, axis I/O	122
MC362, axis I/O	130
Servo systems	
tutorial	ii
Servo tuning	
tutorial	ii
Software	
default directory	24
Demo programs	71
Flash Wizard	69
Game port joystick	69
installation	24, 26
Motion Integrator	65
New Controller Wizard	19
On-line help	71
reporting firmware version	26
reporting software version	26
source code	71
Status Panel	
uninstall MCAPI	27
WinControl	68
Specifications	
DCX-MC300	76
DCX-MC302	77
DCX-MC320	78
DCX-MC360	79
DCX-MC362	80
DCX-MC400	81, 133
DCX-MC5X0	81, 139
DCX-PCI300	75
Status LED's	85

T

Technical support	ii
Testing	
DCX-PCI300 communication	22
MCAPI	22
Troubleshooting	
status LED's	85
Tutorials	
DCX servo tuning	ii
Installing a motion controller	ii
Intro to motoin control programming	ii
Intro to PMC	
Servo systems primer	ii
- ·	

U

Uninstall	
MCAPI	27
Update	
firmware	69

V

Velocity disable	
setting	
Version	
firmware	68
firmwareware	
MCAPI	68
software	
Visual Basic programming	61

W

Windows 2000
Installation
Windows 98
Installation17
Windows Me
Installation17
Windows NT
configuring the MCAPI
Windows NT setup MCAPI 19
Wiring
axes I/O, dual
axis I/O
BF3XX-H breakout
MC300, open collector drivers97
MC300, opto isolators96
MC302
MC302, open collector drivers
MC302, opto isolators
MC320, opto isolators
MC360, open collector drivers
MC360, opto isolators
MC362
servo amplifier
servo axes, dual
servo axis
stepper axes, dual
stepper axis
stepper driver
stepper driver, dual
· · · · · ·

Precision MicroControl Corporation 2075-N Corte del Nogal Carlsbad, CA 92009-1415 USA

Tel: (760) 930-0101 Fax: (760) 930-0222

www.pmccorp.com

Information: info@pmccorp.com Technical Support: support@pmccorp.com