DCX-PCI300

Modular Multi-Axis Motion Control System

Motion Controller User’s Manual
Revision 1.2b

@PMC

Fimc o, Miciplonbon Com

Precision MicroControl Corporation
2075-N Corte del Nogal
Carlsbad, CA 92009-1415 USA

Tel: (760) 930-0101
Fax: (760) 930-0222

WWW.pmCCor p.com

Information: info@pmccorp.com
Technical Support: support@pmccorp.com

LIMITED WARRANTY

All products manufactured by PRECISION MICROCONTROL CORPORATION are guaranteed to be
free from defects in material and workmanship, for a period of five years from the date of shipment.
Liability is limited to FOB Factory repair, or replacement, of the product. Other products supplied as
part of the system carry the warranty of the manufacturer.

PRECISION MICROCONTROL CORPORATION does not assume any liability for improper use or
installation or consequential damage.

(c)Copyright Precision Micro Control Corporation, 1994-2001. All rights reserved.

Information in this document is subject to change without notice.

IBM and IBM-AT are registered trademarks of International Business Machines Corporation.
Intel and is a registered trademark of Intel Corporation.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corporation.
Acrobat and Acrobat Reader are registered trademarks of Adobe Corporation.

Precision MicroControl
2075-N Corte del Nogal
Carlsbad, CA 92009-1415

Phone: (760)930-0101

Fax: (760)930-0222

World Wide Web: www.pmccorp.com

Email:
Information: info@pmccorp.com
Technical support: support@pmccorp.com
Sales: sales@pmccorp.com

Precision MicroControl

Table of Contents

Table of Contents

[0] 0o |1 1= T TP ii
T (o o [U T o o DO PP TR 3
(D109 Q1Y To) [o] o I @de) o1 fo] I = 11011 SRR 11
The Command Set - the Heart of the Motion CONIOIIET...........ciiiiiiiii e 12
The Modular Architecture of the DCX-PCIS00coiiiiiiiieiiiiiee ettt e et e e e s sebeee s snbaeeeeanes 14
Why does a Servo NEEA t0 D8 tUNEU?uuiiiiiiee e e e e e s s e e e e e e s s san e e e e e s e annrenneees 15
PC COMMUNICALION INTEITACES. ... eei i iiieie ettt sttt e e e sttt e e s sttt e e e sabb e e e e abbeeeesbbeeeessabaeeeeanbeeeeeane 19
HIgh Speed BiNAry INTEIMACEeiii ittt e s e e s et e e st e e e e e abe e e e eareas 19
YN ST O | 1Y (O @ I 1] (=5 = T =PRSS 19
(D103 QO] o1 el To] g I == L] (o SO PP PP PPPPRPTPPPPPNE 23
1o o [0 ox i o] o HU P RRPTP PO 23
LOW LEVEI DCX OPEIALIONSceiiiitiiieete e e ee ettt et e e e e e e te ettt e e e e e s aatbeeeeeeaa e s e s aabaeeeeeaaeseaaanbbeeeeeaaaaansbsbaseaaaeeesaannnes 24
To] o] g I @20] i fo) RO RPOTPPR 29
Theory 0f DCX MOLION CONIONuiiiii et e e s e e e e e e e e st eeeeeesessantrsaeetaeessaanraaeeeeeeesaasnnreneees 29
(D09 QST Ao i 2T T3 ol PP 30
IS LT T IR £ ST 1T Y/ P 35
[L@ QS (=7 o] =T g == 1] o2 S 51
(O (o= To I o To] oIS (T o] 0 1= £ PR 52
MOVING MOLOIS WIth IMOTOT IMOVET ...ttt ettt e s skt e s et e e e sbb e e e e anbbe e e e enreas 57
Defining the CharacteriStiCS Of @ IMOVEoiiiiiiii et 58
V2= (o Lol AV o 0 11 [PSSP POU PR 59
eI A (ol o 1 1 ALY, o] 1 o] o FU U PPPTPPPRTPT 60
CONSEANT VEIOCITY IMOTION ...ttt e e e e e e bttt e e e e e e e e s ab b e et eeeaeeaeaaneeeeaaaeesaannbbbeeeeaaaaaas 60
Contour MotioN (BrCS AN TINES) ...ttt e ettt e e e e e e e s e e bt et e e e e e e e s e annbbee e e e e s snnbabeeeeaaaaeas 61
[T=Tod 1 o] g1 {oa © =T T o [P SRR 71
B [0 o 13T [P EEPR 72
(=] 1T TaTo 1Y (0] (o] o TN IRy) SRR 73
[[0 T o A SRR 77
T 1 To] g @Xo) 0] o1 1= (=N g To o= Lo] = SERRS 87
L@ 11 L= Vo] = g o = PP 89
Feed Forward (Velocity, Acceleration, DECEIEIatioN)eueiiireieiiiiiie ettt 90
Save and Restore AXIS CONfIQUIATION...........uiiiiiiiiie ettt e e b e e e e e e e aneas 92
PN o] o] o= 11Te] a ISTo] (V] i o] o = J PP TU TP 95
F Dl = T A = g Tete Lo [T TP EP TP 95
BaCKIasSh COMPENSALIONcciiiiiiiitit ettt ettt e e e e e e e e bbbt e et e e e e e e aaabbbeeeeeesaaanbbeeeeaaeeeaaannnes 100
N a1 o 1= L0] (] o TP PO PPPPPPPTRTTN 101
S g ot o [gl = {o] [0)Y/ SRR 103
User Defined Filters (Notch, Low Pass, High Pass, and Band Pass)ccccccceeiiiiiiiiiieece e 104
Flash Memory FIirmWare UPAALEcooiiiiiiiiieie et e e e setee e e e e s e s st e e e e e e e e s snnte e e aeaeeseasnntneeeeeeeeannnnnes 107
Initializing and Restoring Controller CoNfIQUIationccoiiiiiiiiiiree e e e ee e e e e e s nnnes 108
Learning/TeaChIiNG POINTSccoi i r e e e e e e s s e e e e e aeessantnbeneeessanssnteeeeeeeeesannnnes 109
BUIldINg MCCL MACIO SEQUENCES.eeiiiiitiieeeittie e e rteee e e ettt e e ettt e e ekttt e e e st be e e e e aabe e e e e aabb e e e e abbeeesanbbeesasbeeeeannres 110
IMCCL MUII-TASKING -ttt e e e sk e e e ek bt e e ek b et e e e aae e e e abbe e e e e anbeeeeennrns 112
Pause and RESUME MOTION ..ottt et e e e s ettt e e e e e s s tebaeeeeaeeesannsbsaeeeeeeeessnntaeeeaaeeesaansnes 114
L Y10 W OF=T o U T PP UOTPUPPPTRR 115
POSITION COMPAIE ...ttt et e e oo oot ettt e e e e e e e e aa st be e e e e ee e e s e aan b be e e e e eaeesaannbbeaeeesaaannbbseeaaaaesaaanne 116
ReassigNINg AXIS NUMDEIS. ... ittt et e e e e e e e bbbt e et e e e e e e s aabbbeeeeaeeaaanbbeeeeaaaeesaannes 118
L= Tolo] (o Y o] 1Te] g I - | - WP PR UPSR 119
TSI 11TV IR (TS 0L PRSP 120
Sy (o] (ST (Y o) o T aTe LAY [OX O I = o T |- Uy 1SRRI 121
Tangential Knife CONLIOLuiiiiiiie e e e e e e e e s et e e e e e e s aa s aate e e e e e e e asnsteaeeeeeeeseannnsenneees 122
LI L= o [T o T @ 0 T= = 11 o] o SRRSO 124

DCX-PCI300 User's Manual i

Table of Contents

Torque Mode OULPUL CONIIOL.......oiiii ittt e e e e e e b bttt e e e e e e s s bbbbeeeaae e e e aanbbeeeaaeeeseannnenaeeas 126
Turning off Integral gain dUMNG @ MOVE........c.ooiii ittt e ettt e e e e e e s bbb e e e e e e e ennneeeeeas 128
Upgrading from a DCX-AT200 MOtioN CONLIOI SYSTEMeeiiiiiiiiiiiieiiie ettt e e e e e e e e sanees 131
DEfINING USEI UNILS.......uiiiiiiiiie ittt e e e e s et e e e e e e s e e e e e e e e s e s aa b e eeeaaeesaasetaeaeeaaeessasssbeeaeeesassssteseeeeaeesannnnns 132
1@ QLY = (od o o o FS PRSP 135
GENEIAI PUIPOSE /O ... ettt e e e e et e e e e e e s e st e e e e e eeeeeesaa s bt e aeeeeeeeaassaeeaaeeesassnraraeeeaeesnannnes 137
DCX Motherboard DIQItal 1Ouueeiiiie et e e e e e s st e e e e e e s anneateeeeeeessssstaeeeeaeeeanannnes 137
Configuring the DCX DIGQItal 1Oeiieiieei et s s e e e e e s e s ae e e e e e e s s sasbeaee e e e e snnrntenneeeeeeas 138
L0 LS Lo i g LT 1O G I o1 = L L S PUSRS 140
(D09 Q1Y [ole (V1LY o =1 (oo 1 1@ O PO PP PP T PUPPPO 142
USING the ANBIOG /Ot ekt e e e bt e e ek b et e e e ek b et e e ebb e e e e e bbe e e e e anbbeeeeantnes 144
Calibrating the MC500/MC520 +/- 10V ANAIOG OULPULS:eiiiiiiiiieiiiiee ettt ettt e e e e nibeee e e 145
(D109 QT o= Ted] o= 11 1] o IS T TP TP PPRURTTN 149
Motherboard: DCX-PCIB00..........uutee i iitite et e e sttt e e e st e e e stae e e e sstaeaeasstaeeeesstaeaeaastaeaeeansbeeeasbeeeessssaeasennsens 149
DCX-MC300 - +/- 10 Volt Analog Servo Motor Control MOAUIEcoiiiiiiiiiiii e 150
DCX-MC302 — Dual +/- 10 Volt Servo Motor Control MOAUIEcuuvieiiiiiieiiiiie e 151
DCX-MC320 - Brushless Servo Commutation Control Module............cceeviiiiiiiiiie e 152
DCX-MC360 - Stepper Motor Control MOAUIE................uuuiiiiie e e e e s e e e e e s nnnees 153
DCX-MC362 — Dual Stepper Motor Control MOAUIEcoeeiiiiiiiieiie e e e e e e naenes 154
DCX-MC400 - 16 channel Digital I/O MOAUIE..............c.uuuiiiiiee e e e e e e e e e s s e e e e e e s nnnnnes 155
DCX-MC5XO0 - ANAIOG 1/O MOUIE.......oeiiiiee ettt et e st s e e e nnes 155
Connectors, JumMpers, and SChEMALICSuuuiiiiiee et e e e s e et er e e e e e s s s sabbeaeeeaeeessansneeeeeaaeeesaansnes 159
DCX-PCI300 Motion Control MOtherDOAIUooi it e e e e e e e e e e st reee e e e e nnnnees 159
DCX-MC300 +/- 10V Servo Motor Control MOGUIEeiiiiiiiiiiiee et e e e e e 162
DCX-MC302 Dual Axis +/- 10V Servo Motor Control MOAUIEcoiiiiiiiiiiiee e 172
DCX-MC320 Brushless Servo Commutation Control ModUIe ... 180
DCX-MC360 Stepper Motor CONtrol MOAUIEcoo ittt e e e e e e e e e e e e snrere e e e e e snnnnes 189
DCX-MC362 Dual Axis Stepper Motor Control MOAUIE............cc.uviiiriiee e 199
DCX-MCA400 Digital /O MOAUIE ... ettt sta e e e sttt e e s et e e e ete e e e e nnbeeeeennees 207
DCX-MC500/510/520 ANAIOG 1/O MOUUIEevieiieeee ittt s s e e e e s s s e e e e e e e e s snnnreeeeeeeeannnnnes 211
DCX-BF022 Relay RACK INtEITACEciiiii ittt e s e e e e s e s e e e e e e s e snteeeeeaeeeannnnnes 215
DCX-BF3XX-H High Density Breakout ASSEMDBIYuviiiiiiiiiiiiiiie s e e e er e e e e e e snnnes 219
DCX-BF300-R Servo Module Breakout ASSEMDIYoooiiiiiiiiiiiee et 225
DCX-BF320-R Servo Module Breakout ASSEMDIYcooiiiiiiiiiiiee et 228
DCX-BF360-R Stepper Module Breakout ASSEMDIYc.uiiiiiiiieeiiiiie ettt 231
LI e 18]][] gToTo 11 o To TR 235
(7] gl ge] | 1= g =g o] g @0 o {2 SRR PRUTTR 245
(O o I =l ¢ (o] G @ To [T PSP OUPPPUPPPPTRN 246
Y [@ I =y (o] g @ To =PRSS 247
oLl To =T o 1 I T Yo U 41T o | PR 249
L[0T TT= 1 PSR 251
Y o] 0 1= 1 o S S 257
Power SUPPIY REQUIFEIMENTSuuiiiiiiie et ee e e s et e e e e e e e st e e e e e e s s st et eeeeeeessanteaaeeeeeeeessnstnneeeeeeesannsnes 257
D= 10 L ST 1] o o LSO PSS RO PP PP PUPPRPN 258
o 1= PSR SS 259

ii Precision MicroControl

Table of Contents

User manual revision history

Rev.
1.0 Pre

1.0
1.1

1.2

1.2b

Date
3/12/2001
4/26/2001

5/3/2001
5/14/2001
5/21/2001
5/21/2001
5/21/2001
5/24/2001
5/24/2001
5/24/2001

6/7/2001

6/7/2001
7/26/2001
8/14/2001
1/15/2002
1/15/2002
1/22/2002
1/23/2002
1/25/2002

2/7/2002

2/7/2002
2/13/2002
2/26/2002
8/16/2002

12/19/2003

Contact us at:

Description

Preliminary release

Added MCCL & Multi-Tasking descriptions

Miscellaneous edits

Added - Initializing and Restoring Controller Configuration description
BF320 pinouts

BF3XX-H pinouts and high density connectors module mapping

Flash Wizard 2.20 now supported

Updated for firmware revision 1.1a

lIR filter description

Integral gain option description

Noted that the DCX-MC360 does not currently support Capture & Compare
Initial release

Added support for Motion Integrator

Miscellaneous edits

Added Dual Axis Motion Control Modules (DCX-MC302-H, DCX-MC362-H)
Added Windows XP as a supported operating system

Updated to match firmware revision 2.0a

Added MCAPI support to Position Capture / Position Compare description
Added MCAPI support for User Define digital filters

Added MCAPI support to closed loop stepper description

Changed Homing routines

Updated to match firmware revision 2.1a

Updated to match MCAPI 3.2

Updated ribbon cable connector manufacturer part number

Added J5 connector label to DCX-PCI300 motherboard drawing

Precision MicroControl
2075-N Corte del Nogal
Carlsbad, CA 92009-1415

Phone: (760)930-0101

Fax: (760)930-0222

World Wide Web: www.pmccorp.com

Email:
Information: info@pmccorp.com
Technical support: support@pmccorp.com
Sales: sales@pmccorp.com

DCX-PCI300 User’'s Manual

Table of Contents

iv Precision MicroControl

Prologue

The documentation set for the DCX-PCI300 is divided into four volumes. The titles of each of the
individual volumes are:

DCX-PCI300 Introduction and Installation Guide

DCX-PCI300 User’s Manual

Motion Control Application Programming Interface (MCAPI) Reference Manual
Motion Control Command Language (MCCL) Reference Manual

All four volumes of the documentation set are available on PMC'’s MotionCD. In addition to PDF
versions of the DCX-PCI300 documentation set the MotionCD includes:

e Tutorials (PowerPoint presentations)
An Introduction to PMC Motion Control
Installing a PMC Motion Controller (Does not Address PCI bus controllers)
Introduction to Motion Control Programming with the Motion Control API
Servo Systems Primer
DCX Servo Tuning

o PMC AppNOTES - detailed descriptions of specific motion control applications
e PMC TechNOTES - one page technical support documents

e PMC Product catalogs and brochures

Precision MicroControl

Chapter

1

Introduction

This document describes the use of the DCX-PCI300 Modular Multi-Axis Motion Control System. For

controller and software installation information please refer to the DCX-PCI300 Introduction and
Installation Guide.

The DCX-PCI300 is an Intel compatible PC computer based servo motor, stepper motor, and 1/O
controller.

0 0O

Figure 1: The high density connector version (DCX-PCI300-H) of the DCX-PCI300 Motion Controller

The DCX-PCI 300 is a true PCI ‘plug and play’ card. When the PC is turned on, the DCX-PCI300 is
dynamically addressed into the memory map of the PC. The PC communicates to the motion
controller via dual ported memory on the DCX-PCI300. By communicating via dual ported memory the
PC is able to issue commands (move a motor, change the velocity, etc.) to the controller, and retrieve
data from the controller (report to position of an axis, report the state of a digital input, etc.) without
interrupting the basic operations of the controller

But a hardware based motion control card provides only one half of the overall motion control solution.
State of the art motion control systems typically require sophisticated multi-threaded application
programs and eye catching operator interfaces. PMC’s Motion Control Application Programming

DCX-PCI300 User’'s Manual 3

Introduction

Interface (MCAPI) provides the machine designer with device drivers and a powerful function library

for Windows XP/2000/NT/Me/98 based applications.

‘ Dhost T A ek O L Pkt] Vo ¥ Bl 1y sl

L

Im Tope ey

- T g o [e S

=] _w= |

Figure 2: PMC's Windows Motion Control Panel

MCEnableAxis(HCTRLR hCtlr, Word xAxis, short int bState);
MCMoveRelative(HCTRLR hCtlr, Word xAxis, double Distance);
MCIsStopped(HCTRLR hCtlr, Word xAxis, double Timeout);

Figure 3: Function Library examples

The MCAPI supports today’s popular programming environments including:

C/C++
Visual Basic
Delphi
LabVIEW

The DCX-PCI300 Motion Controller can be installed in most any Windows PC computer. It executes
motion functions independent of the host, so other than the minimum requirements for the selected
operating environment (XP/2000/NT/ME/98), the DCX-PCI300 does not require or use any
additional PC resources (CPU speed, PC memory, hard disk space, etc...). All documentation,
tutorials, and software (drivers, function library, diagnostics and utilities) are available on PMC'’s

MotionCD.
\ PC computer
PMC's Motion CD
® Device drivers
@ Integration software tools
® Sample programs
@ User manuals
¥ o . ‘
DCX Motion Powerpoint tutorials
Control System
4

Precision MicroControl

Introduction

The term DCX refers to a system consisting of from 1 to 9 circuit boards assembled together to form a
motion control assembly. The platform for a main component of the DCX system is the DCX-PCI300
"motherboard”.

Figure 4: DCX-PCI300-H Motion Control Motherboard

On to this platform the user installs one or more DCX modules, which are two inch square daughter
cards. These modules provide the low level motion control processing and control signals (+/- 10V
command, Step/Direction, Limit +, Limit -, Amp/Drive Enable, etc.). For a detailed description of the
capabilities and part numbers of the components that make up the DCX-PCI300 Modular Motion
Control System please refer to Chapters 1 and 5 of the DCX-PCI300 Introduction and Installation
Guide.

DCX-PCI300 User’'s Manual S

Introduction

DCX Motion Control Modules

DCX-MC300 Servo Motor Control Module
DCX-MC300-H (for high density cabling)
DCX-MC300-R (for ribbon cable connections)

Supported motor type: DC Brushless, Brush, Hydraulic Servo Valves, Pneumatic Servo Valves

Command output: +/- 10 volt, 16 bit analog for use with servo amplifier

110
Inputs (opto isolated)- Encoder Coarse Home, Limit +, and Limit -, Amplifier Fault
Output (opto isolated) — Amplifier Enable
Feedback: Quadrature Incremental Encoder Interface, 10 MHz
Primary - Quadrature Incremental Encoder, 10MHz, Single ended (A, B, Z) or
Differential (A+, A-, B+, B-, Z+, Z-)
Auxiliary - Quadrature Incremental Encoder. 10 MHz. Sinale ended (A. B. Z+., Z-)

DCX-MC320 AC Brushless Servo Motor Control Module with on-board Sine
Commutation

DCX-MC320-H (for high density cabling)

DCX-MC320-R (for ribbon cable connections)

Supported motor type: Brushless AC Servo, Linear Motor
Command output: dual +/- 10 volt, 16 bit analog for use with servo amplifier

I/0
Inputs (opto isolated) - Encoder Coarse Home, Limit +, and Limit -, Amplifier Fault
Output (opto isolated) — Amplifier Enable
Feedback:
Primary - Quadrature Incremental Encoder, 10 MHz, Single ended (A, B, Z) or
Differential (A+, A-, B+, B-, Z+, Z-)
Auxiliary — Hall Effect Sensors (A, B, C)

DCX-MC360 Stepper Motor Control Module
DCX-MC300-H (for high density cabling)
DCX-MC300-R (for ribbon cable connections)

Supported motor type: Open loop stepper, Closed loop stepper, Step/Dir controlled
servo

Command output: Step/Direction or CW/CCW (software programmable), open
collector drivers (+5 to +30 volts @ 125 ma)

I/0
Inputs (opto isolated)- Home, Limit +, and Limit -, Null
Outputs (open collector driver) — Drive Enable, Half/Full step, Full/Half current
Feedback (optional):
Quadrature Incremental Encoder, 10MHz, Single ended (A, B, Z) or
Differential (A+, A-, B+, B-, Z+, Z-)

6 Precision MicroControl

Introduction

DCX Motion Control Modules (continued)

DCX-MC302-H Dual Servo Motor Control Module
Supported motor type: DC Brushless, Brush, Hydraulic Servo Valves, Pneumatic Servo Valves

Command output: Dual +/- 10 volt, 16 bit analog for use with servo amplifier

I/0
Inputs (opto isolated)- Dual Encoder Coarse Home, Dual Limit +, Dual Limit -, Dual Amp. Fault
Output (opto isolated) — Dual Amplifier Enable
Feedback: Dual Quadrature Incremental Encoder Interface, 10 MHz
Sinnle ended (A R 7) or Differential (A+ A- R+ R- 7+ 7-)

DCX-MC362-H Dual Stepper Motor Control Module
Supported motor type: Open loop stepper or Step/Dir controlled servo

Command output: Dual Step/Direction or CW/CCW (software programmable), open
collector drivers (+5 to +30 volts @ 125 ma)

I/0
Inputs (opto isolated)- Dual Home, Dual Limit +, Dual Limit -, Dual Drive Fault

Ninitniite (nnen enllactar drivvar) — Nnial Nrive FEnahle Nnial Eoll/Half ciirrent

DCX General Purpose I/0O Modules

DCX-MC400 - 16 Channel Digital I/O Expansion module
DCX-MC400-H (for high density cabling)
DCX-MC400-R (for ribbon cable connections)

Each channel is individually programmable as either an input or output
TTL level (0 — 5 volt, 2 ma sink/source)

DCX-MC500 — 4 Channel Analog I/O Expansion module
MC500-H — 4 input channels & 4 output channels (high density cabling)
MC510-H — 4 input channels only (high density cabling)
MC520-H — 4 output channels only (high density cabling)

9
Q
X
<
Q
a
=}
=)

MC500-R — 4 input channels & 4 output channels (ribbon cable connections)
MC510-H — 4 input channels only (ribbon cable connections)
MC520-H — 4 output channels only (ribbon cable connections)

Inputs — 4 channels, 0 — 5 volts, 12 bit
Outputs — 4 channels, 0 — 5 volts and/or —10 - +10 volts, 12 bit

DCX-PCI300 User's Manual 7

Introduction

DCX Motion Control Breakout Assemblies

High Density Connection Breakouts

Rev.A DCX-BF3XX-R — DIN Rail mounted breakout
FHE CORE: . assembly for all -H DCX Modules. Each unit
DCX-BF3XX-H breakouts out all signals for 2

DCX module locations.

23 45 6 7 8 9101112131415 1617 23 4567 8 91011121314151617]

18 19 20 2122 23 24 25 26 27 28 2930 31 32 3334 18 19 20 2122 23 24 25 26 27 28 2930 31 32 33 34

Ribbon Cable Connection Breakouts

DCX-BF300-R — DIN Rail mounted breakout assembly for DCX Servo
Motor Control Module (DCX-MC300-R).

DCX-BF320-R — DIN Rail mounted breakout assembly for DCX AC
Brushless Servo Motor Control Module (DCX-MC320-R).

DCX-BF360-R — DIN Rail mounted breakout assembly for DCX Stepper
Motor Control Module (DCX-MC360-R).

8 Precision MicroControl

Introduction

DCX-PCI300 User's Manual 9

DCX Motion Control Primer

Chapter Contents

Typical motion control system
The Command Set is the Heart of the Motion Controller
The Modular Architecture of the DCX-PCI300

Why does a servo need to be tuned?

10

Precision MicroControl

Chapter

2

DCX Motion Control Primer

First things first, what is motion control?
Using a digital processor to coordinate the movement of mechanical systems

In years past the typical motion control system was comprised of :
e A PLC (Programmable Logic Controller) which served as the digital processor
A user interface from which the user could program and monitor the actions of the PLC
One or more motors, either servo or stepper
An amplifier/driver for each motor — provides the drive current for the motor windings
A feedback device is required to ‘close the loop’ if servo motors are being controlled
End of travel (or Limit switches) sensors are used for linear motion axes
The load — here a platform (or stage) is mounted on bearings. A lead screw is coupled to the
motor shaft. When the motor rotates, the stage moves along the lead screw.

PLC

Motor - servo or stepper

Lead screw

Negative Limit Positive Limit Encgqder (servo only)
sensor sensor

CRT & keyboard Servo amplifier

Figure 5: Traditional PLC motion control system

DCX-PCI300 User’'s Manual 11

DCX Motion Control Primer

Today'’s state of the art motion control systems require sophisticated GUI's (Graphical User Interface)
and sophisticated multi-threaded application programs to allow the machine operator to communicate
with the machine. The GUI is typically implemented using high level programming languages (C/C++)
designed to run on today’s powerful Windows PC’s.

The PLC motion control system (figure 5), which was programmed in cryptic and proprietary
languages, is replaced by a PC computer and a motion control card with Windows device drivers. The
machine designer is offered the freedom of multiple operating systems (Windows XP/2000, NT, 98 &
95) and programming environments (C/C++, Visual Basic, Delphi, & LabVIEW).

h’_\ PC computer

Motion Control card

I Lead screw

rgative Limit Positive Limit Encqder (servo only)

Motor - servo or stepper

sensor sensor

Figure 6: Typical PC based motion control system

The Command Set - the Heart of the Motion Controller

The motion controller is much more than an I/O card with DAC outputs and encoder inputs. The
primary task of a PC based motion controller is to off load control and monitoring duties from the PC
processor. While most of today’s motion controllers have CPU’s powerful enough to control the
missile defense systems of a small nation, without a powerful and efficient low level command set the
motion controller would be nothing more than a very expensive, very dumb 1/O card. Everything that a
motion control card does (and for that matter everything that it does not do) is dependent on the
command set. The command set of a state of the art motion controller should include:

12 Precision MicroControl

DCX Motion Control Primer

e Moving one, some, or all motors simultaneously

e Calculating the trajectories and executing synchronized motion (linear interpolation, circular
contouring, helical motion)
Setting trajectory parameters (maximum velocity, acceleration, deceleration)

e Setting PID filter parameters (proportional gain, derivative gain, derivative sampling period,
integral gain, integral limit, allowable following error

e Indicating when a move is complete

e Reporting the status of an axis, current position of an axis, target of a move, current following
error

e Electronic gearing of axes
Homing an axis

The command set for the DCX-PCI300 is called MCCL (Motion Control Command Language) and it
supports well over 200 operations. For a complete listing and description of the DCX-PCI300
command set please refer to the DCX-PCI300 MCCL Reference Manual.

The primary market for the DCX-PCI300 is multi-threaded Windows NT applications programmed in
C/C++. In these types of environments the application program issues calls to PMC’s motion control
function library (MCAPI). The MCAPI converts the function call into the equivalent MCCL
command/commands. The device driver then handles passing the MCCL command code to the
motion control card.

For the non programmer, or when it is necessary to determine if unexpected machine behavior is the
fault of hardware or software, The MCAPI includes a utility that allows the user to issue MCCL
commands directly to the DCX-PCI300. From the keyboard MCCL commands can be entered one
character at a time and executed when the user enters a carriage return. From the File Menu the user
can download a MCCL text file to the controller.

DO U cn Command Fbe 0@
= Lok jr | ‘i PMClnie ﬂﬂﬂ]g”ﬁﬂ

| iscoadings

Flopane: JWCCLFie o2 Lpen |
Fleaof pype: [D0CAT200 Files . 02] = Carcet_|

Figure 7: WinControl allows the user to issue MCCL commands directly to
the DCX-PCI300

DCX-PCI300 User's Manual 13

DCX Motion Control Primer

The Modular Architecture of the DCX-PCI300

The DCX-PCI300 is a modular multi-axis motion control card. The architecture of the DCX controller is based on the concept of Distributed
Control. Unlike control cards that use a single DSP for communication, motion control, and event sequencing, the DCX controller distributes the
processing load, resulting in more deterministic behavior. Here is a diagram detailing the modular DCX-PCI300 and associated components.

eneral Purpose Digital I/O
(PLC type event sequencing)

DCX-MC300 Servo Control Module

Axis 110 1/O Buffering

(Limits, Home, Amp Enable) (opto isolated)

PID Fliter
Encoder Decode

Command Processor Trajectory Generator
(implements the motion control (Synchronizes operations of, and
command set MCCL calculates the profiles for, all axes

PCI Interface

+5V
DAC (+/- 10v)

Servo
Amplifier

Windows Device Driver

I—1

Application Programming
Interface

PC Computer

Figure 8: DCX-PCI block diagram

A 192MHz MIPS processor on the DCX motherboard handles PC bus communication and trajectory planning. Low level motion control (PID filter &

encoder decode) and dedicated I/O for each axis are handled on the DCX motion control module by a 40 MHz DSP.

14 Precision MicroControl

DCX Motion Control Primer

Why does a servo need to be tuned?

A servo is a closed loop system, which the dictionary describes as:

An automatic system in which the output is constantly compared with the input through
some form of feedback. The error (or difference) between the two quantities can be used
to bring about the desired amount of control.

In typical servo systems:

e The output is a +/- 10 volt (torque or velocity) command that is applied as an input to a servo
amplifier

e The input described in the dictionary definition comes from an encoder. An encoder is an opto
electric device that generates two pulse trains that are phase shifted by 90 degrees

e In order for a servo system to perform properly, the difference (error) between the input and
output is multiplied by a set of gain values which results in a new output, bringing about the
desired amount of control

Servo tuning is the process in which the gain values are determined. From one servo axis to another
the gain values will change depending on differences between the motion controller, motor, encoder,
and load. When a user attempts to move an axis without first tuning the servo (determining the gain
values) the motion controller will not be able to calculate the appropriate output command to apply to
the servo amplifier. One of the two following undesirable results will probably be observed:

e The axis will not move at all
¢ The axis moves but does not stop at the target, oscillation will probably be present

Imagine a seesaw, with the +/- 10 volt torque/velocity command on one side and the response of the
motor/load (feedback from an encoder) on the other side.

DCX-PCI300 User's Manual 15

DCX Motion Control Primer

Until the servo is tuned, the system is effectively out of balance. Only after a servo has been tuned

can the controller calculate the appropriate torque/velocity command output for a given user defined
motion.

To tune a servo axis use the Servo Tuning program included with PMC’s Motion Integrator software.
For assistance with servo tuning refer to the Motion Control chapter of this manual or view the
PowerPoint tutorials Servo Systems Primer and DCX-AT300 Servo Tuning Tutorial on PMC’s
MotionCD.

[Servo Tuming
fle Setup Jest Help

we | L

It

@ _On | _of |
Trajectory Genesator

Q | o |
Tesi

Step Plus I | Step Wirus :l

Cear | Zern |

PH 1 o H

kL e e

-0 -9, - 140
s . —_

- = -

a1 a1 “imi

Figure 9: The Servo Tuning program is used to select PID gain values

16 Precision MicroControl

DCX Motion Control Primer

DCX-PCI300 User's Manual 17

PC Communication Interfaces

Chapter Contents

e High Speed Binary Interface

e ASCIlI MCCL Interface

18 Precision MicroControl

Chapter

3

PC Communication Interfaces

High Speed Binary interface

For PC based application programs the DCX controller provides a high speed binary interface for
communicating with the PC via the PCI bus. This interface is implemented using dual ported memory
and is mapped into the PC by the BIOS during ‘Plug and Play’ bus enumeration. PMC’s MCAPI
provides Windows device drivers and a high level function library for C++, Visual Basic, Delphi, and
LabVIEW applications programming. For additional information about available software and
integration tools please refer to the Programming, Software, and Utilities chapter of the
Introduction and Installation Guide.

ASCII MCCL Interface

The DCX-PCI300 also provides a PCI ASCIl communication interface. When using the WinControl
utility the ASCII interface allows the user to communicate directly with the DCX in its native language,
MCCL (Motion Control Command Language). The WinControl utility is installed as a component of the
MCAPI (Motion Control Application Programming Interface), which is available from PMC’s Motion
CD or web site www.pmccorp.com

=
winControl.exe

DCX-PCI300 User's Manual 19

PC Communication Interfaces

In addition to allowing the user to issue MCCL commands from the keyboard one character at a time,
the WinControl utility supports downloading a MCCL text file to the controller. Simply store the
command lines in a file using a text editor. Use WinControl’s File menu option to open the file. Each
command line will be executed as it is displayed. Documenting commands can be added to the MCCL
program by preceding the comment by a semi colon.

20 Precision MicroControl

PC Communication Interfaces

DCX-PCI300 User’'s Manual

21

DCX Operation Basics

Chapter Contents

e [ntroduction

e Low Level DCX Operations

22

Precision MicroControl

DCX Operation Basics

Introduction

At its lowest level the operation of the DCX is similar to a microprocessor, it has a predefined
instruction set of operations that it can perform. This instruction set, known as MCCL (Motion Control
Command Language), consists of over 200 operations that include motion, setup, conditional
(If/Then), mathematical, and I/O operations.

However the typical PC based application will never use these low level commands. Instead the
programmer will call high level functions (C++, Visual Basic, Delphi, or LabVIEW), which are passed
to the DCX via the MCAPI device driver. A example MCAPI function description is:

Move to relative position

This command generates a motion of relative distance of n in the specified direction. A motor number
must be specified and that motor must be in the on state for any motion to occur. If the motor is in the
off state, only its internal target position will be changed.

compatibility: MC300, MC320, M3260

see also: Move to absolute position

C++ Function: void MCMoveRelative(HCTRLR hCtlr, WORD wAxis, double Distance);

Delphi Function: procedure MCMoveRelative(hCtlr: HCTRLR; wAxis: Word; Distance: Double);

VB Function: Sub MCMoveRelative (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal distance As Double)

MCCL command: aMRn a=Axisnumber n=integer or real
EHE[:U[E [T]

Handle In Eﬂ-ﬁ Handle Out
LabVIEW VI: Axiz In [1] - Rl L Axis Out
Distance [0.0] —

MCHoveRelative.vi

DCX-PCI300 User’'s Manual 23

DCX Operation Basics

Throughout this manual, when a DCX operation is referenced, the MCAPI command function will be
identified by bold, italicized text. The following description differentiates between an absolute and
relative move.

Point to Point motion is commanded using one of two DCX functions. To
move an axis to an absolute position use the function
MCMoveAbsolute. To move an axis a relative distance from the current
position use the function MCMoveRelative.

Low Level DCX Operations

The WinControl utility allows the user to communicate with the DCX in the native language (MCCL) of
the controller. This utility communicates with the controller via the PCI ASCII interface. All MCCL
commands are described in detail in the DCX-PCI300 MCCL Reference Manual.

Note — For information on installing the MCAPI and the DCX-PCI300
ﬂ please refer to the DCX-PCI300 Introduction and Installation Guide.

MCCL commands are two character alphanumeric mnemonics built with two key characters from the
description of the operation (eg. "MR" for Move Relative). When the command is received by the
DCX (followed by a carriage return) it will be executed. The following graphic shows the result of
executing the VE command. This command causes the DCX to report firmware version and the
amount of installed memory.

| WnConkrol:2 . =101 %]
Fis Edit Halp

0O | = P e

All axis related MCCL commands will be preceded by an axis specifier, identifying to which axis the
operation is intended. The following graphic shows the result of issuing the Tell Position (aTP)
command to axis number one.

24 Precision MicroControl

DCX Operation Basics

[7] winControl32 =]

File Edit Help

D& % Bl e

Note that each character typed at the keyboard should be echoed to your display. If you enter an
illegal character or an illegal series of valid characters, the DCX will echo a question mark character,
followed by an error code. The MCCL Error Code listing can be found in the Chapter 11 of this
manual. On receiving this response, you should re-enter the entire command/command string. If you
make a mistake in typing, the backspace can be used to correct it, the DCX will not begin to execute a
command until a carriage return is received.

Once you are satisfied that the communication link is correctly conveying your commands and
responses, you are ready to check the motor interface. When the DCX is powered up or reset, each
motor control module is automatically set to the "motor off" state. In this state, there should be no
drive current to the motors. For servos it is possible for a small offset voltage to be present. This is
usually too small to cause any motion, but some systems have so little friction or such high amplifier
gain, that a few millivolts can cause them to drift in an objectionable manner. If this is the case, the
"null" voltage can be minimized by adjusting the offset adjustment potentiometer on the respective
servo control module.

Before a motor can be successfully commanded to move certain parameters must be set by issuing
commands to the DCX. These include; PID filter gains (servo only), trajectory parameters (maximum
velocity, acceleration, and deceleration), allowable following error (servo only), configuring motion
limits (hard and soft).

At this point the user should refer to the Motion Control chapter sections titled Theory of Operation
— Motion Control, Servo Operation and Stepper Operation. There the user will find more specific
information for each type of motor, including which parameters must be set before a motor should be
turned on and how to check the status of the axis.

Assuming that all of the required motor parameters have been defined, the axis is enabled with the
Motor oN (aMN) command. Parameter ‘a’ of the Motor oN command allows the user to turn on a
specific axes or all axes. To enable all, enter the Motor oN command with parameter ‘a’ = 0. To
enable a single axis issue the Motor oN command where ‘a’ = the axis number to be enabled.

After turning a particular axis on, it should hold steady at one position without moving. The Tell Target
(aTT) and Tell Position (aTP) commands should report the same number. There are several
commands that are used to begin motion, including Move Absolute (aMAn) and Move Relative
(aMRn). To move axis 2 by 1000 encoder counts, enter 2MR1000 and a carriage return. If the axis is
in the "Motor oN" state, it should move in the direction defined as positive for that axis. To move back

DCX-PCI300 User's Manual 25

DCX Operation Basics

to the previous position enter 2MR-1000 and a carriage return.

With the DCX controller, it is possible to group together several commands. This is not only useful for
defining a complex motion that can be repeated by a single keystroke, but is also useful for
synchronizing multiple motions. To group commands together, simply place a comma between each
command, pressing the return key only after the last command.

A repeat cycle can be set up with the following compound command:
2MR1000,WS0.5,MR-1000,WS0.5,RP6 <return>

This command string will cause axis 2 to move from position 1000 to position —1000 7 times. The
RePeat (RPn) command at the end causes the previous command to be repeated 6 additional times.
The Wait for Stop (aWSn) commands are required so that the motion will be completed (trajectory
complete) before the return motion is started. The number 0.5 following the WS command specifies
the number of seconds to wait after the axis has ceased motion to allow some time for the mechanical
components to come to rest and reduce the stresses on them that could occur if the motion were
reversed instantaneously. Notice that the axis number need be specified only once on a given
command line.

A more complex cycle could be set up involving multiple axes. In this case, the axis that a command
acts on is assumed to be the last one specified in the command string. Whenever a new command
string is entered, the axis is assumed to be 0 (all) until one is specified.

Entering the following command:
2MR1000, 3MR-500,0WS0.3,2MR1000, 3MR500,0WS0.3,RP4 <return>

will cause axis 2 to move in the positive direction and axis 3 to move in the negative direction. When
both axes have stopped moving, the WS command will cause a 0.3 second delay after which the
remainder of the command line will be executed.

After going through this complex motion 5 times, it can be repeated another 5 times by simply
entering a return character. All command strings are retained by the controller until some character
other than a return is entered. This comes in handy for observing the position display during a move.
If you enter:

1MR1000 <return>
1TP <return>
(return)

(return)

(return)

(return)

The DCX will respond with a succession of numbers indicating the position of the axis at that time.
Many terminals have an "auto-repeat" feature that allows you to track the position of the axis by
simply holding down the return key.

Another way to monitor the progress of a movement is to use the Repeat command without a value. If
you enter:

1MR10000 <return>
1TP,RP <return>

The position will be displayed continuously. These position reports will continue until stopped by the
operator pressing the Escape key.

26 Precision MicroControl

DCX Operation Basics

While the DCX is executing commands, it will ignore all alphanumeric keys that are pressed. The user
can abort a currently executing command or string by pressing the escape key. If the user wishes only
to pause the execution of commands, the user should press the space bar. In order to restart
command execution press the space bar again. If after pausing command execution, the user decides
to abort execution, this can be done by pressing the escape key.

E[WinControl32
File Edit Help

O & & B2 -l e

= md100,in5,mj101,no,in6,mj102,no,jr6 ;monitor digital inputs5 & 6

= md101,1mr1.5,1ws. 1, mj100 ;if channel 5 is on move relative 1.5"
= md102,1mr-1.5,1ws.1,mj100 ;if channel 6 is on move relative -1.5"
=gt100 ;hegin sequence as a background task
=1rl0,ar100 ;store task identifier in register 100

-
= in2,et@100,no0,jr-3 sterminate the background task if digital
sinput #2 is on

DCX-PCI300 User's Manual 27

Motion Control

Chapter Contents

e Theory of DCX Motion Control

o DCX Servo Basics

e Tuning the Servo

o DCX Stepper Basics

e Closed Loop Steppers

¢ Moving Motors with PMC demo’s

e Defining the Characteristics of a Move
e Velocity Profiles

e Point to Point Motion

e Constant Velocity Motion

e Contour Motion (arcs and lines)

e Electronic Gearing

e Jogging

e Defining Motion Limits

e Homing Axes

¢ Motion Complete Indicators

e Onthe Fly Changes

o Feed Forward (Velocity, Acceleration, Deceleration)

e Save and Restore Axis Configuration

28 Precision MicroControl

Motion Control

This chapter describes the basic building blocks of DCX motion control. In general, the modes of
motion described in this chapter are common to both servo and stepper motors, with specific
differences detailed in the text.

Theory of DCX Motion Control

The DCX motherboard (DCX-PCI300) uses a 192 MHz 32 bit MIPS processor that is programmed to
perform motion control tasks. Specially designed servo or stepper motor control modules are installed
on the motherboard to configure it for controlling from 1 to 8 servos or stepper motors. Each DCX
motion control module (DCX-MC300, DCX-MC320, DCX-MC360) installed on the motherboard
provides all the circuitry required to control one motor and its associated axis I/O (home, limits,
amp/driver enable, fault, etc...).

The motherboard processor implements a trajectory generator (trapezoidal, S curve, and parabolic)
that calculates the desired position and velocity of each servo or stepper motor at fixed time intervals.
These values are sent to the respective servo (DCX-MC300 or DCX-MC320) or stepper module
(DCX-MC360) installed on the DCX motherboard. Each servo or stepper module has a 40 MHz DSP
which is programmed to provide the appropriate control of the servo or stepper motor interfaced to the
module.

Servo Motor Control

The DCX servo modules use a velocity feed-forward and position feedback loop to control the servo.
The DCX-MC300 uses a 16 bit, +/-10 volt analog output signal to an external servo amplifier. The
DCX-MC320 uses two 16 bit, +/- 10 volt analog outputs to provide the phase A and B commutation
commands allowing a Sine drive amplifier to control brushless servo’s and linear motors.

Incremental encoder inputs to these modules provide feedback for closing the position loop. In
operation, the servo module subtracts the actual position (feedback position) from the desired position
(trajectory generator position), and the resulting position error is processed by the module’s digital
filter. The output of the digital filter and the velocity feed-forward are combined to set the module’s

DCX-PCI300 User's Manual 29

Motion Control

output level. The external amplifier uses the command signal to drive the motor to the desired
position.

The DCX modules DSP monitors the motor's position via an incremental encoder. The two quadrature
signals from the encoder are used to keep track of the absolute position of the motor. Each time a
logic transition occurs at one of the quadrature inputs, the DCX position counter is incremented or
decremented accordingly. This provides four times the resolution over the number of lines provided by
the encoder. The encoder interface is buffered by a differential line receiver on the DCX module.
Jumpers on the DCX module allow the user to configure the differential receiver for use with single
ended or differential encoder.

A "Proportional Integral Derivative" (PID) digital filter on the module is used to compensate the servo
feedback loop. The motor is held at the desired position by applying a restoring force to the motor that
is proportional to the position error, plus the integral of the error, plus the derivative of the error. The
following discrete-time equation illustrates the control performed by the servo controller:

u(n) = Kp*E(n) + Ki sum E(n) + Kd[E(n") - E(n' - 1)]

where u(n) is the module's output signal output at sample time n, E(n) is the position error at sample
time n, n' indicates sampling at the derivative sampling rate, and kp, ki, and kd are the discrete-time
filter parameters loaded by the users. The first term, the proportional term, provides a restoring force
proportional to the position error. The second term, the integration term, provides a restoring force
that grows with time. The third term, the derivative term, provides a force proportional to the rate of
change of position error. It provides damping in the feedback loop. The sampling interval associated
with the derivative term is user-selectable; this capability enables the servo controller to control a
wider range of inertial loads.

Stepper Motor Control

The MC360 stepper module contains a pulse generator that is used to provide step and direction (or
clockwise/counter clockwise) signals to an external stepper motor driver. In addition to auto calibration
on power up, the module has an internal feedback loop which accurately maintains the output pulse
frequency. The auxiliary encoder inputs of the module can be connected to an optional incremental
encoder for motor position verification or closed loop stepper control.

DCX Servo Basics

The basic steps required to implement closed loop servo motion are:

Proper encoder operation

Setting the allowable following error
Verify proper motor/encoder phasing
Tuning the servo (PID)

Quadrature Incremental Encoder

All closed loop servo systems require position or velocity feedback. These feedback devices output
signals that relay position and/or velocity with which motion controller ‘closes the loop’. The most
common feedback device used with intelligent motion control systems is a quadrature incremental
encoder.

30 Precision MicroControl

Motion Control

A quadrature incremental encoder is an opto electric feedback device. A light source and photo
sensor pickup are used to detect markings on a glass ‘scale’. The more markings on the glass scale,
the higher the resolution of the encoder. Circuitry connected to the photo sensor generates two wave
forms (Phase A and Phase B), which have a phase difference of 90 degrees. This phase difference is
used by the encoder input circuitry of the DCX to:

Determine the direction of rotation (positive or negative) of the encoder/motor
Enhance the resolution of the encoder by a factor of 4.

For example, a 500 line quadrature incremental encoder will have 2000 encoder counts per full
rotation. The 90 degree phase difference is also used to determine the direction of motion of the
encoder. If phase A comes before phase B, the DCX will determine that motion is in the positive or
clockwise direction. If phase B comes before phase A, the DCX will determine that motion is in the
negative or counter-clockwise direction.

Some quadrature encoders include an additional ‘mark’ on the glass scale, which is used to generate
an index pulse. This signal, which ‘goes active’ once per rotation, is used by the motion controller to
accurately home (re-define the position of an axis) the axis. Please refer to the Homing Axes section
of this chapter.

There are few options that are typically associated with quadrature encoders.
Output type: Differential or single ended
Differential outputs (A+, A-, B+, B-) are recommended for superior noise immunity but the DCX

supports either output type

Index or no Index (used for homing the axis)
Differential Index (Z+, Z-) is recommended but the DCX supports single ended Z+ or Z-

+5 volt supply required or +12 volt supply required.
A +5 volt encoder is recommended but the DCX also supports a +12V encoder

Glass scale

I
Phase A
q Phase B
oh ﬂ Index
Photo ase
LED sensor generation
circuitry

DCX-PCI300 User's Manual 31

Motion Control

Encoder Checkout
The Motion Integrator program provides easy to use tools for testing the operation of an encoder.. The
user has the option of using the Connect Encoder Wizard or the Motion System Setup Test Panel.

Test panel does not allow the user to verify the operation of the encoder

ﬂ Note — Unlike the Connect Encoder Wizard, the Motion System Setup
Index.

Canreoi Encades 'wizend 7 Motion System Setup. Connect and Test Encoders

Ercocder Tt Foksts srcodie: shal s fress degress File Help
bl drschon

—AxiE 1 Sefvo———————— ~Axiz 2 Servo
O Home (O Amp Fault O Home (O &mp Fault
Q' Prseod Encoder Tast O Limit + & Errar O Limit + &) Errar
@ Limit - & Phaszs O Limit - & Fhizss

_|iatch |Enable _|Latch |Enable

I fowE | I Mawe |

Manually rotate the motor/encoder in either direction, the position reported should increment or
decrement accordingly. Refer to the Troubleshooting guide if the DCX does not report a change of
position.

Setting the Allowable Following Error

Following error is the difference between where an axis ‘is’ and where the controller has ‘calculated
it should be’. All servo systems require ‘some’ position error to generate motion. When a servo axis
is turned on, if a position error exists, the PID algorithm will cause a command voltage to be applied to
the servo to correct the error.

While an axis is executing a move, the following error will typically be between 20 and 1000 encoder
counts. Very high performance systems can be ‘tightly tuned’ to maintain a following error within 5 to
10 encoder counts. Systems with low resolution encoders and/or high inertial loads will typically
maintain a following error between 150 and 5000 encoder counts during a move.

The DCX supports ‘hard coded’ following error checking. If at anytime the difference between the
optimal position and the current position exceeds the user defined ‘allowable following error’, an error
condition will be indicated. The axis will be disabled (Amplifier Enable output turned off, output
command signal set to 0.0V) and the axis status word will indicate that an error has occurred. The
MCEnableAxis(') function is used to clear a following error condition. To disable ‘*hard coded’
following error checking set the allowable following error to zero.

32 Precision MicroControl

Motion Control

Agay 1 - BCH Advanced (L 5 mvn Heduls |snaleg oulpul]

ko Poicr fin
e el Il'llh-_l-ll,:l et P | | "0al Wil T Liow
o il I'l'-l"'l\ﬁ:l'.“:!: Hird il -: Hel
W oo Il:'|-|'|'||'|||}| s = ligh
LLERL L
g Toeus I LLELL I it e
21 e e :_‘_I:j' = e
Pl e Fl"'":l'\-l- ™ SLiws
P T ol Ly T Passa
inimgaicn Lindt 31 Coon 1™ d sl
Besvain [T) o
Tegfimg thed aipeeail llein Gowidhe W L Erasile I dsapFud
Fii Bows ivg Erroe Tor i e Lt 1 e
vt . Tha difoud [B ™ Rev Praee
sl w1034 " g I HINTE Lwd R _| " ﬂ
m | Cowdd |

The three conditions that will typically cause a following error are:

1) Improper servo tuning (Proportional gain too low)

2) Velocity profile that the system cannot execute (moving too fast)

3) The axis is reversed phased (positive command results in
negative motion)

i

The Status Panel screen shot below shows the typical display when a following error has occurred.

Statuz Utility - DC-AT300 (1D 3#0) |

Setup Help

nta G . SLfm T Fault T al Error d\ When the red Error
ha G - SLim E @ Fault E @ Haormed @ and Fol Error LED's
- Lirviit ik +5Lim T i@ Fol Error &k < GEEY] areon it indicates
+ Limit g + SLim E @ Break Ft £ Drir - &y that afollowing
Au ndx & - HLirn T Pos Cap G Traj Cropl G error has occurred
Fault @ -HLim E @ Inds Frod @ | | At Target @
C. Home @ +HLim T @k Lk Edge @ | | Motor On @
Index @ +HLim E @ Lk Index @ Busy @k

Selecting the Servo Loop Rate
The DCX supports three servo loop rates:

DCX-PCI300 User’'s Manual 33

Motion Control

Azix 1 - HCHID Adwanced DE Servn Maduls banaslog ot |
ekl Froiors
Berabmagiony |1 000 (11 Caiwre Pad | 15%H @TE

Dt sbon: | 1IN NE0

Hopd L
ek, Viadaay [T, ewan s et ik
|12 s
Mg T ¥ e
D Fiew LS ||'l _ﬂ

g EMIT Zaf Lnany
e = LTI I = Lol ke

:l-'_'ll:lml' 1 0 LI'I|:1.1IIh
u..-smr..;...i' = ™ Lk Erenkon
Fallssrg e [1534 OO00E (R]

lmyﬁ.-.l. [(TTLi] Lebiade |04 =
a3 | ':l'n.'lll

Hais

7 Lom
VT el
T Huh

L
L2]
™ Pmshaia

I denfad
™ Huv Fram

=l T |leop refe ot

Servo Loop Rate Setting

High 8 KHz servo loop rate
Medium 4 KHz servo loop rate (default)
Low 2 KHz servo loop rate

34

Precision MicroControl

Motion Control

Tuning the Servo

A servo motor motion system is a closed loop system with negative feedback. Servo tuning is the
process of adjusting the gains (proportional, derivative, and integral) of this axis controller to get the
best possible performance from the system. A servo motor and its load both have inertia, which the
servo amplifier must accelerate and decelerate while attempting to follow a change in the input (from
the motion controller). The presence of inertia will tend to result in over-correction, with the system
oscillating or "ringing" beyond either side of its target (under-damped response). This ringing must be
damped, but too much damping will cause the response to be sluggish (over-damped response).
Proper balancing will result in an ideal or critically-damped system.

Urdmidampamed
Heepimniae

TismipsErang

T vl st el i il
[

Comprehensive PowerPoint tutorials covering servo system basics and
ﬂ a step by step procedure for tuning servos are available on PMC'’s
MotionCD.

The servo system is tuned by applying a command output or ‘step response’, plotting the resulting
motion, then adjusting parameters of the digital PID filter until an acceptable system response is
achieved. A step response is an output command by the motion controller to a specific position. A
typical step response distance used for tuning a servo is 100 encoder counts. If the system requires:

e Very short duration moves (less than 100 msec’s)
e Very small following error value (less than 20 encoder counts)

Then a step response of 50 encoder counts is recommended. If the servo system is moving a high
inertial load (minimal friction) then the step response should be increased to 200 — 1000 encoder
counts. There is a ‘loose’ relationship between the step response and the following error of the
system. The shorter the step response when tuning the servo, the lower the following error during

DCX-PCI300 User's Manual 35

Motion Control

application motion.

Note — Using a short step response (5 — 20 counts) may result in an
& unstable system that oscillates during and after a commanded move.

From the Windows Start menu open the Servo Tuning program (Programs\MotionControl\
Motionintegrator\Servo Tuning). From the menu bar select Setup and then Test Setup. Configure the
Test Setup dialog as shown (these settings will command a step response of 100 encoder counts plot
window time period of 500 msec’s):

Figure 10:Setting the step response distance and plot window period

From the menu bar select Setup and then Servo Setup. Configure the Servo Setup dialog as shown:

Paricn Faiu
[T ||_;|I.:, TII00] Lo ' ||l KEEET] 7 Lowe
S [mrwtersiden |":l:l"'l3'.l'l'l':l':l:l it e
H-ud::ulm.u.-m.!.l:l F aLhaE
3 T = ilign
110 [
1. T 110 DEGI B A e
PO Flim Ll ke [- Frokis
P i (s F""l'l'l'l" ™ et Liin 7 Trapamd
el Gan [1 0000 -
st L [0 00000 Tt ety
i
Bty G 1 1000001 I Lo Erisble -
Diewe Sl F DEFS] Listt |-|"|:|'|'-|.|-
Heli
FollmagEe |'l]:'.l- 1] ™ i Eide
Accsbewon G 1 (0000 Lt [ooomon ™ b
Fimcnlamion G |1 [O000ER] r
A Flies
ey G [[OC0000] Lo ok [=]
[H] I = L] |

Figure 11:Configure the servo parameters

36 Precision MicroControl

Motion Control

While setting proportional and derivative gain, the step response should occur with the Trajectory
Generator disabled. This will result in the magnitude of the output signal being determined only by a
PD filter, the controller will not apply a maximum velocity or ramping (acceleration/deceleration).

I.-H-"!I."H-r

_=« | I

I|

Tomiimp | ke

b !

B e e

Setting Proportional Gain
Proportional gain controls the responsiveness of a servo system. Set the slide controls for ‘I’ (Integral

gain) and ‘D’ (Derivative gain) to 0. Set the slide control for ‘P’ for .05. Turn the Motor On. Make sure
the Trajectory Generator is off. Press the Step Plus button, the motor should move and a position

versus time plot will be displayed.

TrqRCIEy o ati

W ey)

Tarl
——=3 Slep Pin | Shep Mgy |

Ce | Zux |

Py |4 o4

I]

~HHT A SHL

WA il i

g

Figure 12: First move (using only proportional gain)

DCX-PCI300 User's Manual 37

Motion Control

Adjust the proportional gain until the plotted path crosses the target three times (no more, no less)
and stops within 5% of the target.

B Sasn 1oy

e Gow [+ Hew

|

Hrm

e _0a | oF |
Tgchory Gerersing

e o | o |
Foni

“ren Flum I .‘illphl'rllll

Cluai | v I

e ol

§ LA ik

[E-1 Tan -hatt

e,

| “hikl __—EE iR

*--
I

Figure 13: Adjust P (proportional gain) until the motor crosses the target 3 times , no more and no less

If no plotted position path is shown:
e |fthe Motor On LED is still on, the proportional gain is to low. Increase ‘P’ by 100%.

o Ifthe Motor On LED is off an error has occurred. The most likely cause is a following error
has occurred which would indicate that the servo is reversed phased. Open the Servo Setup
dialog box and select the Reverse Phase option or ‘swap’ the phase A and B connections from
the encoder to the DCX servo module. Turn the motor back on and proceed with the tuning
process. If a position path plot is still not displayed refer to the Troubleshooting chapter of this
manual.

Setting Derivative Gain

Derivative gain acts as a dampening factor for the servo system. The DCX-PCI300 defaults to
calculating the derivative term every time the PID filter is executed (every 125 usec’s). For many
servo systems this will cause the derivative term to be too large, which may cause a buzzing or
grinding noise. For most servo systems it is recommended that the derivative term be calculated
every 4 to 8 servo loops. Open the Servo Setup dialog and set the derivative sampling period to
0.00075 (every 6 servo loops). For high inertia (heavy load with minimal friction) applications, the
derivative sampling period should be set to between .001 and .002.

38 Precision MicroControl

Bam I WU 3F Haesed Smree frvalen pwiow |

Fhdarn

il

Dl P | 111 (00

Motion Control

iccaimiaicn |03 s
[ecalsssie [OEE BATLE il s
Ha- Vel I"l":'"l & Lirnll Ponaiin
i T 1T YR o
B e s
T Pl L e | - w| Fuila
P 1 (0crd | ™ v Lty 17 T
bty e .' WO
- ™ FCine
™ T T = il
e g, 7 DD ™ & L Evuile [Pty
[L.l'i.l'\:a_F s L-|.-\.l L "
I — -
Fallcrsrg Ecn |12 (000K I . Lml Erabis
s slion Gl [TEXCONG [!T T g
Dt B, BRI —
— Ere Fraes
i Liniake [=
[T | [] |

Figure 14:Set Derivative Sampling Period to 0.00075 seconds (every 6 PID loops)

Add a little Derivative gain and then move the motor. Repeat this process until the amount of
overshoot (difference between the target and the most positive position) is between 20% to 25%. The
goal is to identify the derivative gain setting that:

1) Limits overshoot to between 20% to 25%
2) The final position is as close to the target as possible

[l Sstup Ted Help

co |
S

Mobar

@ O | O |
Teajeciory Geramtar

' {n | |

Tax
EapPha | Steg Minu |

Clasr I LEm |

P 1 14 o |
_BWm _ L _IM
B ELE BELE -3
—
P :
BLY - — =5

Figure 15:Use Derivative Gain (D) to limit overshoot to 25%

DCX-PCI300 User's Manual 39

Motion Control

Setting the Integral Gain

Due to friction, ‘sticktion’, amplifier offset, etc... most servo systems are unable to settle at the target if
using only proportional and derivative gain. Integral gain provides a restoring force that increases with
time. It is used to correct a static position error of a servo system. If the servo is unable to repeatedly

position within +/- one encoder count of the target Integral Gain will, in most cases, position the servo

at the target.

To configure the Servo Tuning utility for setting the integral gain:

Enable the trajectory generator.

o Define trajectory parameters (max. velocity, acceleration, and deceleration) in the Servo Setup

dialog

o Define a typical application move distance and duration in the Test Setup dialog

For this example:

Move distance = 3,000 counts
Plot window time = 700 msec’s

A Servo Tunng

_== | [K

@ On

Trajectary Ganerator

] -

_ Tasl
Erep Phus | Stap kinus |

Clear J Tam |

= - N

L - T ELT

| -

=i -8 B =1,114

“pEE 0 e L

o | _or]|

Maximum velocity = 100,000 counts per second
Acceleration and deceleration = 100,000 counts per second per second

fmar T - LR GG P N aemd Seeren |ansdoeg ooipet |

Hikor, Feon

Eeselernion |1 D00 000000 Cumt P, |11 D000 © Lo
Diaemieniben |1 (0000 000000 P —
M Viskaciy [100000 00000 - e
e F - Link Enstle

Pil Filtm

Lisit Mede | Cien -
Pesgaitional G e I:I OCEEA| ™ bervasi L T i
Indegpual Gan I.'l]

" Fanbols

[T oLl Ereabiba
D wrwe. Sampling I.'l Lyl Lt |1 DOXNC0D
M
Fialioasariz e [0 (AR ™ - Lk Enabis
Acosieysion Gisn [0 00O Liat 000000 ™ bmp Fast
Drescoste i Gy | O O0D00IC00
. - ™ Few. Prans
Wik i |.'l KN Limt H=cl | K :"

Figure 16:Turn on the Trajectory Generator, define trajectory parameters, select a velocity profile

40

Precision MicroControl

Motion Control

Holior Plol

Distanes [0 (00000 E
Tine [FOO0MO000 ;e =
Dely [omomD e F

F Plal Toges
Futbeg
'ﬁlF'H'Jd.lllnrlq Plol Sorke
r~ Sargie
T Flot eresy othey disly poant
(O T]
© Plot greety osth dals ool -

ot ||

Figure 17:Define move distance and plot window period

With the trajectory generator enabled, a step response will cause two plot traces to be displayed in
the upper window. The blue trace is a plot of the actual positions of the servo. The yellow trace is a
plot of the calculated (or optimal) positions of the servo. The optimal positions are the result of
calculations by the DCX based on the trajectory parameters (max. velocity, acceleration, and
deceleration) defined in the Servo Setup dialog. With the Trajectory Generator enabled a plot of the

following error (red trace in the middle window) is also displayed. Select the Step Plus button to move

the axis.

[Se1vn Tuning

file Zep Ted Help

oy

Pebalar
a On | ;) |
Trajeclony Geraraioe
T

Tast
Stap Flus 3 Exep Minus |

Clear | e |

= =
JBASE T LB
A% - BT |
—
—" -
T R gl
EEE e EEE

Figure 18:Results of a typical application move prior to setting the Integral Gain

DCX-PCI300 User’'s Manual

41

Motion Control

Without executing another move, slowly increase the integral gain (I slide control) until the position
readout indicates that the axis has reached the target position of the move.

8 Serve Tumng - D] x]
Fiz Sehp Test Help

wo | I

bdotor

@ _on |_or |

Trajectory Ganarator

a | _of |

Test

[Step Plug || Step Minus |
Cliar | Zero |
P 1 B oM
_badi _Oa% _Hadq

- 025K « 0.l «3.13%

Figure 19:With an Integral Gain setting of 0.0057 the axis repeatedly positions to the target. The axis is
now tuned.

If the ‘I’ control has reached 50% and the axis has not reached the target

either:
e The Integral Limit is too low, limiting the restoring force that the
ﬂ integral gain can apply. Double the value in the Servo Setup
dialog

e The Integral gain slide control range needs to be increased. In
the PID setup dialog double the value for the integral gain upper
limit

Once the position readout indicates that the axis is at the target execute another move (Step Plus). If
the axis stops and settles within one encoder count of the target the servo has been successfully

42 Precision MicroControl

Motion Control

tuned. If the position readout indicates that the servo is unable to settle, reduce the setting of the
integral gain (I term). Execute additional moves until the axis settles at the target. For additional
information on integral gain please refer to the description of Turning off integral gain during a
move in the Application Solutions chapter of this manual.

Saving the Tuning Parameters

Once an axis has been tuned you should save the PID and trajectory parameters. Select Save All
Axis Settings from the File menu. Selecting this option will load all servo settings into the MCAPIL.INI
file (in the Widows folder). In addition when you elect to close the Servo Tuning program it will prompt
the user about saving the settings.

I |
Do you wizh to zave changes made ko
wour Auto [nitialize settings?

Tes | Hao |

Electing to save the Auto Initialize settings causes the Servo Tuning
utility to call the MCAPI Common Dialog function MCDLG_SaveAxis. All

ﬂ servo parameters (PID, Trajectory, Limits, etc...) will be saved in the
dialog

To define these servo parameters from a user’s application program, call
the MCAPI Common Dialog function MCDLG_RestoreAxis.

Changing the Scale of the Slide Controls

At the top of each slide control is a value showing the current setting as a percentage of the current
maximum setting. To change the range of one or more slide controls select the Zoom In (+) or Zoom
Out (-) buttons.

=N

iE) i -
+ DI <A

=Dk

DCX-PCI300 User's Manual 43

Motion Control

For additional information on servo tuning please refer to the tutorials on the MotionCD.
Executing cycle operations from the Servo Tuning program

Beginning with revision 2.4 the servo tuning program allows the user to execute cycle operations.
From the Test Setup dialog define the move distance, dwell between positive and negative moves,
cycle repeat count, and dwell between cycles.

——
T e -

ol Tha| EON =
. Lo | i

Figure 20: Use the Test Setup dialog to configure the
distance, dwell, and repeat count of cycle operations

44

Precision MicroControl

Motion Control

T T

oy

Mulr

a3 n | [|
Tram nep Cirman sl

o | _oe |

Tomi
“Eawp Pun J !l':l||.l|l|r|.l|

1 b I Ll I

f i i o i

1A =111

Figure 21: Plotting position and following error of three 1000 count move cycles

Tuning Velocity Mode Amplifier Servo Systems

A velocity mode amplifier incorporates an analog tachometer to provide the feedback for the velocity
loop, which is closed within the amplifier. The velocity loop is considered the primary or ‘inner’ loop of
this type of servo system. The DCX, which is a position controller, will close the secondary or ‘outer’
position loop of the servo system. Combining a velocity mode amplifier with a position loop controller
results in what is known as a dual loop system. When this type of system is to be used, it is
recommended that the encoder not be directly coupled to the motor. The encoder should be mounted
on the external mechanics, as closely coupled as possible to the load or ‘end effector’. Typically in a
dual loop system, a linear scale (encoder) will be mounted on the slides of each axis.

The most important step of tuning a servo that uses a velocity mode
amplifier is to follow the amplifier manufacturers setup instructions to the

& letter. Since the amplifier provides the primary servo control, if it is not
setup correctly there is no possibility of attaining acceptable servo
system performance.

There are significant differences when tuning servo systems that close the velocity loop external to
the DCX (position loop) controller. The digital PID filter of the DCX becomes a secondary component
in the generation of the output signal that is applied to the velocity mode amplifier. The primary
component that the DCX will use to generate the servo command signal is the Feed Forward term.

DCX-PCI300 User's Manual 45

Motion Control

commands the velocity mode amplifier to rotate the motor at a specific

0 Feed Forward defines a voltage level output from the DCX, which in turn
velocity.

Prior to tuning the servo system the velocity feed forward term must be determined. The following
example describes how to calculate and set velocity feed forward of a servo axis:

Setting the Velocity Feed Forward

The main component required to set the velocity feed forward of a DCX servo axis is to determine the
output level of the tachometer at a specific motor velocity. For this example, a typical tachometer
specification would state:

Output Range 0.0 to +10V
Tach Output @ 1K RPM 1.0 volt

The specification describes a tachometer with an output range of 0 — 10V. The tachometer output
ratio is 1.0V per 1,000 RPM’s. The resolution of the linear scale encoder is 2000 encoder counts per
inch, and the maximum velocity of the axis is 50 inches per second. Note: the servo amplifier may
require scaling adjustments for the RPM/Tachometer voltage output ratio. The velocity feed forward is
calculated as follows:

DCX output = Velocity (encoder counts/sec) X Feed forward term (encoder counts/volt/sec.)

10 volts = 100,000 counts/sec. X Feed forward term (encoder counts * volt/sec.)

Feed forward = 10 volts / 100,000 counts per sec.

0.0001 =10 volts / 100,000 counts per sec.

1VG0.0001 ;set velocity gain (velocity feed
;forward) with MCCL command

// set velocity gain (velocity feed forward) using MCAPI function
//
MCGetFilterConfig(hCtrlr, iAxis, &Filter);
Filter_VelocityGain = (hCctlr, 1, 0.0001);
MCSetFilterConfig(hCtrlr, iAxis, &Filter);

Tuning the Servo
After setting the velocity feed forward (velocity gain) as shown above, open the Servo Tuning Utility.
Configure the utility as follows:

1) From the Setup menu, select Servo Setup and define the trajectory parameters (velocity,
acceleration, and deceleration) to match the application requirements.

2) From the Test Setup menu define a typical application move distance and duration. For this
example, the move distance is 2000 encoder counts. The move duration is set to 420
milliseconds.

3) Set the Proportional (P), Integral (1), and Derivative (D) slide controls to 0%.

46 Precision MicroControl

Motion Control

4) Turn on the Trajectory generator
5) Turn the motor on
6) Press the Step Plus pushbutton

A response similar to the following graphic should be observed:

[“llq iy

o T
|

! ° o| on|
Tia@ipEy Saesdii

s JEES 5|
|ll|!l||| Ji;'-ll!JlI

Ciug | Tods

Bl DRGICGe rhi

Increase the ‘P’ term 1-2 % at a time until the position display indicates that the axis is within +/- 2
counts of the target.

Increase the “I” term 1% at a time until the axis repeatedly positions to the target. If increasing the
Integral setting causes the axis becomes unstable:

DCX-PCI300 User’'s Manual

47

Motion Control

1) Reduce the Integral Limit setting (Setup — Servo Setup)
2) Reduce the scale of the ‘I’ term slide control (Setup — PID setup)

Saving the Tuning Parameters

When servo tuning is complete, closing the tuning utility will prompt this message about saving the
Auto Initialize setting, selecting Yes will store all settings for all installed axes. Selecting No will cause
all settings to be discarded.

Exit |
Do you wizh to zave changes made ko
wour Auto [nibialize settings?

Tes | Mo |

Acceleration and Deceleration Feed Forward

For most applications velocity feed forward is sufficient for accurately positioning the axis. However
for applications that require a very high rate of change, acceleration and deceleration gain must be
used to reduce the following error at the beginning and end of a move.

Acceleration and deceleration feed forward values are calculated using a similar algorithm as used for
velocity gain. The one difference is the velocity is expressed as encoder counts per second, while
acceleration and deceleration are expressed as encoder counts per second per second.

DCX output = Accel./Decel. (encoder counts/sec/sec.) X Feed forward term (encoder counts * volt/sec./sec.)

Acceleration and deceleration feed forward values should be set prior to
using the Servo Tuning Utility to set the proportional and integral gain.

Systems with Electrical or Mechanical Dead Band

Some servo systems may demonstrate significant dead band due to friction, sticktion, or insufficient
amplifier drive power. This will typically be indicated when the output command to the servo is
relatively high but the axis does not move.

Systems of this type can be very difficult to ‘tune’. To overcome the limitations of the system and get
the axis moving, the proportional gain would need to be set very high. This will tend to make the
system become unstable, causing the axis to ‘oscillate’ at the end of a move. The Output Deadband
(a0ODn) command is used to compensate for the electrical and or mechanical dead band in a system
by modifying the calculated output signal, allowing the module to simulate a ‘frictionless’ system. The
deadband value will be added to a positive output and subtracted from a negative output.

Programming an Output Offset

48 Precision MicroControl

Motion Control

Both the MC300 and MC320 servo modules have output offset adjustment potentiometers for
manually setting the zero point of the servo command output. The Output Offset command allows the
user to enter a programmable output offset ranging from —10V to +10V.

Moving an Axis

Once the servo is tuned, the axis is ready to perform velocity profile moves. PMC’s Motor Mover
program allows the user to execute absolute, relative, and cycle move sequences, monitor position
and status of the axis. By selecting the Setup button the user can; set velocity parameters (maximum
velocity, acceleration, and deceleration), set velocity profile (Trapezoidal, S curve, or Parabolic), and
enable motion limits.

: Bin i || | e =T et
- R 5 =< e

B Erios e
[s st T e

[1T e s A

L ™ I\u—l i [T} e]
. - -

& = |'\.|-.| e T N e, (R
Bl R e e ——

L = A I

L- L m |E ol | =T e - |
B R ——

L . - i | |' -

Aranmrm - s e P |

I e pn =i

Figure 22: PMC's Motor Mover can be used to move as many as 8 axes simultaneously

By turning on the Trajectory Generator while in the Servo Tuning Utility, its plotting capabilities can be
used to display the performance of the axis during a velocity profile move. In this mode two sets of
points are plotted. The yellow trace is the optimal position (as calculated by the DCX), the blue trace
is the actual position of the axis. The difference between the two plots is the following error (red).

DCX-PCI300 User's Manual 49

Motion Control

3 Serva Tumng

Eiz Zehp Jest Help

s | [

Pastion m Oiptimal
Idotor
@ _on [_or |
Trajectory Ganarator
Q | of |
Tesl
[“Siep Pius || Step Minus |
Clear | Lero |
- - 0N -
A EL ETL

025K =00 «1.13%

50 Precision MicroControl

Motion Control

DCX Stepper Basics

The DCX motion control system supports both open loop and closed loop stepper motion.

Open Loop Stepper Motion
Commanding motion of a stepper motor with no position or velocity feedback is known as '‘Open
Loop'. To successfully complete the commanded move, the DCX controller counts each step pulse
issued to the stepper motor driver. When the position of an axis is queried (by issuing the function
MCGetPosition () or MCCL Tell Position (aTP) command), the number of pulses issued to the
stepper driver is reported. Since there is no position (or velocity) feedback there is no need to 'tune'
the axis. However, the axis module must be configured (Trajectory parameters, Velocity Profile, Limits
etc...). Please refer to the following stepper setup dialog:

Define velocity
parameters

Closed loop
Stepper
parameters

Auis 1 =0R0 - DSPOBased Stepper

icben

Arcebgion [10000 000000
Dieceteaton [10000. (00000
M Weslocily [1000000000
M Velooy (0000000

L [DOeomdlopohiods
Progestionad Bain [T 000000
Inbagial Gan [T000000
ImsgsionList [1 0000

Isgal Opian [Howvad 7]
Dievatien Gign [1 000700

Deriv Sampleg [0001000

Fragtion

Dot Poe [0L000000

Haid Lirrds
[+ -+ Lirval Enusbis=:
[-« Lt Erusin

ot]

[et Limsite

S oft Linsity

™+ Limi Ensble
Lt |11 (000000

I - Linit Erintie

Liaret |'.| [LLLLLI

Ll Hode |00 -

(5] o

Set Step Rate Range

Low - 0.1 to 78K steps/sec.

.
U P
Ligas
£ hed
&% High
Ficlia

High - 153 to 5.0M steps/sec.

Select Velocity Profile

™\

Enable Hard and Soft
Mation | imits

Figure 23: Stepper axis Setup dialog

The Minimum Velocity of a stepper axis must be set to a non zero value.
The default value is 1,000 steps per second. The recommended setting
of the minimum velocity is from 1% to 10% of the maximum velocity.

Stepper drivers typically use the Direction output from the stepper
controller signals to determine the observed direction of motion. If the
observed direction of motion is not correct (moving positive causes
counter clockwise instead of clockwise rotation) set axis scaling to -1.0.

DCX-PCI300 User’'s Manual

51

Medium - 20 to 625K steps/sec.

Motion Control

Closed Loop Steppers

DCX-MC362 dual stepper does not support closed loop mode) and

0 Closed loop stepper control requires a DCX-MC360 stepper module (the
MCAPI revision 3.2 or higher.

When configured as a closed loop stepper the DCX-MC360 does not
0 support Position Capture or Position Compare.

The advancements in stepper motor/micro stepping driver technology have allowed many machine
builders to maintain ‘servo like’ performance while reducing costs by moving to closed loop stepper
systems. While closed loop steppers are still be susceptible to ‘stalling’, they are not plagued with the
familiar open loop stepper system problem of loosing steps due to friction (mechanical binding) or
system resonance.

For high accuracy stepper applications, the DCX supports closed loop control of stepper motors using
guadrature incremental encoders for position feedback. The stepper axis will be controlled as if it is a
closed loop servo, the quantity and frequency of step pulses applied to the stepper driver is based on
the trajectory parameters of the move and the position error of the axis. Prior to attempting to operate
a stepper motor in closed loop mode the basic system components (motor, driver, wiring, and
controller) should be verified by moving in open loop mode. For information on operating an open loop
stepper please refer to the DCX Stepper Basics and Moving Motors with Motor Mover sections in
this chapter. If the stepper motor does not operate as expected please refer the Troubleshooting
chapter.

While executing closed loop stepper motion, when the target position
equals the current encoder position, the DCX-MC360 step pulse
ﬂ generator (PID filter) will be turned off within 1 micro second.

Unlike a closed loop servo, if the final position of the stepper encoder is
beyond the target position of the move the motor will not be
commanded to move back to the target.

Closed Loop Stepper Setup
There are four steps required to configure a stepper to operate in closed loop :

1) Connect and verify operation of the encoder
2) Define the Encoder / Steps ratio

3) Set the trajectory parameters

4) Tune the axis

52 Precision MicroControl

Motion Control

Connect and verify the encoder

Connect the stepper motor's encoder to the DCX-MC360 stepper module as shown in the following
diagram (for detailed wiring information please refer to the Connectors, Jumpers, and Schematics
chapter in this manual).. If a single ended encoder is being used inputs A-, B- and Z- are not
connected.

Stepper Driver

DCX-MC360-H DCX-PCI300H
Axis #1 (module #1) Connect tor J1
Connector J3

] (s

oA WP
@
3

Quadrature

Stepper Motor
Encoder

Stepper Motor
(optional)

.....

Figure 24: Typical closed loop stepper interconnections

To verify the operation of the encoder open the Motor Mover program (Start\Programs\Motion
Control\Motion Integrator\Motor Mover). From the Stepper Setup dialog select Closed Loop Mode
and OK.:

|.-—-.-|-.|..._ T hmn s

T i " I_._ Lisd m i
im0 [T
Erpe—— T I T ol
s memm B | v -
L e = 3] L it Fmet
= s

Figure 26:From the Stepper Setup dialog select the Closed Loop Mode check box
When closed loop mode is enabled the Motor Mover position readouts will display the position of the

DCX-PCI300 User’'s Manual 53

Motion Control

encoder. Rotate the motor / encoder shaft back and forth and verify that the position display changes
accordingly.

T ——

Few frer e
L o | ke [B | B el |
T i S -
T gy e e | B | e | =i |
o am I e | fra— | - |

Figure 27: In closed loop mode the Motor Mover position readout displays encoder position

After switching a stepper axis into or out of closed loop mode, use the
o MCEnableAxis () function to disable and then enable the axis
(reinitialize the position registers.

Define the motor steps per rotation / encoder counts per rotation ratio

When operating in closed loop mode, move commands are issued in units of encoder counts. The
EncoderScaling member of the MCFILTEREX data structure is used to configure the controller for
converting encoder units to step pulses. The value is calculated by dividing motor steps per rotation
by encoder counts per rotation. For example, if there 2000 encoder counts per rotation (500 line
encoder) and the stepper motor has 51,200 steps per rotation, the Encoder Scaling value would be

EncoderScaling = motor steps per rotation / encoder counts per rotation.
EncoderScaling = 51,200 / 2000
EncoderScaling = 25.6

The Encoder Scale can also be defined from the Stepper Setup dialog of the Servo Tuning or Motor
Mover programs.

e Frslan Fss
J.-wh-r||||-u||- T Ry 3
-
II-!n-h-Hr'|'"=u"" 1]
s ity [T | [i
.1
e T ¢ Lo Lok i,
T Ll e
F ChossdL oo dhoda
Ll el |1t Fuib
‘iwh-'\-i'irl iFE —_
gl K [T 0000 T et Ly A Trigaseaad

|--..-p.-.-.|r-|--|:.|||-\.|-_ ki e

[CRF] S [T _-_| 5 - :

| e I:..H.I:" 7 1] b L il

[y, Sogrupleny [100100 L [L,

Pl L 1104 B I bt e T Fad
T T 1) FI o Lk [Em I
[eraen oy | 1 m s = Hl ey

s ealing [= comomo o |1 fe- =g —
| (it | Ly |

Figure 28:Enter the closed loop steps / encoder scale

54 Precision MicroControl

Motion Control

Set the trajectory parameters

As with an open loop stepper, the trajectory parameters (maximum velocity, acceleration,
deceleration, and minimum velocity) must be set prior to commanding motion. These values can be
set using the MCMOTION data structure or can be entered from the Stepper Setup dialog of Servo
Tuning or Motor Mover.

Closed loop stepper trajectory parameters (and move distances) are
specified in encoder units, not motor step units.

Tune the axis
When a stepper axis is configured for closed loop operation the default proportional gain is set to
0.0001, which should be sufficient to move the axis near the specified target. Further adjustments of
the proportional and integral gain allow the controller to:

Minimize the following error while moving

Eliminate slow speed slewing of the axis near the end of the move
Settle within 1 encoder count of the target

Use the PMC Servo Tuning program (\Start\Programs\Motion Control\Motion Integrator\Servo Tuning)
to tune the closed loop stepper.

Step 1 - Enter a typical move distance (in encoder counts) and move duration (in milliseconds) using
the Test Setup dialog (Setup\Test Setup).

Step 2 - Verify that the Trajectory Generator is on (yellow LED)
Step 3 - Set the Proportional gain Slide Control Scale 0.20% (Press P+ zoom button)

Step 4 - Verify that the Proportional gain is set to 0.0001, Integral and Derivative gain = 0. Generally
Derivative gain and Integral gain are not required to tune a closed loop stepper.

Step 5 - From the Servo Setup dialog verify that Closed Loop Mode is enabled and that the
Encoder Scaling has been set

Step 6 - Toggle the Motor Off and Motor On buttons to initialize the closed loop position registers

Step 7 - Start the move with the Move + or Move - buttons

Step 8 - Observe the plot of following error during the move

Step 9 - Increase the proportional gain and repeat the move until the point of diminishing returns is
reached (the following error no longer decreases). Further increases of the proportional gain

will tend to cause the motor to emit a grinding noise or stall during a commanded move.

Step 10 - If the axis moves slowly near the end of the move and/or stops a few counts short of the
target the Minimum Velocity is probably set too low.

DCX-PCI300 User's Manual 55

Motion Control

Step 11 - Save the closed loop stepper settings by selecting Save All Axes Settings from the Servo
Tuning File menu. This operation will copy all settings into the MCAPL.INI file so that any
windows application program can load axis settings upon opening.

For additional information on using the Servo Tuning program please

0 refer to:
The Tuning the Servo section of the Motion Control chapter
The Servo Tuning program on-line help

function with Mode = MC_IM_OPEN_LOOP or deselect the closed loop

0 To disable closed loop stepper operation, issue the MCSetInoutMode
check box in the Servo Tuning Servo Setup dialog..

Reverse Phasing of a closed loop stepper

If the closed loop stepper is reverse phased, issuing a move command will cause the motor to 'take
off' in the wrong direction at full torque / speed. Once the position error exceeds the value entered for
the allowable following error (default = 1024) a motor error will occur and the axis will stop. To change
the phasing either:

e Issuing the MCSetServoOutputPhase () function with Phase = MC_PHASE_REVERSE
e Selecting the Reverse Phase option in the Servo Tuning Servo Setup dialog
e Swap the encoder phase A and B connections to the MC360 module.

Closed loop stepper example

Axis number one is a 51,200 micro steps per rotation stepper motor. A 2,000 count (500 line)
incremental encoder is coupled to the stepper motor shaft. The required maximum step rate for this
application is 896,000 steps per second (1050 RPM), which requires the axis to be configured for
High Speed step range. After verifying the operation of the closed loop stepper from within the Servo
Tuning program, save the configuration with the File menu Save All Axis Settings option. From a
users application program to load the closed loop configuration call the MCDLG_RestoreAxis
function from the PMC Common Motion Dialog Library. To load the closed loop axis configuration
from a PMC application program (Servo Tuning or Motor Mover) select Auto Initialize from the File
menu.

56 Precision MicroControl

Motion Control

Moving Motors with Motor Mover

After defining the step output mode and the step range the axis is ready to execute motion. The Motor
Mover program allows the user to execute absolute, relative, and cycle move sequences, monitor
position and status of the axis. By selecting the Setup button the user can; set velocity parameters
(maximum velocity, acceleration, and deceleration), set velocity profile (Trapezoidal, S curve, or
Parabolic), and enable motion limits.

Dl Mickar biorem [[=]
Lap Heoww Help
@ on n Sehap | s | | SO Saeidy -
@ o
&L O | Sose F I
o oo | se | o [T i vescy [
) Errax —
B O | B - I S
@ on in | Sehw | o | £inn) weocty [EEEE
i Errax EE—
Gum VT | T =l I =
@ on on | sehw | o [T ogwm vecy EER
B b
@ T | - mi- TN
B oo | sew | me [T veso N
W Ere o
§lma _Off [o | el T =
& o on |5m:-| me [T oo weschy [
W Errx —_J'_
T N I [R J
It b Pt Mo + 2o | s s |
™ Cypoie YL Ao | L=

Figure 29: PMC's Motor Mover can be used to command motion for as many as 8 axes simualtaneously

DCX-PCI300 User's Manual 57

Motion Control

Defining the Characteristics of a Move

Prior to executing any move, the user should define the parameters of the move. The components
that make up a move are:

// Set axis 1 maximum velocity
// Set axis 1 acceleration

// Set axis 1 deceleration

// Set profile as Trapezoidal

// Set Position mode

// Set target (10000), begin move

MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 100000.0);
MCSetVelocity(hCtlr, 1, 100000.0);

MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOID);
MCSetOperatingMode(hCtlr, 1, O, MC_MODE_POSITION);
MCMoveRelative(hCtlr, 1, 100000.0);

The parameters defined in the program example above specify a move to position 100,000. During
the move the velocity will not exceed 10,000 encoder counts per second. A trapezoidal velocity profile
will be calculated by the DCX. The rate of change (acceleration and deceleration) will be 100,000
encoder counts per second/per second, there by reaching the maximum velocity (10,000 counts per
second) in 100 msec's. The resulting velocity and acceleration profiles follow:

Velocity
(encoder counts per second)

10000

7500

5000

2500

100 200 300 400 500 600 700 800 900 1000

Time (msec's)

58 Precision MicroControl

Motion Control

Acceleration / Deceleration
(encoder counts per sec / sec)

100000

Time (msec's)

100000

Velocity Profiles

The user can select one of three different velocity profiles that the DCX will then use to calculate the
trajectory of a move.

DCX Velocity Profiles

Max. Velocity
10,000 counts / sec.

Time Time Time

Trapezoidal Profile Parabolic Profile S curve Profile

DCX Accel / Decel Profiles

Accel
100,000 counts
sec. / sec.

Decel
100,000 counts
sec. / sec.

Trapezoidal Profile Parabolic Profile S curve Profile

DCX-PCI300 User's Manual 59

Motion Control

Trapezoidal Profile — (servo & steppers) MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOID);
Shortest time to target when using the same trajectory parameters
Profile most likely to result ‘jerk’ and/or oscillation
Supports ‘on the fly’ target changes

Parabolic Profile — (stepper only) MCSetProfile(hCtlr, 1, MC_PROF_PARABOLIC);
Slow ‘roll off’ minimizes lost steps at high velocity
Initial linear rate of change eliminates ‘cogging’
On the fly changes will cause the axis to first decelerate to a stop

S curve Profile — (servo only) MCSetProfile(hCtlr, 1, MC_PROF_SCURVE);
‘True sine’ rate of change effectively eliminates ‘jerk’ and/or oscillation
Longest time to target when using the same trajectory parameters
On the fly changes will cause the axis to first decelerate to a stop

Point to Point Motion

To perform point to point motion of a servo or stepper motor, the following steps are required:

// Enable the axis

// Enable Position mode

// Define the velocity profile (trapezoidal, S curve, or parabolic)
// define maximum velocity

// define acceleration

// define deceleration

// execute the move

MCEnableAxis(hCtlr, 1, TRUE);

MCSetOperatingMode(hCtlr, 1, O, MC_MODE_POSITION);
MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOIDAL);
MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 25000.0);
MCSetDeceleration(hCtlr, 1, 50000.0);
MCMoveRelative(hCtlr, 1, 122.5);

Constant Velocity Motion

To move a servo or stepper at a continuous velocity until commanded to stop:
// Enable the axis
// Enable Velocity mode
// Define the velocity profile (trapezoidal, S curve, or parabolic)
// define maximum velocity
// define acceleration
// define deceleration
// define the direction (positive or negative) of the move
// begin motion of axis 1
// wait for digital 1/0 #4 to be true
// reduce velocity
// wait for digital 1/0 #2 to be true
// stop the motion of axis 1

MCEnableAxis(hCtlr, 1, TRUE);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_VELOCITY);

60 Precision MicroControl

Motion Control

MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOIDAL);
MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 100000.0);
MCSetDeceleration(hCtlr, 1, 100000.0);
MCSetDirection(hCtlr, 1, POSITIVE);

MCGo(hCtlr, 3);

MCWait For DigitallO(hCtlr, 4, TRUE);
MCSetVelocity(hCtlr, 1, 5000.0);

MCWait For DigitallO(hCtlr, 2, TRUE);
MCStop(hCtlr, 1);

Velocity
(encoder counts per seconds)

10000

7500

5000

2500

-

1 2 3 4 5 6

Time in seconds
—— — — Digital input #4 'turned on"

Digital input #2 'turned on"

Contour Motion (arcs and lines)

The DCX supports Linear Interpolated motion with any combination of two to fifteen axes and Circular
Contouring on as many as four groups of two axes. Executing a multi axis contour move requires:

Turn the axes on

Define the axes in the contour group and the controlling axis

Define the trajectory (Vector Velocity, Vector Acceleration and Vector Deceleration)
Define the type of contour move (Linear, Circular, user defined) and the move targets
Loading the Contour Buffer for Continuous Path Contouring

Defining the contour group

The MCSetOperatingMode() command is used to define the axes in a contour group. Issue this
command to each of the axes in the contour group. The parameter wMaster should be set to the
lowest axis number of the servo or stepper motor that will be moving on the contour. This axis will
then be defined as the 'controlling' axis for the contour group. The following example configures axis
1, 2, and 3 for contour motion with axis #1 defined as the controlling axis.

DCX-PCI300 User's Manual 61

Motion Control

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 3, 1, MC_MODE_CONTOUR);

Define the trajectory parameters

The MCGetContourConfig(), MCSetContourConfig(), and MCContour data structure are used to
define the trajectory parameters of a contour motion. The default units of the vector velocity are
encoder counts or steps per second. The default units of vector acceleration and vector deceleration
are encoder counts or steps per second per second. The default units of velocity override is a
percentage the setting for vector velocity.

// Motion settings (GetDlgltemDouble() is a helper function defined
// elsewhere)

//

case IDOK:
MCGetContourConfig(hCtrlr, iAxis, &Motion);
Contour .Vector.Accel = GetDlgltembouble(hDlg, IDC_TXT_ACCEL);
Contour .VectorDecel = GetDlgltembDouble(hDlg, IDC_TXT_DECEL);
Contour.VectorVelocity = GetDlgltembouble(hDlg, IDC_TXT_VELOCITY);
Contour_VelocityOverride = GetDlgltemDouble(hDlg, IDC_TXT_MAX_TORQUE);

MCSetContourConfig(hCtrlr, iAxis, &Motion);

Define the type of contour move
The nMode parameter of the MCBlockBegin() function is used to define the type of contour move to
be executed. The following types of contour motion are supported:

nMode parameter Contour move type

MC_BLOCK_CONTR_USER | User defined, 1 to 6 axes | Specifies that this block is a user
defined contour path motion. INum
should be set to the controlling axis

number.
MC_BLOCK_CONTR_LIN Linear interpolated move, | Specifies that this block is a linear
1to 6 axes contour path motion. INum should be
set to the controlling axis number.
MC_BLOCK_CONTR_CW Clockwise arc, 2 axes Specifies that this block is a clockwise

arc contour path motion. INum should be
set to the controlling axis number.
MC_BLOCK_CONTR_CCW Counter Clockwise arc, 2 | Specifies that this block is a counter-
axes clockwise arc contour path motion. INum
should be set to the controlling axis
number.

Examples of a linear move and a clockwise arc follow:

62 Precision MicroControl

Motion Control

// Linear move

//

MCBlockBegin(hCtlr, MC_BLOCK CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 10000.0);
MCMoveAbsolute(hCtlr, 2, 20000.0);
MCMoveRelative(hCtlr, 3, -5000.0);

MCBlockEnd(hCtlr, NULL);

// Clockwise arc move

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
MCArcCenter(hCtlr, 1, MC_CENTER_ABS, 20000.0);
MCArcCenter(hCtlr, 2, MC_CENTER_ABS, 0.0);
MCMoveAbsolute(hCtlr, 1, 40000.0);
MCMoveAbsolute(hCtlr, 2, 0.0);

MCBlockEnd(hCtlr, NULL);

Loading the Contour Buffer for Continuous Path Contouring

The DCX Contour Buffer is used to support Continuous Path Contouring. When a single contour move
is executed, the axes will decelerate (at the specified vector velocity) and stop at the target. If multiple
contour move commands are issued, the contour buffer allows moves to smoothly transition from one
to the other. The vector motion will not decelerate and stop until the contour buffer is empty or an
error condition (max following error exceeded, limit sensor ‘trip’, etc...) occurs.

When axis 1 is the controlling axis, up to 256 linear or 128 arc motions (an arc move takes up twice as
much buffer space) can be queued up in the Contouring Buffer. If one of the other five axes is the
controlling axis, only 16 motions can be queued up. The MCGetContouringCount() command will
report how many contour moves have been executed since the axes were last configured for contour
motion with MCSetOperatingMode(). The contouring count is stored as a 32 bit value, which means
that 2,147,483,647 contour moves can be executed before the contour count will ‘roll over’.

To delay starting contour motion until the contour buffer has been loaded use the MCEnableSynch()
command. This command should be issued to the controlling axis before issuing any contour moves.
Moves issued after the MCEnableSynch() command will be queued into the contour buffer. To begin
executing the moves in the buffer, issue the MCGoEXx() command to the controlling axis . To return to
normal operation (immediate execution of contour move commands), issue MCEnableSynch() to
the controlling axis with the state = FALSE.

Multi Axis Linear Interpolated moves

An example of three linear interpolated moves is shown below. Once the first compound move
command is issued, motion of the three axes will start immediately (at the specified vector velocity).
The other two compound commands are queued into the contouring buffer. As long as additional
contour moves reside in the contour buffer continuous path contour motion will occur. In this example,
smooth vector motion will continue (without stopping) until all three linear moves have been
completed (the contour buffer has been emptied). At this time the axes will simultaneously decelerate
and stop.

DCX-PCI300 User's Manual 63

Motion Control

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 3, 1, MC_MODE_CONTOUR);

// Motion settings (GetDIgltemDouble() is a helper function defined
// elsewhere)

//

case IDOK:
MCGetContourConfig(hCtrlr, iAxis, &Motion);
Contour .Vector.Accel = GetDIlgltembouble(hDlg, IDC_TXT_ACCEL);
Contour .VectorDecel = GetDlgltembDouble(hDlg, IDC_TXT_DECEL);
Contour.VectorVelocity = GetDlgltembouble(hDlg, IDC_TXT_VELOCITY);
Contour_VelocityOverride = GetDIlgltemDouble(hDlg, IDC_TXT_MAX_TORQUE);

MCSetContourConfig(hCtrlr, iAxis, &Motion);

// Linear move #1

//

MCBlockBegin(hCtlr, MC_BLOCK _CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 85000.0);
MCMoveRelative(hCtlr, 2, 12000.0);
MCMoveAbsolute(hCtlr, 3, -33000.0);

MCBlockEnd(hCtlr, NULL);

// Linear move #2

//

MCBlockBegin(hCtlr, MC BLOCK CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 0.0);
MCMoveAbsolute(hCtlr, 2, 0.0);
MCMoveAbsolute(hCtlr, 3, 0.0);

MCBlockEnd(hCtlr, NULL);

// Linear move #3

//

MCBlockBegin(hCtlr, MC BLOCK CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 5000.0);
MCMoveRelative(hCtlr, 2, 23000.0);
MCMoveAbsolute(hCtlr, 3, -16000.0);

MCBlockEnd(hCtlr, NULL);

Arc Motion
The DCX supports specifying an arc motion in two axes in any of three different ways:

Specify center and end point
Specify radius and end point (not supported by MCAPI)
Specify center and ending angle (not supported by MCAPI)

When the first arc motion is issued, motion of the two axes will start immediately (at the specified
vector velocity). Additional contour motions will be queued into the contouring buffer. As long as
additional contour moves reside in the contour buffer continuous path contour motion will occur. In this
example, smooth vector motion will continue (without stopping) until all both arc motions have been
completed (the contour buffer has been emptied). At this time the axes will simultaneously decelerate
and stop.

64 Precision MicroControl

Motion Control

Arc motions by specifying the center point and end point

The MCArcCnter() command is used to specify the center position of the arc. This command also
defines which two axes will perform the arc motion. The MCMoveAbsolute() or MCMoveRelative()
commands are used to specify the end point of the arc. A spiral motion will be performed if the
distance from the starting point to center point is different than the distance from the center point to

end point. An example of two arc motions is shown below:

10,000

End point of
first arc
o ' X
Starting Arc center X 10,000
point YO
Vv
,\
L
<
-10,000

1st move - 180 degree clockwise arc
2nd move - 180 degree clockwise arc

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);

// Motion settings (GetDlgltemDouble() is a helper function defined
// elsewhere)

//

case IDOK:
MCGetContourConfig(hCtrlr, iAxis, &Motion);
Contour .Vector.Accel = GetDlgltembouble(hDlg, IDC_TXT_ACCEL);
Contour .VectorDecel = GetDlgltembDouble(hDlg, IDC_TXT_DECEL);
Contour.VectorVelocity = GetDlgltemDouble(hDlg, IDC_TXT_VELOCITY);
Contour.VelocityOverride = GetDIlgltembouble(hDlg, IDC_TXT_MAX_TORQUE);

MCSetContourConfig(hCtrlr, iAxis, &Motion);

// Clockwise arc move #1

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
MCArcCenter(hCtlr, 1, MC_CENTER_ABS, 10000.0);
MCArcCenter(hCtlr, 2, MC_CENTER_ABS, 0.0);
MCMoveAbsolute(hCtlr, 1, 20000.0);
MCMoveAbsolute(hCtlr, 2, 0.0);

MCBlockEnd(hCtlr, NULL);

DCX-PCI300 User’'s Manual

65

Motion Control

// Clockwise arc move #2

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CCW, 1);
MCArcCenter(hCtlr, 1, MC_CENTER_REL, -10000.0);
MCArcCenter(hCtlr, 2, MC_CENTER_REL, 0.0);
MCMoveRelative(hCtlr, 1, -20000.0);
MCMoveRelative(hCtlr, 2, 0.0);

MCBlockEnd(hCtlr, NULL);

Arc motions by specifying the radius and end point

The MCArcRadius() function is used to execute an arc move by specifying the radius and end point
of an arc. The Axis parameter should equal the controlling axis for the contour move. The parameter
Radius should equal the radius of the arc. If the arc is greater than 180 degrees, the parameter
Radius must be expressed as a negative number. The MCMoveAbsolute() or MCMoveRelative()
commands are used to specify the end point of the arc. An example of two arc motions is shown
below:

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);

// 90 degree Clockwise arc move #1

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
MCArcRadius(hCtlr, 1, 10000.0);
MCMoveRelative(hCtlr, 1, 10000.0);
MCMoveRelative(hCtlr, 2, 10000.0);

MCBlockEnd(hCtlr, NULL);

// 270 degree Clockwise arc move #2

//

MCBlockBegin(hCtlr, MC_BLOCK _CONTR_CW, 1);
MCArcRadius(hCtlr, 1, -10000.0);
MCMoveRelative(hCtlr, 1, -10000.0);
MCMoveRelative(hCtlr, 2, -10000.0);

MCBlockEnd(hCtlr, NULL);

66 Precision MicroControl

Motion Control

End point of
first arc

10,000

N

Starting 10,000
point

< =

-10,000

1st move - 90 degree clockwise arc
2nd move - 270 degree clockwise arc

Arc motions by specifying the center point and ending angle

The MCArcEndingAngle() function is used to execute an arc move by specifying the ending angle
and center point of an arc. The Axis parameter should equal the controlling axis for the contour move.
The parameter Angle should equal the ending angle (absolute or relative) of the arc. When using this
method to specify an arc, the MCMoveAbsolute() and MCMoveRelative() functions are not used.
The MCArcCenter() function defines the radius of the arc. An example of two arc motions is shown

below:

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);

// Clockwise arc move #1

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
MCArcCenter(hCtlr, 1, MC_CENTER_ABS, 10000.0);
MCArcCenter(hCtlr, 2, MC_CENTER_ABS, 0.0);
MCArceEndAngle(hCtlr, 1, MC_ABSOLUTE, 0.0);

MCBlockEnd(hCtlr, NULL);

// Clockwise arc move #2

//

MCBlockBegin(hCtlr, MC_BLOCK _CONTR_CW, 1);
MCArcCenter(hCtlr, 1, MC_CENTER_REL, -10000.0);
MCArcCenter(hCtlr, 2, MC_CENTER_REL, 0.0);
MCArcéndAngle(hCtlr, 1, MC_RELATIVE, 1800.0);

MCBlockEnd(hCtlr, NULL);

DCX-PCI300 User's Manual 67

Motion Control

Y
(90 degrees)

10,000

End point of
Center first arc
point

) @
\ Starting 10,000
point

-X
(180 degrees)

X
(0 degrees)

N ¥

7

-10,000

-Y
(270 degrees)

1st move - 180 degree clockwise arc
2nd move - 180 degree clockwise arc

Changing the velocity ‘on the fly’

‘On the fly’ velocity changes during contour mode motion are accomplished by using the
VelocityOverride member of the MCContour data structure. Issue the command (to the controlling
axis) to scale the vector velocity of a linear or arc motion. The rate of change is defined by the current
settings for vector acceleration and vector deceleration.

Changing the velocity of a contour group using Velocity Override
0 is not supported for S-curve and/or Parabolic velocity profiles.

Cubic Spline Interpolation of linear moves

To have the DCX perform ‘curve fitting’ (cubic spline interpolation) on a series of linear moves, issue
the MCEnableSynch()) command to the controlling axis. Next issue linear contour path commands to
points on the curve. After loading the desired number of moves into the contour buffer, issue a
MCGOEXx() command with the value Param set to 1. Motion will continue from the first to the last
point in the contour buffer. To return to normal operation, issue the MCEnableSynch() command
with parameter pState = FALSE.

Note that when performing cubic spline interpolation, only 128 motions
can be queued up if axis 1 is the controlling axis. If the controlling axis
is not axis one, only 16 motions can be queued up in the controller.

68 Precision MicroControl

Motion Control

User Defined Contour path
When executing contour motion the DCX assumes that the axes are arranged in an orthogonal
geometry. The controller will calculate the distance and period of a move as follows:

Beginning position: X=0 Y=0 Z=0
Target position: X=10,000 Y=10,000 Z=1000

Calculated Contour Distance = V(X? + Y? + Z?)
=+/(10,000? + 10,0007 + 1,000%)
=~(100,000,000 + 100,000,000 + 1,000,000)
=+/201,000,000
= 14177.44

The period, or elapsed time of the move, is a simple matter of applying the current settings for Vector
Acceleration + Vector Velocity + Vector Deceleration to the Calculated Contour Distance.

For applications where orthogonal geometry is not applicable, the DCX allows the user to define a
custom contour distance. This is accomplished by:

1) The command sequence must be preceded by the Contour Path (aCPn) command (a = the
controlling axis) with parameter n = 0.

2) Contour Distance (aCDn) must be the last command in the compound command sequence,
with parameter n = the Calculated Contour Distance of the move

The DCX will use the current settings for vector velocity, vector acceleration, and vector deceleration

to calculate the period of the motion. When a User Defined Contour Path is selected (MCBlockBegin
with parameter nMode set to MC_BLOCK_CONTR_USER), the MCContourDistance() function is

used to enter the non-orthogonal contour distance.

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 3, 1, MC_MODE_CONTOUR);

// User defined move #1

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_USER, 1);
MCMoveAbsolute(hCtlr, 1, 1000.0);
MCMoveAbsolute(hCtlr, 2, 1000.0);
MCMoveAbsolute(hCtlr, 3, 1000.0);
MCContourDistance(hCtlr, 1, 10000.0);

MCBlockEnd(hCtlr, NULL);

// User defined move #2 - the Distance parameter is 10,000 + 10,000 = 20,000
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_USER, 1);
MCMoveAbsolute(hCtlr, 1, 0.0);
MCMoveAbsolute(hCtlr, 2, 0.0);
MCMoveAbsolute(hCtlr, 3, 0.0);
MCContourDistance(hCtlr, 1, 20000.0);
MCBlockEnd(hCtlr, NULL);

DCX-PCI300 User's Manual 69

Motion Control

For the MCContourDistance() function, the parameter Distance is an
absolute value, relative to the positions of the included axes when the

ﬂ MCSetOperatingMode() function was last issued. Re-issuing the
MCSetOperatingMode() function will reset the current contour distance
to zero.

Special case: setting the Maximum Velocity of an Axis

When executing simple point to point or velocity mode motions the maximum velocity of each axis is
set individually. When executing multi axis contour moves, the maximum velocity is typically
expressed as the velocity of the ‘end effector’ of the contour group. In a cutting application the ‘end
effector’ would be the tool doing the cutting (torch, laser, knife, etc...). Setting the maximum velocity of
an axis in the contoured group is not typically supported.

By combining a user define contour path (MCBlockBegin with parameter nMode set to
MC_BLOCK_CONTR_USER) with the MCContourDistance() command with parameter Distance =
0, the user can execute multi axis contour moves and limit the maximum velocity of an individual axis.
In this mode of operation the MCVectorVelocity() command is not used to set the velocity of the
contour group. The axis with the longest move time (calculated by distance, velocity, acceleration,
and deceleration) will define the total time for the contour move. For moves of sufficient distance
where the axis has enough time to fully accelerate, this one axis will move at its preset maximum
velocity. All axes will move at or below their specified maximum velocities. All axes will start and stop
at the same time. In the following example, axes 1 and 2 are commanded to move the same distance
but the maximum velocity for axis two is 1/3 that of axis one. Since both axes are moving the same
distance, they will both travel at a maximum velocity of 100 counts per second.

MCSetVelocity(hCtlr, 1, 300.0);
MCSetAcceleration(hCtlr, 1, 1000.0);
MCSetDeceleration(hCtlr, 1, 1000.0);

MCSetVelocity(hCtlr, 2, 100.0);
MCSetAcceleration(hCtlr, 2, 1000.0);
MCSetDeceleration(hCtlr, 2, 1000.0);

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);

MCContourdistance(hCtlr, 1, 0.0);

MCBlockBegin(hCtlr, MC_BLOCK CONTR_USER, 1);
MCMoveRelative(hCtlr, 1, 1000.0);
MCMoveRelative(hCtlr, 2, 1000.0);

MCBlockEnd(hCtlr, NULL);

If the commanded move distance of axis one was 2000 counts it would move at a higher velocity than
axis two, but it would not reach its maximum velocity as set by the MCSetVelocity() command.

70 Precision MicroControl

Motion Control

Electronic Gearing

The DCX supports slaving any axis or axes to a master. Moving the master axis will cause the slave
to move based on the specified slave ratio. The optimal position of the slave axis is calculated by
multiplying the optimal position of the master by the gearing ratio of the slave. The slave's optimal
position is maintained proportional to the master's position. This can be used in applications where
multiple motors drive the same load. Gearing supports both servos and stepper axes, with the master
axis operating in jogging, position, velocity, or contouring mode. If a following error or limit error
occurs on any of the geared axes (master or slaves) all axes in the geared group will stop.

The MCAPI function MCEnableGearing() configures and initiates gearing. The slave ratio can be set
to any integer or real value. If the slave ratio is a positive value, a move in the positive direction of the
master will cause a move in the positive direction of the slave. If the slave ratio is a negative value, a
move in the positive direction of the master will cause a move in the negative direction of the slave.
The following program example configures axes 2, 3, and 4 as slaves of axis 1.

// Enable gearing of axis 2, 3, and 4

// Move axis 1 (master), slaves (axes 2, 3, and 4) will move at define ratio
MCEnableGearing(hCtlr, 2, 1, 0.5, TRUE);

MCEnableGearing(hCtlr, 3, 1, 12.87, TRUE);

MCEnableGearing(hCtlr, 4, 1, -125, TRUE);

MCMoveRelative (hCtlr, 1, 215.0);

// disable gearing

MCEnableGearing(hCtlr, 2, 1, 0.5, FALSE);
MCEnableGearing(hCtlr, 3, 1, 12.87, FALSE);
MCEnableGearing(hCtlr, 4, 1, -125, FALSE);

Note — if the slave axes are servo’s, the PID parameters for each axis
& must be defined prior to beginning master/slave operation.

Note — Changing the slave ratio ‘on the fly’ may cause the mechanical
& system to ‘jerk’ or the DCX to ‘error out’ (following error).

DCX-PCI300 User's Manual 1

Motion Control

Jogging

In some applications it may be necessary to have a means of manually positioning the motors. Since
the DCX is able to control the motion of servos and steppers with precision at both low and high
speeds, all that is required to support manual positioning is: .

¢ A PC with a game port
e A PC joystick
e PC based software that positions the axes in Velocity mode

Jogging without writing software
One of the tools provided with the MCAPI is the Joystick Demo. This tool allows the user to configure
and then jog one or two axes.

Motion Joyzstick [32-bit] %]

Setup Help

% Pas 57603 IR | O | Zen:ul Joystick Configure |
— 4 Bz T Al
¥ Pos Fisi @ On | Off | Zen:ul

— Pozition

Bz | Lz 2 i

- Faint Storage Dizplay IF'DSitiDn vl Display |Position =
Index [0
e Fast Speed [500000 Fast Speed [500000

Taal [0 | | SlowSpeed [25000 Slow Speed | 25000
Leam | Forget| Clea Maw. Travel I'IEIEIEIEIEI bd &, Trawel 10000
Fewind| Stap =N bdir. Trawel |-1 0aao bdin. Trawel (-10000
[Deadband I'IE|45 Deadband |1967
Zero |31 a04 Zero | 30286

[Flip Jopstick [FlipJoystick

] I Cancel | Help |

RRRRAN

Figure 30: Joystick Demo program

Using the Joystick Demo in your application program
After the MCAPI has been installed the source files for the Joystick Demo are available in the Motion
Control folder \Program Files\Motion Control\Motion Control AP\Sources\Joy.

72 Precision MicroControl

Motion Control

Defining Motion Limits

The DCX Motion Controller implements two types of motion limits error checking. End of travel or
'Hard' limit switch/sensor inputs and 'soft' user programmable position limits.

Servo or stepper
motor

i

Lead screw

Negative Limit Positive Limit
sensor sensor
Hard Limits

The Limit + and Limit - inputs of MC3XX motion control modules use bi-directional optical isolators for
interfacing to the external limit sensors. The following wiring example details the typical connections
for a limit switch.

[MC300/302/320/360/362

+5VDC Limit + switch
(normally open)

74LS14 MOT MOC256 360

J3-17: Limit +
. + +5VDC

j_l LY J3-18: Limit + Return Power Supply
N

Bi-directional

Optical isolator o o N
4 This limit circuit wll indicate that a limit is active if the switch is closed

When limit error checking is enabled by the MCSetLimits() function, the
limit tripped flags (MC_STAT_PLIM_TRIP and MC_STAT_MLIM_TRIP)

& indicate an error condition. For a normally closed limit switch, the
MC_LIMIT_INVERT parameter must be used to re-define the active level
of the limit circuit.

Use the Motion Integrator Motion System Setup Test Panel to test the limit sensors, wiring, and
MC3XX operation.

DCX-PCI300 User's Manual 73

Motion Control

0 Motion System Setup, Connect and Test Switches

File Help

—&xiz 1 Stepper

{3 Home {2 Coarse
D Limit + {2 Error
) Limit - 2 Phiass

_| Latch _| Enakle
I [t I

—&xis 2 Servo
O Home (D Amp Fault

() Limit + 1 2 Etrar,

O Limit - 4 @ Fhae
__|Lstch | Enable
n Eastiarn

Activate a Limit
sensorswitch and the
associated LED will turn
on.

If a normally closed limit sensor circuit is used, the Motion Integrator
Test Panel will indicate that the limit sensor is active when the optical
isolator (MOC256) is conducting.

& The limit LED’s of the Motion Integrator Test Panel display the current
state (MC_STAT_PLIM and MC_STAT_MLIM), not the ‘tripped’ flag
(MC_STAT_PLIM_TRIP and MC_STAT_MLIM_TRIP) of the limit inputs.

The DCX supports two levels of limit switch handling:

Auto axis disable
Simple monitoring

The MCAPI function MCSetLimits() allows the user to enable the Auto Axis Disable capability of the
DCX. This feature implements a hard coded operation that will stop motion of an axis when a limit
switch is active. This background operation requires no additional DCX processor time, and once
enabled, requires no intervention from the user’s application program. However it is recommended
that the user periodically check for a limit tripped error condition using the MCGetStatus(),
MCDecodeStatus() functions. The MCSetLimit() function provides the following limit flags:

MC_LIMIT_PLUS Enables the Positive/High hard limit

MC_LIMIT_MINUS Enables the Negative/Low hard limit

MC_LIMIT_BOTH Enables the Positive and Negative hard limits

MC_LIMIT_OFF Turn off the axis when the hard limit input ‘goes’ active

MC_LIMIT_ABRUPT Stop the axis abruptly when the hard limit input goes active

MC_LIMIT_SMOOTH | Decelerate and stop the axis when the hard limit input goes active

MC_LIMIT_INVERT Invert the active level of the hard limit input to high true. Typically used
for normally closed limit sensors

When a limit event occurs, motion of that axis will stop and the error flags (MC_STAT_ERROR and
MC_STAT_PLIM_TRIP or MC_STAT_MLIM_TRIP) will remain set until the motor is turned back on
by MCEnable(). The axis must then be moved out of the limit region with a move command

74 Precision MicroControl

Motion Control

(MCMoveAbsolute(), MCMoveRelative()). The Status Panel screen shot below shows the typical
display when a hard limit sensor is tripped during a move.

Setup Helo
Theyellow +HIim E
and-HLImELED's na | SlinT@ | FadT@ Enoi @

indicated that hard
coded limit error
checking is enabled.

When the red Error
and +HLIim T or -
HLIimT LED'sare
onitindicatesthat a

over travel error has
nerenirred

// Set the both hard limits of axis 1 to stop smoothly when tripped, ignore
// soft limits:

//

MCSetLimits(hCtlr, 1, MC_LIMIT_BOTH | MC_LIMIT_SMOOTH, O, 0.0, 0.0):

// Set the positive hard limit of axis 2 to stop by turning the motor off.

// Because axis 2 uses normally closed limit switches we must also invert the
// polarity of the limit switch. Soft limits are ignored.

MCSetLimits(hCtlr, 2, MC_LIMIT_PLUS | MC_LIMIT_OFF | MC_LIMIT_INVERT, 0, 0.0,
0.0);

If the user does not want to use the Auto Axis Disable feature, the current state of the limit inputs can
be determined by polling the DCX using the MCGetStatus(), MCDecodeStatus() functions. The flag
for testing the state of the Limit + input is MC_STAT _INP_PLIM. The flag for testing the state of the
Limit - input is MC_STAT_INP_MLIM.

Soft Limits

Soft motion limits allow the user to define an area of travel that will cause a DCX error condition.
When enabled, if an axis is commanded to move to a position that is outside the range of motion
defined by the MCSetLimit() function, an error condition is indicated and the axis will stop. The
MCSetLimit() function provides the following limit flags:

MC_LIMIT_PLUS Enables the High/Positive soft limit
MC_LIMIT_MINUS Enables the Low/Negative soft limit

MC_LIMIT_BOTH Enables the High and Low soft limits

MC_LIMIT_OFF Turn off the axis when the hard limit input ‘goes’ active

MC_LIMIT_ABRUPT Stop the axis abruptly when the hard limit input goes active
MC_LIMIT_SMOOTH | Decelerate and stop the axis when the hard limit input goes active

DCX-PCI300 User's Manual 75

Motion Control

When a soft limit error event occurs, the error flags (MC_STAT_ERROR and
MC_STAT_PSOFT_TRIP or MC_STAT_MSOFT_TRIP) will remain set until the motor is turned back
on by MCEnable(). The axis must then be moved back into the allowable motion region with a move
command (MCMoveAbsolute(), MCMoveRelative()).

// Assume axis 3 is a linear motion with 500 units of travel. Set the both
// hard limits of this axis to stop abruptly. Set up soft limits that will
// stop the motor smoothly 10 units from the end of travel (i.e. at 10

// and 490).

MCSetLimits(hCtlr, 3, MC_LIMIT_BOTH | MC_LIMIT_ABRUPT, MC_LIMIT_BOTH |
MC_LIMIT_SMOOTH, 10.0, 490.0);

76 Precision MicroControl

Motion Control

Homing Axes

When power is applied or the DCX is reset, the current position of all servo and stepper axes are
initialized to zero. If they are subsequently moved, the controller will report their positions relative to
the position where they were last initialized. At any time the user can call the MCSetPosition()
function to re-define the position of an axis.

In most applications, there is some position/angle of the axis (or mechanical apparatus) that is
considered 'home'. Typical automated systems utilize electro-mechanical devices (switches and
sensors) to signal the controller when an axis has reached this position. The controller will then define
the current position of the axis to a value specified by the user. This procedure is called a homing
sequence. The DCX is not shipped from the factory programmed to perform a specific homing
operation. Instead, it has been designed to allow the user to define a custom homing sequence that is
specific to the system requirements. The DCX provides the user with two different options for homing
axes:

1) High level function calls using the MCAPI - Easy to program homing sequences using
MCAPI function calls.

2) MCCL Homing macro’s stored in on-board memory - When executed as background tasks,
MCCL homing macro’s allow the user to home multiple axes simultaneously. For additional
information on macro’s and background tasks please refer to the DCX-PCI300 MCCL
Command Reference manual.

Connecting a Home Sensor

The Home inputs (Coarse Home - servo’s & closed loop steppers, Home — open loop stepper) of
MC3XX motion control modules use bi-directional optical isolators for interfacing to the external home
sensor. The following wiring example details the typical connections for a Home sensor switch.

DCX-MC300

+5VDC

Coarse Home switch
(normally open)

74LS14 MOT MOC256 360

J3-9: Coarse Home . +

+5VDC

j_l LY J3-10: Home & Limits Return Power Supply
N

Bi-directional

L Optical isolator _ This Coarse Home circuit wll indicate that the input is active if the switch
is closed

Verifying the operation of the Home Sensor
Most motion applications will use a home sensor as a part of the homing sequence. Use Motion
Integrator's Connect Axis I/0O Wizard or Motion System Setup Test Panel to verify the proper

DCX-PCI300 User's Manual o

Motion Control

operation of the encoder index.

e s e
[Ty ——
Bl

LEi L b e v

@
L
=rrmemacsw. E]
L]
.|
=

Verifying the operation of the Index Mark of an Encoder

| = Siotes Sretem fotun. Comvoct and Tast Encedent |
Fin Hep

[T~ Emi T Sever

Qrass) dorw Faa s da il

[~ [T L - v T -

Qi @ Qil=d- @

P L o [

T -

| [=d Jj [

Most closed loop system applications will use the Index mark of the encoder to define the ‘home’
position of a servo. Use Motion Integrator’s Connect Encoder Wizard to verify the proper operation of

the encoder index.

B | 5 i i v e g

Programming Homing Routines
The DCX-PCI300 provides sophisticated programming support for homing Closed Loop Servos,
Closed Loop Steppers, and Open Loop Steppers. The following two tables summarize which

commands are provided for homing operations.

MCAPI homing functions
Axis Type Module Type \ Functions Input Notes

Closed Loop Servo

MC300, MC302,
MC320

MClIndexArm
MCWaitForindex
MClsIndexFound

Encoder Index

Closed Loop Servo MC300, MC302, MCFindIndex Encoder Index Use only from within
MC320 background task
Closed Loop Stepper | MC360 MCindexArm Aux. Encoder
MCWaitForindex Index
MClsIndexFound
Closed Loop Stepper | MC360 MCFindIndex Aux. Encoder Use only from within
Index background task
Open Loop Stepper MC360, MC362 MCindexArm Home
MCWaitForindex
MClsIndexFound
Open Loop Stepper MC360, MC362 MCFindEdge Home Use only from within

background task

78

Precision MicroControl

Motion Control

MCCL homing commands
Axis Type Module Type Command Input Notes

Closed Loop Servo MC300, MC302, MC320 IA & WI Encoder Index
Closed Loop Servo MC300, MC302, MC320 FI Encoder Index | Use only from within
background task
Closed Loop Stepper | MC360 IA & WI Aux. Encoder
Index
Closed Loop Stepper | MC360 FI Aux. Encoder Use only from within
Index background task
Open Loop Stepper MC360, MC362 EL & WE Home
Open Loop Stepper MC360, MC362 FE Home Use only from within
background task

Homing a Rotary Stage (closed loop servo or closed loop stepper) with the Encoder Index
Many servo motor encoders generate an index pulse once per rotation. For a multi turn rotary stage,
where one rotation of the encoder equals one rotation of the stage, an index mark alone is sufficient
for homing the axis. When an axis need only be homed within 360 degrees no additional qualifying
sensors (coarse home) are required.

The following C example uses the MCindexArm(), MCisindexFound(
), and MCWaitForindex() functions for homing a closed loop system.

ﬂ For complete C code homing samples that can be cut and pasted into an
application program please refer to the MCAPI on-line help
(MCAPIL.HLP).

// Arm index and wait for index to be found

//

MCIndexArm(hCtlr, 1, 0.0);

if (IMCIslndexFound(hCtlr, 1, 10.0)) {
// Index not found within time limit (10 seconds),
// error handling code goes here

}

//

// Process index and stop motor

//

MCWaitForindex(hCtlr, 1); // controller "processes” iIndex data
MCStop(hCtlr, 1); // stop

it (IMCIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

}
Sleep(100); // let motor settle 100 msec (WIN32 APl function)

The following MCCL example uses the Index Arm (alAn) and the Wait
for Index (aWIl) commands to home a closed loop system. For complete
MCCL homing samples that can be downloaded to the controller and
executed please refer to the MotionCD (\PCI300\MCCL\Homing).

DCX-PCI300 User's Manual 79

Motion Control

;MCCL rotary axis homing sequence index mark
MD10,11A0,LU"STATUS",1RL@0, 1C10,JR-3,NO,1WI ,MI11
;arm and capture index
MD11,1ST,1WS.01,1PM,1MN,1MAO,1WS.01 ;stop, initialize axis, move to index
;mark

Homing a Closed Loop Axis with Coarse Home and Encoder Index Inputs

A typical axis will incur multiple rotations of the motor/encoder over the full range of travel. This type of
system will typically utilize a coarse home sensor to qualify which of the index pulses is to be used to
home the axis. The Limit Switches (end of travel) provide a dual purpose:

1) Protect against damage of the mechanical components.
2) Provide a reference point during the initial move of the homing sequence

The following diagram depicts a typical linear stage.

Servo motor
and encoder

|

Lead screw

Negative Limit Coarse Home Positive Limit
sensor sensor sensor

When power is applied or the DCX is reset, the position of the stage is unknown. The axis is
commanded to execute a velocity mode move, checking the status of both the Coarse Home sensor
and the Limit + sensor. Once the axis is within the Coarse Home sensor the MCindexArm(),
MCisindexFound(), and MCWaitForindex() functions are used to reference the reported position of
the axis to the index mark. The MCEnableAxis() function completes the homing operation by
reinitialize all position registers. The following flow chart describes a typical homing procedure. If the
positive limit sensor is activated the stage will change direction prior to homing the axis.

80 Precision MicroControl

Motion Control

Homing a Closed Loop System -
Encoder Index, Coarse Home Sensor, and Over Travel Limits

Enable hard limit
error checking

Start velocity SIS axis
to clear limit.
mode move
. Move neg.
in the
L to Coarse
positive

. . Home
direction
sensor

Coarse

Home sensor
active?

Yes

Limit + Coarse
sensor Home sensor
tripped? active?

Capture
Encoder
Index

No —————— P Yes 44—

Coarse
Home sensor

Stop, turn
Motor oN,
move to
index mark

Homing complete

Figure 31: Typical homing routine for a servo

Coarse
Home sensor
active? inactive?

Yes Yes

Stop axis, Stop axis,
change change

direction direction

The following C example uses the MCindexArm(), MClsindexFound(

), and MCWaitForindex() functions for homing a closed loop system.
0 For complete C code homing samples that can be cut and pasted into an

application program please refer to the MCAPI on-line help
(MCAPLHLP).

// MCAPI linear stage homing sequence using the index mark
//

MCIndexArm(hCtlr, 1, 1000.0);
if (IMClIsIndexFound(hCtlr, 1, 10.0)) {

// Index not found within time limit (10 seconds),
// error handling code goes here

DCX-PCI300 User’'s Manual 81

Motion Control

3

// Process index and stop motor

MCWaitForindex(hCtlr, 1); // controller "processes”™ index data
MCStop(hCtlr, 1); // stop

if (IMClIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

}
Sleep(100); // let motor settle 100 msec (WIN32 API function)

// Move back to location of index mark

//

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);

MCEnableAxis(hCtlr, 1, TRUE);

MCMoveAbsolute(hCtlr, 1, 0.0);

MCIsStopped(hCtlr, 1, 2.0);

if (IMClIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

}
Sleep(100);

The following MCCL example uses the Index Arm (alAn) and the Wait
for Index (aWIl) commands to home a closed loop system. For complete
MCCL homing samples that can be downloaded to the controller and
executed please refer to the MotionCD (\PCI300\MCCL\Homing).

;MCCL linear stage homing sequence using the index mark
MD10,11A1000,MC20,1WI,1ST,1WS.01,MJ11 ;capture index (position = 1000) then stop
MD11,1PM,1MN, 1IMA1000,1WS.1 ;initialize axis, move to index

;homing sub routines
MD20, LU*"STATUS",1RL@0, 1S10,BK,NO,JR-5 ;test for Index Found

Homing a Closed Loop Axis with a Limit sensor
An axis can be homed even if no index mark or coarse home sensor is available. This method of
homing utilizes one of the limit (end of travel) sensors to also serve as a home reference.

This method is not recommended for applications that require high
repeatability and accuracy. To achieve the highest possible accuracy

ﬂ when using this method, significantly reduce the velocity of the axis
while polling for the active state of the limit input.

The following MCAPI and MCCL sequences will home an axis at the position where the positive limit
sensor ‘goes active’:

82 Precision MicroControl

Motion Control

The following C example uses the MCSetPosition() function to
redefine the encoder position a closed loop system. For complete C
code homing samples that can be cut and pasted into an application
program please refer to the MCAPI on-line help (MCAPI.HLP).

// MCAPI homing sequence (using positive limit sensor)
// the axis must have already been moved into (and tripped) the positive limit
// sensor

// Once the positive limit switch is active, move negative until switch is inactive
//
it (IMCIsStopped(hCtlr, 1, 2.0)) {

// Motor failed to stop within time limit (2 seconds),

// error handling code goes here

}

MCEnableAxis(hCtlr, 1, TRUE);

MCDirection(hCtlr, 1, MC_DIR_NEGATIVE);

MCSetVelocity(hCtlr, 1, 1000.0);

MCGoEx(hCtlr, 1, 0.0));

dwStatus = MCGetStatus(hCtlr, 1);

if (IMCDecodeStatus(hCtlr, dwStatus, MC_STAT_INP_PLIM)) {
dwStatus = MCGetStatus(hCtlr, 1)

}

// Stop the axis and define the leading edge of the limit switch as position 0O
//
MCAbort(hCtlr, 1);
it (IMClIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

}

MCSetPosition(hCtlr, 1, 0.0);

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 1, TRUE);

MCMoveAbsolute(hCtlr, 1, -100.0);

The following MCCL example uses the Define Home (aDHn) command
to redefine the encoder position of a closed loop system. For complete
MCCL homing samples that can be downloaded to the controller and
executed please refer to the MotionCD (\PCI300\MCCL\Homing).

; MCCL linear stage homing sequence using the positive limit sensor
MD1,1LM2,1LN3,MJ10 ;call homing macro
mD10,1VM,1D10,1G0O,LU”STATUS”,1RL@O, 1S17,MJ11,NO,JR-5

;move and poll the Limit + sensor
mMD11,1WS0.01,1MN,1DI1,1SV1000,1G0O,LU”STATUS”,1RL@O, 1C28,MJ12,NO,JR-5

;move negative until limit + inactive
mMD12,1AB,1WS.1,1DHO,1PM,1MN, 1IMA-100 ;stop immediately when limit + not active,

;define position as 0. Move to position —-100.

DCX-PCI300 User's Manual 83

Motion Control

Homing open loop steppers

Open loop steppers are typically homed based on the position of a home sensor. Unlike servos that
use a precision reference index mark, steppers are more prone to homing inaccuracies due the lower
repeatability of the single electro mechanical home sensor. To achieve the highest possible
repeatability; reduce the velocity of the axis and always approach the home sensor from the same
direction. Here is a typical linear axis controlled by an open loop stepper motor. A home sensor
defines the home position of the axis. End of travel or Limit Switches are used to protect against
damage of the mechanical components.

Stepper motor

Lead screw

Negative Limit Home sensor Positive Limit
sensor sensor

When power is applied or the DCX is reset, the position of the stage is unknown. The following
command sequence will move the stage in the positive direction. If the positive limit sensor is
activated before the Home sensor the stage will change direction, until home sensor is located. When
the Home sensor is activated the MCEdgeArm () and MCIsEdgeFound () functions are used to
capture the position of the Home sensor active edge.

Homing an Open Loop Stepper -
Home Sensor and Over Travel Limits

Enable hard limit
error checking

Start velocity
mode move
in the Slow down
positive
direction

Home Home
sensor sensor
No active? inactive?

Limit + Stop axis,
sensor change
tripped? direction

Enable axis, Stop, move
Move neg. Capture to position 0
[GIVE sensor edge (where index

[— MCEdgeLatch K
MCWairForEdge mark was

sensor captured)

Homing complete

Figure 32: Typical homing routine for a stepper

84 Precision MicroControl

Motion Control

The following C example uses the MCEdgeArm(), MCIsEdgeFound(),
and MCWaitForEdge() functions for homing a closed loop system. For

ﬂ complete C code homing samples that can be cut and pasted into an
application program please refer to the MCAPI on-line help
(MCAPILHLP).

// MCAPI open loop stepper linear stage homing sequence using the home sensor
//
MCEdgeArm(hCtlr, 1, 1000.0);
it (IMClIskEdgeFound(hCtlr, 1, 10.0)) {
// Edge not found within time limit (10 seconds),
// error handling code goes here

// Process edge and stop motor
MCWaitForEdge(hCtlr, 1); // controller "processes” edge data
MCStop(hCtlr, 1); // stop
if (IMCIsStopped(hCtlr, 1, 2.0)) {
// NMotor failed to stop within time limit (2 seconds),
// error handling code goes here

}
Sleep(100); // let motor settle 100 msec (WIN32 APl function)

// Move back to location of home sensor edge

//

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE POSITION);

MCEnableAxis(hCtlr, 1, TRUE);

MCMoveAbsolute(hCtlr, 1, 0.0);

MCIsStopped(hCtlr, 1, 2.0);

it (IMCIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

}

Sleep(100);

// Enable / disable axis to set MC_STAT INP_INDEX to monitor the current
// state (not capture & latch) of Home sensor

MCEnableAxis(hCtlr, 1, FALSE);

MCWait(hCtlr, 0.01);

MCEnableAxis(hCtlr, 1, TRUE);

Prior to issuing MCEdgeArm () the status flag MC_STAT _INP_INDEX

will indicate the current state of the Home Sensor (1 = active, 0 =

inactive). After issuing MCEdgeArm () MC_STAT _INP_INDEX will be
0 latched when the Home sensor edge has been captured. To clear

latching of MC_STAT _INP_INDEX issue:
MCEnableAxis(hCtlr, 1, FALSE);
MCEnableAxis(hCtlr, 1, TRUE);

DCX-PCI300 User's Manual 85

Motion Control

The following MCCL example uses the Edge Arm (aEAn) and the Wait
for Edge (aWE) commands to home a closed loop system. For complete
MCCL homing samples that can be downloaded to the controller and
executed please refer to the MotionCD (\PCI300\MCCL\Homing).

; MCCL Stepper linear stage homing sequence using Home & positive limit ;sensors
MD1,1LM2,1LN3,MJ10 ;enable limits, call homing macro
mD10,1VM,1D10,1SV10000,1G0,LU"STATUS", 1RL@O, 1S24,MJ11,NO, 1S17,MJ13,NO,JR-8

;test for sensors (home and +limit)

MD11,LU"STATUS",1RL@0,1C24,MJ12,NO,JR-5 ;continue moving until home sensor off
MD12,1ST,1WwS.1,1DI1,1SVv5000,1G0,MJ14 ;move back to the home sensor
MD13,1WS0.01,1MN,1DI1,1SV5000,1G0,MJ14 ;move out of limit sensor range

;back toward the home sensor
MD14,1ELO,MC15,1WE,1ST,1WS.1,1MF,1MN,1PM,1MA-100
;capture the active edge of the
;home sensor. Stop axis and
;define a position 0, ;move to
;position -100
MD15, LU"STATUS" ,1RL@0, 1S10,BK,NO,JR-5 ;loop status for Edge found bit set

Prior to issuing Edge Latch (aELn) the status bit 24 Index / Home will
indicate the current state of the Home Sensor (1 = active, 0 = inactive).
ﬂ After issuing Edge Latch (aELn) status bit 24 will be latched when the

Home sensor edge has been captured. To clear latching issue:
IMF, 1IMN

Homing a Open Loop Stepper with a Limit sensor

An axis can be homed even if no home sensor is available. This method of homing utilizes one of the
limit (end of travel) sensors to also serve as a home reference. The following MCAPI and MCCL
sequences will home an axis at the position where the positive limit sensor ‘goes active’

The following C example uses the MCSetPosition() function to
redefine the encoder position a closed loop system. For complete C
code homing samples that can be cut and pasted into an application
program please refer to the MCAPI on-line help (MCAPI.HLP).

// NCAPI homing sequence (using positive limit sensor)
// the axis must have already been moved into (and tripped) the positive limit
// sensor

// Once the positive limit switch is active, move negative until switch is inactive
//

if (IMClIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

¥

MCEnableAxis(hCtlr, 1, TRUE);
MCDirection(hCtlr, 1, MC_DIR_NEGATIVE);
MCSetVelocity(hCtlr, 1, 1000.0);

86 Precision MicroControl

Motion Control

MCGoEx(hCtlr, 1, 0.0));

dwStatus = MCGetStatus(hCtlr, 1);

if ('MCDecodeStatus(hCtlr, dwStatus, MC_STAT_INP_PLIM)) {
dwStatus = MCGetStatus(hCtlr, 1)

}

// Stop the axis and define the leading edge of the limit switch as position 0
//
MCAbort(hCtlr, 1);
it (IMCIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

¥
MCSetPosition(hCtlr, 1, 0.0);

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 1, TRUE);
MCMoveAbsolute(hCtlr, 1, -100.0);

The following MCCL example uses the Define Home (aDHn) command
to redefine the encoder position of a closed loop system. For complete
MCCL homing samples that can be downloaded to the controller and
executed please refer to the MotionCD (\PCI300\MCCL\Homing).

; MCCL linear stage homing sequence using the positive limit sensor
MD1,1LM2,1LN3,MJ10 ;call homing macro
mMD10,1VM,1D10,1G0O,LU”STATUS”,1RL@0,1S17 ,MJ11,NO,JR-5

;move and poll the Limit + sensor
MD11,1WS0.01,1MN,1DI11,1SV1000,1G0O,LU”STATUS”,1RL@0, 1C28,MJ12,NO,JR-5

;move negative until limit + inactive
MD12,1AB,1WS.1,1DHO,1PM,1MN, 1MA-100 ;stop immediately when limit + not active,

;define position as 0. Move to position —-100.

Motion Complete Indicators

When the DCX receives a move command, the Trajectory Generator calculates a velocity profile. This
profile is based on:

The target position (absolute or relative)
The user defined trajectory parameters (velocity, acceleration, and deceleration)

The velocity profile, as calculated by the DCX trajectory generator, is made up by a series of
calculated ‘Optimal Positions’ that are evenly spaced along the motion path in increments of 1 msec’s.
These 1 msec optimal positions are passed to the DCX servo modules, which then performs a linear
interpolation at the selected servo loop rate.

DCX-PCI300 User's Manual 87

Motion Control

Velocity
(encoder counts per second)
100000
75000
50000
calculated trajectory complete
(status bit 3 set)
25000

Optimal position - Actual position = Following error

4 8 12 16 20

Time (msec's)

= Following Error

@® = Optimal positions = Calculated trajectory

= Actual trajectory

For a closed loop servo, when the calculated optimal position of an axis is equal to the move target,
the calculated ‘digital trajectory’ of the move has been completed and the MC_STAT_TRAJ status
flag (MCCL status trajectory complete bit 3) will be set (as shown in the Status Panel graphic below).
For a closed loop stepper axis when the encoder position is equal to the move target, the trajectory of
the move has been completed and the MC_STAT_TRAJ status flag will be set. For an open loop
stepper axis when the step count (pulses issued) is equal to the move target, the trajectory of the
move has been completed and the MC_STAT_TRAJ status flag will be set.

The MC_STAT_TRAJ status flag is the conditional component of the MClsStopped() and
MCWaitForStop() functions. As shown by the trajectory graph above, the typical lag or following

Status Utility - DCX-PCI300 {ID 0 X|
Setup Help
nta G - SLim T Fault T ail Error @k
hta 3 - 5Lim E & Fault E & Homed @
- Lirviit il +5Lim T @k Fol Error @k nda @
+ Lirnit @ +5Lim E @ Ereak Pt Dir - @&
A ndx G -HLirn T @ Pos Cap G Traj Cropl
Fault @k - HLir E & Inds Frd @l | | At Target @
C. Home @ +HLim T @ Lk Edge @ | | Motor On &
Index G +HLim E @ Lk Index @ Busy @k

Figure 33: MCAPI Status Panel utility

88

Precision MicroControl

Motion Control

error during a servo move can cause the MC_STAT_TRAJ flag to be set before the axis has
reached its target. Issuing MCIsStopped() with a timeout value specified or MCWaitForStop() with
a Dwell time specified allows the user to delay execution move has been completed (following error =
0). In the example below, the MClsStopped() function (with a 2 second timeout) is used to poll the
axis for MC_STAT_TRAJ = true. The Windows SLEEP function is used to allow the axis to stop and
settle for 100 milliseconds. command includes a Dwell of 5 msec’s, allowing the axis to stop and
settle.

MCMoveRelative(hCtlr, 2, 500.0); // move 500 counts
MCIsStopped(hCtlr, 1, 2.0);
it (IMCIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

}
Sleep(100);

Another method of indicating the end of a move of a servo is to use MCIsAtTarget() or
MCWaitForTarget() functions. To satisfy the conditions of MClsAtTarget() and MCWaitForTarget(
), the axis must be within the Deadband range (encoder counts +/- or stepper pulses +/-) for the time
period specified by DeadbandDelay, both of which are defined within the MCMotion data structure.
The MC_STAT_AT_TARGET flag will be set when the conditions for both Deadband and
Deadbanddelay have been met.

MCMoveRelative(hCtlr, 1, 1250.0); // move 1250 counts
MCWaitForTarget(hCtlr, 1, 0.005); // wait till MC_STAT_TRAJ set plus
// msec’s

MCIsAtTarget(hCtlr, 1, 2.0);

it (IMClIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to reach the target within time limit (2 seconds),
// error handling code goes here

¥
Sleep(100);

On the Fly changes

During a point to point or constant velocity move of one or more axes, the DCX supports ‘on the fly’
changes of:

Target

Maximum Velocity
Acceleration
Deceleration

PID parameters

Changes made to any or all of these motion settings while an axis is moving will take affect within 1
msec.

DCX-PCI300 User's Manual 89

Motion Control

Note — Changing the PID parameters (Proportional gain, Derivative gain,
& Integral gain) ‘on the fly’ may cause the axis to jump, oscillate, or ‘error
out’.

S-curve or Parabolic velocity profiles:
1) Changing the target position on the fly will cause the axis to
decelerate to a stop before proceeding to the new target
2) On the fly changes of trajectory parameters (max. velocity, accel,
decel) will not be implemented until the current move has been
completed

If an “on the fly” target position change requires a change of direction the
axis will first decelerate to a stop. The axis will then move in the opposite
direction to the new target. This will occur if:

1) The new target position is in the opposite direction of the current
move
2) A ‘near target’ is defined. A near target is a condition where the
ﬂ current deceleration rate will not allow the axis to stop at the
new target position. In this case the axis will decelerate to a stop at
the user define rate, which will result in an overshoot. The axis will
then move in the opposite direction to the new target.

If an on the fly change requires the axis to change direction, the DCX
command interpreter will stall, not accepting any additional commands,
until the change of direction has occurred (deceleration complete).

Feed Forward (Velocity, Acceleration, Deceleration)

Feed forward is a method in which the controller increases the command output to a servo in order to
reduce the following error of an axis. Traditionally feed forward is associated with servo systems that
use velocity mode amplifiers, but simple current mode amplifiers used for high velocity and high rate

of change applications can also benefit from the use of feed forward.

The basic concept of feed forward is to match the servo command voltage output of the controller to a
specific velocity of axis. This essentially adds a user defined offset to the digital PID filter, resulting in
more accurate motion by reducing the following error. For example:

90 Precision MicroControl

Motion Control

The maximum velocity of an axis is 500,000 encoder counts per second. With a typical load applied,
the user determines that a servo command voltage of 8.25V will cause the motor to rotate at 500,000
encoder counts per second. The feed forward algorithm used by the DCX to generate the servo
command output is:

DCX output = Velocity (encoder counts/sec) X Feed forward term (encoder counts/volt/sec.)

with a velocity of 500,000 counts per second at a command input of 8.25V the algorithm will be:
8.25volts =500,000 counts/sec. X Feed forward term (encoder counts * volt/sec.)
Feed forward =8.25V /500,000 counts per sec.

0.0000165 =10 volts / 100,000 counts per sec.

1VG0.0000165 ;set velocity gain (velocity feed
;forward) with MCCL command

// set velocity gain (velocity feed forward) using MCAPI1 function
//
MCGetFilterConfig(hCtrlr, iAxis, &Filter);
Filter.VelocityGain = (hCctlr, 1, 0.0000165);
MCSetFilterConfig(hCtrlr, iAxis, &Filter);

An axis that has been tuned without feed forward will need to be re-
0 tuned when the feed forward has been changed to a non zero value.

See the description of Tuning a Velocity Mode amplifier in the Tuning
the Servo section of the Motion Control chapter

When feed forward is incorporated into the digital PID filter it becomes the primary component in

generating the servo command output voltage. Typically the setting of the other terms of the filter will
be:

Proportional gain — reduced by 25% to 50%
Integral gain — reduced by 5% to 25%
Derivative gain — set to zero, if the axis is too responsive reduce the gain of the amplifier

Acceleration and Deceleration Feed Forward

For most applications, velocity feed forward is sufficient for accurately positioning the axis. However
for applications that require a very high rate of change, acceleration and deceleration gain must be
used to reduce the following error at the beginning and end of a move.

Acceleration and deceleration feed forward values are calculated using a similar algorithm as used for
velocity gain. The one difference is the velocity is expressed as encoder counts per second, while
acceleration and deceleration are expressed as encoder counts per second per second.

DCX-PCI300 User's Manual o1

Motion Control

DCX output = Accel./Decel. (encoder counts/sec/sec.) * Feed forward term (encoder counts * volt/sec./sec.)

Acceleration and deceleration feed forward values should be set prior to
using the Servo Tuning Utility to set the proportional and integral gain.

Save and Restore Axis Configuration

The MCAPI Motion Dialog library includes MCDLG_SaveAxis() and MCDLG_RestoreAxis().
These high level dialogs allow the programmer to easily maintain and update the settings for servo
and stepper axes.

MCDLG_SaveAxis() encodes the motion controller type and module type into a signature that is
saved with the axis settings. MCDLG_RestoreAxis() checks for a valid signature before restoring the
axis settings. If you make changes to your hardware configuration (i.e. change module types or
controller type) MCDLG_RestoreAxis() will refuse to restore those settings.

You may specify the constant MC_ALL_AXES for the wAxis parameter in order to save the
parameters for all axes installed on a motion controller with a single call to this function.

If a NULL pointer or a pointer to a zero length string is passed as the PrivatelniFile argument the
default file (MCAPL.INI) will be used. Most applications should use the default file so that configuration
data may be easily shared among applications. Acceptance of a pointer to a zero length string was
included to support programming languages that have difficulty with NULL pointers (e.g. Visual Basic).

92 Precision MicroControl

Motion Control

DCX-PCI300 User’'s Manual

93

Application Solutions

Chapter Contents

Auxiliary Encoders
Backlash Compensation
Emergency Stop
Encoder Rollover

User Defined Filters (Notch, Low Pass, High Pass, and Band Pass)

Flash Memory Firmware Upgrade

Initializing and Restoring Controller Configuration
Learning/Teaching Points

Building MCCL Macro Sequences

MCCL Multitasking

Pause and Resume Motion

Position Capture

Position Compare

Reassigning Axis Numbers

Record and Motion Data

Manually Resetting the DCX

Single Stepping MCCL Programs

Tangential Knife Control

Threading Operations

Torque Mode Output Control

Turning off Integral gain during a move
Upgrading from a DCX-AT200 motion control system
Defining User Units

DCX Watchdog

94

Precision MicroControl

Application Solutions

Auxiliary Encoders

Dual axis modules (DCX-MC302, DCX-MC362) do not support auxiliary
0 encoders.

Servo systems typically use an encoder for position feedback. The encoder is usually mounted to the
motor housing and the glass scale of the encoder is coupled directly to the shaft of the motor. This
direct coupling provides the DCX with position feedback of the motor shaft, allowing the controller to
position the shaft of the motor independent of external mechanical inaccuracies (slipping belts, gear
backlash, lead screw runout).

However the ‘task at hand’ of most motion control applications is not to rotate the shaft of a motor, it is
to automate a manual operation. To accomplish this, the shaft of the motor is connected to the
external mechanics that will actually be doing the work. Take for example a pick and place machine
with axes X, Y, and Z. Due to a myriad of gears, pulleys, belts, and lead screws there may be no more
than a ‘loose’ association between the motor shaft of the X axis and the actual position of the X axis’
‘end effector’. This is where an auxiliary encoder can be used to significantly improve the positioning
accuracy of a servo or stepper system.

Servo Axes with Auxiliary Encoders
An auxiliary encoder is required when the user must reposition an axis to compensate for the
discontinuity between the motor shaft and the mechanics that position the ‘end effector’.

While similar in connections, the operation and configuration of a servo
and auxiliary encoder is significantly different from a Dual Loop Servo.
For a description, please refer to the Dual Loop Servo section of the
Motion Control chapter.

DCX-PCI300 User's Manual 95

Application Solutions

Typically an auxiliary encoder is added to a closed loop servo to allow the user to retrieve the position
of the ‘end effector’ at the end of a move. The position of the auxiliary encoder is not a component of
the servo command output as calculated by the digital PID filter. The auxiliary encoder is used to
determine whether or not the axis is properly positioned.

// After a move compare the target and auxiliary encoder position.
// IT short of the target, execute a move = the difference of the target &
// encoder position

MCMoveAbsolute(hCtlr, 1, 1675.5);
it (IMCIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here
%f (MCGetTargetEx(hCtlr, 2, &Target) == MCERR_NOERROR)
it (MCGetAuxEncPosEx(hCtlr, 1, &Position) == MCERR_NOERROR)
if (Position < 1674.0)
(Target — Position = AuxEncDiffT)
MCMoveRelative(hCtlr, 1, AuxEncDiff);
if (IMCIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

if (MCGetAuxEncPosEx(hCtlr, 1, &Position) == MCERR_NOERROR)
if (Position < 1675.0)
// print error message

Open Loop Stepper Axes with Auxiliary Encoders
An auxiliary encoder may be used in conjunction with a stepper motor to provide verification of a
move. The advantages of an open loop stepper over a closed loop axis are:

The output pulse train of an open loop system is much more stable
Easier to configure - open loop systems require no tuning

Typically an encoder is added to an open loop stepper to allow the user to retrieve the encoder
position at the end of a move. The reported position of the auxiliary encoder is used to determine
whether or not the axis is properly positioned.

// After a move compare the target and auxiliary encoder position.
// 1T short of the target, execute a move = the difference of the target &
// encoder position

MCMoveAbsolute(hCtlr, 1, 122.5);

if (IMClIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

f (MCGetTargeteEx(hCtlr, 2, &Target) == MCERR_NOERROR)
T (MCGetAuxEncPoskEx(hCtlr, 1, &Position) == MCERR_NOERROR)
if (Position < 122.0)
(Target — Position = AuxEncDiffT)
MCMoveRelative(hCtlr, 1, AuxEncDiff);
it (IMCIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

3
i
i

it (MCGetAuxEncPosEx(hCtlr, 1, &Position) == MCERR_NOERROR)
if (Position < 122.0)

96 Precision MicroControl

Application Solutions

// print error message

For information about closed loop stepper motion, please refer to the Closed Loop Steppers and
Homing Axes sections of the Motion Control chapter.

Homing the Auxiliary Encoder
The auxiliary encoder of a servo or stepper may be homed in one of two ways:

Home the encoder using the Auxiliary Encoder Index input
Re-define the position of the auxiliary encoder when the primary axis position is initialized

If the encoder includes an index mark output it is recommended that this signal be used to home both
the reported position of the axis and the auxiliary encoder. The repeatability of a system homed using
the index mark will be significantly better than that of a system that uses a mechanical
switch/electromechanical sensor. The following programming example will reference both the reported
position of an open loop stepper and the auxiliary encoder at the location of the Index mark:

The following C example uses the MCFindAuxEncldx(),
MCSetAuxEncPos (), and MCSetPosition () functions to redefine the
step count and encoder position an open loop stepper with an auxiliary
encoder. For complete C code homing samples that can be cut and
pasted into an application program please refer to the MCAPI on-line
help (MCAPI.HLP).

MCFindAuxEncldx(hCtlr, 1, 0.0);

dwStatus = MCGetStatus(hCtlr, 1);

while (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT_INP_AUX))

dwStatus = MCGetStatus(hCtlr, 1);

MCStop(hCtlr, 1);

if (IMClIsStopped(hCtlr, 1, 2.0)) {
// Motor failed to stop within time limit (2 seconds),
// error handling code goes here

}

MCGetAuxEncldxEx(hCtlr, 1, &CapturedAuxEncoderPosition);
MCGetAuxEncPosEx(hCtlr, 1, &AuxEncoderPosition);

EncoderPulsesFromlndex = AuxEncoderPosition - CapturedAuxEncoderPosition;
MCSetAuxEncPos(hCtlr, 1, EncoderPulsesFromlndex);

StepsFromIndex = EncoderPulsesFromindex * EncoderPulsesToSteps;
MCSetPosition(hCtlr, 1, StepsFromindex);

Unlike the MCFindIndex() function, which re-defines the position
reported by a servos’ encoder, MCSetAuxEncPos() does not re-define

ﬂ the position of the auxiliary encoder. MCSetAuxEncPos() only arms the
capture of the encoder index mark, which is then indicated by the status
bit MC_STAT_INP_AUX being set.

DCX-PCI300 User's Manual 97

Application Solutions

;MCCL example - define positions at auxiliary encoder index mark

1AF,LU"STATUS",1RL@0, 1S27,BK,NO,JR-5 ;Enable aux. encoder index mark
;capture, loop until index captured
1AX,AR100 ;load accumulator with encoder

;position when index occurred, store
;the value in user register 100

For MCCL homing samples that can be downloaded to the controller and
ﬂ executed please refer to the MotionCD (\PCI300\MCCL\Homing).

If no encoder index mark output is available, the position of the auxiliary encoder can
be redefined at anytime using the MCAPI function MCSetAuxEncPos().

Auxiliary Encoder Connections

The two diagrams that follow illustrate the typical wiring connections required for interfacing DCX
motion control modules to an auxiliary encoder. For additional information please refer to the
Connectors, Jumpers, and Schematics chapter.

DCX-MC300H . _
/O Connecior 13 Closed Loop Sevo with Auxiliary Encoder

Encoder Phase A+

21 1

29 -} Encoder Phase A- (Differentialonly) | Servo Motq

23 Encoder Phase B+ Qéi‘g;a;z:e
24 - Encoder Phase B- (Differential only)
25 Encoder Index +]
26 1 Encoder Index -
16 - Encoder Power (+5 / +12)
Ground
16 - Encoder Power
13 | Auxiliary Encoder Phase A
14 Auxiliary Encoder Phase B

_l__Auxiliary Encoder Index + |
15
Ground

Linear Scale
(auxiliary encoder)

98 Precision MicroControl

Application Solutions

Stepper Moto

Open Loop Stepper with
Auxiliary Encoder

DCX-MC360H
I/O Connector J3

16 Encoder Power (+5VDC)

21 4 Auxiliary Encoder Phase A+
22 Auxiliary Encoder Phase A-
23 Auxiliary Encoder Phase B+
24 -}-Auxiliary Encoder Phase B- S NNN
25 Auxiliary Encoder Index+ ‘. _

26 Auxiliary Encoder Index-
2 Ground Linear Scale

auxiliary encoder)

Verifying the Operation of the Auxiliary Encoder
Enabling Closed Loop Mode (from the Stepper Setup dialog) causes PMC's Motor Mover to display
the position of auxiliary encoder.

i P |
. | =
o = |
Y Ll I R e |
- | = o T — 1=
I -
i

Figure 34: Rotate the motor / encoder shaft back and forth.
Verify that the position is changing accordingly

From WinControl, issuing the Auxiliary encoder Tell position (aAT) command will cause the current
position of the auxiliary encoder to be reported.

[l inlC ontrad2

DCX-PCI300 User's Manual 99

Application Solutions

Backlash Compensation

In applications where the mechanical system isn't directly connected to the motor, it may be required
that the motor move an extra amount to compensate for system backlash. When backlash
compensation is enabled, the DCX controller will offset the target position of a move by the user
defined backlash distance. This feature is only available for servos (MC300 MC320) at this time.

The function MCEnableBacklash()) is used to initiate backlash compensation. The Backlash
parameter of this function sets the amount of compensation and should be equal to one half of the
amount the axis must move to take up the backlash when it changes direction. The units for this
command parameter are encoder counts, or the units established by the MCSetScale() command for
this axis.

When this feature is enabled, the controller will add or subtract the backlash distance from the motor's
commanded position during all subsequent moves. If the motor moves in a positive direction, the
distance will be added; if the motor moves in a negative direction, it will be subtracted. When the
motor finishes a move, it will remain in the compensated position until the next move.

Prior to enabling backlash compensation, the motor should be positioned halfway between the two
positions where it makes contact with the mechanical gearing. This will allow the controller to take up
the backlash when the first move in either direction is made, without "bumping" the mechanical
position.

While backlash compensation is enabled, the response to the MCGetPosition(), MCTellTarget()
and MCTellOptimal() commands will be adjusted to reflect the ideal positions as if no mechanical
backlash was present.

For the example below assume that the system has 200 encoder counts of backlash. This example
moves the system to the middle of the backlash range and enables compensation. Note that the
compensation value (in encoder counts) used with MCEnableBacklash() is half of the total amount of

backlash.
MCMoveRelative(hCtlr, 1, -100.0); // move to middle of backlash
MCWaitForStop(hCtlr, 1); // let motion Finish

MCEnableBacklash(hCtlr, 1, 100.0, TRUE); // enable backlash compensation

Gear backlash

100 Precision MicroControl

Application Solutions

Emergency Stop

Many applications that use motion control systems must accommodate regulatory requirements for
immediate shut down due to emergency situations. Typically these requirements do not allow an
emergency shut down to be controlled by a programmable computing device. The drawing below
depicts an application where an emergency stop must be a completely ‘hard wired’ event.

E-stop Switch

H

Computer Control

Amplifier Relay - NC

Power Supply

0

AC In

Figure 35:Typical 'hard wired' E-stop

This ‘hard wired’ E-stop circuit uses a relay to disconnect power from the servo amplifiers. The motors
and amplifiers would certainly be disabled, but the motion controller and the application program will
have no indication that an error condition exists.

Wiring the E-Stop switch to the DCX
There are two ways to wire the DCX so that it can monitor the E-stop switch:

1) Connect the E-stop switch to one of the general purpose digital I/0O lines
2) Connect the Amplifier Fault (MC300 & MC320) and Drive Fault (MC360) inputs to the E-stop
switch

E-stop switch connected to DCX General Purpose Digital Input

Wire the E-stop switch to a general purpose digital I/O (channel #1). Each DCX digital channel has a
4.7K resistor pulled up to +5 volts. A background task is used to monitor the state of the input. If the
channel is configured for low ‘low true’ operation, the input will report its state as ‘off’ until the E-stop
switch is activated. The WaitForDigitallO() function will stay active in background until the input
‘goes true’. For additional information on macro’s and background tasks please refer to the DCX-
PCI300 MCCL Command Reference manual.

DCX-PCI300 User’'s Manual 101

Application Solutions

E-stop Switch

e +5VDC

Amplifier Relay - NC

Power Supply m
e
AC Power |

DCX Digital I/O Channel #1
DCX-AT200 connector J3 pin 19

S (>e))

Figure 36:E-stop switch wired to DCX-PCI300 general purpose digital input

it (MCBlockBegin (hCtlr,MC_BLOCK_TASK, 0) ==MCERR_NOERROR) {
MCSetRegister (hCtlr, 100, O, MC_TYPE_LONG);
MCConfigureDigitallO (hCtlr, 1, MC_DIO_LOW);
MCWaitForDigitallO (hCtlr, 1, TRUE);
MCSetRegister hCtlr, 100, 1, MC_TYPE_LONG);
MCEnableAxes(hCtlr, MC_ALL_AXES, FALSE);
MCBlockEnd (hCtlr, NULL);

// periodically poll the user register #100 for a value of 1. If true the user
// can jump to an E-stop handling routine.

MCGetUserRegister (hCtlr, 100, &Estop, MC_TYPE_LONG);

E-stop switch connected to Amplifier Fault servo module input

The Amplifier Fault inputs of MC300 and MC320 servo modules and/or the Drive Fault inputs of a
MC360 stepper module can be used to disable motion with no user software action required. The E-
stop switch is wired to the Amplifier/Drive Fault input (connector J3 pin 10 for servo modules or pin 7
for stepper modules) of each module. Auto shut down of motion upon activation of the E-stop switch
is enabled by the MCMotion structure member EnableAmpFault. When the E-stop switch is
activated:

1) The axis is disabled (PID loop terminated, Amplifier Enable output turned off)
2) The status flag MC_STAT_AMP_FAULT will be set for each axis
3) The status flag MC_STAT_ERROR will be set for each axis

When the E-stop condition has been cleared, motion can be resumed after issuing the
MCEnableAxis function with the parameter wAxis set to MC_ALL_AXES.

102 Precision MicroControl

Application Solutions

E-stop Switch

e +24 VDC
—

+5 VDC _
Amp/Drive Fault opto supply/return
DCX}MC300/320/360 connector J3 pin 7
B 3E : 5 B q e Relay - NC
; i 1 - ! Amplifier y

Power Supply w

o
AC Power Iﬁj

Figure 37:E-stop circuit wired to the fault input of DCX modules

mcaon BE| mcaon |

Encoder Rollover

The DCX motion controller provides 32 bit position resolution, resulting in a position range of
-2,147,483,647 to 2,147,483,647. For an application where the axis is moving at maximum velocity
(Imillion encoder counts/steps per second), the encoder would rollover in approximately 3.58
minutes. When the encoder rolls over, the reported position of the axis will change from a positive to a
negative value. For example, if the axis is at position 2,147,483,647 the next positive encoder count
will cause the DCX to report the position as —2,147,483,647.

If a user scaling other than 1:1 has been defined the DCX controller will report the position in user
units. The reported position at which the value will rollover is based on the user scaling. If user scaling
is set to 10,000 encoder counts to one position unit, the reported position will rollover at position
214,748.3647. The next positive encoder count will cause the DCX to report the position as
—214,748.3647.

Encoder rollover during Position Mode moves

The DCX does not support executing Position Mode moves when the encoder rolls over. No matter
what the commanded position, the axis will stop at the rollover position (2,147,483,647 or
—214,748.3647).

Encoder rollover during Velocity Mode moves
No disruption or unexpected motion will occur if a rollover occurs during a Velocity mode
(MCSetOperatingMode, MC_MODE_VELOCITY) move.

Prior to executing a velocity mode move in which the encoder position
may rollover the axis must be homed (MCFindindex or MCSetPosition)

& to position 0. Defining a offset to the home position will cause the axis to
pause at the rollover point.

DCX-PCI300 User’'s Manual 103

Application Solutions

User Defined Filters (Notch, Low Pass, High Pass, and Band

Pass)

The DCX-MC302 Dual Servo Control module does not support user
ﬂ defined filters.

The DCX-PCI300 supports user defined IR (Infinite Impulse Response) filters for each axis of servo
motion. User defined filters include:

Notch filter, otherwise known as a Band Stop filter, allows the user to define a specific
frequency to be attenuated.

Low Pass filter - removes the high frequency response of a servo system.

High Pass filter - removes the low frequency response from the system.

Band Pass filter - blocks both low and high frequency.

apniuben

apnyubep

R
N
apnyubep
apnuubep

Frequency Frequency Frequency Frequency

Notch Filter Band Pass High Pass Low Pass

It is not uncommon for a servo system and its load to exhibit mechanical resonance’s. One or more
Notch filters can be cascaded to attenuate these resonance’s.

The DCX-PCI300, DCX motion control modules, and associated

software is not designed to detect, record, or display mechanical
resonance’s. The user is responsible for providing the necessary

equipment for analyzing resonance's.

Each axis supports as many as six biquad stages, providing up to 12" order performance. The form of
a biquad stage is shown in the following equation:

Vo= & Xetar* Xpt a*Xs+ bi*yot+ b *yr

104

Precision MicroControl

Application Solutions

The DCX-PCI300 supports as many as two IR filters per servo axis.

ﬂ Usually this would means that the user could define two Notch filters, the
controller does support combining two different filter types (Notch & Low
Pass, Notch and High Pass, etc...).

The setting of the PID filter loop rate (HS, MS, LS) determines how many biquad stages an axis can
execute. The table below details the association:

High Speed | Medium Speed | Low Speed
Stages
Yes Yes Yes

1

2 Yes Yes
3 Yes Yes
4 Yes Yes
5 Yes
6 Yes

While cascading filter stages will increase attenuation (the deeper notch), it will also tend to increase
ripple. In other words, don’t use any more stages than you need

Calculating the filter coefficients

A DOS utility program IIRFilter.exe available on the MotionCD (PCI300\iir filter\) allows the user to
define the type, quantity, and frequency response for an axis. The utility will then generate a MCCL
command file that can be downloaded to the controller via WinControl or the MCDLG_DownloadFile
MCAPI common dialog.

2 IIRFilter

Pleaue select the PID loop speed:
Low Speed
Medium Speed
High Speed

How Many Filter To Be Cascaded <{1-62>7%
1

Pleaue Select the Filter Type:
Low Pazz Filtewr

High Pasz=s Filter

Band Pass Filter

Band Stop ¢Motch)» Filter

Pleasze Enter the Center Fregquency:(@—-48600 Hz>
188

Mormalized Center fregquency iz B.@125608

Please Enter the Bandwidth:{(8-2880 Hz>
18

Figure 38: The DOS IIR filter utility (iirfilter.exe) calculates the filter coefficients, which can then be
downloaded to the controller via WinControl

DCX-PCI300 User’'s Manual 105

Application Solutions

Example — Defining a Notch filter
A machine builder has detected that axis one of a four axis machine has a significant resonance at

100 Hz. The following steps will configure the DCX-PCI300 to implement a Notch filter at 100 Hz with
a bandwidth of 10Hz.

Step #1 — Define the filter and calculate the coefficients
Open the IIR filter utility (IIRFilter.exe). Enter the following:

Select controller type:
Select the filter type:
Select PID loop speed:

1 = PCI300 <enter>
4 = Band Stop (Notch) filter <enter>
3 = High Speed <enter>

Enter the Center Frequency: 100 <enter>

Bandwidth: 10 <enter>
The utility will calculate the filter coefficients and store them in an MCCL command file named
Flt_Coef.pci3.
1ZF ;Zero filter to clear previous loaded filter coefficients

;1 Band Stop

(Notch) Filters with center frequency at 100 Hz and bandwidth 10 Hz

Figure 39: 100 Hz Notch filter frequency response

1FL0.998531 ;Load filter 1 coefficient a0
1FL-1.990906 ;Load filter 1 coefficient al
1FL0.998531 ;Load filter 1 coefficient a2
1FL1.986358 ;Load filter 1 coefficient bl
1FL-0.992514 ;Load filter 1 coefficient b2
Magnitude
1.0
=
10
0.8
0.6
0.4
0.2
100 200 300
Frequency (Hz)

106

Precision MicroControl

Application Solutions

Download the filter coefficient file to the controller with WinControl or use the PMC Common Motion
Dialog function MCDLG_DownloadFile. To enable the digital filter issue the Yes IIR Filter (aYF)
command from WinControl or call the MCEnableDigitalFilter () function from a high level program.
Enable the axis with the MCEnableAxis function ().

The servo will perform significantly different with the IIR filter enabled so
ﬂ you will need to re-tune the axis.

The Save and Restore functions of MCAPI 3.2.0000 do not support the
& lIR filter parameters. Each time the controller is initialized (reset or power
cycle) you will need to download the coefficient file.

Flash Memory Firmware Update

Each time the PC is re-booted (reset or power cycle) the operating code (typically called firmware) for
the DCX-PCI300 is loaded into on-board SDRAM (Static Dynamic Random Access Memory). The
source files for the operating code is written to the PC'’s hard disk drive during the installation of the
MCAPI.

PMC'’s Flash Wizard (the DCX-PCI300 requires Flash Wizard rev. 2.20) is a windows utility that
allows the user to easily update the operational code. Code updates are available from the MotionCD
or from PMC’s web site www.pmccorp.com.

n| :::._n:-::.u.— ﬂ! —————— n| mamemr n| =z L s

B £ 1 e ww -I ut I . e S LLL 'y — MEEE Gn) S i

I—.‘ gl L= I—.‘ [A Nt -

[z T I = 2 WY T T T .
:IE I -t o, =M - :IE I :IE I ot bt £

B U= E| e ot e i "= | e e e i l_:I];J '''''''' S—!
__'I fwmm— b — ﬁ - ci—wEm T T—— = .?::I [T ST LE

[e (I I._I_I' Fope [] k-3

] | = = =l

With Windows 98 and MCAPI 3.02.000 a verification error may occur
& during code download. To complete the firmware upgrade close Flash
Wizard and restart the PC.

DCX-PCI300 User’'s Manual 107

Application Solutions

Initializing and Restoring Controller Configuration

When the controller is reset or the computer is turned on all motion (PID settings,

Vel/Accel/Decel,Limits), I/O (High / Low true), and global controller (User Scaling) settings revert to
default values (default setting are listed on page 258).

New Applications & First Time users

PMC’s Motion Integrator was designed specifically for first time users and new applications. Not only
does it proceed step by step through the testing and configuration of a motion control system, it
automatically saves all settings by creating an initialization file. Upon completion of Motion Integrator

(including Servo Tuning) , all other PMC application programs can be directed to load the setting by
selecting Auto Initialize from the File menu.

Wi o e | ey
i T - |
| L7 el .4 45 T

L] e oo | [T vt [
ey ufw i | i
i L N J

[R O | Bamm | W | canr R
R P
=g | e | -l i
| P I I s | T |

I oty | I | |

Figure 40: Launch Motor Mover with user defined controller setting by selecting Auto Initialize

Saving user define settings

Upon recognition by the MCAPI that one or more DCX motion controllers are installed, an initialization
file (mcapi.ini) is copied into the Windows folder. Initially this file contains only information about the
controller type and interface settings. If at anytime the user selects Save All Axes Settings from the

File menu of any of PMC'’s application programs, the current settings for all installed axes will be
written into the mcapi.ini file.

Figure 41: Saving axis settings to mcapi.ini from PMC's Servo Tuning program

To define controller settings from a user’s application program, call the Motion Control Dialog function
MCDLG_SaveAXxis.

108 Precision MicroControl

Application Solutions

Selecting Save All Axes from the File menu of a PMC application
& program will over write all previously stored settings.

Restoring controller settings

Other than opening a handle for the controller, the first step in all user application programs should be
to restore all previously defined axis settings. This is accomplished by calling the Motion Dialog
MCDLG_RestoreAxis.

Learning/Teaching Points

As many as 256 points can be stored for each axis in the DCX's point memory by using the
MCLearnPoint() function. A stored point can be either the actual position of an axis
(MC_LRN_POSITION) or the target position of an axis (MC_LRN_TARGET).

The value MC_LRN_POINT would typically be used in conjunction with jogging. The operator would
jog the axes along the desired path, issuing the MCLearnPoint() command at regular intervals. The
MCMovePoint() command would then be used to ‘play back’ the path traversed by the operator.

For applications where the target point data was previously recorded and stored in the PC, the value
MC_LRN_TARGET would be used to load the target points into the DCX. For some applications,
using MCLearnPoint() to load a series of moves may be ‘easier’ than issuing a series of contour
mode linear moves, even though the results would be the same.

Once all points have been stored, the axes are commanded to move to the stored positions with
MCMoveToPosition(). The parameter windex indicates to which stored point the axis should move.

// Move axis 1 and store position in consecutive point storage locations.

WORD wlndex;
MCEnableAxis(hCtlr, 1, TRUE); // motor on
MCGoHome(hCtlr, 1); // start from absolute zero

MCWaitForStop(hCtlr, 1, 0.100);

for (windex = 0; windex < 5; wlndex++) {
MCMoveRelative(hCtlr, 1, 1234.0); // move
MCWaitForStop(hCtlr, 1, 0.100); // are we there yet?
MCLearnPoint(hCtlr, 1, wlndex, MC_LRN_POSITION);

}

// Store several positions for axis 4 without actually moving the axis. Note // that
axis is disabled with MCEnableAxis() prior to storing positions

WORD wlndex;

MCEnableAxis(hCtlr, 4, FALSE); // motor off

for (wlndex = 0; windex < 5; wlndex++) {
MCMoveRelative(hCtlr, 4, 2468.0); // nothing actually moves
MCLearnTarget(hCtlr, 4, wlndex, MC_LRN_TARGET);

}

DCX-PCI300 User’'s Manual 109

Application Solutions

// This example moves to the stored positions, dwelling for 0.2 seconds at
// each point.

WORD wlndex;

MCEnableAxis(hCtlr, 4); // enable axis

for (wlndex = 0; windex < 5; wlndex++) {
MCMoveToPoint(hCtlr, 4, windex); // move to next point
MCWaitForStopped(hCtlr, 4, 0.2);

}

To cause the DCX to perform linear interpolated moves between the taught points, place each of the
axes in contour mode. Use the lowest axis number as the contour mode command parameters, this is
the controlling axis. Set the vector velocity and accelerations of the controlling axis. Issue a single
MCMoveToPoint() command to the controlling axis with the point numbers as the command
parameter. Note that when point memory is used with motors in contour mode, point O should not be
used. This example executes linearly interpolated moves through three stored points of axes 1, 2, and

3.
MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 3, 1, MC_MODE_CONTOUR);

// Linear interpolated move sequence through stored points

for (windex = 1; windex < 4; wlndex++) {
MCBlockBegin(hCtlr, MC_BLOCK _CONTR_LIN, 1);
MCMoveToPoint(hCtlr, 1, wilndex);
MCMoveToPoint(hCtlr, 1, wilndex);
MCMoveToPoint(hCtlr, 1, windex);
MCBlockEnd(hCtlr, NULL);

}

Building MCCL Macro Sequences

A powerful feature of the DCX is the ability to define MCCL (Motion Control Command Language)
command sequences as macros.

Command Language) commands please refer to the MCCL Reference

ﬂ For additional information on macro’s and MCCL (Motion Control
Manual.

A DCX macro is a user define sequence of operations that is executed by issuing a single command.
For example:

1MR1000,WS0.25,MR-1000,WS0.25

will cause the motor attached to axis 1 to move 1000 counts in the positive direction, wait one quarter
second after it has reached the destination, then move back to the original position followed by a
similar delay. If this sequence were to represent a frequently desired motion for the system, it could
be defined as a macro command. This is done by inserting a Macro Define (MDn) command as the
first command in the command string. For example:

MD3, 1MR1000,WS0.25,MR-1000,WS0.25

110 Precision MicroControl

Application Solutions

will define macro #3. Whenever it is desired to perform this motion sequence, issue the command
Macro Call (MC3). To command the DCX to display the contents of a macro, issue the Tell Macro
(TMn) command with parameter ‘n’ = the number of the macro to be displayed. To display the
contents of all stored macro’s issue the Tell macro command with parameter ‘n’ = -1.

7] WinControl32 _[O]

File Edt Help
O & § R el e

> md3, 1mr1000,ws0.25, mr-1000,ws0.25

> mc3

» tm-1

MC3 1MR1000,1WS0.250000,1MRB-1000,1WS0.25000

Available macro memonry
RAM: 4096

FLASH: 126638 bytes

>

Once a macro operation has begun, the host will not be able to

communicate with the DCX until the macro has terminated. For
& information on communicating with the controller while executing

macro’s please refer to the section titted MCCL Multi-Tasking.

The DCX can store up to 1000 user defined macros. Each macro can include as many as 255 bytes.
Depending on the type of command and type of parameter, a command can range from 2 bytes (a
command with no parameter) to 10 bytes (a command with a 64 bit floating point parameter).

All memory on the DCX-PCI300 is volatile, which means that the data in memory will be cleared
when the controller is reset or power to the board is turned off. The Reset Macro (RMn) command is
used to erase macros.

Since the DCX provides no protection against overflowing the macro storage space, it is suggested
that the user monitor the amount of memory available for macro storage. The Tell Macro (TMn)
command can be used to display the amount of RAM memory available for macros storage at any
give time.

To terminate the execution of any macro that was started from WinControl press the escape key.

To start a macro that runs indefinitely without ‘locking up’ communication with the host, start the
macrao’s with the generate a Background task (GT) command instead of the Call macro command
(MC). This will allow the operations called by macro O to execute as a background task. Please refer
to the next section Multi-Tasking.

command executing as the foreground task. For additional information

0 The DCX-PCI300 supports Single Stepping of any MCCL macro
please refer to Single Stepping MCCL Programs later in this chapter.

DCX-PCI300 User’'s Manual 111

Application Solutions

MCCL Multi-Tasking

The DCX command interpreter is designed to accept commands from the user and execute them
immediately. With the addition of sequencing commands, the user is able to create sophisticated
command sequences that run continuously, performing repetitive monitoring and control tasks. The
drawback of running a continuous command sequence is that the command interpreter is not able to
accept other commands from the user.

Once a macro operation has begun, the host will not be able to
& communicate with the DCX until the macro has terminated.

The DCX supports Multi-tasking, which allows the controller to execute continuous monitoring or
control sequences as background tasks while the foreground task communicates with the ‘host’.

With the exception of reporting commands (Tell Position, Tell Status, etc...), any MCCL commands
can be executed in a background task. Prior to executing a command sequence/macro as a
background task, the user should always test the macro by first executing it as a foreground
task. When the user is satisfied with the operation of the macro, it can be run as a background task
by issuing the Generate Task (GTn) command, specifying the macro number as the command
parameter. After the execution of the Generate Task command, the accumulator (register 0) will
contain an identifier for the background task. Within a few milliseconds, the DCX will begin running the
macro as a background task in parallel with the foreground command interpreter. The DCX will be
free to accept new commands from the user.

;Multitasking example — while axis #1 is moving, monitor the state of digital
;input #4. When the input goes active, stop axis #1 and terminate the
;background task

ALO,AR10 ;define user register 10 as input #4 active
;Flag register

ALO,AR100 ;define user register #100 as background task
;1D register

MD100, IN4,MJ101,NO,1JR-3 ;jump to macro 101 when digital input #4
;turns on

MD101,1ST,1WS.05,AL1,AR10,ET@100 ;stop axis #1. Terminate background task

GT100,AR@100,1VM,1D10,1GO ;spawn macro #10 as background task. Store
;task ID into register #100. Start axis #1
;moving in velocity mode,

Note: Immediately after ‘spawning’ the background task (with the GTn
command), the value in the accumulator (task identifier) should be
stored in a user register. This value will be required to terminate
execution of the background task.

112 Precision MicroControl

Application Solutions

Another way to create a background task is to place the Generate Task command as the first
command in a command line, using a parameter of 0. This instructs the command interpreter to take
all the commands that follow the Generate Task command and cause them to run as a background
task. The commands will run identically to commands placed in a macro and generated as a task.

;Multitasking example — whille axis #1 is moving, monitor the state of the
;motor error status bit (bit 7). If error occurs set bit #1 of user
;register 200

GTO,AR@100,LU”STATUS,1RL@O, IC7,JR-3,NO,AL1,AR200,ET@100
;loop on axis #1 status bit 7, if set; set
;bit #1 of register 200, terminate task using
;Task ID (in register #100)

Within the background task, the commands can move motors, wait for events, or perform operations
on the registers, totally independent of any commands issued in the foreground. However, the user
must be careful that they do not conflict with each other. For example, if a background task issues a
move command to cause a motor to move to absolute position +1000, and the user issues a
command at the same time to move the motor to -1000, it is unpredictable whether the motor will go
to plus or minus 1000.

In order to prevent conflicts over the registers, the background task has its own set of registers 0
through 9 (register 0 is the accumulator). These are private to the background task and are referred to
as its 'local registers. The balance of the registers, 10 through 255, are shared by the background
task and foreground command interpreter, they are referred to as 'global’ registers. If the user wishes
to pass information to or from the background task, this can be done by placing values in the global
register. Note that when a task is created, an identifier for the task is stored in register O of both the
parent and child tasks.

The DCX is able to run multiple background tasks, each with their own set of registers, but can only
have one foreground command interpreter. The maximum number of background tasks is 13. Each
background task and the foreground command interpreter get an equal share of the DCX processor's
time. When one or more background tasks are active the DCX Task Handler will begin issuing local
DCX interrupts every 1 millisecond. Each time the task handler interrupt is asserted, the DCX will
switch from executing one task to the next. For example if three background tasks are active, plus the
foreground task (always active), each of the four tasks will receive 1 msec of processor time every 4
msec’s.

Background task #3 - -
Background task #2 - -
Background task #1 - -

Foreground task - -

12 3 4 5 6 7 8
B Acive task DCX CPU Pr'OCGSSIng
(msec's)

DCX-PCI300 User’'s Manual 113

Application Solutions

While a background task executes a Wait command, that task no longer receives any processor time.
For tasks that perform monitoring functions in an endless loop, the command throughput of the DCX

can be improved by executing a Wait command at the end of the loop until the task needs to run
again.

A common way for a background task to be terminated, is when the command sequence of the task
finishes execution. This will occur at the end of the macro or if a BreaK (BK) command is executed.
When a task is terminated, the resources it required are made available to run other background
tasks.

;Multitasking example — this background task will terminate itself if the
;motor error status bit for axis #1 is set. This sequence is similar to the
sprevious example except that the task is self terminating, so register #100
is not required.

GTO,LU”STATUS”,1RL@0, 1C7,JR-3,NO,AL1,AR200
;loop on axis #1 status bit 7, if set; set
;bit #1 of register 200, task self terminates
;(no commands left to execute)

Alternatively, the Escape Task (Ten) command can be used to force a background task to terminate.
When a task is generated by the GT command, a value known as the Task ID is placed into the
accumulator. This value should immediately be copied into a user register. The parameter to this
command must be the value that was placed in accumulator (register 0) of the parent task, when the
Generate Task command was issued.

;Multitasking example — Terminating a background task with the Escape Task

command.

GT100,AR@150 ;call macro #100 as a background task, copy
; task ID into user register 150

ET@150 ;to terminate background task issue escape

; task command with parameter n = Task ID

Pause and Resume Motion

The current release of the Motion Control API (3.2.0000) does not
provide high level function calls for Pause and Resume. The following
descriptions use MCCL commands to configure an axis for position

0 compare. The MCAPI OEM low level function pmccmdex() can be used
to issue MCCL commands via the MCAPI.

Future releases of the MCAPI will resolve this lack of support.

The Save Configuration (aSCn) and Restore Configuration (aRCn) commands can be used with the
Velocity Override command to pause and resume motion.

114 Precision MicroControl

Application Solutions

Each of these commands takes an axis specifier a and requires a file number as the command
parameter n. These commands save and restore the entire motor table. This includes the public motor
table in dual port memory and the private motor table in internal RAM.

These commands allow the motors to be stopped (aVOO0) during a contour move, their configurations
saved, switched to any other mode (except contouring), moved about and then returned to their
original positions, their configurations restored, and then commanded to continue the contour move
(av0o1l.0).

Note: Prior to resuming motion it is very important that the axes be
returned to the exact position at which the motor table was saved. If this

& is not done, the axis will either jump to the position at which motion was
paused or it may error out.

Position Capture

The DCX-MC302, DCX-MC320, and DCX-MC362 do not support
0 position capture.

The DCX supports capturing the position of the primary encoder (MC300) or the step count register
(MC360) on the leading edge of the Position Capture input. As many as 512 captured positions can
be stored in the recording memory of the DCX module. For servo modules the maximum frequency of
position captures is based on the servo loop setting (High = 8KHz, Medium = 4 KHz, Low = 2 KHz).
For stepper axes the maximum frequency is fixed at 1 KHz.

The MCAPI function MCEnableCapture () is used to initiate position capture. When this feature is
enabled the current position will be recorded on the rising edge of the capture input. If parameter
count equals 1 the module will capture only one position. If parameter count equals 2 the module will
capture two positions, and so on. When the number of positions captured = count , the
MC_STAT_POS_CAPT flag (bit 11 of the axis status) will be set. To report the number of positions
captured issue the MCGetCount (') function with the type = MC_COUNT_CAPTURE. To disable
position capture issue MCEnableCapture () with parameter count equal to 0. Captured positions
may be retrieved using the MCGetCapturedData() function.

Long int count;
double data{10};

MCEnableAxis(hCtlr, 1, 1);
MCMoveRelative(hCtlr, 1, 10000.0);

// Capture 10 positions
//
MCEnableCapture(hCtlr, 1, 10.0);

// Retrieve the 10 captured positions into local array

DCX-PCI300 User’'s Manual 115

Application Solutions

//

do {
MCGetCount((hCtlr, 1, MC_COUNT CAPTURE, &count);
} while (count <10);

MCGetCaptureData(hCtlr, 1, MC_CAPTURE_ACTUAL, O, 10, &data);

Position Compare

The DCX-MC302, DCX-MC320, and DCX-MC362 do not support
ﬂ position compare.

The DCX modules provide a high speed open collector output to indicate that a position compare
event has occurred. The assertion of this output is based on the position of the primary encoder
(MC300) or the step count register (MC360). As many as 512 compare positions can be stored in the
recording memory of the DCX module.

Compare pre defined positions

To configure an axis for position compare first use the MCAPI function McConfigureCompare () to
define the number of compare positions (as many as 512) and the compare output mode. Then issue
the MCAPI function MCEnableCompare () with the flag = MC_COMPARE_ENABLE. This will
terminate any current compare operation and initializes the compare index to 0. After starting a move,
when the actual position is equal to the compare position the compare output will be turned on (pulled
to ground) and the next compare position will be loaded into the compare register. When all position
compare events have been completed the MC_STAT_ BREAKPOINT flag of the axis status will be
set.

Compare at incremental distances
For compare events at fixed distances of travel use the function MCEnableCompare () and:

1) Store the beginning point (first compare position) in the first location of values
2) Set the num parameter to 1
3) Set the inc parameter to the distance (counts or steps) between compare events

Maximum compare frequency

The position update frequency of a DCX servo module (MC300/320) module is based on the setting of
the servo loop rate (High = 8KHz, Medium = 4 KHz, Low = 2 KHz). Therefore the distance between
compare positions cannot be such that the time from one compare event to the next is less than the
position update frequency of the module (High = 125usec. , Medium = 250 usec., Low = 500 usec.).
For MC360 stepper modules the update frequency is always 1KHz. The time between compare
events cannot be less than 1000 usec's.

116 Precision MicroControl

Application Solutions

Compare output signal configuration

When the compare output is activated as the result of a compare or breakpoint occurrence, the
compare output signal will react according to the which mode has been selected with the mode
parameter of the MCConfigureCompare () function.

MC_COMPARE_DISABLE Disables the compare output

MC_COMPARE_INVERT Inverts the active level of the compare output

MC_COMPARE_ONESHOT | Configures the compare output for one shot operation (one
shot period is defined by the period parameter of
McConfigureCompare () function. The one shot pulse
period range is from lusec. to 1.0 second. For one shot
periods less than 50 milliseconds the timer resolution is 1
micro second. For one shot periods greater than 50
milliseconds the timer resolution is 50 milliseconds.

MC_COMPARE_STATIC Configures the compare output to turn on when a compare
event occurs. The output will stay on until a new compare
event is called

MC_COMPARE_TOGGLE Configures the compare output to toggle between the
active and inactive state each time a compare event
occurs

For all of the output modes, the compare output will be activated within 1/2 microsecond of the
encoder reaching the position. The optical isolator on the compare output signal takes an additional 2
to 3 microseconds to turn on depending on the load circuit. This optical isolator will take about 50
microseconds to turn off (depending on the load). When the compare output mode is set to Disabled,
the output will be at its' in-active level. The controller sets the output mode to Disabled on power up or
reset.

To report the number of compare events that have occurred issue the MCGetCount (') function with
the type = MC_COUNT_COMPARE. To disable position compare issue MCEnableCompare () with
parameter flag value = MC_COMPARE_DISABLE.

//

// Use positions spaced 5 units apart, beginning at 10.0 as compare
// positions. Toggle the output pin on valid compares. Wait for 20
// compares to complete.

//

data[0] = 10.0; // starting point

MCConfigureCompare(hCtlr, 1, data, 1, 5.0, MC_COMPARE_TOGGLE, 0.0);

MCEnableCompare(hCtlr, 1, MC_ENABLE_COMPARE); // enable compare
MCMoveRelative(hCtlr, 1, 100.0);

do { // wait for 5 points
MCGetCount(hCtlr, 1, MC_COUNT_COMPARE, &count);
} while (count < 20);

DCX-PCI300 User’'s Manual 117

Application Solutions

Reassigning Axis Numbers

The current release of the Motion Control API (3.2.0000) does not
provide high level function calls for reassigning axis numbers. The
following descriptions use MCCL commands to configure an axis for

0 position compare. The MCAPI OEM low level function pmccmdex() can
be used to issue MCCL commands via the MCAPI.

Future releases of the MCAPI will resolve this lack of support.

The DCX defaults to assigning axis humbers logically, not based on a motor module’s physical
location. In the following graphic three modules are installed on a DCX-PCI300. When the computer is
power up the MC320 in module location #1 will automatically be defined as axis one. The MC320 in
module location #3 would be defined as axis two. The MC300 in module location #5 would be defined
as axis three.

{VC300K

Figure 42:Assigning axis numbers to DCX motion control modules

Using the Use Physical (aUPn) command the user can redefine the axis number of DCX motion
control module. Referencing the previous graphic, to redefine axes 2 and 3 as axes 3 and 5:

upP ;issue the UP command with no axis
;specifier a or parameter n, this step
;is required to clear the logical axis
;number assignment performed by the
DCX-PCI1300 on power up.

3UP3 ;Reassign the module in physical
;location 3 (parameter n) as axis 3
;(axis specifier a)

5UP5 ;Reassign the module in physical
;location 5 (parameter n) as axis 5
;(axis specifier a)

118 Precision MicroControl

Application Solutions

Note — The reassignment of axes must be done before sending any
& commands (setup, move, etc...) to the controller.

Note — The first step to changing axis numbers is to clear all axis
assignments by issuing the Use Physical assignment (aUPn) command

& with no axis specifier a and parameter n. Once this has been done all
axes must be reassigned with the UP command, even the axes for
which the automatically assigned axis number was correct.

Record Motion Data

The DCX supports capturing and retrieving motion data for servo axes (MC300, MC302, MC320) and
closed loop stepper axes (MC360). Captured position data is typically used to analyze servo motor
performance and PID loop tuning parameters. PMC's Servo Tuning utility uses this function to analyze
servo performance. The MCAPI function MCCaptureData() is used to acquire motion data for a
servo axis. This function supports capturing:

Actual Position versus time

Optimal Position versus time

Following error versus time

DAC output versus time (DCX-MC300 and MC320)

The time base (8 KHz, 4 KHz, 2 KHz) for captured data is set by Rate member of the MCMotion data
structure. The function MCGetCapturedData() is used to retrieve the captured data. This example
captures 1000 data points from axis 3, then reads the captured data into an array for further
processing.

double Data[1000];

MCBlockBegin(hCtlr, MC_BLOCK _COMPOUND, 0);
MCCaptureData(hCtlr, 3, 1000, 0.001, 0.0);
MCMoveRelative(hCtlr, 3, 1000.0);
MCWaitForStop(hCtlr, 3, 0.0);

MCBlockEnd(hCtrilr, NULL);

// Retrieve captured actual position data into local array

//

if (MCGetCaptureData(hCtlr, 3, MC_DATA_ACTUAL, 0O, 1000, &Data) {
.- // process data

DCX-PCI300 User’'s Manual 119

Application Solutions

Resetting the DCX

The DCX supports software controlled reset. To reset the DCX-PCI300 motherboard and all installed
axes issue the MCAPI function MCReset(). For additional information please refer to the DCX-
PCI300 MCAPI Reference Manual.

Most PMC application programs (Motor Mover, Servo Tuning, WinControl) allow the user to reset the
controller by selecting Reset Controller from the WinControl File menu.

=10 %]
Fie Edit Help
O, , u ‘

Buto-Tndialze Bl Axoes
Sape Al Loz Settings

Cortrolas Info.,
Sanhar irodlar, .,
rober

Figure 43: Resetting the DCX-PCI300

Resetting the DCX-PCI300 from a user application program (with MCReset()) or from one of a PMC’s
software programs (by selecting Reset Controller from: Motor Mover, WinControl, Servo Tuning,
etc...) will cause the controller to revert to default settings (PID, velocity, accel/decel, limits, etc...). For
information restoring the user defined settings please refer to the Initializing and Restoring
Controller Configuration section in this chapter.

In the event of a ‘hang up’ of the application program and/or controller,
the application program may fail to resume operation after issuing the

MCReset() function. The user will have to terminate and then re-open
the application program.

ﬂ Until the DCX has fully re-initialized the Reset Relay will be energized.

120 Precision MicroControl

Application Solutions

Single Stepping MCCL Programs

While the DCX is executing any Motion Control Command Language (MCCL) macro program, the
user can enable single step mode by entering <ctrl> . Each time this keyboard sequence is
entered, the next MCCL command in the program sequence will be executed. The following macro
program will be used for this example of single stepping:

mD10,WA1,1MR1000,1WS.1,1TP,1MR-1000,1WS.1,1TP,RP

This sample program will: wait for 1 second, move 1000 encoder counts, report the position 100
msec’s after the calculated trajectory is complete, move -1000 encoder counts, report the position 100
msec’s after the calculated trajectory is complete, repeat the command sequence.

This command sequence can be entered directly into the memory of the DCX by typing the command
seguence in the terminal interface program WinCtl32.exe or by downloading a text file via
WinControl's file menu.

To begin single step execution of the above example macro enter MC10 (call macro #10) then <ctrl>
 the following will be displayed:

{C1,MC10} 1IMR1000 <
The display format of single step mode is: {Command #,Macro #} Next command to be executed

L inControl 32
file Edt Help

0O | = o -

= 10] x|

D0, WAL T RTER000, WS 1A TE T RE-T00_ 1S 1 1T HP
i [} [| L trl H» k& & -|-|-|||| i actiom that wnll mot e echoed on the Sciean
TEIR1000

LT | EITRTEATE
TP 000

11 B -0
1WAFSI, 0000
1 |

To end single stepping and return to immediate MCCL command execution press <Enter>. To abort
the MCCL program enter <Escape>. Single step mode is not supported for a MCCL sequence that is
executing as a background task.

Single stepping can also be enabled from within a MCCL program by using the break command
immediately followed by a “string” parameter. When the break command is executed the controller will

DCX-PCI300 User’'s Manual 121

Application Solutions

display the characters in the string (inside the quotation marks) and then delay additional command
execution until the space bar (execute next command and then delay) or the enter key (terminate
single stepping and resume program execution) are selected. In the following example axis one will
move 1000 counts, report the position, move —1000 counts, report the position, halt command
execution until the space bar is entered, repeat one time.

MC10 1MR1000,1WS0.100000,1TP,1MR-1000,1WS0.100000,1TP,BK"wait" ,RP1

>mcl0
01 997
010
BREAK AT COMMAND 6, MACRO 10
wait
{C7,M10} RP10 [REPEAT] <
<space bar>
01 997
010
BREAK AT COMMAND 6, MACRO 10
wait
{C7,M10} RP10 [REPEAT] <
>

ﬂ Note: Firmware revision 1.6c¢ or higher is required for single step mode

Tangential Knife Control Not supported at this time

A variation of Master/Slave mode supports using the position of two master axes to control the
position of a third axis. The slave's optimal position will equal the arctangent of the ratio of the master
axes' velocities. If the master axes are driving an X-Y table, the slave's position will equal the table's
direction of travel. This dual master capability can be used to control the knife in cutting applications.
This function is only available when the slave is a servo, and the two master axes, which can be
servos or steppers, are in contour mode.

The current release of the Motion Control API (3.2.0000) does not
provide a high level function call that enables tangential knife control.
The following description uses the MCAPI OEM low level function
pmccmdex() to issue the MCCL command Set Master (aSMn) with a
parameter n, which configures the axis that controls the rotation of the
knife.

Future releases of the MCAPI will resolve this lack of support.

Set the scaling of the knife axis to one unit equals 360 degrees of rotation of the knife. Issue the Set
Master (aSMn) command to the slave axis with a parameter n that specifies the two master axes. The
value of the Set Master parameter should be calculated as follows:

122 Precision MicroControl

Application Solutions

parameter n = master 1 axis number + (master 2 axis number x 16)

With two master operation, the slave axis will begin to track the master axis's direction when the first
(and subsequent) contour mode move is issued. The blade of the knife will remain tangential to the
contour path. To terminate the master and slave connections between the axes, issue the Set Master
command to the slave axis with a parameter of 0, followed by either the Position Mode (PM) or the
Velocity Mode (VM) command. If a significant change in direction (like a corner) of the X and/or Y
axes occurs the knife will instantaneously. If this is undesirable, lift the blade, place the slave in
position mode, re-position the blade, and lower the blade.

The following example will cut a 5 inch square out of a piece of linoleum. Axes 1 and 2 (X and Y
respectively) are designated as the two master axes. Axis 3 will position the knife. Axis four (Z) is
used to lift the knife at a corner, where an instantaneous change of direction in X and/or Y would be
undesirable.

// define scaling of axis 3, 2000 encoder counts per revolution sets 1 unit to
// 1 ;revolution

//

MCGetScale(hCtlr, 3, &Scaling);

Scaling.Scale = 2000.0;

MCSetScale(hCtlr, 3, &Scaling);

// Use the MCCL command Set Master to configure axis 3 as a slave to axes 1 and 2.
// Header file MCAPI.H must be included
//
it (pmcrdy(hCtir)) {
arg = 33;
if (pmccmdex(hCtlr, 3, SM, &arg, MC_TYPE_LONG) == MCERR_NOERROR) {
}

// turn on axes 1, 2, 3, & 4
//
MCEnableAxis(hCtlr, 1, MC_ALL_AXES);

//Execute 1°% linear move
//
MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR); // axis 1 contour mode

// Linear move, first side of triangle

//

MCBlockBegin(hCtlr, MC_BLOCK CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 1000.0);
MCMoveAbsolute(hCtlr, 2, 0.0);

MCBlockEnd(hCtlr, NULL);

// wait for end of contour move, lift blade, rotate blade, lower blade
//

MCWaitForStop(hCtlr, 1, 0.1);

MCMoveRelative(hCtlr, 4, 1000.0);

MCWaitForStop(hCtlr, 4, 0.1);

MCMoveRelative(hCtlr, 3, 0.333);

MCWaitForStop(hCtlr, 3, 0.1);

MCMoveRelative(hCtlr, 4, -1000.0);

MCWaitForStop(hCtlr, 4, 0.1);

// Linear move, second side of triangle

DCX-PCI300 User’'s Manual 123

Application Solutions

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 500.0);
MCMoveAbsolute(hCtlr, 2, 1000.0);

MCBlockEnd(hCtlr, NULL);

// wait for end of contour move, lift blade, rotate blade, lower blade
//

MCWaitForStop(hCtlr, 1, 0.1);

MCMoveRelative(hCtlr, 4, 1000.0);

MCWaitForStop(hCtlr, 4, 0.1);

MCMoveRelative(hCtlr, 3, 0.333);

MCWaitForStop(hCtlr, 3, 0.1);

MCMoveRelative(hCtlr, 4, -1000.0);

MCWaitForStop(hCtlr, 4, 0.1);

// Linear move, third side of triangle

//

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
MCMoveAbsolute(hCtlr, 1, 0.0);
MCMoveAbsolute(hCtlr, 2, 0.0);

MCBlockEnd(hCtlr, NULL);

// wait for end of contour move, lift blade, rotate blade, lower blade
//

MCWaitForStop(hCtlr, 1, 0.1);

MCMoveRelative(hCtlr, 4, 1000.0);

MCWaitForStop(hCtlr, 4, 0.1);

MCMoveRelative(hCtlr, 3, 0.333);

MCWaitForStop(hCtlr, 3, 0.1);

MCMoveRelative(hCtlr, 4, -1000.0);

MCWaitForStop(hCtlr, 4, 0.1);

111 now disable tangential knife control 111!

Threading Operations Not supported at this time

Threading operations require not only tight Synchronizafion between the primary axes, but also the
ability to begin motion of the slave axis relative to a specific position of the master. The DCX
implementation of threading uses the encoder index mark of the master axis to trigger motion of the
slave.

The current release of the Motion Control API (3.2.0000) does not
provide a high level function call for enabling threading operations. The
following description uses the MCAPI OEM low level function

0 pmccmdex() to issue the MCCL command Set Master (aSMn) with a
parameter n, which configures the DCX controller for threading.

Future releases of the MCAPI will resolve this lack of support.

To enable Master/Slave Threading mode, issue the Set Master (aSMn) command where:

124 Precision MicroControl

Application Solutions

a = the axis number of the slave
n = the axis number of the master + 2

A move absolute, move relative, or go home command can also be issued to the slave axis to set a
target position where the axis will be taken out of slave mode. The Index Arm or Find Index command
must be issued to the master axis after the Set Master command has been issued to the slave axis.
The slave will be synchronized to the master's position when its encoder index pulse occurs. In the
following example the spindle (master) is axis #2 and the thread cutting tool is positioned by axis #1
(slave).

// Set scaling of master axis. For the spindle, this would typically be set to
// the number of encoder counts per revolution.
//

MCGetScale(hCtlr, 2, &Scaling);
Scaling.Scale = 2000.0;
MCSetScale(hCtlr, 2, &Scaling);

//Set scaling of the slave axis
//

MCGetScale(hCtlr, 1, &Scaling);
Scaling.Scale = 4000.0;
MCSetScale(hCtlr, 1, &Scaling);

MCMoveAbsolute(hCtlr, 1, 0.0); // move slave to starting position

MCWaitForStop(hCtlr, 1, 0.1); // wait till we"re there

// Set the slave ratio. This is the lead or pitch when cutting a thread.
//
MCEnableGearing(hCtlr, 1, 2, 0.1, TRUE);

// Use the MCCL command Set Master to configure axis 2 as a slave to axis 1.
// Enable threading by n = 2 + 256. Header file MCAPI_H must be included
//
it (pmcrdy(hCtir)) {
arg = 258;
if (pmccmdex(hCtlr, 3, SM, &arg, MC_TYPE_LONG) == MCERR_NOERROR) {
}

// Set the target position. This is the position at which slave mode is
// terminated and axis #1 will stop.

//

MCMoveAbsolute(hCtlr, 1, 1.0);

// Start master axis moving in torque mode.
//
MCSetTorque(hCtlr, 2, 3.0);

// Arm the index capture of the master axis. When the index pulse occurs, the
// slave will begin tracking the master axis until // the slave reaches its
// target position.

21A

DCX-PCI300 User’'s Manual 125

Application Solutions

// This command sequence will repeat until auxiliary status bit 22 is clear,
// indicating that the slave has reached its target.
//

1RL16,1S522,JR-2,N0O,2SQ0

The following bits of the axis auxiliary status word are used for monitoring the status of the slave axis
during a threading operation:

Bit 22 = Axis is slaved to master's encoder position
Bit 23 = Axis is slaved and waiting for master's index mark

Torque Mode Output Control

The DCX servo modules (MC300, MC302, & MC320) provide two methods of directly and
completely controlling the Torque/Velocity of a axis. When executing closed loop servo motion in
Position or Velocity mode, the MCSetTorque() command allows the user to limit the output signal or
duty cycle to a specific level. The following graph depicts a simple position mode move of 1000
encoder counts with the default torque setting of 10 volts (no limit).

Analog .
output Maximum voltage
output
+Hv +—— - — — - — — - — — — — — — — — — —
+7.5V
+5.0V +
+2.5V +
I I | | | | | |
25 50 75 100 125 150 175 200 225
Time (msec's)

The graphic below depicts the same 1000 encoder count move, but the maximum voltage output has
been limited to 5.0 volts.

MCSetTorque(hCtlr, 1, 5.0);
MCMoveRelative(hCtlr, 1, 1000.0);

126 Precision MicroControl

Application Solutions

Analog
output
+10V +
+7.5V +
Maximum voltage

+5.0V 4 — output_ __
+2.5V +

I I I l l l l l

25 50 75 100 125 150 175 200 225

Time (msec's)

Servo Modules as simple D/A output with encoder reader

Selecting Torque mode using the MCSetOperatingMode() function allows the user to directly write
values to the servo control DAC. This mode does not support closed loop servo control, but the user
can read the position of the encoder at any time.

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_VELOCITY);
MCSetTorque(hCtlr, 1, 2.5); ;axis 1 output to 2.5V (MC300)
MCSetTorque(hCtlr, 1, 7.5); ;set duty cycle to 75% (MC320)

DCX-PCI300 User’'s Manual 127

Application Solutions

Turning off Integral gain during a move

State of the art servo controllers primarily use Proportional gain to determine the current/velocity
command signal that the controller applies to the servo amplifier during a move. For motion control
applications integral gain is used primarily to reduce the static position error at the end of a move.
For additional information about servo tuning and integral gain please refer to :

e the Servo Tuning in the Motion Control chapter of this manual

¢ the Servo tuning tutorials on PMC’s MotionCD

For some applications, integral gain has a tendency to cause bounce or oscillation of the command
signal during a move. This tendency can be is especially problematic in:

High gain servo systems

Systems with high and / or irregular friction

Systems with unbalanced loads

Systems with unbalanced and / or high offset amplifiers

The following graphic shows the typical response of a high gain servo system when integral gain is
enabled through out the move. Even though the following error never exceeds 10 encoder counts
during the 100,000 count move, a significant oscillation (+/- 10 counts) occurred.

RE

Fiz Ssthyp Test Heb

soo | D
-

Fodor

@ on | of |
Iragciory Ganeralor

] | __of |
Test

Step Plus | Stap Minus |

Clear | Iao |

S =0 IRE «0TEE

Figure 44: Typical servo response when integral gain is enabled throughout the move

128 Precision MicroControl

Application Solutions

By disabling the integral gain term until after the trajectory is complete (desired position = target
position) the same move is accomplished with a following error of +/- 3 counts versus +/- 10 counts.

Fie Sshp Test Help

v | D

Modor
@ _ O | om |

Tragaciosy Genarator

a | _or |
Tes

Stem Plus Stap Minus |

Claar Iem |

=|0/ x|

Figure 45: Typical servo response when integral gain is disabled until the calculated is complete

The IntegralOption member of the MCFilterEx structure allows the user to select from three different
mode of integral gain operation for servo or closed loop stepper.

IntegralOptiont value

Notes — (all other servo parameters
remaining unchanged

MC_INT_NORMAL - integral term always on
(default)

MC_INT_FREEZE - Freezes accumulation of
integration term during movement. Integration
will continued once the calculated trajectory
(trajectory complete, status bit 3 = 1) has been
completed.

MC_INT_ZERO - Zero and freeze accumulation
of the integration term when motion begins.
When the calculated trajectory (trajectory
complete, status bit 3 = 1) has completed,
enable the integration term

Smallest following error during move. As the
integral term is increased the command
output / following error will tend to bounce
Ideal for applications with unbalanced loads
(robotic arm with vertical axis, hoist)

Most stable command signal / servo
performance during the move. Largest
following error during the move. Not
acceptable for applications with unbalanced
load.

DCX-PCI300 User’'s Manual

129

Application Solutions

From PMC application programs like Servo Tuning and Motor Mover the integral gain mode can be
selected from the Servo Setup Dialog.

[@5ervoTuning
-
aae | [R T T i
el el Pl R
posiven [EED Accelbeeaion [50000000000 Curert P 1000 COWD ||
L
hékoior Decelsation |SO000 DO
Hard Linits: "
Q Un | | B Wedzeslp (50000 D000 Hied
Trapctony Ganerator Hax Tarmue [10.000000 s ™ High
[T« Ll Ersabie
Q Q — FID F il Broiils
Tast Limi Mode [0ot =]
. yGein [T0000T
Step Plus | Step | e 006070 . T
FisgdlGan [1008353 [Irwent Lirvis Fapsaamidd
Clear | e
& e r"
I o Ll |40 D000 & ot Lissly FCoave
|degeal O Keoimal - ™ P
= - - Dareair=w Gan P [Limit Eraiole
— L raEE . —
T _DIE Dess. Sanplieg [T=ro Limé (0000000 Vs
)) Following Ewor [10024. 000000 [™ - Lirid Erssbla
Secoberion Gan [0 DOCI000 Live [0 00000 [o Fou
. i Diecelerafion Basin [-0 0000 7000 _ Rev Ft
- . Melocity G.ain [0 000050000 L Hode: | Lat
: :
e T e [| Concel |

Figure 46: Using Servo Tuning’s Servo Setup Dialog to set the integral gain mode of operation

130 Precision MicroControl

Application Solutions

Upgrading from a DCX-AT200 motion control system

For most motion control applications the DCX-PCI300 Modular Multi-Axis motion control system offers
significant advantages over its predecessor, the DCX-AT200 system. The PCI300 enhancements

include:

Servo motor control

Texas Instrument DSP, 40 MHz, 16 bit, zero wait state (MC300 & MC320) versus 12 MHz,
8/16 bit micro controller (MC200)

16 bit DAC output (MC300 & MC320) versus 12 bit DAC (MC200)

8 KHz, 4 KHz, or 2 KHz servo loop rate (MC300 & MC320) versus 4 KHz (no integral
term), 2 KHz, or 1 KHz (MC200)

10 MHz encoder frequency (MC300 & MC320) versus 1 MHz encoder frequency (MC200)
High speed Position Capture: from 1 to 512 positions, 8 KHz (125 msec.) max frequency
Position Compare: Open collector output, 1 to 512 user defined compare positions or fixed
increment distance

Bi-directional Optical isolation (MC300 & MC320) versus TTL level inputs (MC200)

32 bit Floating point PID parameters (MC300 & MC320) versus 16 bit integer PID
parameters (MC200)

Stepper motor control

Texas Instrument DSP, 40 MHz, 16 bit, zero wait state (MC360) versus 12 MHz, 8/16 bit
micro controller (MC260)

5 MHz maximum step rate (MC360) versus 1 MHz maximum step rate (MC260)

High speed Position Capture: from 1 to 512 positions, 8 KHz (125 msec.) max frequency
Position Compare: Open collector output, 1 to 512 user defined compare positions or fixed
increment distance

Bi-directional Optical isolation (MC360) versus TTL level inputs (MC260)

Upgrading to the DCX-MC300 servo control module

The DCX-MC300 is similar in function to the DCX-MC200 servo control module. Other than the
addition of Position Capture and Compare signals and the optical isolator supply/return lines, the pin-
out of the MC200 and MC300 are the same. The changes that must be made when replacing a
MC200 with a MC300 are:

The PID parameters will need to be changed (the axis will need to be re-tuned)

The axis inputs (Coarse Home, Limit +, Limit -, Amplifier Fault) use bi-directional optical
isolators. These circuits operate with voltage levels from +12 to +24 VDC. See the wiring
examples in the Defining Motion Limits and Homing Axes sections of the Motion
Control chapter and in the DCX-MC300 section of the Connectors, Jumpers, and
Schematics chapter.

The Amplifier Enable output circuit uses an optical isolator/open collector driver (versus
basic TTL gate). The Amplifier Enable return (J3 pin 12) must be referenced to the
return/ground of the servo amplifier. The Amplifier Enable output requires an external pull-

DCX-PCI300 User’'s Manual 131

Application Solutions

up (+5 to +24 VDC). See the wiring examples in the DCX-MC300 section of the
Connectors, Jumpers, and Schematics chapter.

e The DCX-MC300 does not provide a connection for the Index — output of an auxiliary
encoder.

Upgrading to the DCX-MC360 stepper control module

The DCX-MC360 is similar in function to the DCX-MC260 stepper control module. Other than the
addition of Position Capture and Compare signals and the optical isolator supply/return lines, the pin-
out of the MC260 and MC360 are the same. The changes that must be made when replacing a
MC260 with a MC360 are:

e The axis inputs (Home, Limit +, Limit -, Drive Fault, Null) use bi-directional optical isolators.
These circuits operate with voltage levels from +12 to +24 VDC. See the wiring examples
in the Defining Motion Limits and Homing Axes sections of the Motion Control chapter
and in the DCX-MC360 section of the Connectors, Jumpers, and Schematics chapter.

e The Driver Enable output circuit uses an open collector driver (versus basic TTL gate). The
ground of the module (J3 pin 1 and/or 26) must be referenced to the return/ground of the
stepper driver. The Driver Enable output requires an external pull-up (+5 to +24 VDC). See
the wiring examples in the DCX-MC300 section of the Connectors, Jumpers, and
Schematics chapter.

o The Stopped output (J3 pin 7) has been replaced with the Drive Fault input

e The Jog input (J3 pin 10) has been replaced by the Auxiliary Encoder Power output

e The TTL output circuits for Full/Half Step (J3 pin 14) and Full/Half Current (J3 pin 15) now
use open collector drivers. These outputs require an external pull-up (+5 to +24 VDC). See
the wiring examples in the DCX-MC300 section of the Connectors, Jumpers, and
Schematics chapter.

e The Auxiliary Encoder Index — connection, which was connector J3 pin 22 is now found on
connector J3 pin 23.

e An Auxiliary Encoder Index + connection, which was not available on the DCX-MC260, is
now available on connector J3 pin 22 of the DCX-MC360

e The Auxiliary Encoder Coarse Home input, which was found on pin 23 of the DCX-MC260,
is now available on pin 11 of the DCX-MC360.

e Due to the increased maximum step rate of the DCX-MC360, the user may need to change
the step rate range setting of an application program that used a DCX-MC260.

Defining User Units

When power is applied or the DCX is reset, it defaults to encoder counts or stepper pulses as its units
for motion command parameters. If the user issues a move command to a servo with a target of 1000,
the DCX will move the servo 1000 encoder counts. If the user issues the same command to a stepper
motor, it will move 1000 motor steps.

In many applications there is a more convenient unit of measure than the encoder counts of the servo
or steps of the stepper motor. If there is a fixed ratio between the encoder counts or steps and the
desired 'user units', the DCX can be programmed with this ratio and it will perform conversions
implicitly during command execution.

Defining user units is accomplished with the function MCSetScale(), which uses the MCSCALE data
structure. This function provides a way of setting all scaling parameters with a single function call

132 Precision MicroControl

Application Solutions

using an initialized MCSCALE structure. To change scaling, call MCGetScale(), update the
MCSCALE structure, and write the changes back using MCSetScale().

MCScale Data Structure
typedef struct {

double Constant; // Define output constant

double Offset; // Define the work area zero

double Rate; // Define move (vel., accel, decel) time
units

double Scale; // Define encoder scaling

double Zero; // Define part zero

double Time; // Define time scale
} MCMOTION;

Setting Move (Encoder/Step) Units

The value of the Scale member is the number of encoder counts or steps per user unit. For example,
if the servo encoder on axis 1 has 1000 quadrature counts per rotation, and the mechanics move 1
inch per rotation of the servo, then to setup the controller for user units of inches:

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);
Scaling.Scale = 1000.0; // 1000 encoder counts/inch
MCSetScale(hCtlr, 3, &Scaling);

Prior to issuing the Scale member, the parameters to all motion commands for a particular axis are
rounded to the nearest integer. After setting a new encoder scale and calling MCEnableAxis() to
initialize the axis, motion targets are multiplied by the ratio prior to rounding to determine the correct
encoder position. Calling the MCGetPosition() will load the scaled encoder position.

Note — setting a user scale other than 1:1 will also scale trajectory
settings (Velocity, acceleration, and deceleration) but not PID settings.

Trajectory Time Base

The value of the Rate member sets the time unit for velocity, acceleration and deceleration values, to
a time unit selected by the user. If velocities are to be in units of inches per minute, the user time unit
is a minute. The value of the Rate member is the number of seconds per 'user time unit'. If the
velocity, acceleration and deceleration are to be specified in units of inches per minute and inches per
minute per minute for axis 1, then the Rate value should be set to 60 seconds/1 minute = 60 (1URGO0).
The function MCEnableAxis() must be issued before the user rate will take effect.

MCSCALE Scaling;
MCGetScale(hCtlr, 3, &Scaling);

Scaling.Rate = 60.0; // set rate to inches per minute
MCSetScale(hCtlr, 3, &Scaling);

Typical Rate values

DCX-PCI300 User’'s Manual 133

Application Solutions

User Rate Conversion

second 1 (default)
minute 60
hour 3600

Defining the Time Base for Wait commands

For the MCWait(), WaitForStop() and WaitForTarget() functions, the default units are seconds. By
setting the member Time, these three commands can be issued with parameters in units of the user's
preference. The parameter to member is the number of 1 second periods in the user's unit of time. If
the user prefers time parameters in units of minutes, Time = 60 should be issued.

MCSCALE Scaling;

MCGetScale(hCtlr, &Scaling);
Scaling.Time = 60.0; // set Wait time unit to minutes
MCSetScale(hCtlr, &Scaling);

Defining a System/Machine zero

The member Offset allows the user to define a ‘work area’ zero position of the axis. The Offset value
should be the distance from the servo or stepper motor home position, to the machine zero position.
This offset distance must use the same units as currently defined by set User Scaling command.
Offset does not change the index or home position of the servo or stepper motor, it only establishes
an arbitrary zero position for the axis.

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);
Scaling.Offset = 12.25; // define offset to 12.25 inches
MCSetScale(hCtlr, 3, &Scaling);

Defining a Part Zero

The member Zero would typically be used in conjunction with Offset to define a ‘part zero’ position. A
PCB (Printed Circuit Board) pick and place operation is a good example of how this function would be
used. After a new PCB is loaded and clamped into place the X and Y axes would be homed. The
Offset member is used to define the ‘work area’ zero of the PCB. The Zero member is used to define
the ‘part program’ or ‘local’ zero position. This way a single ‘part placement program’ can be
developed for the PCB type, and a ‘step and repeat’ operation can be used to assemble multiple part
assemblies.

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);

Scaling.Offset = 12.25; // define offset to 12.25 inches
Scaling.Zero = 1.25; // define “part zero” to 1.25 inches
MCSetScale(hCtlr, 3, &Scaling);

134 Precision MicroControl

Application Solutions

XY Pick and Place Assembly

&

X &Y servo
motor home
Work area an
zero YV Part program zero
(UserOffset) (User Zero)

PCB clamp assembly

Defining the output constant for velocity gain

The member Constant allows the user to define the units to be used for setting the Velocity Gain
parameters. Please refer to the description of Using Velocity Gain in the Application Solutions
chapter of this user manual.

DCX Watchdog

The DCX incorporates a watchdog circuit to protect against improper CPU operation.

After a reset or power cycle, once the firmware (operational code) has been loaded by the operating
system (approximately 3 seconds), the watchdog circuit is enabled.

If the DCX processor fails to properly execute firmware code for a period of 10 msec's, the watchdog
circuit will 'time out' and the on-board reset will be latched by the ‘watchdog reset relay’. This in turn
will hold the DCX modules in a constant state of reset. All motor outputs (+/- 10V & Step/Direction) will
be disabled. When the watchdog circuit has tripped, the green Run LED will be disabled. To clear the
watchdog error either:

Cycle power to the computer (recommended)
Reset the computer

DCX-PCI300 User’'s Manual 135

General Purpose 1/0

Chapter Contents

e DCX Motherboard Digital I/O

e Configuring the DCX Digital I/O
e Using the DCX Digital I/O

o DCX Motherboard Analog Inputs
e Using the Analog I/O

e Calibrating the MC500/MC520 +/- 10V Analog Outputs

136 Precision MicroControl

General Purpose I/O

DCX Motherboard Digital 1/0O

The DCX-PCI300 Motion Controller motherboard has 16 general purpose digital I/O channels.
Channels 1 — 8 are TTL inputs and channels 9 — 16 are TTL outputs. These signals can be accessed
on connector J3 of the motherboard. The DCX-PCI300 section of the Connectors, Jumpers, and
Schematics chapter includes a pin-out for this connector. Each digital channel is configured via
software (high true or low true).

Interfacing to the ‘Outside World’
The TTL digital I/O channels can be connected directly to external circuits if output loading (1ma
maximum sink/source) and input voltages (0.0V to +5.0V) are within acceptable limits.

The DCX Digital I/0 channels are not suitable for driving optical
@ isolators, relays solenoids, etc...

Alternatively, a DCX-BFO22 interface board can be used to connect the module's I/O to a relay rack in
order to provide optically isolated inputs and outputs.

The DCX-BFO22 interface board provides a convenient means of connecting the DCX-PCI300 TTL
digital I/0 channels to a 16 position relay rack available from two manufacturers, Opto22 (P/N PB16H)
and Grayhill (P/N 70RCK16-HL). These relay racks accept up to 16 optically isolated input or output
modules for interfacing with external electrical systems. Using one of these relay racks and a DCX-
BFO22, an optically isolated 1/0O module can be connected to each of the DCX's digital I/O channels.

DCX-PCI300 User’'s Manual 137

General Purpose 1/0

Figure 47:A DCX-BF022 is used to interface DCX digital I/O to an OPTO22 relay rack

As shown above, the DCX-BFO22 plugs directly into the relay rack's 50 pin header connector and
then connects to the DCX-PCI300 via a 26 conductor ribbon cable. Note that the relays are numbered
sequentially starting from 0, while the DCX digital I/O channels are numbered sequentially starting
with 1.

Although the relay rack has screw terminals for connecting a logic supply, it is not necessary to make
this connection. By installing a shorting block on jumper JP17 of the BFO22, the 5 volt supply of the
DCX will be supplied to the relay rack.

For detailed information on configuring the DCX-BF022, please refer to the schematic and jumper
table in the DCX-BF022 Appendix in this user manual.

Configuring the DCX Digital I/0

The configuration of both the DCX-PCI300 and the DCX-MC400 digital I/O channels is accomplished
using either PMC’s Motion Integrator software or the MCAPI function MCConfigureDigitallO(). The
screen shot that follows shows the Motion Integrator Digital I/O test panel. This tool is used to both
configure each 1/0 channel and then verify its operation. A comprehensive on-line help document is
provided.

138 Precision MicroControl

General Purpose 1/0

0 Dugital 1/0 Test Panel M=l E3

File “iew Help
Standard 10 II'-.-1u::duIe1 |

~Ch1— +Ch 2— Ch3—~ Chd4—~ Ch5&— ChB— Ch{— Ch8—
I DN B B B Em | Em
D I BN & BN

 Fos

=tet 1zt o |1 e | s | Pz S e o | e
Test Test Test Test Test Test Test
oL or |l lor|ilell e e ||e

~Ch 83— ~Ch 10—+ ~Ch 11— Ch 12— ~Ch 13— ~Ch 14— ~Ch 15— ~Ch 16—

N | N | I N | I | N | O | O
=g SN oo BN 1o BRI - BIEY o MU o BRI - B o B
Izt o 108 =it e s O S Rz o | =i e o | e

o]| o | |[o 21| |[&"=i] e]| (o]} {[&"=i]| @

Each channel is individually programmable as:

Input (MC_DIO_INPUT) or Output (MC_DIO_OUTPUT)
High true/Positive logic (MC_DIO_HIGH) or Low true/Negative logic (MC_DIO_LOW)

The 16 channels of the DCX-PCI300 motherboard are defined as channels 1 — 16. If one or more
DCX-MC400 Digital I/0 modules are installed, the additional I/O channels are assigned to
succeeding channel/numbers in blocks of 16 (e.g. 17-32, 33-48, etc.). All /O channels accept the

same configuration, monitoring and control.

Note — If a BFO22 interface and relay rack are connected to the DCX
Digital I/0, a MC_DIO_LOW command set to ALL_AXES should be

ﬂ issued to the DCX. This will cause "normally open" relays to turn on
when the Channel oN command is issued, and off when the Channel oFf

command is issued.

This example configures all the digital I/O channels on a controller for output, then turns each channel
on (in order) for a half second.

DCX-PCI300 User’'s Manual 139

General Purpose 1/0

MCPARAM Param;
MCGetMotionConfig(hCtlr, &Param);

for (i = 1; i <= Param.DigitallO; i++) {
MCConfigureDigital10(hCtlr, i, MC_DIO_OUPUT | MC_DIO_HIGH);

for (i = 1; i <= Param.DigitallO; i++) {
MCEnableDigital10(hCtlr, i, TRUE);
MCWait(hCtlr, 0.5);
MCEnableDigitall0(hCtlr, i, FALSE);
}

Using the DCX Digital 1/O

After configuring the Digital I/O channels, three MCAPI functions are available for activating and
monitoring the digital I/O:

MCEnableDigitallO() set digital output channel state
MCGetDigitallO() get digital input channel state
MCWaitForDigitallO() wait for digital input channel to reach specific state

Enable Digital 10

Turns the specified digital I/O on or off, depending upon the value of bState.

TRUE Turns the channel on.
FALSE Turns the channel off.

The I/O channel selected must have previously been configured for output using the
MCConfigureDigitallO() command. Note that depending upon how a channel has been configured
"on" (and conversely "off") may represent either a high or a low voltage level.

compatibility: MC400

see also: Configure Digital 10

C++ Function: void MCEnableDigitallO(HCTRLR hCtlr, WORD wChannel, short int bState);

Delphi Function: procedure MCEnableDigitallO(hCtlr: HCTRLR; wChannel: Word; bState: Smallint);

VB Function: Sub MCEnableDigitallO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)

MCCL command: CF,CN

Execute [T] - .

Handle In : Handle Out
LabVIEW VI: Channel (1) oot
State [T] —+ =—=

MCEnableDigitallO_vi

140 Precision MicroControl

General Purpose 1/0

Get Digital 10

Returns the current state of the specified digital I/O channel. This function will read the current state of
both input and output digital I/O channels. Note that this function simply reports if the channel is "on"
or "off"; depending upon how a channel has been configured "on" (and conversely "off") may
represent either a high or a low voltage level.

compatibility: MC400

see also:

C++ Function: short int MCGetDigitallO(HCTRLR hCtlr, WORD wChannel);

Delphi Function: function MCGetDigitallO(hCtlr: HCTRLR; wChannel: Word): Smallint;

VB Function: Function MCGetDigitallO (ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer

MCCL command : TC

EHECUI:E [T]
Handle In r Handle Out
LabVIEW VI: Channel (1) -

MCGetDigitallO._vi

Wait for Digital 10

Waits for the specified digital 1/0O channel to go on or off, depending upon the value of bState.

compatibility: MC400

see also: Wait for digital channel on

C++ Function: void MCWaitForDigitallO(HCTRLR hCtlr, WORD wChannel, short int bState);

Delphi Function: procedure MCWaitForDigitallO(hCtlr: HCTRLR; wChannel: Word; bState: Smallint);

VB Function: Sub MCWaitForDigitallO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)

MCCL command: WF, WN

LabVIEW VI: Handle In Handle Dut
[]

MOCW aitForDigitall 0.

This example configures all the digital /O channels on a controller for output, then turns each channel
on (in order) for a half second.

DCX-PCI300 User’'s Manual 141

General Purpose 1/0

MCPARAM Param;
MCGetMotionConfig(hCtlr, &Param);

for (i = 1; i <= Param.DigitallO; i++) {
MCConfigureDigital10(hCtlr, i, MC_DIO_OUPUT | MC_DIO_HIGH);

for (i = 1; i <= Param.DigitallO; i++) {
MCEnableDigital10(hCtlr, i, TRUE);
MCWait(hCtlr, 0.5);
MCEnableDigitall0(hCtlr, i, FALSE);

}

//
// Next re-configure channel 3 for input, and put up a message
// Dbox based on the input state
//
if (MCConfigureDigitallO(hCtlr, 3, MC_DIO_INPUT | MC_DIO_HIGH)) {
val = MCGetDigitallO(hCtlr, 3);
it (val) // MessageBox is a Windows APl function
MessageBox(hParent, "Channel 3 input voltage high (>2.4VDC)",
"MCAPI Sample'™, MB_ICONINFORMATION);
else
MessageBox(hParent, "Channel 3 input voltage low (<0.4VDC)",
"MCAPI Sample'™, MB_ICONINFORMATION);

DCX Module Analog 1/O

The DCX-MC500 Analog I/0 Module provides additional analog I/O capability to a DCX Motion
Controller. One or more of these modules can be installed in any available position on a DCX
motherboard. Analog input channels can be used to monitor signal levels from external sensors.
Output channels can be used to control external devices.

Three models of the DCX-MC500 are available:

Part Number

DCX-MC500 4 Inputs and 4 Outputs
DCX-MC510 4 Inputs
DCX-MC520 4 Outputs

On each DCX-MC500/510 Analog I/0 Module all analog input channels are numbered sequentially in
groups of four. Likewise, all analog output channels are numbered sequentially in groups of four.
When installed on the DCX-PCI300, the MC500/510 in the lowest module location will have its 4
analog input channels defined as 1 — 4. The four analog inputs of a MC500/510 installed in the next
lowest module location will be defined as channels 5 — 8.

Because the DCX controller board is implemented in digital electronics, all analog input signals must
be converted into a representative numerical value. This function is done by an Analog to Digital
Converter (ADC) on the DCX-MC500/510. Similarly, analog output signals originate on the DCX board
as numerical values. These numbers must be written to a Digital to Analog Converter (DAC) on the
DCX-MC500/520, which converts them to a corresponding analog output signal level.

142 Precision MicroControl

General Purpose 1/0

The DCX-MC500 is designed to accurately measure voltage levels on the input channels. These
inputs are very high impedance with leakage currents less than 10 nano amps. The output channels
are designed to provide signals with accurate voltage levels. The current requirement from these
outputs should not exceed 10 milliamps.

Each of the analog input and analog output channels has 12 bits of resolution. This means that the
digital value read from the ADC, or the digital value written to DAC, must be in the range 0 to 4095.
For both inputs and outputs, a digital value of O translates to the lowest analog voltage. A digital value
of 4095 translates to the highest analog voltage.

Input signals on pins 1, 3, 5 and 7 of the module J3 connector are wired directly to the ADC. No
amplification or clamping to the input voltage range is provided on the module.

A voltage level greater than 5.6 volts will damage the analog input
channels of a DCX-MC5X0 module. The schematic below is
recommended to protect an analog input from damage due to an over
voltage condition. This circuit will limit the maximum voltage applied to
the A/D converter to 5.6 VDC.

Analog Input Pratection Circuit

10k,
To external EAE Y Analog Input
zensor §pot (to connectar J3
inz 1, 3, 5, andior 7
| R AR
.

TMS231 zener diode
A ar
SALSOL TWE (Gen. Semi)

In some applications, the signals from a sensor may not be absolute voltage levels, but proportional to
some reference voltage. In these cases, it may be desirable to supply the reference signal to the ADC
on the module through pin 18 of the J3 connector (and setting jumper JP1 accordingly). This will result
in a "ratiometric” conversion of the input signal relative to the reference voltage.

The outputs from the DAC on the DCX-MC500 module are voltage levels in the range 0 to +5 volts.
These outputs have no gain or offset adjustment. These signals are available on pins 10, 12, 14 and
16 of the module J3 connector.

The outputs from the DAC are also connected to operational amplifiers on the module, which offset
and amplify them to provide a +/-10 volt range. Each of these outputs has a 20 turn trim pot for offset
adjustment, and a single turn pot for gain adjustment. The offset pot provides a minimum 0.5 volt
adjustment, and the gain pot provides a nominal 2% range adjustment. These output signals are
available on pins 2, 4, 6 and 8 of the module J3 connector.

DCX-PCI300 User’'s Manual 143

General Purpose 1/0

After reset the outputs of the DCX-MC500 will be initialized to their mid-scale point. For the 0 to +5
volt outputs, this will be 2.5 volts. For the -10 to +10 volt outputs, this will be 0.0 volts.

Using the Analog I/O

The configuration and operation of the DCX-MC5X0 analog I/0 channels is accomplished using either
PMC'’s Motion Integrator program or the MCAPI functions MCSetAnalog() , MCGetAnalog(). The
screen capture that follows shows the Motion Integrator Analog 1/O test panel. This tool is used to
both configure each I/O channel and then verify its operation. A comprehensive on-line help document
is provided.

T Anakog | el Fanel

Fia Heip
Stanetar U0 Wodue 1 |
Refanence Vollags Select Installed Module Type
BN | [MCS00 & Wputs and 4 Outputs =)
Analog Inpud 5 Analog Inpud B Analog Inpud 7 Analog Inpud 8

EEIIE EESOE EEONE EEEETE
Sewp | _Sep | _Setp | Sep |

Analog Cutput 1 Analog Cltpud 2 Analog Cutput 3 Analog Cutput 4

EEETE EEEITE EEITE EEETE
Seup | _Setp | _Setp | Sep |

Two MCAPI functions are available for setting and monitoring the MC500 analog I/O:

MCSetAnalog() set digital output channel state
MCGetAnaloglO() get digital input channel state
Get Analog

Reads the digitized input state of the specified input wChannel. The four 8-bit analog input channels
accessed on connectors J3 are numbered 1,2,3 and 4. For each of these channels, this function will
read a number between 0 and 255. These numbers are the ratio of the analog input voltage to the
reference input voltage multiplied by 256. The reference voltage for the first four channels must be
supplied to the DCX on the J3 connector pin 23, and can be any voltage between 0 and +5 volts DC.
The analog input channels on any installed MC500 modules will be numbered sequentially starting
with channel 5. See the description of Analog Inputs in the DCX General Purpose I/O chapter.

144 Precision MicroControl

General Purpose 1/0

compatibility: MC500, MC510

see also: Set Analog

C++ Function: WORD MCGetAnalog(HCTRLR hCtlr, WORD wChannel);

Delphi Function: function MCGetAnalog(hCtlr: HCTRLR; wChannel: Word): Word;

VB Function: Function MCGetAnalog (ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer

MCCL command: TA

Execute [T] -
Handle In Handle Out
Channel (1)~ | =%

Yalue

LabVIEW VI:
MCGetAnalog. vi

Set Analog

Sets the output level of an analog channel. Analog output ports on MC500 and MC520 Analog
Modules accept values in the range of 0 to 4095 counts (12 bits). This range of values corresponds to
an output voltage of 0 to 5V or -10 to +10V, depending upon how the output is configured (See the
description of Analog Inputs in the DCX General Purpose 1/O chapter).

compatibility: MC500, MC520

see also: Get Analog

C++ Function: void MCSetAnalog(HCTRLR hCtlr, WORD wChannel, WORD wValue);

Delphi Function: procedure MCSetAnalog(hCtlr: HCTRLR; wChannel, value: Word);

VB Function: Sub MCSetAnalog (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal Value As Integer)

MCCL command: OA

EHECUI:E [T]
Handle In :
LabVIEW VI: Channel (1) -~ P

Yalue

Handle Out

MCS5etAnalog. vi

Calibrating the MC500/MC520 +/- 10V Analog Outputs:

The analog inputs of the DCX-MC500 require no calibration, and the only option is use of the internal
+5, or an external, reference voltage. The analog outputs with the 0 to +5 volt range also have no
adjustments. The reference for the DAC is fixed to the internal reference voltage.

The four 0.0 to +5.0 analog outputs require no calibration. The four +10 to —10 volt analog outputs are
calibrated at the factory. There are four single turn trim pots that are used to adjust the gain of each of
the four analog outputs. There are also four 20 turn trim pots for adjusting the offsets of each of the
analog outputs. It is strongly recommended that the +10 to —10 volt outputs be calibrated using the
Motion Integrator Calibration Wizard.

DCX-PCI300 User’'s Manual 145

General Purpose 1/0

MACSTD el BACER] o thities fodCaddvtied 520 ok

i v b ok yeod will nedrd & ol bemiead
aph sk ard 8 areal 8l s so et

Tsi iwwbsiChinl Charaiil @ Gukgil hds Bain
el AT

Corramwuiimeses lgsady o oooneaor e
whige ol bekt

Shorng comaee e sl crana demaage!
Fin pabeniio conr o e revie lxads

gt precasd o Tep | e e el Chaanss s
el o s] DA

P

Sen | Conaes unk e i parees OF

T T Aofust ke Fol ko oo L Culpat kel

3001 Adist Gein Potio o =10 cadpas el

Somzy 4 P mcipi n) Dt Pt i awra Sy [Plm| i prnkra e
et + Corewd | it | e | Caew |

The analog outputs can also be calibrated using MCCL command sequences. For a description of
MCCL commands and the WinControl command interface utility please refer to the MCCL section
of the appendix at the end of this user manual. Refer to the module layout diagram in the
Connectors, Jumpers, and Schematics chapter of this user manual. Using the following command
sequence, and reading the analog output voltage level with a voltmeter, an analog output can be
calibrated to provide the specified -10 to +10 volt range:

ALO,O0ANn,WA2,AL2048,0An,WA2,AL4095,0An,WA2,RP

where: n = channel number =1, 2, 3, 4, ...

This command sequence will cycle the specified analog output from the minus limit, to the mid-point,
to the positive limit. There is a 2 second delay at each voltage level, during which the voltmeter can
settle and display the current reading.

The first step in calibrating an analog output is to adjust the gain using the single turn pot to achieve a
20.00 volt "swing". This is the difference between the most positive level reading, and the most
negative level reading. It is not necessary for the two readings to be centered about O volts for this
step.

The second step is to adjust the offset using the 20 turn pot. This adjustment will place the mid-point
of analog output at the 0 volt level. When the output changes to the mid- point level turn the pot to
achieve a 0.000 volt reading.

After the second step of the calibration procedure, the output swing should still be 20.00 volts. If not,
repeat steps 1 and 2 again.

146 Precision MicroControl

General Purpose 1/0

DCX-PCI300 User’'s Manual 147

DCX Specifications

Chapter Contents

Motherboard: DCX-PCI300

DCX-MC300 - +/- 10 Volt Analog Servo Motor Control Module
DCX-MC302 — Dual +/- 10 Volt Analog Servo Motor Control Module
DCX-MC320 - Brushless Servo Commutation Control Module
DCX-MC360 - Stepper Motor Control Module

DCX-MC362 — Dual Stepper Motor Control Module

DCX-MC400 - 16 channel Digital I/O Module

DCX-MC5XO0 - Analog 1/0O Module

148

Precision MicroControl

DCX Specifications

Function
Installation
Configuration

Main Processor
Processor Clock
Memory

Processor Fault Detection
Status LED's
Standard Communication Interface

Undedicated Digital I/O Channels

Connection options

Required Supply Voltages
Form Factor

Operating Temperature range
Weight

Motherboard: DCX-PCI300

15 Axis Motion Controller
Intel PC compatible computer
8 User Installed Modules

QED 5231 200MHz MIPS RISC

192 MHz

512k x 8 bit Flash Memory

1Meg X 32 Synchronous Dynamic Ram

Watchdog Circuit with Reset Relay

Power, Reset, Run, General Purpose (8)

PCI Bus

4 Kilobytes dual ported memory in Memory Address Space
‘Plug and Play’ dynamic addressing

16 TTL (0 — 5 VDC), 1ma max. sink/source with 4.7K ohm pull
up to +5V
2 groups (8 inputs, 8 outputs)

DCX-PCI300-H - VHDCI Ultra SCSI (SCSI V)
DCX-PCI300-R — 26 conductor, dual row, ribbon cable

+5,+12 and -12 vdc

Full Size PCI card (4.2" x 12.28")

0 degrees C to 60 degrees C

10 oz + 1.2 oz per module (approx.)

DCX-PCI300 User’'s Manual

149

DCX Specifications

Function
Installation

Operating Modes
Filter Algorithm

Filter Update Rate
Trajectory Generator

Command output

Position Feedback

Position and Velocity Resolution

Primary Encoder
Encoder and Index Inputs
Encoder Count Rate
Encoder Supply Voltage
Auxiliary Encoder
Encoder and Index Inputs
Encoder Count Rate
Encoder Supply Voltage

AXxis Inputs

Voltage range
Minimum current required

Axis Outputs

Maximum voltage
Maximum current sink

Connection options

Operating Temperature range

DCX-MC300 - +/- 10 Volt Analog Servo Motor Control Module

Closed Loop Servo Controller with Dual Encoder Inputs
DCX-PCI300 Motion Control Motherboard

Paosition, Velocity, Contouring, Torque, and Gain
PID with Velocity and Acceleration Feed-Forwards
8, 4 or 2 KHz, software selectable

Trapezoidal, Parabolic or S-Curve

Independent Acceleration and Deceleration

Analog Signal (+/- 10 vdc @ 10 ma, 16 bit)

Incremental Encoder with Index
32 bit

Differential or single ended, -7 to +7 vdc max.
10,000,000 Quadrature Counts/Sec.
+5 or +12 vdc, jumper selectable

Differential or single ended, -7 to +7 vdc max.
10,000,000 Quadrature Counts/Sec.
+5 or +12 vdc, jumper selectable

Limit+, Limit-, Coarse Home, Amplifier Fault
Optically isolated (Motorola MOC256)
+2.5V to +7.5V

10 ma

Amplifier Enable, Direction

Optically isolated Open Collector (Motorola MOC223)
30V

125ma

DCX-MC300-H - VHDCI Ultra SCSI (SCSI V)
DCX-MC300-R — 26 conductor, dual row, ribbon cable

0 degrees C to 60 degrees C

150

Precision MicroControl

DCX Specifications

Function
Installation

Operating Modes
Filter Algorithm

Filter Update Rate
Trajectory Generator

Command output

Position Feedback

Position and Velocity Resolution

Encoder
Encoder and Index Inputs

Encoder Count Rate

Encoder Supply Voltage

Axis Inputs

Voltage range
Minimum current required

Axis Outputs

Maximum voltage
Maximum current sink

Connection options

Operating Temperature range

DCX-MC302 — Dual +/- 10 Volt Servo Motor Control Module

Dual Closed Loop Servo Controller
DCX-PCI300 Motion Control Motherboard

Position, Velocity, Contouring, Torque, and Gain
PID with Velocity and Acceleration Feed-Forwards
8, 4 or 2 KHz, software selectable

Trapezoidal, Parabolic or S-Curve

Independent Acceleration and Deceleration

Axis 1 - Analog Signal (+/- 10 vdc @ 10 ma, 16 bit)
Axis 2 - Analog Signal (+/- 10 vdc @ 10 ma, 16 bit)

Incremental Encoder with Index
32 bit

Axis 1 - Differential or single ended, -7 to +7 vdc max.
Axis 2 - Differential or single ended, -7 to +7 vdc max.
10,000,000 Quadrature Counts/Sec.

Axis 1 - +5 or +12 vdc, jumper selectable

Axis 2 - +5 or +12 vdc, jumper selectable

Axis 1 - Limit+, Limit-, Coarse Home, Amplifier Fault
Optically isolated (Seimens ILDC256)

Axis 2 - Limit+, Limit-, Coarse Home, Amplifier Fault
Optically isolated (Seimens ILDC256)

+2.5V to +7.5V

10 ma

Axis 1 - Amplifier Enable Open Collector (T1 75453B)
Axis 2 - Amplifier Enable Open Collector (T1 75453B)
30V

125ma

DCX-MC302-H - VHDCI Ultra SCSI (SCSI V)

0 degrees C to 60 degrees C

DCX-PCI300 User’'s Manual

151

DCX Specifications

Function
Installation

Operating Modes
Filter Algorithm

Filter Update Rate
Trajectory Generator

Command output

Position Feedback

Position and Velocity Resolution

Primary Encoder
Encoder and Index Inputs
Encoder Count Rate
Encoder Supply Voltage

Hall Sensor / Auxiliary Encoder
Encoder and Index Inputs
Encoder Count Rate
Encoder Supply Voltage

Axis Inputs

Voltage range
Minimum current required

Axis Outputs

Maximum voltage
Maximum current sink

Connection options

Operating Temperature range

DCX-MC320 - Brushless Servo Commutation Control Module

Closed Loop Servo Controller with Dual Encoder Inputs
DCX-PCI300 Motion Control Motherboard

Paosition, Velocity, Contouring, Torque, and Gain
PID with Velocity and Acceleration Feed-Forwards
8, 4 or 2 KHz, software selectable

Trapezoidal, Parabolic or S-Curve

Independent Acceleration and Deceleration

Phase A (+/- 10 vdc @ 10 ma, 16 bit)
Phase B (+/- 10 vdc @ 10 ma, 16 bit)

Incremental Encoder with Index
32 bit

Differential or single ended, -7 to +7 vdc max.
10,000,000 Quadrature Counts/Sec.
+5 or +12 vdc, jumper selectable

Differential or single ended, -7 to +7 vdc max.
10,000,000 Quadrature Counts/Sec.
+5 or +12 vdc, jumper selectable

Limit+, Limit-, Coarse Home, Amplifier Fault
Optically isolated (Motorola MOC256)
+2.5V to +7.5V

10 ma

Amplifier Enable, Optically isolated Open Collector
(Motorola MOC223)

30V

125ma

DCX-MC320-H - VHDCI Ultra SCSI (SCSI V)
DCX-MC320-R — 26 conductor, dual row, ribbon cable

0 degrees C to 60 degrees C

152

Precision MicroControl

DCX Specifications

Function
Installation

Operating Modes
Trajectory Generator

Position Feedback
Position and Velocity Resolution

Step Outputs

Step Rates (Software Selectable)

Axis Inputs

Voltage range
Minimum current required

Axis Outputs
Maximum voltage
Maximum current sink

Connection options

Operating Temperature range

DCX-MC360 - Stepper Motor Control Module

Open or Closed Loop Stepper Controller
DCX-PCI300 Motion Control Motherboard

Position, Velocity, and Contouring

Trapezoidal, Parabolic or S-Curve

Independent Acceleration and Deceleration

Incremental Encoder with Index (for closed loop stepper
operation or position verification of an open loop stepper)
32 bit

Pulse/Direction or CW/CCW (software selectable),

50% duty cycle open collector drivers (max. 30V, 125ma
current sink)

High Speed - 153 Steps/Sec. - 5.0M Steps/Sec.
Medium Speed - 20 Steps/Sec. - 625K Steps/Sec.

Low Speed - .1 Steps/Sec. — 78K Steps/Sec.

Limit+, Limit-, Home, Drive Fault (Optically isolated Motorola

MOC256)
+2.5V to +7.5V
10 ma

Drive Enable, Full/Half Current (Open Collector Tl 75453B)

30V
125ma

DCX-MC360-H - VHDCI Ultra SCSI (SCSI V)
DCX-MC360-R — 26 conductor, dual row, ribbon cable

0 degrees C to 60 degrees C

DCX-PCI300 User’'s Manual

153

DCX Specifications

Function
Installation

Operating Modes
Trajectory Generator

Position Feedback
Position and Velocity Resolution

Step Outputs

Step Rates (Software Selectable)

Axis Inputs

Voltage range
Minimum current required

Axis Outputs

Maximum voltage
Maximum current sink

Connection options

Operating Temperature range

DCX-MC362 — Dual Stepper Motor Control Module

Dual Open Loop Stepper Controller
DCX-PCI300 Motion Control Motherboard

Position, Velocity, and Contouring
Trapezoidal, Parabolic or S-Curve
Independent Acceleration and Deceleration
None

32 bit

Axis 1 - Pulse/Direction — CW/CCW (software selectable),
50% duty cycle, open collector drivers (max. 30V,
125ma current sink)

Axis 2 - Pulse/Direction — CW/CCW (software selectable),
50% duty cycle, open collector drivers (max. 30V,
125ma current sink)

High Speed - 153 Steps/Sec. - 5.0M Steps/Sec.

Medium Speed - 20 Steps/Sec. - 625K Steps/Sec.

Low Speed - .1 Steps/Sec. — 78K Steps/Sec.

Axis 1 - Limit+, Limit-, Home, Drive Fault
Optically isolated (Motorola MOC256)

AXxis 2 - Limit+, Limit-, Home, Drive Fault
Optically isolated (Motorola MOC256)

+2.5V to +7.5V

10 ma

Axis 1 - Drive Enable, Full/Half Current, Open Collector (TI

75453B)

Axis 2 - Drive Enable, Full/Half Current, Open Collector (Tl
75453B)

30V

125ma

DCX-MC362-H - VHDCI Ultra SCSI (SCSI V)

0 degrees C to 60 degrees C

154

Precision MicroControl

DCX Specifications

DCX-MC400 - 16 channel Digital I/O Module

Function
Installation

Channels

Output low voltage (min)
Output high voltage (min)
Current sink

Current source

Input Low voltage

Input High voltage

Input termination

Relay rack interface

Connection options

Operating Temperature range

16 Channel Digital /0O module
DCX-PCI300 Motion Control Motherboard

16, individually programmable as input s or outputs
0.0 volt

2.4 volt

1 ma max

1 ma max.

-0.3V min. to 0.8V max.

2.0V min. to 5.3V max.

4.7K ohm pull up to +5V per channel

DCX-BF022

DCX-MC400-H - VHDCI Ultra SCSI (SCSI V)
DCX-MC400-R — 26 conductor, dual row, ribbon cable

0 degrees C to 60 degrees C

DCX-MC5XO0 - Analog I/0O Module

Function

Installation

Inputs resolution
Input voltage range

Output resolution

Output voltage range

Output Offset Adjustment
Output Full Scale Adjustment

Connection options

Operating Temperature range

DCX-MC500 — 4 A/D channels, 4 D/A channels
DCX-MC510 — 4 A/D channels

DCX-MC520 — 4 D/A channels

DCX-PCI300 Motion Control Motherboard

12 bit
0.0V to +5.0V

12 bit

0.0V to +5.0V (@ 5ma), -10V to +10V (@ 5ma)
20 turn trim pot

single turn trim pot

DCX-MC5__0-H - VHDCI Ultra SCSI (SCSI V)
DCX-MC5__ 0-R — 26 conductor, dual row, ribbon cable

0 degrees C to 60 degrees C

DCX-PCI300 User’'s Manual

155

DCX Specifications

DCX-MC500 Electrical Specifications

Parameter
Input Resolution
Input Conversion Rate
Input Zero Error
Using Internal Reference
Using External Reference
Input Full-Scale Error
Using Internal Reference
Using External Reference
Input Zero Temp. Coefficient
Input Differential Nonlinearity
Input Total Unadjusted Error
Using Internal Reference
Using External Reference
Input Voltage Range
Using Internal Reference
Using External Reference
Input Capacitance
Input Leakage Current
External Reference Voltage

12

0.0
0.0

4.0

Max

10

+/-3
+/- 1/2

+/- 15
+/- 1/2
0.5
+/-1

+/- 15
+/-1

5.0
Vref

100
6.0

Bits
KHz

LSB
LSB

LSB
LSB
ppm/C
LSB

_

Output Resolution
Output Zero Code Error *
Output Full Scale Error *
Output Nonlinearity *

Output Total Unadjusted Error *

Output Voltage Range

0.0

-10.0

* These values are for 0 to +5.0 volt outputs

5.0
+10.0

Bits
LSB
LSB
LSB
LSB
\Y
\Y

156

Precision MicroControl

DCX Specifications

DCX-PCI300 User’'s Manual 157

Connectors, Jumpers, and Schematics

Chapter Contents

DCX-PCI300 Motion Control Motherboard

e DCX-MC300 +/- 10V Servo Motor Control Module

e DCX-MC302 — Dual +/- 10 Volt Analog Servo Motor Control Module
e DCX-MC320 Brushless Servo Commutation Control Module
o DCX-MC360 Stepper Motor Control Module

e DCX-MC362 — Dual Stepper Motor Control Module

¢ DCX-MC400 Digital /0 Module

e DCX-MC500/MC510/MC520 Analog I/0O Module

o DCX-BF022 Relay Rack Interface

e DCX-BF3XX-H High Density Cable Breakout

o DCX-BF300-R Servo Module Breakout Assembly

e DCX-BF320-R Servo Module Breakout Assembly

o DCX-BF360-R Stepper Module Breakout Assembly

158 Precision MicroControl

Chapter

9

Connectors, Jumpers, and Schematics

DCX-PCI300 Motion Control Motherboard

Status LED Indicators
D1 Green +5 VDC logic supply OK
D2 Yellow DCX Reset active
D3 Green Run (processor fault or watchdog tripped if off)

L1 Red | Motor Module #1 initialization error (will blink when reset)
L2 Red Motor Module #2 initialization error (will blink when reset)
L3 Red Motor Module #3 initialization error (will blink when reset)
L4 Red Motor Module #4 initialization error (will blink when reset)
L5 Red | Motor Module #5 initialization error (will blink when reset)
L6 Red | Motor Module #6 initialization error (will blink when reset)
L7 Red Motor Module #7 initialization error (will blink when reset)
L8 Red Motor Module #8 initialization error (will blink when reset)

(Refer to diagram at the end of this appendix)

DCX-PCI300 User’'s Manual 159

Connectors, Jumpers, and Schematics

General Purpose I/O (Digital I/O and Analog inputs) Connector J5
Description

1 +5VDC

2 RESET RELAY CONTACT #1 *

3 DIGITAL OUTPUT CHANNEL 16

4 RESET RELAY CONTACT #2 *

5 DIGITAL OUTPUT, CHANNEL 15

6 DIGITAL OUTPUT, CHANNEL 14

7 DIGITAL OUTPUT, CHANNEL 13

8 DIGITAL OUTPUT, CHANNEL 12

9 DIGITAL OUTPUT, CHANNEL 11

10 DIGITAL OUTPUT, CHANNEL 10
11 DIGITAL OUTPUT, CHANNEL 09
12 DIGITAL INPUT, CHANNEL 08
13 DIGITAL INPUT, CHANNEL 07
14 DIGITAL INPUT, CHANNEL 06
15 DIGITAL INPUT, CHANNEL 05
16 DIGITAL INPUT, CHANNEL 04
17 DIGITAL INPUT, CHANNEL 03
18 DIGITAL INPUT, CHANNEL 02
19 DIGITAL INPUT, CHANNEL 01
20 NO CONNECT

21 +12 VDC

22 NO CONNECT

23 NO CONNECT

24 GROUND

25 -12 VDC

26 GROUND

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

* - Reset Relay contacts (normally open). The relay is energized (contacts 1 and 2 connected) when
the DCX-PCI300 is held in reset.

Alternative +12 volt supply connector (not supported at this time)

Description
1

2
3
4
Mating Connector:

J31 —+12 volt supply input select

Open | +12 volt supply provided via connector J33
2to 3 | +12volt supply provided via PCI bus

160 Precision MicroControl

Connectors, Jumpers, and Schematics

Processor OK

Power OK

Module
Initialization
4_

error LED's

Figure 48: DCX-PCI300-R motherboard (ribbon cable version)

J2 - Module locations 2 & 8 J1 - Module locations 1 & 7 /]

BRRRRRRRNNEN. «0RNREREEEEERRRRENN] ARRRRRRNNNRRRNL «RRRRRRRRRNENNEND
(RRNRRRRRR NN RN RIR]] (RN NN RN RN RN RRRRRRRRRREN

SJOERRRRRRRRNNERRRRRR RN nnnnnnnng ERRRRRRENNRRRERNRERERREERnnn

J4 - Module locations 6 & 4 J3 - Module locations 5 & 3

VHDCI connectors as viewed from the back of the computer
(component side down)

Figure 49: DCX-PCI300-H high density connectors pin numbering

DCX-PCI300 User’'s Manual 161

Connectors, Jumpers, and Schematics

DCX-MC300 +/- 10V Servo Motor Control Module
SIGNAL DESCRIPTIONS:

Analog Command Return

connection point: MC300-H J3 - pin 1, MC300-R J3 - pin 1

signal type: ground

notes:

explanation: Provides the signal ground for the modules Analog Command Signal output. This return
path is common to the ground plane of the DCX motherboard, but is connected in such a way as to
reduce digital noise. Typical servo amplifiers will have a connection for the analog command (or Ref-)
return where this signal should be connected.

Analog Command Output

connection point: MC300-H J3 - pin 2, MC300-R J3 - pin 2

signal type: +/- 10V analog, 16 bit

notes: connects to servo amplifier motor command input (Ref+)

explanation: This module output signal is used to control the servo amplifier's output. When
connected to the command input of a velocity mode amplifier, the voltage level on this signal should
cause the amplifier to drive the servo at a proportional velocity. For current mode amplifiers, the
voltage level should cause a proportional current to be supplied to the servo. In its default Bipolar
output mode, the module provides an analog signal that is in the range -10 to +10 volts, with 0 volts
being the null output level. Positive voltages indicate a desired velocity or current in one direction.
Negative voltages indicate velocity or current in the opposite direction. By using the Output Mode
command, the output can be changed to Unipolar, where the analog signal range is 0 to +10 volts,
and a separate signal is used to indicate the desired direction of velocity or current. The maximum
drive current of this signal is +/-10 milliamps.

Compare / Direction Output
connection point: MC300-H J3 - pin 3, MC300-R J3 - pin 7

signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation:

Compare — Used to indicate when a position compare event has occurred. See the description of
Position Compare in the Application Solutions chapter.

Direction - For servo drives requiring a Unipolar output. The velocity or current command input
consists of a magnitude signal and a separate direction signal . The magnitude signal is provided by
the modules Analog Command Signal (J3 pin 2) previously described, while this signal provides a
digital direction command.

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them. When the axis is moving in the positive direction the output will be pulled low.
When the axis is moving in the negative direction the open collector driver will be turned off and the
output will be pulled high.

162 Precision MicroControl

Connectors, Jumpers, and Schematics

Coarse Home Input

connection point: MC300-H J3 - pin 9, MC300-R J3 - pin 9

signal type: Bi-directional optical isolator, 10ma min. 2.5V — 7.5V range

notes: Supply/Return using INPRET (J3 pin 18)

explanation: This module input is used to determine the proper zero position of the servo. In servo
systems that use rotary encoders with index outputs, an index pulse is generated once per rotation of
the encoder. While this signal occurs at a very repeatable angular position on the encoder, it may
occur many times within the motion range of the servo. In these cases, a Coarse Home switch
connected to this module input can be used to qualify which index pulse is the true zero position of the
servo. By setting this switch to be activated near the end of travel of the servo, and using DCX motion
commands to position the servo within this region prior to searching for the index pulse, a unique zero
position for the servo can be determined. The input device is a bi-directional optical isolator. The
allowable voltage range for this signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher
voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).
The minimum current required to turn on the optical isolator is 10ma. Bi-directional optical isolator
wiring examples are provided later in this section.

Amplifier Fault Input

connection point: MC300-H J3 - pin 7, MC300-R J3 - pin 10

signal type: Bi-directional optical isolator, 10ma min. 2.5V — 7.5V range

notes: Supply/Return using AMPFRET (J3 pin 13)

explanation: - This module input is designed to be connected to the servo amplifiers Fault or Error
output signal. The state of this signal will appear as a status bit in the servo's status word. The
EnableAmpFault member of the MCMotion structure will enable the module to shut off the axis if the
Amplifier Fault input is active. No further servo motion will occur until the fail signal is deactivated and
the axis is enabled. The input device is a bi-directional optical isolator. The allowable voltage range for
this signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external
resistor (12 volt 1/0 = 1.1K, 5%, 1/4W. 24 volt 1/0 = 4.3K, 5%, 1/4W).

Amplifier Enable Output

connection point: MC300-H J3 - pin 5, MC300-R J3 - pin 11

signal type: Open collector, current sink, 100ma max. current sink, 30V max.

notes: external pull-up required

explanation: - This module output signal should be connected to the enable input of the servo
amplifier. When the DCX is turned on or reset, this signal will immediately go to its' inactive high level.
When the MCEnableAxis() is called, this signal will go to its' active low level. Anytime there is an
error on the respective servo axis, including exceeding the following error, a limit switch input
activated or the Amplifier Fault input activated, the Amplifier Enable signal will be deactivated.
This signal can also be deactivated by the Motor oFf command.

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them.

DCX-PCI300 User’'s Manual 163

Connectors, Jumpers, and Schematics

Limit Positive and Limit Negative Inputs
connection point: Limit Positive: MC300-H J3 - pin 17, MC300-R J3 - pin 14

Limit Negative: MC300-H J3 - pin 19, MC300-R J3 - pin 15
signal type: Bi-directional optical isolator, 10ma min. 2.5V — 7.5V range
notes: MC300-H Limit Positive Supply/Return J3 pin 18

MC300-H Limit Negative Supply/Return J3 pin 20

MC300-R Limits Supply/Return J3 pin 18
explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it
reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving
in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of
the direction it is moving if either limit switch is activated. There are three modes of stopping
(decelerate to a stop, stop immediately, turn off the axis) that can be configured by the MCSetLimits(
). The limit switch inputs can be enabled and disabled by MCSetLimits(). See the description of
Motion Limits in the Motion Control chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is 2.5
VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external resistor (12 volt
I/0 = 1.1K, 5%, 1/4W. 24 volt 1/0 = 4.3K, 5%, 1/4W).

Position Capture / Auxiliary Encoder Index +

connection point: MC300-H J3 - pin 15, MC300-R J3 - pin 24

signal type: TTL or Differential driver output (-7V to +7V)

notes:

explanation: -

Position Capture — Used to initiate the capture of position data. See the description of Position
Capture in the Application Solutions chapter.

Auxiliary Encoder Index + - This input signal can be used to define the home position of an auxiliary
encoder.

Primary Encoder Inputs (Phase A+, Phase -, Phase B+, Phase B-, Index+, Index-)

connection point: see pin-out table

signal type: TTL or Differential driver output (-7V to +7V)

notes: The encoder power jumper JP3 sets the ‘mid point’ for the differential receiver
explanation: These input signals should be connected to an incremental quadrature encoder for
supplying position feedback information for the servo controller. The plus (+) and minus (-) signs refer
to the two sides of differential inputs. By setting jumpers JP1 and JP2 appropriately, the plus signal
inputs can be configured for single ended inputs.

Auxiliary Encoder Inputs (Phase A, Phase B, Index+, Index-)
connection point: see pin-out table

signal type: TTL or Differential driver output (-7V to +7V)
notes:

explanation: - These input signals can be used for an auxiliary encoder.

164 Precision MicroControl

Connectors, Jumpers, and Schematics

Encoder Power Output

connection point: J3 pin 17MC300-H J3 - pin 16, MC300-R J3 - pin 17

signal type: +5 VDC PC power supply output or +12 VDC PC power supply output

notes: The encoder power jumper JP3 selects +5VDC or +12VDC (max. load 250 mA).
explanation: This module pin provides a convenient supply voltage connection for the encoders. The
jumper JP3 located on the module can be used to connect either the +5 or +12 volt supply to the
Encoder Power pin. The setting of this jumper also selects the threshold voltage for the module's
single ended phase and index encoder inputs. When JP1 is set for +5 volts, the threshold will be 2.5
volts, for +12 volts, the threshold will be +6 volts. The threshold voltage determines at what voltage
the input changes between on and off.

SUPPLY CONNECTIONS (+5, +12, -12, GROUND) - These module pins provide access
to the DCX supply voltages.

DCX-PCI300 User’'s Manual 165

Connectors, Jumpers, and Schematics

DCX-MC300-H High Density connector signal map
33 Pin i

Ji-1 J2-1 J3-19 J4-19 J3-1 J4-1 J1-19 J2-19 Analog Command return

J1-35 J2-35 J3-53 J4 - 53 J3-35 J4-35 J1-53 J2 -53 2 Analog Command output

J1-2 J2-2 J3-20 J4 - 20 J3-2 J4 -2 J1-20 J2-20 3 Compare / Direction: output

J1-36 J2 - 36 J3-54 J4 - 54 J3-36 J4 — 36 J1-54 J2 -54 4 Compare / Direction return

J1-3 J2-3 J3-21 J4 - 21 J3-3 J4-3 J1-21 J2-21 5 Amplifier Enable: output

J1-37 J2-37 J3-55 J4 - 55 J3-37 J4 - 37 J1-55 J2-55 6 Amp Enable return

Ji-4 J2-4 J3-22 J4 - 22 J3-4 J4-4 J1-22 J2-22 7 Amplifier Fault: input

J1-38 J2 - 38 J3-56 J4 - 56 J3-38 J4 - 38 J1-56 J2 - 56 8 Amp Fault opto isolator supply/return
J1-5 J2-5 J3-23 J4-23 J3-5 J4-5 J1-23 J2-23 9 Coarse Home: input

J1-39 J2-39 J3-57 J4 - 57 J3-39 J4 -39 J1-57 J2 -57 10 Coarse Home return

J1-6 J2-6 J3-24 J4-24 J3-6 J4-6 J1-24 J2-24 Ground

J1-40 J2-40 J3-58 J4 - 58 J3-40 J4-40 J1-58 J2 - 58 11 Reserved

Ji1-7 J2-7 J3-25 J4-25 J3-7 J4a-7 J1-25 J2-25 12 Reserved

Jl1-41 J2 - 41 J3-59 J4 — 59 J3-41 J4a—-41 J1-59 J2 -59 Ground

J1-8 J2-8 J3-26 J4 - 26 J3-8 J4-8 J1-26 J2 -26 Ground

J1-42 J2-42 J3-60 J4 - 60 J3-42 J4 — 42 J1-60 J2 - 60 13 Auxiliary Encoder Phase A+: input
J1-9 J2-9 J3-27 J4 - 27 J3-9 J4-9 J1-27 J2 - 27 14 Auxiliary Encoder Phase B+: input
J1-43 J2-43 J3-61 J4-61 J3-43 J4-43 J1-61 J2-61 Ground

J1-10 J2-10 J3-28 J4 - 28 J3-10 J4-10 J1-28 J2 -28 Ground

J1-44 J2 - 44 J3-62 J4 - 62 J3-44 J4 — 44 J1-62 J2 - 62 15 Position Capture + / Aux. Encoder Index+
Ji-11 J2-11 J3-29 J4 - 29 J3-11 J4-11 J1-29 J2-29 16 Encoder Power: output (max. load 250 mA)
J1-45 J2-45 J3-63 J4 -63 J3-45 J4-45 J1-63 J2-63 Ground

J1-12 J2-12 J3-30 J4 - 30 J3-12 J4—-12 J1-30 J2 -30 17 Limit Positive: input

J1-46 J2 - 46 J3-64 J4 - 64 J3 - 46 J4 — 46 J1-64 J2 - 64 18 Limit Positive opto isolator supply/return
J1-13 J2-13 J3-31 J4-31 J3-13 J4-13 Ji1-31 J2-31 19 Limit Negative: input

J1-47 J2 - 47 J3-65 J4 — 65 J3 - 47 J4 — 47 J1-65 J2 - 65 20 Limit Negative opto isolator supply/return
Ji1-14 J2-14 J3-32 J4-32 J3-14 J4a-14 J1-32 J2-32 21 Primary Encoder Phase A+: input *
J1-48 J2 -48 J3 - 66 J4 — 66 J3-48 J4 — 48 J1-66 J2 - 66 22 Primary Encoder Phase A-: input
J1-15 J2-15 J3-33 J4-33 J3-15 J4a-15 J1-33 J2-33 23 Primary Encoder Phase B+: input*
J1-49 J2-49 J3 - 67 J4 — 67 J3-49 J4 - 49 J1-67 J2 - 67 24 Primary Encoder Phase B-: input
J1-16 J2-16 J3-34 J4-34 J3-16 J4-16 J1-34 J2-34 25 Primary Encoder Index +:input

J1-50 J2 - 50 J3-68 J4 - 68 J3-50 J4 - 50 J1-68 J2 - 68 26 Primary Encoder Index -:input

Ji1-17 J2 -17 J3-17 J4—-17 Ground

Jl1-51 J2-51 J3-51 J4 - 51 Ground

Ji1-18 J2-18 J3-18 J4-18 Ground

J1-52 J3-52 J3-52 J4 - 52 Ground

For a more complete signal description please refer to the previous five pages
Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

166 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC300-R Module connector

J3 connector pin-out (Motor command, encoders, and axis 1/0O)

Analog Command return (analog ground)

Analog Command output (output, +/-10 V)

+12 VDC (250 mA max.)

-12 VDC (50 mA max.)

Ground

+5 VDC (250 mA max.)

Compare / Direction: output (open collector, 100ma max., 30V max.)
Primary Encoder Index +:input (active high)

Coarse Home: input (optically isolated, 12V — 24V, 15ma min.)
Amplifier Fault: input (optically isolated, 12V — 24V, 15ma min.)
Amplifier Enable: output (open collector, 100ma max., 30V max.)
Amp Enable & Direction return

Amp Fault opto isolator supply/return

Limit Positive: input (optically isolated, 12V — 24V, 15ma min.)
Limit Negative: input (optically isolated, 12V — 24V, 15ma min.)
Primary Encoder Phase A+: input *

Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (max. load 250 mA)
Coarse Home & Limits opto isolator supply/return

Primary Encoder Phase A-: input

Primary Encoder Phase B-: input

Auxiliary Encoder Phase A+: input

Auxiliary Encoder Phase B+: input

Primary Encoder Phase B+: input*

Position Capture + / Auxiliary Encoder Index+: input (active high)
Primary Encoder Index-: input (active low)

Ground

* Use A+ and B+ for single-ended ENCODER INPUTS

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

DCX-PCI300 User’'s Manual 167

Connectors, Jumpers, and Schematics

DCX-MC300 Module Configuration Jumpers - configuration in bold type
denotes default factory shipping configuration

JP1 — Encoder type (single ended or differential)

Description

1to2to 3 Single ended encoder, A, B, Z (three pin jumper provided)
open Differential encoder, A+, A-, B+, B-

JP2 — Encoder Index Active Level Select)

1to?2 Single ended Index, Z+ (Active high)
2to 3 Single ended Index, Z- (active low)
open Differential Index, Z+ and Z-

JP3 — Encoder Power Select (+5VDC or +12 VDC)
l1to2 +5 VDC encoder supply on J3 pin 16/17 (250 mA max.)
2to3 +12 VDC encoder supply on J3 pin 16/17 (250 mA max.)

DCX-MC300 Module Output Offset Potentiometer
This multi-turn trimming potentiometer can be used to add an offset to the module's analog output.
The range of this adjustment is approximately +/-1.0 volts.

DCX-MC300 Module Layout

JP1 1
|
im i

|
JP2 W i

DCX-MC300

1M
= JP3
[|

168 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC300H Axis I/O Interface Schematic

+5VDC
74LS14 Motorola MOC256 360
4_7K% AN Coarse Home J3-9
Crs Home il ZS SZ
E_l § Coarse Home Return J3-10
74LS14 360 i i
AN Limit Positive J3-17
Limit + Return J3-18

+5VDC

74LS14 Motorola MOC256 360 i i
Limit Neqgative
A%

J3-19
El EZS SZ Limits - Return 33-20

L
+5VDC
74LS14 Motorola MOC256 360 i
47K AN Amplifier Fault 13-7
Amp Faul 7 NN/ -
jl § Amplifier Fault Return 3-8

+5VDC

+5VDC 360
Motorola MOC223

4.7K

g SN75453B L -
Amp Enable @75?; [Amplifier Enable 13-5

Amplifier Enable Return 13-6

+5VDC

+5VDC 360
Motorola MOC223

4.7K

é SN754538 N
Direction Qiy)' [___Compare / Direction 13-3
»

Compare / Direction Return 13-4

Enc A+
10.0K R
Enca | 75175 At 3.2t
M J3-22
Enc B+ <

Analog C d EncB e
nalog Comman ;

_(I—<J3_2 Enc B <J3_24
Enc Z+

Enc Z —— < J3-25

-12V Enc Z- < J3-26

DCX-PCI300 User’'s Manual 169

Connectors, Jumpers, and Schematics

DCX-MC300H Optically Isolated Inputs Wiring Examples

+5VDC Limit + switch
(normally open)
Bi-directional
74Ls14 Optical isolator 360 33-17: Limit + PY +
Limit+ ‘ +5VDC
‘ N & S? J3-18: Limit + Return Power Supply
\ —
L
L 8 This limit circuit wll indicate that a limit is active if the switch is closed
+5VDC Limit + switch
(normally open)
Bi-directional
raLsia Optical isolator 360 3317 Limit + Py
Limit+ ‘ ZS S:Z +5VDC
‘ T J3-18: Limit + Return Power Supply
N
N
=
L 2 This limit circuit wil indicate that a limit is active if the switch is closed

74LS14

DCX-MC300H

+5VDC

Bi-directional

360

J3-17: Limit +

Limit + switch
(normally closed)

o

Optical isolator

J3-18: Limit + Return

+ +5VDC

Power Supply

M

This is not the default configuration of the DCX, issue the
MC_LIMIT_INVERT parameter of theMCSetLimits() function

This limit circuit wil indicate that a limit is active if:

1) The switch is open

2) Any component in the circuit fails (power supply,
bi-directional opto isolator, broken wire, etc...

Precision MicroControl

170

Connectors, Jumpers, and Schematics

DCX-MC300H Open Collector Driver Wiring Examples

DCX-MC300

+5VDC
Motorola

FRC 360 MOC223

13 -

5

Amplifier Enable

Servo Amplifier

VCC

4N29

ptical isolator

{0

<5l

7

J3 -

6

Amplifier Enable Return

4.7K
A E g SN75453B [
m n.
=) 1%

Amp En

1

L

DCX-PCI300 User’'s Manual

171

Connectors, Jumpers, and Schematics

DCX-MC302 Dual Axis +/- 10V Servo Motor Control Module
SIGNAL DESCRIPTIONS:

Analog Command Return
connection point: Axis 1: VHDCI connector pin 8 (no connection on module J3 connector)

Axis 2: VHDCI connector pin 43 (no connection on module J3 connector)
signal type: ground
notes:
explanation: Provides the signal ground for the modules Analog Command Signal output. This return
path is common to the ground plane of the DCX motherboard, but is connected in such a way as to
reduce digital noise. Typical servo amplifiers will have a connection for the analog command (or Ref-)
return where this signal should be connected.

Analog Command Output
connection point: Axis 1: J3 - pin 13

Axis 2: J3 —pin 14
signal type: +/- 10V analog, 16 bit
notes: connects to servo amplifier motor command input (Ref+)
explanation: This module output signal is used to control the servo amplifier's output. When
connected to the command input of a velocity mode amplifier, the voltage level on this signal should
cause the amplifier to drive the servo at a proportional velocity. For current mode amplifiers, the
voltage level should cause a proportional current to be supplied to the servo. In its default Bipolar
output mode, the module provides an analog signal that is in the range -10 to +10 volts, with 0 volts
being the null output level. Positive voltages indicate a desired velocity or current in one direction.
Negative voltages indicate velocity or current in the opposite direction. The maximum drive current of
this signal is +/-10 milliamps.

Coarse Home Input
connection point: Axis 1: J3-pin7

Axis 2: J3 — pin 19
signal type: Bi-directional optical isolator, 10ma min. 2.5V — 7.5V range
notes: Axis 1 Supply/Return: AlLimret (J3 pin 10)

Axis 2 Supply/Return: A2Limret (J3 pin 18)
explanation: This module input is used to determine the proper zero position of the servo. In servo
systems that use rotary encoders with index outputs, an index pulse is generated once per rotation of
the encoder. While this signal occurs at a very repeatable angular position on the encoder, it may
occur many times within the motion range of the servo. In these cases, a Coarse Home switch
connected to this module input can be used to qualify which index pulse is the true zero position of the
servo. By setting this switch to be activated near the end of travel of the servo, and using DCX motion
commands to position the servo within this region prior to searching for the index pulse, a unique zero
position for the servo can be determined. The input device is a bi-directional optical isolator. The
allowable voltage range for this signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher
voltage levels add an external resistor (12 volt I/0 = 1.1K, 5%, 1/4W. 24 volt /0 = 4.3K, 5%, 1/4W).

172 Precision MicroControl

Connectors, Jumpers, and Schematics

Amplifier Enable Output
connection point: Axis 1: J3 - pin 12

Axis 2: J3 — pin 15
signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation: - This module output signal should be connected to the enable input of the servo
amplifier. When the DCX is turned on or reset, this signal will immediately go to its' inactive high level.
When the MCEnableAxis() is called, this signal will go to its' active low level. Anytime there is an
error on the respective servo axis, including exceeding the following error, a limit switch input
activated or the Amplifier Fault input activated, the Amplifier Enable signal will be deactivated.
This signal can also be deactivated by the Motor oFf command.

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them.

Limit Positive and Limit Negative Inputs
connection point: Axis 1 Limit Positive: J3 - pin 9, Axis 2 Limit Positive: J3 - pin 17

Axis 1 Limit Negative: J3 - pin 11, Axis 2 Limit Positive: J3 - pin 16
signal type: Bi-directional optical isolator, 10ma min. 2.5V — 7.5V range
notes: Axis 1 Limits +/- Supply/Return: AlLimret (J3 pin 10)

Axis 2 Limits +/- Supply/Return: A2Limret (J3 pin 18)
explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it
reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving
in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of
the direction it is moving if either limit switch is activated. There are three modes of stopping
(decelerate to a stop, stop immediately, turn off the axis) that can be configured by the MCSetLimits(
). The limit switch inputs can be enabled and disabled by MCSetLimits(). See the description of
Motion Limits in the Motion Control chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is 2.5
VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external resistor (12 volt
I/0 =1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Encoder Inputs (Phase A+, Phase A-, Phase B+, Phase B-, Index+, Index-)

connection point: see pin-out tables

signal type: TTL or Differential driver output (-7V to +7V)

notes:

explanation: These input signals should be connected to an incremental quadrature encoder for
supplying position feedback information for the servo controller. The plus (+) and minus (-) signs refer
to the two sides of differential inputs. The default shipping configuration is for using a differential
encoder. For a single ended encoder add 0 ohm resistors (Axis 1- R1, R2, R3; Axis 2-R4, R5, R6).

DCX-PCI300 User’'s Manual 173

Connectors, Jumpers, and Schematics

Encoder Power Output
connection point: Axis 1: J3 - pin 8
Axis 2: J3 — pin 20
signal type: +5 VDC PC power supply output or +12 VDC PC power supply output
notes: Axis 1: jumper JP1 selects +5VDC or +12VDC (max. load 250 mA)
Axis 2: jumper JP2 selects +5VDC or +12VDC (max. load 250 mA)
explanation: This module pin provides a convenient supply voltage connection for the encoders. The
jumper can be used to connect either the +5 or +12 volt supply to the Encoder Power pin.

174 Precision MicroControl

DCX-MC302-H High Density connector signal map

Connectors, Jumpers, and Schematics

Module #1 | Module #2 | Module #3 | Module #4| | Module #5 | Module #6 | Module #7 | Module #8 3p|n# Description

Ji-1

J1-35
J1-2

J1-36
J1-3

J1-37
Ji1-4

J1-38
J1-5

J1-39
J1-6

J1-40
J1-7

J1-41
J1-8

J1-42
J1-9

J1-43
J1-10
J1-44
Ji1-11
J1-45
J1-12
J1-46
J1-13
J1-47
J1-14
J1-48
J1-15
J1-49
J1-16
J1-50
Ji1-17
J1-51
J1-18
J1-52

For a more complete signal description please refer to the previous five pages
Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

J2-1
J2-35
J2-2
J2 - 36
J2-3
J2 - 37
J2-4
J2 -38
J2-5
J2-39
J2-6
J2-40
J2-7
J2-41
J2-8
J2-42
J2-9
J2 -43
J2-10
J2-44
J2-11
J2 -45
J2-12
J2 - 46
J2-13
J2 - 47
J2-14
J2-48
J2-15
J2-49
J2-16
J2 -50
J2-17
J2-51
J2-18
J3-52

J3-19
J3-53
J3-20
J3-54
J3-21
J3-55
J3-22
J3-56
J3-23
J3-57
J3-24
J3-58
J3-25
J3-59
J3-26
J3-60
J3-27
J3-61
J3-28
J3-62
J3-29
J3-63
J3-30
J3-64
J3-31
J3-65
J3-32
J3 - 66
J3-33
J3-67
J3-34
J3-68

J4-19
J4 -53
J4-20
J4 -54
J4-21
J4 - 55
J4 - 22
J4 - 56
J4 -23
J4 -57
J4 - 24
J4 - 58
J4 - 25
J4 - 59
J4 - 26
J4 - 60
J4 - 27
J4-61
J4 - 28
J4 - 62
J4-29
J4 - 63
J4 -30
J4 - 64
J4-31
J4 - 65
J4-32
J4 - 66
J4-33
J4 - 67
J4-34
J4 - 68

J3-1

J3-35
J3-2

J3-36
J3-3

J3-37
J3-4

J3-38
J3-5

J3-39
J3-6

J3-40
J3-7

J3-41
J3-8

J3-42
J3-9

J3-43
J3-10
J3-44
J3-11
J3-45
J3-12
J3-46
J3-13
J3-47
J3-14
J3-48
J3-15
J3-49
J3-16
J3-50
J3-17
J3-51
J3-18
J3-52

J4-1
J4-35
J4 -2
J4 - 36
J4a-3
J4 -37
J4-4
J4 - 38
J4-5
J4 -39
J4-6
J4-40
J4-7
J4 -41
J4-8
J4a—42
J4-9
J4 - 43
J4-10
J4a—44
J4-11
J4 - 45
J4-12
J4 - 46
J4-13
J4 — 47
J4-14
J4 - 48
J4-15
J4—-49
J4-16
J4 -50
J4a—-17
J4-51
J4—-18
J4 - 52

J1-19
J1-53
J1-20
J1-54
Ji1-21
J1-55
J1-22
J1-56
J1-23
J1-57
J1-24
J1-58
J1-25
J1-59
J1-26
J1-60
J1-27
Jl1-61
J1-28
J1-62
J1-29
J1-63
J1-30
J1-64
J1-31
J1-65
J1-32
J1-66
J1-33
J1-67
J1-34
J1-68

J2-19
J2 - 53
J2-20
J2 -54
J2-21
J2 -55
J2 - 22
J2 — 56
J2 -23
J2 -57
J2-24
J2 - 58
J2-25
J2 - 59
J2 - 26
J2 - 60
J2 - 27
J2 -61
J2 - 28
J2 -62
J2-29
J2 - 63
J2-30
J2 -64
J2-31
J2 -65
J2 -32
J2 - 66
J2-33
J2 - 67
J2-34
J2 - 68

HBoo~Noohswnek

13
14

15
16

17
18
19
20
21
22
23
24
25
26

Axis 1 Encoder Phase A+: input *

Axis 1 Encoder Phase A-: input

Axis 1 Encoder Phase B+: input*

Axis 1 Encoder Phase B-: input

Axis 1 Encoder Index +:input

Axis 1 Encoder Index-: input

Axis 1 Coarse Home: input (optically isolated)
Axis 1 Encoder Power (+5/+12) (250 mA max.)
Axis 1 Limit Positive: input (optically isolated)
Axis 1 Coarse Home & Limits supply/return
Ground

Axis 1 Limit Negative: input (optically isolated)
Axis 1 Amplifier Enable: output (open collector)
Ground

Ground

Axis 1 Analog Command output (+/-10 V)

Axis 2 Analog Command output (+/-10 V)
Ground

Ground

Axis 2 Amplifier Enable: output (open collector)
Axis 2 Limit Negative: input (optically isolated)
Ground

Axis 2 Limit Positive: input (optically isolated)
Axis 2 Coarse Home & Limits supply/return
Axis 2 Coarse Home: input (optically isolated)
Axis 2 Encoder Power (+5/+12) (250 mA max.)
Axis 2 Encoder Phase A+: input *

Axis 2 Encoder Phase A-: input

Axis 2 Encoder Phase B+: input*

Axis 2 Encoder Phase B-: input

Axis 2 Encoder Index +:input

Axis 2 Encoder Index-: input

Ground

Ground

Ground

Ground

DCX-PCI300 User’'s Manual

175

Connectors, Jumpers, and Schematics

DCX-MC302 Module Configuration Jumpers - configuration in bold type
denotes default factory shipping configuration

JP1 — Axis 1 Encoder Power Select (+5VDC or +12 VDC)

Description

1to 2 +5 VDC encoder supply on J3 pin 8 (250 mA max.)
2t03 +12 VDC encoder supply on J3 pin 8 (250 mA max.)

JP2 — Axis 2 Encoder Power Select (+5VDC or +12 VDC)

1to?2 +5 VDC encoder supply on J3 pin 20 (250 mA max.)
2t0 3 +12 VDC encoder supply on J3 pin 20 (250 mA max.)

DCX-MC302 Module Layout

DCX-MC302 top side DCX-MC302 bottom side: remove
R1 — R6 for differential encoder

176 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC302H Axis I/O Interface Schematic

Motorola MOC256 /35\0/ Axis 1 Limit + 3.9
QZS:Z Axis 1 Limit Return J3-10
VA Axis 1 Limit - 3.1
L
+5VDC.
Motorola MOC256 ,3/6\0/ Axis 2 Coarse Home 13-19
ZSS? Axis 2 Limit Return 13-18
Ax1 Crsﬂwo< : ,\3/63 Axis 1 Coarse Home 13-7
74LS14 _:lk ZSSZ Axis 1 Limit Return J3-10

L
+5VDC.
raLsia a7 Motorola MOC256 360
. jotorola . P
Ax2 L'm+Q<)\(]§ AN Axis 2 Limit + 13-17
s ZSSZ Axis 2 Limit Return J3-18
. 360 . .
Ax2 le;o<) AAA Axis 2 Limit - J13-16
RZSSZ
+5VDC +5VDC
47K SN754538
X Axis 2 Amp En .
Axis 1 Amp Enable 13-12 Axis 2 Amp Enable 13-15
+12V

75175 | DXLEMCAY 00
AdEncA | Ax1 VOUT
Ax1 Enc A- 3.2 SXE R NJL082 Axis 1 Analog C g
XIS nalog Comman < J3-13
Ax1 Enc B+ < 13-3
_Ax1EncB |
Ax1 Enc B-
—AAENCB 7 55 4 v
Ax1 Enc Z+
Ax1EncZ 335 oy
~ +
Ax1 Enc Z < 13-6

Ax2 Enc Z+ < 1325 _AX2 VOUTIN7L082
Ax2 Enc Z Axis 2 Analog Command <
Ax2 Enc Z- < 13-26 J3-14

Ax2 Enc A+ -12v
AxL Enc A 75175 RXREICAT 7 450
Ax2 Enc A- <.]3-22

JP1
Ax2 Enc B+
Axcl Enc B HRXEENCBE 7 53 23 +5VDC [
Ax2 Enc B- <33.24 _ A><1En<:Pwr<J3_8
+12 VDC
9ohm axiEnca- 0ohm ax2Enca-
Ax1 Enc B- 9ohm 2 EncB- P2
+5VDC [
A EncZ- oohm axz Encz- —
| Ax1Enc Pwr<\]3 220
+12 VDC

DCX-PCI300 User’'s Manual 177

Connectors, Jumpers, and Schematics

DCX-MC302 Optically Isolated Inputs Wiring Examples

+5VDC Limit + switch
(normally open)
Bi-directional
74Ls14 Optical isolator 360 33-9: Axis 1 Limit + PY +
Ax1 Lim+ ‘ ZX S? +5VDC
‘ ™NIK J3-10: Axis 1 Home & Limits Return Power Supply
~ —
L
L a2 This limit circuit wil indicate that a limit is active if the switch is closed
+5VDC Limit + switch
(normally open)
Bi-directional
aLsia Optical isolator 360 o ads1limts g
Ax1 Lim+ ‘ ZS :Z +5VDC
‘ NI J3-10: Axis 1 Home & Limits Return Power Supply
N
=L
L a This limit circuit wil indicate that a limit is active if the switch is closed

DCX-MC302H

+5VDC
o Limit + switch
Bi-directional (normally closed)

Optical isolator 360 13-9: Axis 1 Limit + +
AN 5o *5VDC
j_l ~ J3-10: Axis 1 Home & Limits Return Power Supply

~ —

L
This limit circuit wil indicate that a limit is active if:

1) The switch is open
2) Any component in the circuit fails (power supply,

bi-directional opto isolator, broken wire, etc...

74LS14

This is not the default configuration of the DCX, issue the
MC_LIMIT_INVERT parameter of theMCSetLimits() function

Precision MicroControl

178

Connectors, Jumpers, and Schematics

DCX-MC302H Open Collector Driver Wiring Examples

4.7K
Axis 1 Amp En.

DCX-MC302H

+5VD

SN75453B

13-12

Axis 1 Amplifier Enable

—)

Servo Amplifier

VCC

4N29

ptical isolator

{0

=3

(

I

L

Amp En

L

DCX-PCI300 User’'s Manual

179

Connectors, Jumpers, and Schematics

DCX-MC320 Brushless Servo Commutation Control Module

The description of how to set up and operate the MC320 Commutation
module was not available when this document was printed.

Please refer to Application Note AN1004 - Brushless AC Motor
Commutation. This PDF document is available on PMC’s MotionCD
(Other Docs and Tools/AppNOTES/Explore AppNOTES/AN1004.PDF)
or from PMC’s web site (www.pmccorp.com)

SIGNAL DESCRIPTIONS:

Analog Command Return

connection point: MC320-H J3 - pin1 & 3, MC320-R J3 - pin 1

signal type: ground

notes:

explanation: Provides the signal ground for the modules Analog Command Signal output. This return
path is common to the ground plane of the DCX motherboard, but is connected in such a way as to
reduce digital noise. Typical servo amplifiers will have a connection for the analog command (or Ref-)
return where this signal should be connected.

Phase U Torque Command Output

connection point: MC320-H J3 - pin 2, MC320-R J3 - pin 2

signal type: +/- 10V analog, 16 bit

notes: connects to servo amplifier motor command input (Ref+)

explanation: This module output signal is used to control the torque of the U winding of a brushless
servo. The maximum drive current of this signal is +/-10 milliamps.

Phase V Torque Command Output

connection point: MC320-H J3 - pin 4, MC320-R J3 - pin 3

signal type: +/- 10V analog, 16 bit

notes: connects to servo amplifier motor command input (Ref+)

explanation: This module output signal is used to control the torque of the V winding of a brushless
servo. The maximum drive current of this signal is +/-10 milliamps.

Phase W Torque Command Output

connection point: MC320-H not supported, MC320-R J3 - pin 1J3 - pin 4

signal type: +/- 10V analog, 16 bit

notes: connects to servo amplifier motor command input (Ref+)

explanation: This module output signal is used to control the torque of the W winding of a brushless
servo. The maximum drive current of this signal is +/-10 milliamps.

180 Precision MicroControl

Connectors, Jumpers, and Schematics

Coarse Home Input
connection point: MC320-H J3 - pin 9, MC320-R J3 - pin 9
signal type: Bi-directional optical isolator, 10ma min. 2.5V — 7.5V range
notes: MC320-H Supply/Return J3 pin 10

MC320-R Supply/Return J3 pin 18
explanation: This module input is used to determine the proper zero position of the servo. In servo
systems that use rotary encoders with index outputs, an index pulse is generated once per rotation of
the encoder. While this signal occurs at a very repeatable angular position on the encoder, it may
occur many times within the motion range of the servo. In these cases, a Coarse Home switch
connected to this module input can be used to qualify which index pulse is the true zero position of the
servo. By setting this switch to be activated near the end of travel of the servo, and using DCX motion
commands to position the servo within this region prior to searching for the index pulse, a unique zero
position for the servo can be determined. The input device is a bi-directional optical isolator. The
allowable voltage range for this signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher
voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Amplifier Fault Input
connection point: MC320-H J3 - pin 7, MC320-R J3 — pin 10
signal type: Bi-directional optical isolator, 10ma min. 2.5V — 7.5V range
notes: MC320-H Supply/Return J3 pin 8

MC320-R Supply/Return J3 pin 13
explanation: - This module input is designed to be connected to the servo amplifiers Fault or Error
output signal. The state of this signal will appear as a status bit in the servo's status word. The
EnableAmpFault member of the MCMotion structure will enable the module to shut off the axis if the
Amplifier Fault input is active. No further motion will occur until the fail signal is deactivated and the
axis is enabled. The input device is a bi-directional optical isolator. The allowable voltage range for
this signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external
resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt /O = 4.3K, 5%, 1/4W).

Amplifier Enable Output

connection point: MC320-H J3 - pin 5, MC320-R J3 — pin 11

signal type: Open collector, current sink, 100ma max. current sink, 30V max.

notes: external pull-up required

explanation: - This module output signal should be connected to the enable input of the servo
amplifier. When the DCX is turned on or reset, this signal will immediately go to its' inactive high level.
When the MCEnableAxis() is called, this signal will go to its' active low level. Anytime there is an
error on the respective servo axis, including exceeding the following error, a limit switch input
activated or the Amplifier Fault input activated, the Amplifier Enable signal will be deactivated.
This signal can also be deactivated by the Motor oFf command.

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them.

DCX-PCI300 User’'s Manual 181

Connectors, Jumpers, and Schematics

Limit Positive and Limit Negative Inputs
connection point: Limit Positive: MC320-H J3 - pin 17, MC320-R J3 - pin 14

Limit Negative: MC320-H J3 - pin 19, MC320-R J3 - pin 15
signal type: Bi-directional optical isolator, 10ma min. 2.5V — 7.5V range
notes: MC320-H Limit Positive Supply/Return J3 pin 18

MC320-H Limit Negative Supply/Return J3 pin 20

MC320-R Limits Supply/Return J3 pin 18
explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it
reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving
in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of
the direction it is moving if either limit switch is activated. There are three modes of stopping
(decelerate to a stop, stop immediately, turn off the axis) that can be configured by the MCSetLimits(
). The limit switch inputs can be enabled and disabled by MCSetLimits(). See the description of
Motion Limits in the Motion Control chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is 2.5
VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external resistor (12 volt
I/0 = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Primary Encoder Inputs (Phase A+, Phase -, Phase B+, Phase B-, Index+, Index-)

connection point: see pin-out table

signal type: TTL or Differential driver output (-7V to +7V)

notes: The encoder power jumper JP3 sets the ‘mid point’ for the differential receiver
explanation: These input signals should be connected to an incremental quadrature encoder for
supplying position feedback information for the servo controller. The plus (+) and minus (-) signs refer
to the two sides of differential inputs. By setting jumpers JP1 and JP2 appropriately, the plus signal
inputs can be configured for single ended inputs.

Hall Effect Sensor A, B, and C Inputs

connection point: see pin-out table

signal type: TTL or Differential driver output (-7V to +7V)

notes:

explanation: - These input signals can be used for interfacing to Hall effect sensors.

Encoder Power Output

connection point: MC300-H J3 - pin 16, MC300-R J3 - pin 17

signal type: +5 VDC PC power supply output or +12 VDC PC power supply output

notes: The encoder power jumper JP3 selects +5VDC or +12VDC (250 mA max.)
explanation: This module pin provides a convenient supply voltage connection for the encoders. The
jumper JP3 located on the module can be used to connect either the +5 or +12 volt supply to the
Encoder Power pin. The setting of this jumper also selects the threshold voltage for the module's
single ended phase and index encoder inputs. When JP1 is set for +5 volts, the threshold will be 2.5
volts, for +12 volts, the threshold will be +6 volts. The threshold voltage determines at what voltage
the input changes between on and off.

SUPPLY CONNECTIONS (+5, GROUND) - These module pins provide access to the DCX supply
voltages.

182 Precision MicroControl

DCX-MC320-H High Density connector signal map

Connectors, Jumpers, and Schematics

33 Pin # | Description

Ji1-1

J1-35
Ji1-2

J1-36
J1-3

J1-37
Ji1-4

J1-38
J1-5

J1-39
J1-6

J1-40
Ji1-7

Jl1-41
J1-8

J1-42
J1-9

J1-43
J1-10
J1-44
J1-11
J1-45
Ji1-12
J1-46
J1-13
J1-47
J1-14
J1-48
J1-15
J1-49
J1-16
J1-50
Ji1-17
J1-51
J1-18
J1-52

For a more complete signal description please refer to the previous five pages
Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

J2-1
J2-35
J2-2
J2-36
J2-3
J2 - 37
J2-4
J2-38
J2-5
J2-39
J2-6
J2 -40
J2-7
J2-41
J2-8
J2-42
J2-9
J2-43
J2-10
J2-44
J2-11
J2 -45
J2-12
J2 - 46
J2-13
J2 - 47
J2-14
J2 - 48
J2-15
J2-49
J2-16
J2 - 50
J2-17
J2-51
J2-18
J3-52

J3-19
J3-53
J3-20
J3-54
J3-21
J3-55
J3-22
J3-56
J3-23
J3-57
J3-24
J3-58
J3-25
J3-59
J3-26
J3-60
J3-27
J3-61
J3-28
J3-62
J3-29
J3-63
J3-30
J3-64
J3-31
J3-65
J3-32
J3 - 66
J3-33
J3 -67
J3-34
J3-68

J4-19
J4 - 53
J4-20
J4-54
J4-21
J4 - 55
J4 - 22
J4 — 56
J4-23
J4 - 57
J4-24
J4 - 58
J4-25
J4 - 59
J4 - 26
J4 - 60
J4 - 27
J4-61
J4 - 28
J4 -62
J4 - 29
J4 - 63
J4-30
J4 - 64
J4-31
J4 - 65
J4 - 32
J4 — 66
J4-33
J4 - 67
J4-34
J4 - 68

J3-1
J3-35
J3-2
J3-36
J3-3
J3-37
J3-4
J3-38
J3-5
J3-39
J3-6
J3-40
J3-7
J3-41
J3-8
J3-42
J3-9
J3-43
J3-10
J3-44
J3-11
J3-45
J3-12
J3-46
J3-13
J3 —-47
J3-14
J3-48
J3-15
J3-49
J3-16
J3-50
J3-17
J3-51
J3-18
J3-52

Ja-1
J4-35
J4a-2
J4 - 36
J4-3
J4 - 37
J4-4
J4 —-38
J4-5
J4 -39
J4-6
J4 - 40
Ja-7
J4 -41
J4-8
J4 - 42
J4-9
J4 - 43
J4-10
J4 - 44
J4-11
J4 — 45
J4a—-12
J4 — 46
J4-13
J4 — 47
J4-14
J4 - 48
J4-15
J4 - 49
J4-16
J4 -50
Ja—-17
J4-51
J4-18
J4 - 52

J1-19
J1-53
J1-20
J1-54
Ji-21
J1-55
J1-22
J1-56
J1-23
J1-57
J1-24
J1-58
J1-25
J1-59
J1-26
J1-60
J1-27
Jl-61
J1-28
J1-62
J1-29
J1-63
J1-30
J1-64
J1-31
J1-65
J1-32
J1-66
J1-33
J1-67
J1-34
J1-68

J2-19
J2 -53
J2-20
J2-54
J2-21
J2 - 55
J2 -22
J2 - 56
J2-23
J2 -57
J2-24
J2 -58
J2-25
J2 -59
J2 - 26
J2 - 60
J2 - 27
J2-61
J2 -28
J2 - 62
J2-29
J2 - 63
J2-30
J2 -64
J2-31
J2 - 65
J2-32
J2 - 66
J2-33
J2 - 67
J2-34
J2 -68

BHoo~Noohwhe

12

13
14

15
16

17
18
19
20
21
22
23
24
25
26

Ground

Phase U Torque Command: output
Ground

Phase V Torque Command: output
Amplifier Enable: output

Amplifier Enable return

Amplifier Fault: input

Amplifier Fault return

Coarse Home: input

Coarse Home return

Ground

Reserved

Reserved

Ground

Ground

Hall sensor A+ / Aux. Encoder Phase A+
Hall sensor B+ / Aux. Encoder Phase B+
Ground

Ground

Hall Sensor C+

Encoder Power: output (max. load 250 mA)
Ground

Limit Positive: input

Limit Positive return

Limit Negative: input

Limit Negative return

Primary Encoder Phase A+: input *
Primary Encoder Phase A-: input
Primary Encoder Phase B+: input*
Primary Encoder Phase B-: input
Primary Encoder Index +:input
Primary Encoder Index-: input
Ground

Ground

Ground

Ground

DCX-PCI300 User’'s Manual

183

Connectors, Jumpers, and Schematics

DCX-MC320-R Module connector

J3 connector pin-out (Motor command, encoders, and axis 1/0O)

Torque Command Return (Ground)

Phase U Torque Command: output (10ma max.)

Phase V Torgue Command: output (10ma max.)

Phase W Torque Command: output (10ma max.)

Ground

+5 VDC (250 mA max.)

Reserved

Primary Encoder Index +:input (active high)

Coarse Home: input (optically isolated, 12V — 24V, 15ma min.)
Amplifier Fault: input (optically isolated, 12V — 24V, 15ma min.)
Amplifier Enable: output (open collector, 100ma max., 30V max.)
Amp Enable & Direction return

Amp Fault opto isolator supply/return

Limit Positive: input (optically isolated, 12V — 24V, 15ma min.)
Limit Negative: input (optically isolated, 12V — 24V, 15ma min.)
Primary Encoder Phase A+: input *

Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (250 mA max.)
Coarse Home & Limits opto isolator supply/return

Primary Encoder Phase A-: input

Primary Encoder Phase B-: input

Hall sensor A+

Hall sensor B+

Primary Encoder Phase B+: input*

Hall Sensor C+

Primary Encoder Index-: input (active low)

Ground

* Use A+ and B+ for single-ended Encoder inputs

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

184

Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC320 Module Configuration Jumpers - configuration in bold type
denotes default factory shipping configuration

JP1 — Encoder type (single ended or differential)

Description

1to2to3 Single ended encoder, A, B, Z (three pin jumper provided)
open Differential encoder, A+, A-, B+, B-

JP2 — Encoder Index Active Level Select)

Description

1to2 Single ended Index, Z+ (Active high)
2t0 3 Single ended Index, Z- (active low)
open Differential Index, Z+ and Z-

JP3 — Encoder Power Select (+5VDC or +12 VDC)

Description
1to2 +5 VDC encoder supply on J3 pin 16/17 (250 mA max.)
2t03 +12 VDC encoder supply on J3 pin 16/17 (250 mA max.)

DCX-MC320 Module Layout

DCX-MC320

DCX-PCI300 User’'s Manual 185

Connectors, Jumpers, and Schematics

DCX-MC320H Axis I/O Interface Schematic

74LS14

74LS14

Motorola MOC256 360

Coarse Home

Coarse Home Return

ggii

+5VDC
Motorola MOC256 360

Limit Positive

Limit + Return

+5VDC

Limit Negative

741814 Motorola MOC256 360
4.7K AW
Limit- _SJ Z$ SZ

74L814

Limit - Return

I

+5VDC

Amplifier Fault

4,
Amp FauItQQ

Motorola MOC256 360
7K AN

Amplifier Fault Return

R

L

+5VDC

+5VDC 360

4.7K
Amp Enable

Motorola MOC223

Eyiicte

Amplifier Enable

Amplifier Enable Return

Enc A 75175

Enc B

EncZ

[Encar <y o
—EneA T i3-22
CEncBr < g
—Ene B 7 53.24
—EneZr 7305
—ENe L < 5326

Enc A 75175

Enc B

Enc Z

+ +
Hall A+ /Enc 2 A 3.1

Hall| B+ /Enc. 2 B+< 13-23

Hall|C+ / Enc. ZZ+< 13-25

Single Ended Mid Point

AD7849

AD7849

J3-9

J3-10

J3-17

J3-18

J3-19

J3-20

J3-7

J3-8

J3-5

J3-6

Phase U < 13-2

Phase V < 13-4

186

Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC320H Optically Isolated Inputs Wiring Examples

+5VDC Limit + switch
(normally open)
Bi-directional
raLsia Optical isolator 360 33-17: Limit + PY +
Limit+ ZX :Z +5VDC
. J3-18: Limit + Return Power Supply
\ —
N
L
8 This limit circuit wil indicate that a limit is active if the switch is closed
+5VDC Limit + switch
(normally open)
Bi-directional
aLsia Optical isolator 360 3317 Limit + Y _
Limit+ ZX :Z +5VDC
NS J3-18: Limit + Return + Power Supply
N
L
L 4 This limit circuit wll indicate that a limit is active if the switch is closed

+5VDC

Bi_directi | Limit + switch

I-directiona (normally closed)
raLsia Optical isolator 360 1317 Limit + "
Limit+ . ZS :Z +5VDC
NI & J3-18: Limits - Return Power Supply
K —
L
This limit circuit wll indicate that a limit is active if:
1) The switch is open

2) Any component in the circuit fails (power supply,
bi-directional opto isolator, broken wire, etc...

This is not the default configuration of the DCX, issue the
MC_LIMIT_INVERT parameter of theMCSetLimits() function.

187

DCX-PCI300 User’'s Manual

Connectors, Jumpers, and Schematics

DCX-MC320H Open Collector Driver Wiring Examples

DCX-MC320H

+5VDC 360

Amp En.

SN75453B

+5VDC
Motorola
MOC223

13 -

5

Amplifier Enable

Servo Amplifier

VCC

4N29
ptical isolator

t

<5l

Amp En

J3 -

6

Amplifier Enable Return

—

L

188

Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC360 Stepper Motor Control Module
SIGNAL DESCRIPTIONS:

Pulse and Direction Outputs
connection point: Direction / CW: MC360-H J3 - pin 3, MC360-R J3 - pin 3

Pulse / CCW: MC360-H J3 - pin 1, MC360-R J3 - pin 4
signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation: In the control of a stepper motor, the two primary control signals are Pulse and
Direction (or CW Pulse and CCW Pulse). These signals are connected to the external stepper motor
driver that supplies current to the motor windings. In order for the stepper module to move the motor
one step, a pulse is generated on one of these signals.

Both of these signals are driven by high current open collector drivers and are suitable for direct
connection to optically isolated inputs commonly found on stepper motor drivers. Because of the
characteristics of open collector drivers, no voltages will be present on these output signals unless
pull-up resistors are connected to them.

Pulse: The motor driver should advance the motor by one increment for each pulse. The motor may
advance a full step, a half step, or a micro step. This is determined by the mode of the stepper motor
driver. The Pulse signal is normally high, and is pulled low at the beginning of a step. It stays low for
one half the step period (50% duty cycle), and then goes back high. When it is time for the next step,
the signal will be pulled low again.

Direction: This signal indicates the direction the motor will move. When the stepper is incrementing
the current position (moving positive) this signal will remain high (pulled up). When the stepper is
decrementing the current position (moving negative) this signal will be pulled low.

The function MCSetModuleOutputMode() is used to change the operation of these signals to CW
and CCW Pulse. In this mode, pulses will be generated on the CW Pulse output when the current
position is increasing, and on the CCW Pulse output when the current position is decreasing.

Drive Enable Output

connection point: MC360-H J3 - pin 5, MC360-R J3 - pin 16

signal type: Open collector, current sink, 100ma max. current sink, 30V max.

notes: external pull-up required

explanation: This output will be pulled low when an axis is enabled (MCEnableAxis()). It will remain
low until: the axis is disabled or an error condition exists (limits tripped).

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them.

DCX-PCI300 User’'s Manual 189

Connectors, Jumpers, and Schematics

Limit Positive and Limit Negative Inputs
connection point: Limit Positive: MC360-H J3 - pin 17, MC320-R J3 - pin 8

Limit Negative: MC360-H J3 - pin 19, MC320-R J3 - pin 9
signal type: Bi-directional optical isolator, 10ma min. 2.5V — 7.5V range
notes: MC360-H Limit Positive Supply/Return J3 pin 18

MC360-H Limit Negative Supply/Return J3 pin 20

MC360-R Limits Supply/Return J3 pin 6
explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it
reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving
in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of
the direction it is moving if either limit switch is activated. There are three modes of stopping
(decelerate to a stop, stop immediately, turn off the axis) that can be configured by the MCSetLimits(
). The limit switch inputs can be enabled and disabled by MCSetLimits(). See the description of
Motion Limits in the Motion Control chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is 2.5
VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external resistor (12 volt
I/0 = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Home Input

connection point: MC360-H J3 - pin 9, MC360-R J3 - 13

signal type: Bi-directional optical isolator, 10ma min. 2.5V — 7.5V range
notes: MC360-H Home Supply/Return J3 pin 10

MC360-R Home Supply/Return J3 pin 12
explanation: This input is used to set the zero position of a stepper motor. It is typically connected to
a sensor/switch that is activated at a fixed position in the motor’s range of motion. The input device is
a bi-directional optical isolator. The allowable voltage range for this signal is 2.5 VDC to 7.5 VDC. For
I/0 systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W.
24 volt I/0 = 4.3K, 5%, 1/4W).

Compare / Full/Half Step Output
connection point: MC360-H J3 - pin 13, MC360-R J3 - 14

signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation:

Compare — Used to indicate when a position compare event has occurred. See the description of
Position Compare in the Application Solutions chapter.

Full/Half Step —This signal is used if the stepper driver has a digital input to select between or
full/micro (or full/half) step modes. The default condition of this signal is to be inactive (pulled high).
Setting the MC_STEP_FULL parameter of the MCMotion structure will cause the signal to be pulled
low.

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them.

190 Precision MicroControl

Connectors, Jumpers, and Schematics

Full/Half Current Output

connection point: MC360-H J3 - pin 14, MC360-R J3 - 15

signal type: Open collector, current sink, 100ma max. current sink, 30V max.

notes: external pull-up required

explanation: This signal is used if the stepper driver has a digital input for current control. The default
condition of this signal is to be inactive (pulled high). Setting the MC_CURRENT_FULL parameter of
the MCMotion structure will cause the signal to be pulled low.

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them.

Drive Fault Input
connection point: MC360-H J3 - pin 7, MC360-R J3 - 7
signal type: Bi-directional optical isolator, 10ma min. 2.5V — 7.5V range
notes: MC360-H Drive Fault Supply/Return J3 pin 8

MC360-R Drive Fault Supply/Return J3 pin 5
explanation: This module input is designed to be connected to the Fault or Error output signal of a
stepper driver. The state of this signal will appear as a status bit in the servo's status word. The
EnableAmpFault member of the MCMotion structure will enable the module to shut off the axis if the
Drive Fault input is active. No further motion will occur until the fault signal is deactivated and the axis
has been enabled. The input device is a bi-directional optical isolator. The allowable voltage range for
this signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external
resistor (12 volt 1/0 = 1.1K, 5%, 1/4W. 24 volt 1/0 = 4.3K, 5%, 1/4W).

Null Input

connection point: MC360-H J3 - pin 12, MC360-R J3 - 17

signal type: Bi-directional optical isolator, 10ma min. 2.5V — 7.5V range

notes: MC360-H Null VHDCI connector pin 41 (no connect on module J3 connector)

MC360-R Null Supply/Return J3 pin 5
explanation: In order to switch from micro stepping to full stepping without the motor shifting
position, the motor should be micro stepped to the "Null" Position. This is the position where the
output of the amplifier will not change if it is switched between full and micro stepping. If the stepper
amplifier provides an output signal that indicates when the motor is at a null position, the DCX can
monitor this signal on the Null Position input of the module.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is 2.5
VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external resistor (12 volt
I/0 =1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

DCX-PCI300 User’'s Manual 191

Connectors, Jumpers, and Schematics

Position Capture +/- / Auxiliary Encoder Index +/-

connection point: Position Cap. +/ Aux. Enc. Index+: MC360-H J3 - pin 25, MC320-R J3 - pin 22
Position Cap. - / Aux. Enc. Index-: MC360-H J3 - pin 26, MC320-R J3 - pin 23

signal type: TTL or Differential driver output (-7V to +7V)

notes:

explanation: -

Position Capture +/- — Used to initiate the capture of position data. See the description of Position

Capture in the Application Solutions chapter.

Auxiliary Encoder Index +/- - This input signal can be used to define the home position of an

auxiliary encoder.

Auxiliary Encoder Coarse Home Input
connection point: MC360-H J3 - pin 15, MC360-R J3 - 11

signal type: Bi-directional optical isolator, 15ma min. 12V — 24V range
notes: MC360-H Coarse Home VHDCI connector pin 10 (no connect on module J3
connector)

MC360-R Null Supply/Return J3 pin 6
explanation: This input is used to ‘home’ the auxiliary encoder by qualifying the index mark. It is
typically connected to a switch that is activated at a fixed position in the motors motion range. See the
description of Homing an Axis in the Motion Control chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is
12VDC to 24VDC. The minimum current required to turn on the optical isolator is 10ma. Bi-directional
optical isolator wiring examples are provided later in this section.

Auxiliary Encoder Inputs (Phase A, Phase B, Index+, Index-)
connection point: see pin-out table

signal type: TTL or Differential driver output (-7V to +7V)
notes:

explanation: - These input signals can be used for an auxiliary encoder.

Auxiliary Encoder Power Output

connection point: MC300-H J3 - pin 16, MC300-R J3 - pin 10

signal type: +5 VDC PC power supply output or +12 VDC PC power supply output

notes: The encoder power jumper JP3 selects +5VDC or +12VDC (250 mA max.)
explanation: This module pin provides a convenient supply voltage connection for the auxiliary
encoder. The jumper JP3 located on the module can be used to connect either the +5 or +12 volt
supply to the Encoder Power pin. The setting of this jumper also selects the threshold voltage for the
module's single ended phase and index encoder inputs. When JP1 is set for +5 volts, the threshold
will be 2.5 volts, for +12 volts, the threshold will be +6 volts. The threshold voltage determines at what
voltage the input changes between on and off.

SUPPLY CONNECTIONS (+5, +12, -12, GROUND) - These module pins provide access
to the DCX supply voltages.

192 Precision MicroControl

DCX-MC360-H High Density connector signal map

Connectors, Jumpers, and Schematics

J3 Pin | Description

Ji1-1

J1-35
Ji1-2

J1-36
J1-3

J1-37
Ji1-4

J1-38
J1-5

J1-39
J1-6

J1-40
Ji1-7

Jl1-41
J1-8

J1-42
J1-9

J1-43
J1-10
J1-44
J1-11
J1-45
Ji1-12
J1-46
J1-13
J1-47
J1-14
J1-48
J1-15
J1-49
J1-16
J1-50
Ji1-17
J1-51
J1-18
J1-52

For a more complete signal description please refer to the previous five pages
Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

J2-1
J2-35
J2-2
J2-36
J2-3
J2 - 37
J2-4
J2-38
J2-5
J2-39
J2-6
J2 -40
J2-7
J2-41
J2-8
J2-42
J2-9
J2-43
J2-10
J2-44
J2-11
J2 -45
J2-12
J2 - 46
J2-13
J2 - 47
J2-14
J2 - 48
J2-15
J2-49
J2-16
J2 -50
J2-17
J2-51
J2-18
J3-52

J3-19
J3-53
J3-20
J3-54
J3-21
J3-55
J3-22
J3-56
J3-23
J3-57
J3-24
J3-58
J3-25
J3-59
J3-26
J3-60
J3-27
J3-61
J3-28
J3-62
J3-29
J3-63
J3-30
J3-64
J3-31
J3-65
J3-32
J3 - 66
J3-33
J3-67
J3-34
J3-68

J4-19
J4 - 53
J4-20
J4-54
J4-21
J4 - 55
J4 - 22
J4 — 56
J4-23
J4 - 57
J4-24
J4 - 58
J4-25
J4 - 59
J4 - 26
J4 - 60
J4 - 27
J4-61
J4 - 28
J4 - 62
J4 - 29
J4 - 63
J4-30
J4 - 64
J4-31
J4 - 65
J4 -32
J4 — 66
J4-33
J4 - 67
J4-34
J4 - 68

J3-1
J3-35
J3-2
J3-36
J3-3
J3-37
J3-4
J3-38
J3-5
J3-39
J3-6
J3-40
J3-7
J3-41
J3-8
J3-42
J3-9
J3-43
J3-10
J3-44
J3-11
J3-45
J3-12
J3-46
J3-13
J3 -47
J3-14
J3-48
J3-15
J3-49
J3-16
J3-50
J3-17
J3-51
J3-18
J3-52

J4a-1
J4 - 35
J4a-2
J4 - 36
J4-3
J4 - 37
J4-4
J4-38
J4-5
J4 -39
J4-6
J4 - 40
Ja-7
J4 -41
J4-8
J4 - 42
J4-9
J4—-43
J4-10
J4 - 44
J4-11
J4 — 45
J4a—-12
J4 — 46
J4-13
J4 — 47
J4-14
J4 — 48
J4-15
J4 —-49
J4-16
J4 -50
Ja—-17
J4-51
J4-18
J4 - 52

J1-19
J1-53
J1-20
J1-54
Jil-21
J1-55
J1-22
J1-56
J1-23
J1-57
J1-24
J1-58
J1-25
J1-59
J1-26
J1-60
J1-27
Jl1-61
J1-28
J1-62
J1-29
J1-63
J1-30
J1-64
J1-31
J1-65
J1-32
J1-66
J1-33
J1-67
J1-34
J1-68

J2-19
J2-53
J2-20
J2-54
J2-21
J2 - 55
J2-22
J2 - 56
J2-23
J2 -57
J2-24
J2 -58
J2-25
J2 -59
J2 - 26
J2 - 60
J2 -27
J2-61
J2-28
J2 -62
J2-29
J2 - 63
J2-30
J2 - 64
J2-31
J2 - 65
J2 -32
J2 - 66
J2-33
J2 - 67
J2-34
J2 - 68

Boo~vwoonsrwnrk

13
14

15
16

17
18
19
20
21
22
23
24
25
26

Step or CCW Pulse: output
Ground

Direction or CW Pulse: output
Ground

Driver Enable: output

Ground

Drive Fault: input

Drive Fault return

Home: input

Home return

Ground

Reserved

Null Position: input

Ground

Ground

Compare / Full/Half Step: output
Full/Half Current: output

Ground

Ground

Aux. Encoder Coarse Home: input
Aux. Enc. Power: output (max. load 250 mA)
Ground

Limit Positive: input

Limit Positive return

Limit Negative: input

Limit Negative return

Auxiliary Encoder Phase A+: input
Auxiliary Encoder Phase A-: input
Auxiliary Encoder Phase B+: input
Auxiliary Encoder Phase B-: input
Position Capture + / Aux. Encoder Index+: input
Position Capture - / Aux. Encoder Index-: input
Ground

Ground

Ground

Ground

DCX-PCI300 User’'s Manual

193

Connectors, Jumpers, and Schematics

DCX-MC360-R Module connector

J3 connector pin-out (Motor command, encoders, and axis 1/0O)

Ground

+5 VDC (max. load 250 mA)

Direction or CW Pulse: output (open collector, 100ma max., 30V max.) *
Pulse or CCW Pulse: output (open collector, 100ma max., 30V max.) *
FNRET: Drive Fault and Null opto isolator supply/return

LIMCRSRET: Coarse Home & Limits opto isolator supply/return

Drive Fault: input (opto isolator, 15ma min. current, 30V max.)

Limit Positive: input (opto isolator, 15ma min. current, 30V max.)

Limit Negative: input (opto isolator, 15ma min. current, 30V max.)
Auxiliary Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (max. load 250 mA)
Aux. Encoder Coarse Home: input (opto isolator, 15ma min. current, 30V max.)
HOMRET: Home opto isolator supply/return

Home: input (opto isolator, 15ma min. current, 30V max.)

Compare / Full/Half Step: output (open collector, 100ma max., 30V max.)
Full/Half Current: output (open collector, 100ma max., 30V max.)

Driver Enable: output (open collector, 100ma max., 30V max.)

Null Position: input (opto isolator, 15ma min. current, 30V max.)

Auxiliary Encoder Phase A+: input

Auxiliary Encoder Phase A-: input

Auxiliary Encoder Phase B+: input

Auxiliary Encoder Phase B-: input

Position Capture + / Auxiliary Encoder Index+: input (active high)
Position Capture - / Auxiliary Encoder Index-: input (active low)

+12 VDC (max. load 250 mA)

-12 VDC (max. load 50 mA)

Ground

* These signals default to DIRECTION and PULSE, use MCSetModuleOutputMode() to change to
CW and CCW PULSE.

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

194

Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC360 Module Configuration Jumpers - configuration in bold type
denotes default factory shipping configuration

JP1 — Encoder type (single ended or differential)

Description

1to2to 3 @ Single ended encoder, A, B, Z (three pin jumper provided)
open Differential encoder, A+, A-, B+, B-

JP2 — Auxiliary Encoder Index Active Level Select

1to2 Single ended Index, Z+ (Active high)
2to 3 Single ended Index, Z- (active low)
open Differential Index, Z+ and Z-

JP3 — Auxiliary Encoder Power Select (+5VDC or +12 VDC)
1to 2 +5 VDC encoder supply on J3 pin 16/10 (max. load 250 mA)
2t0 3 +12 VDC encoder supply on J3 pin 16/10 (max. load 250 mA)

DCX-MC360 Module Layout

JP1 1
|
im i

|
JP2 W 1

DCX-MC360

1M
L JP3
|

DCX-PCI300 User’'s Manual 195

Connectors, Jumpers, and Schematics

DCX-MC360H Axis I/O Interface Schematic

74LS14 Motorola MOC256 360

AAN Home J3-9

jl ZSSZ Home Return J3-10

741814 Motorola MOC256 360

A Limit Positive 13-17

j_l §$SZ Limits + Return J3-18

ER

R

+
74LS14 % Motorola MOC256 360 . .
47K AAN Limit Negative J3-19
Limit-] Z§§2 o
Limits - Return 13- 20

+5VD
74LS14 Motorola MOC256 360 -
‘ 27K Drive Fault J3-7
DrvFit ‘ EJ QZSS? Amplifier Fault Return 3-8
L
+5VD!
74LS14 Motorola MOC256 360
‘ 47K AN Enc Coarse Home 13-15
Crs Home, Il ZS SZ
R =
L
74LS14 Motorola MOC256 360 Null
AN J3-12
? R =i
L
+5VDC
47K SN754538
Step Pulse s
J3-14 te 3-1
+5VDC
) 47K SN754538
Dirn . .
13-13 Direction 13-3
+5VDC
- 47K SN754538
rvEna
Drive Enable

J3-5

196 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC360H Optically Isolated Inputs Wiring Examples

+5VDC Limit + switch
(normally open)
Bi-directional
raLsia Optical isolator 360 33-17: Limit + PY +
Limit+ ZX :Z +5VDC
. J3-18: Limit + Return Power Supply
\ —
N
L
8 This limit circuit wil indicate that a limit is active if the switch is closed
+5VDC Limit + switch
(normally open)
Bi-directional
aLsia Optical isolator 360 3317 Limit + Y _
Limit+ ZX :Z +5VDC
NS J3-18: Limit + Return + Power Supply
N
L
L 4 This limit circuit wll indicate that a limit is active if the switch is closed

+5VDC

Bi_directional Limit + switch

I-directiona (normally closed)
raLsia Optical isolator 360 1317 Limit + "
Limit+ . ZS :Z +5VDC
NI & J3-18: Limit - Return Power Supply
K —
L
This limit circuit wll indicate that a limit is active if:
1) The switch is open

2) Any component in the circuit fails (power supply,
bi-directional opto isolator, broken wire, etc...

This is not the default configuration of the DCX, issue the
MC_LIMIT_INVERT parameter of theMCSetLimits() function.

197

DCX-PCI300 User’'s Manual

Connectors, Jumpers, and Schematics

DCX-MC360H Open Collector Driver Wiring Examples

Drive En.

DCX-MC360H

+5VDC

4.7K§
SN75453B

13 -

5 Drive Enable

Stepper Driver

VCC

4N29
Optical isolator
Drivev En

=5l

.

+5VDC
4.7K

4

SN75453B
Pulse

13-

1 Pulse

I~

VCC

4N29

Optical isolator
Pulse

2l

34

.

+5VDC

4.7K
SN75453B

4

Dir.

J3-3 Direction

(-

VCC

4N29

Optical isolator
Direction

2l

<73

.

J3 -

1

-

I

1

198

Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC362 Dual Axis Stepper Motor Control Module
SIGNAL DESCRIPTIONS:

Pulse and Direction Outputs
connection point: Axis 1 Direction/CW — J3 pin 12

Axis 1 Pulse/CCW —J3 pin 11

Axis 2 Direction/CW — J3 pin 15

Axis 2 Pulse/CCW —J3 pin 16
signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation: In the control of a stepper motor, the two primary control signals are Pulse and
Direction (or CW Pulse and CCW Pulse). These signals are connected to the external stepper motor
driver that supplies current to the motor windings. In order for the stepper module to move the motor
one step, a pulse is generated on one of these signals.

Both of these signals are driven by high current open collector drivers and are suitable for direct
connection to optically isolated inputs commonly found on stepper motor drivers. Because of the
characteristics of open collector drivers, no voltages will be present on these output signals unless
pull-up resistors are connected to them.

Pulse: The motor driver should advance the motor by one increment for each pulse. The motor may
advance a full step, a half step, or a micro step. This is determined by the mode of the stepper motor
driver. The Pulse signal is normally high, and is pulled low at the beginning of a step. It stays low for
one half the step period (50% duty cycle), and then goes back high. When it is time for the next step,
the signal will be pulled low again.

Direction: This signal indicates the direction the motor will move. When the stepper is incrementing
the current position (moving positive) this signal will remain high (pulled up). When the stepper is
decrementing the current position (moving negative) this signal will be pulled low.

The function MCSetModuleOutputMode() is used to change the operation of these signals to CW
and CCW Pulse. In this mode, pulses will be generated on the CW Pulse output when the current
position is increasing, and on the CCW Pulse output when the current position is decreasing.

Drive Enable Output
connection point: Axis1-J3pin 9
Axis21 - J3 pin 17
signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation: This output will be pulled low when an axis is enabled (MCEnableAxis()). It will remain
low until: the axis is disabled or an error condition exists (limits tripped).

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them.

DCX-PCI300 User’'s Manual 199

Connectors, Jumpers, and Schematics

Limit Positive and Limit Negative Inputs
connection point: Axis 1 Limit Positive — J3 pin 3

Axis 1 Limit Negative —J3 pin 5

Axis 2 Limit Positive — J3 pin 23

Axis 2 Limit Negative — J3 pin 21
signal type: Bi-directional optical isolator, 10ma min. 2.5V — 7.5V range
notes: Axis 1 Limit + Supply/Return - J3 pin 4

Axis 1 Limit - Supply/Return - J3 pin 6

Axis 2 Limit + Supply/Return - J3 pin 24

Axis 2 Limit - Supply/Return - J3 pin 22
explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it
reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving
in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of
the direction it is moving if either limit switch is activated. There are three modes of stopping
(decelerate to a stop, stop immediately, turn off the axis) that can be configured by the MCSetLimits(
). The limit switch inputs can be enabled and disabled by MCSetLimits(). See the description of
Motion Limits in the Motion Control chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is 2.5
VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external resistor (12 volt
I/0 = 1.1K, 5%, 1/4W. 24 volt /0 = 4.3K, 5%, 1/4W).

Home Input
connection point: Axis1-J3-pin1

Axis 2 - J3 - pin 25
signal type: Bi-directional optical isolator, 10ma min. 2.5V — 7.5V range
notes: Axis 1 Supply/Return - J3 pin 2

Axis 2 Supply/Return - J3 pin 26
explanation: This input is used to set the zero position of a stepper motor. It is typically connected to
a sensor/switch that is activated at a fixed position in the motor’s range of motion. The input device is
a bi-directional optical isolator. The allowable voltage range for this signal is 2.5 VDC to 7.5 VDC. For
I/O systems operating at higher voltage levels add an external resistor (12 volt /0 = 1.1K, 5%, 1/4W.
24 volt /0 = 4.3K, 5%, 1/4W).

Drive Fault Input
connection point: Axis1-J3-pin7

Axis 2 - J3 - pin 19
signal type: Bi-directional optical isolator, 10ma min. 2.5V — 7.5V range
notes: Axis 1 Supply/Return - J3 pin 8

Axis 2 Supply/Return - J3 pin 19
explanation: This module input is designed to be connected to the Fault or Error output signal of a
stepper driver. The state of this signal will appear as a status bit in the servo's status word. The
EnableAmpFault member of the MCMotion structure will enable the module to shut off the axis if the
Drive Fault input is active. No further motion will occur until the fault signal is deactivated and the axis
has been enabled. The input device is a bi-directional optical isolator. The allowable voltage range for
this signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external
resistor (12 volt 1/0 = 1.1K, 5%, 1/4W. 24 volt 1/0 = 4.3K, 5%, 1/4W).

200 Precision MicroControl

Connectors, Jumpers, and Schematics

Full/Half Current Output
connection point: Axis1-J3-pin 13
Axis 2 - J3 - pin 14
signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation: This signal is used if the stepper driver has a digital input for current control. The default
condition of this signal is to be inactive (pulled high). Setting the MC_CURRENT_FULL parameter of
the MCMotion structure will cause the signal to be pulled low.

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them.

DCX-PCI300 User’'s Manual 201

Connectors, Jumpers, and Schematics

DCX-MC362-H High Density connector signal map
SR

Jil-1 J2-1 J3-19 J4-19 J3-1 J4-1 J1-19 J2-19 Axis 1 Home: input (optically isolated)

J1-35 J2-35 J3-53 J4 - 53 J3-35 J4-35 J1-53 J2 - 53 2 Axis 1 Home opto isolator supply/return

J1-2 J2-2 J3-20 J4 - 20 J3-2 J4 -2 J1-20 J2-20 3 Axis 1 Limit Positive: input (optically isolated)
J1-36 J2 - 36 J3-54 J4 - 54 J3-36 J4 — 36 J1-54 J2 - 54 4 Axis 1 Limit Positive opto isolator supply/return
J1-3 J2-3 J3-21 J4 -21 J3-3 J4-3 Ji1-21 J2-21 5 Axis 1 Limit Negative: input (optically isolated)
J1-37 J2 - 37 J3-55 J4 - 55 J3-37 J4 — 37 J1-55 J2 - 55 6 Axis 1 Limit Negative opto isolator supply/return
Jl1-4 J2-4 J3-22 J4 - 22 J3-4 J4—-4 J1-22 J2 - 22 7 Axis 1 Drive Fault: input (optically isolated)
J1-38 J2 - 38 J3-56 J4 - 56 J3-38 J4 - 38 J1-56 J2 - 56 8 Axis 1 Drive Fault opto isolator supply/return
J1-5 J2-5 J3-23 J4 - 23 J3-5 J4-5 J1-23 J2 - 23 9 Axis 1 Driver Enable: output (open collector)
J1-39 J2 -39 J3-57 J4 - 57 J3-39 J4 -39 J1-57 J2 - 57 10 Ground

J1-6 J2-6 J3-24 J4-24 J3-6 J4-6 J1-24 J2-24 Ground

J1-40 J2-40 J3-58 J4 - 58 J3-40 J4 - 40 J1-58 J2 - 58 11 Axis 1 Pulse or CCW Pulse: output

J1-7 J2-7 J3-25 J4 - 25 J3-7 J4-7 J1-25 J2 -25 12 Axis 1 Direction or CW Pulse: output

Jl1-41 J2 - 41 J3-59 J4 — 59 J3-41 J4a—-41 J1-59 J2 -59 Ground

J1-8 J2-8 J3-26 J4 - 26 J3-8 J4-8 J1-26 J2 -26 Ground

J1-42 J2-42 J3-60 J4 - 60 J3-42 J4—42 J1-60 J2-60 13 Axis 1 Full/Half Current: output

J1-9 J2-9 J3-27 J4 - 27 J3-9 J4-9 J1-27 J2 - 27 14 Axis 2 Full/Half Current: output

J1-43 J2-43 J3-61 J4-61 J3-43 J4-43 J1-61 J2-61 Ground

J1-10 J2-10 J3-28 J4 - 28 J3-10 J4-10 J1-28 J2 -28 Ground

J1-44 J2 - 44 J3-62 J4 - 62 J3-44 J4 — 44 J1-62 J2 - 62 15 Axis 2 Direction or CW Pulse: output

Ji-11 J2-11 J3-29 J4 - 29 J3-11 J4-11 J1-29 J2-29 16 Axis 2 Pulse or CCW Pulse: output

J1-45 J2-45 J3-63 J4 -63 J3-45 J4-45 J1-63 J2-63 Ground

J1-12 J2-12 J3-30 J4 -30 J3-12 J4-12 J1-30 J2-30 17 Axis 2 Driver Enable: output

J1-46 J2 - 46 J3-64 J4—-64 J3-46 J4— 46 J1-64 J2-64 18 Ground

J1-13 J2-13 J3-31 J4-31 J3-13 J4-13 J1-31 J2-31 19 Axis 2 Drive Fault: input (optically isolated)
J1-47 J2 - 47 J3-65 J4 — 65 J3 - 47 J4 — 47 J1-65 J2 - 65 20 Axis 2 Drive Fault opto isolator supply/return
Jl1-14 J2-14 J3-32 J4 - 32 J3-14 J4a-14 J1-32 J2 - 32 21 Axis 2 Limit Negative: input (optically isolated)
J1-48 J2 - 48 J3-66 J4 — 66 J3-48 J4 — 48 J1-66 J2 — 66 22 Axis 2 Limit Negative opto isolator supply/return
J1-15 J2-15 J3-33 J4 - 33 J3-15 J4-15 J1-33 J2 -33 23 Axis 2 Limit Positive: input (optically isolated)
J1-49 J2-49 J3-67 J4 - 67 J3-49 J4 — 49 J1-67 J2 - 67 24 Axis 2 Limit Positive opto isolator supply/return
J1-16 J2-16 J3-34 J4 - 34 J3-16 J4-16 J1-34 J2-34 25 Axis 2 Home: input (optically isolated)

J1-50 J2 -50 J3-68 J4 - 68 J3-50 J4 - 50 J1-68 J2 - 68 26 Axis 2 Home opto isolator supply/return
Ji1-17 J2-17 J3-17 J4—-17 Ground

Jl1-51 J2-51 J3-51 J4 - 51 Ground

Ji1-18 J2-18 J3-18 J4-18 Ground

J1-52 J3-52 J3-52 J4 - 52 Ground

For a more complete signal description please refer to the previous five pages
Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

202 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC362 Module Layout

DCX-PCI300 User’'s Manual 203

Connectors, Jumpers, and Schematics

DCX-MC362H Axis I/O Interface Schematic

+5VDC
4.7K Motorola MOC256 360
AMA—AX1 Home J3-1
Ax1 Home] ZS SZ
Ax1 Home Ret J3-2
741814 k
+5vVDC
Motorola MOC256 360 i

AN—AXL Lim+ J3-3

[

+5VDC

Motorola MOC256

Ax1 Lim+ Ret < 13-4

360 i
AAA Ax1 Lim-

J3-5

74LS14

i

+5VDC

Motorola MOC256

4.7K
AAA Ax1 Drv Flt

Ax1 Lim- Ret < 3-6

J3-7

74LS14

Axis 1 Pulse

Ax1 DrvFit Ret < 3-8

Axis 1 Dir

Axis 1 Drive Enable

Axis 1 FullCur

J3-11

J3-12

J3-9

J3-13

iH

+5VDC

Motorola MOC256 30
Ax2 Home
Zg_w—< J3-25

Ax2 Home Ret < J3-26

+5VDC

Ax2 Lim+

Motorola MOC256 30
%%

J3-25
ZSS? Ax2 Lim+ Ret 13-26
741514 2
+
+5VDC
4.7K Motorola MOC256 360 :
% AAN—AX2 Lim- J3-21
AX2 Limit- il
Z$S? Ax2 Lim- Ret J13-22
74LS14 k
+5VDC
4.7K Motorola MOC256 ~ 4.7K Ao Dry Flt
%% J3-19
AX2 DrvFlt ’ Z§32
X A2 DI EltRet ~ 13 o0
74LS14 k
Axis 2 Pulse 13-16
4.7K
Axis 2 Dir . .
Axis 2 Dir 13-15
+5VDC
47K
Axis 2 DrvEn X i
Axis 2 Drive Enable 13.17
+5VDC
4.7K
Axis 2 FullCur)
Axis 2 FullCur 13-14

204

Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC362H Optically Isolated Inputs Wiring Examples

DCX-MC362H

Limit + switch

J3-4: Axis 1 Limit + Return

&=

+

+5VDC
(normally open)
Bi-directional
74L514 Optical isolator 360 33-3: Axis 1 Limit + . +
Ax1 Lim+ ZX :Z +5VDC
] J3-4: Axis Limit + Return Power SquIy
D —
N
£
2 This limit circuit wll indicate that a limit is active if the switch is closed
+5VDC Limit + switch
(normally open)
Bi-directional
raLsia Optical isolator 360 333 Avis 1 Limit = _ @
+5VDC
Power Supply

This limit circuit wil indicate that a limit is active if the switch is closed

74LS14

DCX-MC362H

+5VDC

Bi-directional
Optical isolator

360

Limit + switch
(normally closed)

J3-3: Axis 1 Limit + ;\.

J3-4: Axis 1 Limit + Return

gies

+

+5VDC
Power Supply

This limit circuit wll indicate that a limit is active if:

1) The switch is open
2) Any component in the circuit fails (power supply,

bi-directional opto isolator, broken wire, etc...

This is not the default configuration of the DCX, issue the
MC_LIMIT_INVERT parameter of theMCSetLimits() function.

205

DCX-PCI300

User’s Manual

Connectors, Jumpers, and Schematics

DCX-MC362H Open Collector Driver Wiring Examples

Stepper Driver

4N29
Optical isolator
Drivev En

<21

I~

4N29

Optical isolator
Pulse

2l

34

(-

4N29

Optical isolator
Direction

2l

<73

-

VCC
+5VDC
4.7K
SN75453B
Ax1 Drive En,
13-9 Axis 1 Drive Enable
VCC
+5VDC
4.7K
SN75453B
Ax1 Pulse
13-11 Axis 1 Pulse
VCC
+5VDC
4.7K
SN75453B
Ax1 Dir.
J3-12 Axis 1Direction
J3-10
£

1

206

Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC400 Digital I/O Module

DCX-MC400 Electrical Specifications
5.3 \Y

Digital Input — High voltage 2.0

Digital Input — Low voltage -0.3 0.8 \%

Digital Output — High voltage 2.4 V (current source 0.25ma)
Digital Output — Low voltage 0.4 V (current source 2.0ma)
Input leakage +/- 10.0 UA

DCX-PCI300 User’'s Manual 207

Connectors, Jumpers, and Schematics

DCX-MC400-H High Density connector signal map

Module #1 | Module #2 | Module #3 | Module #4| | Module #5 | Module #6 | Module #7 | Module #8 |]3 pm# Description

Ji1-1

J1-35
J1-2

J1-36
J1-3

J1-37
Ji1-4

J1-38
J1-5

J1-39
J1-6

J1-40
J1-7

Jl1-41
J1-8

J1-42
J1-9

J1-43
J1-10
J1-44
J1-11
J1-45
Ji1-12
J1-46
J1-13
J1-47
J1-14
J1-48
J1-15
J1-49
J1-16
J1-50
Ji1-17
J1-51
J1-18
J1-52

For a more complete signal description please refer to the previous five pages
Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

J2-1
J2-35
J2-2
J2-36
J2-3
J2 -37
J2-4
J2 - 38
J2-5
J2-39
J2-6
J2-40
J2-7
J2-41
J2-8
J2-42
J2-9
J2 -43
J2-10
J2-44
J2-11
J2 -45
J2-12
J2 - 46
J2-13
J2 - 47
J2-14
J2 - 48
J2-15
J2-49
J2-16
J2 -50
J2-17
J2-51
J2-18
J3-52

J3-19
J3-53
J3-20
J3-54
J3-21
J3-55
J3-22
J3-56
J3-23
J3-57
J3-24
J3-58
J3-25
J3-59
J3-26
J3-60
J3-27
J3-61
J3-28
J3-62
J3-29
J3-63
J3-30
J3-64
J3-31
J3-65
J3-32
J3 - 66
J3-33
J3-67
J3-34
J3-68

J4-19
J4 - 53
J4-20
J4-54
J4-21
J4 - 55
J4 - 22
J4 - 56
J4-23
J4 - 57
J4-24
J4 - 58
J4 - 25
J4 - 59
J4 - 26
J4 - 60
J4 - 27
J4-61
J4 - 28
J4 - 62
J4 - 29
J4 - 63
J4-30
J4 - 64
J4-31
J4 - 65
J4 - 32
J4 — 66
J4-33
J4 - 67
J4-34
J4 - 68

J3-1
J3-35
J3-2
J3-36
J3-3
J3-37
J3-4
J3-38
J3-5
J3-39
J3-6
J3-40
J3-7
J3-41
J3-8
J3-42
J3-9
J3-43
J3-10
J3-44
J3-11
J3-45
J3-12
J3-46
J3-13
J3 -47
J3-14
J3-48
J3-15
J3-49
J3-16
J3-50
J3-17
J3-51
J3-18
J3-52

J4a-1
J4-35
J4 -2
J4 - 36
J4-3
J4 - 37
J4-4
J4 - 38
J4-5
J4 -39
J4-6
J4 - 40
Ja-7
J4a—-41
J4-8
J4 - 42
J4-9
J4 - 43
J4-10
J4 - 44
J4-11
J4 — 45
Ja—-12
J4 - 46
J4-13
J4 — 47
J4-14
J4—48
J4-15
J4 - 49
J4-16
J4 -50
Ja—-17
J4a-51
J4—-18
J4 - 52

J1-19
J1-53
J1-20
J1-54
Jil-21
J1-55
J1-22
J1-56
J1-23
J1-57
J1-24
J1-58
J1-25
J1-59
J1-26
J1-60
J1-27
Jl1-61
J1-28
J1-62
J1-29
J1-63
J1-30
J1-64
J1-31
J1-65
J1-32
J1-66
J1-33
J1-67
J1-34
J1-68

J2-19
J2 -53
J2-20
J2-54
J2-21
J2 -55
J2-22
J2 - 56
J2-23
J2 -57
J2-24
J2 -58
J2-25
J2 -59
J2 - 26
J2 - 60
J2 -27
J2 -61
J2-28
J2 - 62
J2-29
J2 - 63
J2-30
J2 -64
J2-31
J2 - 65
J2-32
J2 - 66
J2-33
J2 - 67
J2 -34
J2 - 68

Boow~woonswnk

13
14

15
16

17
18
19
20
21
22
23
24
25
26

208

Ground

Digital /0 channel #1
Ground

Digital I/0 channel #2
Ground

Digital /0 channel #3
Ground

Digital /0 channel #4
Ground

Digital /0 channel #5
Ground

Digital 1/0 channel #6
Digital I/0 channel #7
Ground

Ground

Digital /0 channel #8
Digital 1/0 channel #9
Ground

Ground

Digital /0 channel #10
Digital /0 channel #11
Ground

Ground

Digital I/0 channel #12
Ground

Digital /0 channel #13
Ground

Digital I/0 channel #14
Ground

Digital I/0 channel #15
Ground

Digital /0O channel #16
Ground

Ground

Ground

Ground

Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC400-R connector pin-out

1 Digital I/0 channel #1
2 Digital 1/0 channel #2
3 Digital /0 channel #3
4 Digital I/O channel #4
5 Digital I/O channel #5
6 Digital I/0 channel #6
7 Digital I/0 channel #7
8 Digital /0 channel #8
9 Digital I/O channel #9

10 Digital /0 channel #10
11 Digital 1/0 channel #11
12 Digital 1/0 channel #12
13 Digital 1/0 channel #13
14 Digital I/O channel #14
15 Digital /0 channel #15
16 Digital I/0 channel #16
17 Reserved

18 Reserved

19 Reserved

20 +5VDC

21 Ground

22 Reserved

23 Reserved

24 Reserved

25 Reserved

26 Ground

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 261DS2-C-SPT-SR or equivalent

DCX-PCI300 User’'s Manual 209

Connectors, Jumpers, and Schematics

DCX-MC400 Module layout

)

210 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC500/510/520 Analog I/O Module

DCX-PCI300 User’'s Manual 211

Connectors, Jumpers, and Schematics

DCX-MC500-H/510-H/520-H High Density connector signal map

Ji1-1

J1-35
J1-2

J1-36
J1-3

J1-37
Ji1-4

J1-38
J1-5

J1-39
J1-6

J1-40
J1-7

Jl1-41
J1-8

J1-42
J1-9

J1-43
J1-10
J1-44
J1-11
J1-45
Ji1-12
J1-46
J1-13
J1-47
J1-14
J1-48
J1-15
J1-49
J1-16
J1-50
Ji1-17
J1-51
J1-18
J1-52

For a more complete signal description please refer to the previous five pages
Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

J2-1
J2-35
J2-2
J2-36
J2-3
J2 -37
J2-4
J2 - 38
J2-5
J2-39
J2-6
J2 -40
J2-7
J2-41
J2-8
J2-42
J2-9
J2 -43
J2-10
J2-44
J2-11
J2 -45
J2-12
J2 - 46
J2-13
J2 - 47
J2-14
J2 - 48
J2-15
J2-49
J2-16
J2 -50
J2-17
J2-51
J2-18
J3-52

J3-19
J3-53
J3-20
J3-54
J3-21
J3-55
J3-22
J3-56
J3-23
J3-57
J3-24
J3-58
J3-25
J3-59
J3-26
J3-60
J3-27
J3-61
J3-28
J3-62
J3-29
J3-63
J3-30
J3-64
J3-31
J3-65
J3-32
J3 - 66
J3-33
J3-67
J3-34
J3-68

J4-19
J4 - 53
J4-20
J4-54
J4-21
J4 - 55
J4 - 22
J4 - 56
J4-23
J4 - 57
J4-24
J4 - 58
J4 - 25
J4 - 59
J4 - 26
J4 - 60
J4 - 27
J4-61
J4 - 28
J4 - 62
J4 - 29
J4 - 63
J4-30
J4—-64
J4-31
J4 - 65
J4 - 32
J4 — 66
J4-33
J4 - 67
J4-34
J4 - 68

J3-1
J3-35
J3-2
J3-36
J3-3
J3-37
J3-4
J3-38
J3-5
J3-39
J3-6
J3-40
J3-7
J3-41
J3-8
J3-42
J3-9
J3-43
J3-10
J3-44
J3-11
J3-45
J3-12
J3-46
J3-13
J3 47
J3-14
J3-48
J3-15
J3-49
J3-16
J3-50
J3-17
J3-51
J3-18
J3-52

J4a-1
J4-35
J4 -2
J4 - 36
J4-3
J4 - 37
J4-4
J4 - 38
J4-5
J4 -39
J4-6
J4 -40
J4-7
J4a—-41
J4-8
J4 - 42
J4-9
J4 - 43
J4-10
J4 - 44
J4-11
J4 — 45
J4a—-12
J4 - 46
J4-13
J4 — 47
J4-14
J4 — 48
J4-15
J4—-49
J4-16
J4 -50
Ja—-17
J4a-51
J4—-18
J4 - 52

J1-19
J1-53
J1-20
J1-54
Jil-21
J1-55
J1-22
J1-56
J1-23
J1-57
J1-24
J1-58
J1-25
J1-59
J1-26
J1-60
J1-27
Jl1-61
J1-28
J1-62
J1-29
J1-63
J1-30
J1-64
J1-31
J1-65
J1-32
J1-66
J1-33
J1-67
J1-34
J1-68

J2-19
J2 - 53
J2-20
J2-54
J2-21
J2 - 55
J2-22
J2 - 56
J2-23
J2 -57
J2-24
J2 - 58
J2 -25
J2 -59
J2 - 26
J2 - 60
J2 - 27
J2 -61
J2-28
J2 - 62
J2-29
J2 - 63
J2-30
J2 -64
J2-31
J2 - 65
J2-32
J2 - 66
J2-33
J2 - 67
J2 -34
J2 - 68

Boo~wooaswnek

13
14

15
16

17
18
19
20
21
22
23
24
25
26

212

Ground

Channel 1 Output (-10 to +10 volts)
Ground

Channel 2 Output (-10 to +10 volts)
Ground

Channel 3 Output (-10 to +10 volts)
Ground

Channel 4 Output (-10 to +10 volts)
Ground

External A/D reference input (see jumper JP1)
Ground

Channel 1 Output (0 to +5 volts)
Channel 2 Output (0 to +5 volts)
Ground

Ground

Channel 3 Output (0 to +5 volts)
Channel 4 Output (0 to +5 volts)
Ground

Ground

+12 VDC

-12VDC

Ground

No connect

No connect

Ground

Channel 1 Input (0 to +5 volts)
Ground

Channel 2 Input (0 to +5 volts)
Ground

Channel 3 Input (0 to +5 volts)
Ground

Channel 4 Input (0 to +5 volts)
Ground

Ground

Ground

Ground

Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-MC5X0-R connector pin-out

1 Channel 1 Input (0 to +5 volts)

2 Channel 1 Output (-10 to +10 volts)

3 Channel 2 Input (0 to +5 volts)

4 Channel 2 Output (-10 to +10 volts)

5 Channel 3 Input (0 to +5 volts)

6 Channel 3 Output (-10 to +10 volts)

7 Channel 4 Input (0 to +5 volts)

8 Channel 4 Output (-10 to +10 volts)

9

Reserved
10 Channel 1 Output (0 to +5 volts)
11 Reserved
12 Channel 2 Output (0 to +5 volts)
13 Reserved
14 Channel 3 Output (0 to +5 volts)
15 Reserved
16 Channel 4 Output (0 to +5 volts)
17 Analog Ground
18 External A/D reference input (see jumper JP1)
19 +12 VDC
20 -12 VDC
21 No connect
22 No connect
23 +5VDC
24 +5 VDC
25 Digital Ground
26 Digital Ground

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

DCX-PCI300 User’'s Manual 213

Connectors, Jumpers, and Schematics

DCX-MC500/510/520 Module Configuration Jumpers - configuration in bold
type denotes default factory shipping configuration

JP1 — A/D reference select (external reference or on board +5 VDC reference)

1to2 Use external reference (supplied by user on J3 pin 18)
2to 3 Use the on board +5 VDC reference

DCX-MC500 Module layout

-

HEEN JPL POT1
POT2

POT3

POT4
POTS
POT6

POT7

POTS8

214 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-BF022 Relay Rack Interface

J1 connector pin-out - The signals are arranged to interface the DCX-MC400 directly to an OPTO

22 relay rack.

1 Digital /0 channel #1
2 Digital I/O channel #2
3 Digital I/0 channel #3
4 Digital I/0 channel #4
5 Digital I/0 channel #5
6 Digital 1/0 channel #6
7 Digital I/O channel #7
8 Digital I/0 channel #8
9 Digital I/0 channel #9

10 Digital /0 channel #10
11 Digital 1/0 channel #11
12 Digital I/O channel #12
13 Digital I/0 channel #13
14 Digital 1/0 channel #14
15 Digital /0 channel #15
16 Digital I/O channel #16
17 No connect

18 No connect

19 No connect

20 +5VDC

21 Ground

22 No connect

23 No connect

24 No connect

25 No connect

26 Ground

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

DCX-PCI300 User’'s Manual 215

Connectors, Jumpers, and Schematics

J2 connector pin-out - The signals are arranged to interface the DCX-PCI300 General Purpose 1/O
(connector J3) directly to an OPTO 22 relay rack.

1 +5VDC

2 No connect

3 Digital I/0 channel #16
4 No connect

5 Digital /0 channel #15
6 Digital /0 channel #14
7 Digital I/O channel #13
8 Digital /0 channel #12
9 Digital I/0 channel #11
10 Digital 1/0 channel #10
11 Digital /0 channel #9
12 Digital I/O channel #8
13 Digital I/0 channel #7
14 Digital I/0O channel #6
15 Digital /0 channel #5
16 Digital I/O channel #4
17 Digital I/0 channel #3
18 Digital /0 channel #2
19 Digital I/0 channel #1
20 No connect

21 No connect

22 No connect

23 No connect

24 Ground

25 No connect

26 Ground

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

216 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-BF022 Configuration Jumpers - configuration in bold type denotes
default factory shipping configuration

JP1 —JP16 Configure Digital channel as Input or Output

1to2 Configure channel as Output
2t03 Configure channel as an Input

JP17 — Select Relay Rack supply source

1to2 DCX provides +5 VDC Relay Rack supply
2t03 Relay Rack has separate +5 VDC supply

DCX-BF022 Interface layout

0.25"

2.90"

J1 TO DCX-MC400

2.50"

o0 0
L X J
LN X J
o0 0
L X J
L XX]
L X J
L XX]
[X J
[N N J
L XX]
L X J
L XX]
L N J
[NN J
o0 0

0.0"

0.0"
0.10"

0.60"

0.25"

0.75"

0.25" 2.50" 0.35" 0.0

DCX-PCI300 User’'s Manual 217

Connectors, Jumpers, and Schematics

1 z 3 4 5 6 7]
] PUL &)
0PTOB 0PTO2 0PTO3
J3
56PIN
I 1 -
7
3
Ua:H 4. s
e chie 74L5541 74L5541 JPi7 wce =
15 CH1IS 7
4 CH14 1 8]
B 13 CH13 5 B
12 CHi2 10
T1 CH11 T1
10 CHio 12
CH 1
8 CH 14
7 CH 15
[CHe 16
- S CH5 0PTO4 0PTOS 0PTO6 0PTO? 0PTOLS 17 -
Z CH4 18
CH3 0PTO14 1
2 CH2 76
T CHt 0PTO013 21
0PTO12 23
¢ ua:a 0PTOLt 7e ¢
74L5541 74L5541 74L5541 74L5541 I 76
- 0PTO1E
0PTOS 25
= 3°
0PTO08 ERY
37
— PUL2 0PTO? 33 —
0PTO6 35
7467 €
oPTO8 0PTOS OPTO1G 0PTOLY 0PTO0S
38
0PTO04 39
D _ £1%] D
0PT03 a1
¥
0PT02
: : : LX)
P4L5541 P4L5541 74L5541 P4L5541 opTOL e
0PTO0B a7
E3e)
L1 35 L1
TS CHY 50
18 cHZ
1 CH3
16 CHa4 PUL3 PUL4 PULS PULGE
15 __CH5 1™~ 1p
T4 CHG :
E L3 CHY L - Eﬂ@u?w 7407 E
tf CHE OPTO12 QPTO13 . JPi5 OPTO14 0PTO15
e
10 CHiG
S CHit
8 cHi2
7 CHi3
& Ccria
- S CHIS : 5 : us: —
3 _ e a e
=] CHi6 74LS5541 74L5541 74L5541 74L5541
[z uce -
T RPL RP2Z RPI
16K vee 16K vee 16K vee .
PUL 2 L PUL? 7 Lot PULS 2L uz:Dp u3:b =
F PU2 6 PU? HINAN PUT2 NI 7ap7 7407 Title _ - N F
PU3 EEAVN FUg EHAVN PULs LY. ; . DCR—BFB2Z SCHEMH.
Pu4 ERAA PUS LEA Pula 4| PUI? S 8 PUIB S 8
PUS N PULG N PULS Size [Number Reuision
FUG 2 FULL 2 Fule 2 s
Date: 25-AUG 19594 [Sheat
File: BFG22/1 [Drawn
1 2 3 4 \ 5 \ 6 \ 7 \

218

Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-BF3XX-H High Density Breakout Assembly

The DCX-BF3XX-H provides easy to use terminal strip contacts for -H DCX modules (MC300-H,
MC320-H, MC360-H, MC400-H, MC500-H).

DCX modules can be installed into any one of eight module locations on the DCX-PCI300-H
motherboard. The axis I/O signals travel through the inner layers of the DCX-PCI300-H to the high
density connectors (J1, J2, J3, and J4).The module, receptacle, and connector locations of a DCX-
PCI300-H are shown in the following graphic:

Axis 1/O receptacles - J22, J24, J26, J28

Connectors

J1&J3
-~

Connectors

J2 &J4 ‘

Axis I/O receptacles - J23, J25, J27, J29

The diagram below details how the DCX-PCI300-H module locations 1 — 8 (receptacles J22 — J29)
map into the high density connectors J1 — J4.

J2 - Module locations 2 & 8 J1 - Module locations 1 & 7

T o i o
o

J4 - Module locations 6 & 4 J3 - Module locations 5 & 3

VHDCI connectors as viewed from the back of the computer
(component side down)

DCX-PCI300 User’'s Manual 219

Connectors, Jumpers, and Schematics

Each DCX-BF3XX-H breakout assembly provides contact points for two module locations. The
following table details how DCX-PCI300-H motherboard module locations are associated with a DCX-

BF3XX-H terminal strip (TS1 or TS2)

DCX-PCI300-H High Density Interconnect cable
Module location connector # #

1 J1 P1

7 J1 P1

5 J3 P3

3 J3 P3

6 J4 P4

4 J4 P4

The following diagram details the typical interconnections for a four axis system, three servo’s (DCX-
MC300-H servo modules in locations 1, 2, & 7) and one stepper (DCX-MC360-H stepper module in
location 8). The modules could be installed sequentially into locations #1 - #4, but the system would
then require four cables and four DCX-BF3XX-H breakouts instead of two.

Breakout #1

s1

9 {
°[HHFH:HIH:HIFHi|

P1 cable

[

P2 cable

Breakout #2
DCX-BFICH

&l

: [[e
'[HHFFHHFH:FHHil» [HHH:FHIFH:FH:Hi|.

Axis #4

Axis #2

Axis #1

Axis #3

Axis #2

Stepper
Driver

Axis #4

220

Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-BF3XX-H signals pinout (when using single axis or I/O modules)
The following table details the pinouts —H DCX modules.

BF3XX-H MC300-H

TS1 or
TS2

MC360-H

Command return Ground Step / CCW Pulse Ground Ground
18 Command output Phase U Command | Ground Digital 1/0 #1 Output 1 (-10 to
+10)
2 Com./Dir. output Ground Dir. / CW Pulse Ground Ground
19 Com./Dir. return Phase V Command | Ground Digital 1/0 #2 Output 2 (-10 to
+10)
3 Amp. Enable output | Amp. Enable output | Driver En. output Ground Ground
20 Amp Enable return | Amp. Enable return | Ground Digital 1/0 #3 Output 3 (-10 to
+10)
4 Amp. Fault input Amp. Fault: input Drive Fault: input Ground Ground
21 Amp Fault sup./ret. | Amp. Fault return Drive Fault return Digital 1/0 #4 Output 4 (-10 to
+10)
5 Coarse Home input | Coarse Home input | Home: input Ground Ground
22 Coarse Home ret. Coarse Home ret. Home return Digital I/O #5 External reference
6 Ground Ground Ground Ground Ground
23 Reserved Reserved Reserved Digital I/O #6 Output 1 (0 to +5)
7 Reserved Pos. Com. output Null Position: input | Digital I/O #7 Output 2 (-10 to
+10)
24 Ground Ground Ground Ground Ground
8 Ground Ground Ground Ground Ground
25 Aux. Enc. A+ Hall A+/Aux Enc A+ | Compare / Full/Half | Digital /O #8 Output 3 (0 to +5)
Step: output
9 Aux. Enc. B Hall B+/Aux Enc B+ | Full/Half Current: Digital I/0 #9 Output 4 (-10 to
output +10)
26 Ground Ground Ground Ground Ground
10 Ground Ground Ground Ground Ground
27 Pos. Capture + / Hall C+/ Pos Cap + | Aux. En Crs Home | Digital I/0 #10 +12 VDC
Aux. Enc. Index+
11 Encoder Power Encoder Power Aux. Enc. Power Digital 1/0 #11 -12 VvDC
28 Ground Ground Ground Ground Ground
12 Limit + input Limit + input Limit + input Ground
29 Limit + sup./return Limit + sup./return Limit + sup/return Digital /0 #12
13 Limit Negative input | Limit Negative input | Limit - input Ground Ground
30 Limit - supply/return | Limit - supply/return | Limit — sup/return Digital /0O #13 Input 1 (0 to +5)
14 Prim. Enc. A+ Prim. Enc. A+ Aux. Enc. A+ Ground Ground
31 Prim. Enc. A- Prim. Enc. A- Aux. Enc. A- Digital 1/0 #14 Input 2 (0 to +5
15 Prim. Enc. B+ Prim. Enc. B+ Aux. Enc. B+ Ground Ground
32 Prim. Enc. B- Prim. Enc. B- Aux. Enc. B- Digital /0 #15 Input 3 (0 to +5)
16 Prim. Enc. Index + Prim. Enc. Index + Pos. Cap. +/ Ground Ground
Aux. Enc. Index +
33 Prim. Enc. Index - Prim. Enc. Index - Pos. Cap. -/ Digital 1/0 #16 Input 4 (0 to +5)
Aux. Enc. Index-
17 Ground Ground Ground Ground Ground
34 Ground Ground Ground Ground Ground

DCX-PCI300 User’'s Manual

221

Connectors, Jumpers, and Schematics

Example: DCX-BF3XX-H connections for a four axes system (single axis modules)
Here is an example of the typical connections for a four axes system (3 servo’s and one stepper). A
larger (more detailed) view of the interconnect drawing can be found earlier in this section.

BF3XX-H #1 — Contacts
for axis #1 (a MC300-H
installed in module

Avis #1

Axis #1 Axis #3

Axis #2 Axis #4

BF3XX-H #1 — Contacts
for axis #3 (a MC300-H
installed in module

BF3XX-H #2 — Contacts
for axis #2 (a MC300-H
installed in module

BF3XX-H #2 — Contacts
for axis #4 (a MC360-H
installed in module

location #1) location #7) location #2) location #8)

1 Axis 1 — Analog ret 1 Axis 3 — Analog ret 1 Axis 2 — Analog ret 1 AXxis 4 — Step
18 Axis 1 — Command 18 Axis 3 — Command 18 Axis 2 — Command 18 Axis 4 — Ground
2 Axis 1 — Comp. / Dir 2 Axis 3 — Comp. / Dir 2 Axis 2 — Comp. / Dir 2 AXxis 4 — Direction
19 Axis 1 — Com/Dir ret 19 Axis 3 — Com/Dir ret 19 Axis 2 — Com/Dir ret 19 Axis 4 — Ground
3 Axis 1 — Amp En 3 Axis 3— Amp En 3 Axis 2 — Amp En 3 Axis 4 — Drive En
20 Axis 1 — Amp En. ret 20 Axis 3 — Amp En. ret 20 Axis 2 — Amp En. ret 20 Axis 4 — Ground
4 Axis 1 — Amp Fault 4 Axis 3 — Amp Fault 4 Axis 2 — Amp Fault 4 Axis 4 — Drive Fault
21 Axis 1 — Amp Flt ret 21 Axis 3 — Amp Flt ret 21 Axis 2 — Amp Flt ret 21 Axis 4 — Ground
5 Axis 1 — Coarse Hm 5 Axis 3 — Coarse Hm 5 Axis 2 — Coarse Hm 5 Axis 4 — Home
22 Axis 1 — Crs Hm ret 22 Axis 3 — Crs Hm ret 22 Axis 2 — Crs Hm ret 22 Axis 4 — Home ret
6 Ground 6 Ground 6 Ground 6 Ground
23 23 23 23
7 7 7 7
24 Ground 24 Ground 24 Ground 24 Ground
8 Ground 8 Ground 8 Ground 8 Ground
25 25 25 25
9 9 9 9 Axis 4 — Full/Half cur
26 Ground 26 Ground 26 Ground 26 Ground
10 Ground 10 Ground 10 Ground 10 Ground
27 Axis 1 — Pos Cap 27 Axis 3 — Pos Cap 27 Axis 2 — Pos Cap 27
11 Axis 1 — Enc Pwr 11 Axis 3 — Enc Pwr 11 Axis 2 — Enc Pwr 11
28 Ground 28 Ground 28 Ground 28 Ground
12 Axis 1 — Limit + 12 Axis 3 — Limit + 12 Axis 2 — Limit + 12 Axis 4 — Limit +
29 Axis 1 — Limit + ret 29 Axis 3 — Limit + ret 29 AXis 2 — Limit + ret 29 AXxis 4 — Limit + ret
13 Axis 1 — Limit - 13 Axis 3 — Limit - 13 Axis 2 — Limit - 13 AXxis 4 — Limit -
30 Axis 1 — Limit — ret 30 Axis 3 — Limit — ret 30 Axis 2 — Limit — ret 30 Axis 4 — Limit — ret
14 Axis 1 — Encoder A+ 14 Axis 3 — Encoder A+ 14 Axis 2 — Encoder A+ 14
31 Axis 1 — Encoder A+ 31 Axis 3 — Encoder A+ 31 Axis 2 — Encoder A+ 31
15 Axis 1 — Encoder B+ 15 Axis 3 — Encoder B+ 15 Axis 2 — Encoder B+ 15
32 Axis 1 — Encoder B- 32 Axis 3 — Encoder B- 32 Axis 2 — Encoder B- 32
16 Axis 1 — Index + 16 Axis 3 — Index + 16 Axis 2 — Index + 16
33 Axis 1 — Index - 33 Axis 3 — Index - 33 Axis 2 — Index - 33
17 Ground 17 Ground 17 Ground 17 Ground
34 Ground 34 Ground 34 Ground 34 Ground

222 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-BF3XX-H signals pinout (when using dual axis modules)
The following table details the pinouts of —H Dual Axis DCX modules.

BF3XX-H MC302-H

TS1 or
TS2
Axis 1 Encoder A+ Axis 1 Home
18 Axis 1 Encoder A- Axis 1 Home sup/return
2 Axis 1 Encoder B+ Axis 1 Limit +
19 Axis 1 Encoder B- Axis 1 Limit + sup/return
3 Axis 1 Encoder Index + Axis 1 Limit -
20 Axis 1 Encoder Index - Axis 1 Limit - sup/return
4 Axis 1 Coarse Home Axis 1 Drive Fault
21 Axis 1 Encoder Power Axis 1 Fault sup/return
5 Axis 1 Limit + Axis 1 Drive Enable
22 Axis 1 inputs sup./return Ground
6 Ground Ground
23 Axis 1 Limit - Axis 1 Pulse / CCW
7 Axis 1 Amp. Enable Axis 1 Dir. /| CW
24 Ground Ground
8 Ground Ground
25 Axis 1 Analog Command | Axis 1 Full Current
9 Axis 2 Analog Command | Axis 2 Full Current
26 Ground Ground
10 Ground Ground
27 Axis 2 Amp. Enable Axis 2 Dir. /| CW
11 Axis 2 Limit - Axis 2 Pulse / CCW
28 Ground Ground
12 Axis 2 Limit + Axis 2 Drive Enable
29 AXis 2 inputs sup./return Ground
13 Axis 2 Coarse Home Axis 2 Drive Fault
30 Axis 2 Encoder Power Axis 2 Fault sup/return
14 Axis 2 Encoder A+ Axis 2 Limit -
31 Axis 2 Encoder A- Axis 2 Limit - sup/return
15 Axis 2 Encoder B+ Axis 2 Limit +
32 Axis 2 Encoder B- Axis 2 Limit + sup/return
16 Axis 2 Encoder Index + Axis 2 Home
33 Axis 2 Encoder Index - Axis 2 Home sup/return
17 Ground Ground
34 Ground Ground

DCX-PCI300 User’'s Manual

223

Connectors, Jumpers, and Schematics

Example: DCX-BF3XX-H connections for a four axes system (dual axis modules)

Here is an example of the typical connections for a four axes system (2 servo’s and 2 steppers) using
dual axis modules. The DCX-MC302 (dual axis servo) is installed in module location #1 and the DCX-
MC362 (dual axis stepper) is installed in module location #7.

P1 cable

Axes 3 &4
(steppers)

BF3XXH
Breakout

Axes 1 &2

(servo's)

Encoder’

Servo
Amplifier

|
4

|
$

[
i

Limit &
Home
sensors

Axis #1

Encoder

—. Servo
Amplifier

Axis #3

Limit &
Home
sensors

I 11
"ilil'

Amplifier

AXxis #2

pr——
pr——.
e

Limit &
Home
sensors

Stepper
Driver

Axis #4

Axis #1 (module #1)

BF3XX-H TS1 contacts

1-8 & 18-25.

1

Axis 1 Encoder A+

Axis #2 (module #1)
BF3XX-H TS1 contacts
9-17 & 26-34.

Axis 2 Command

Axis #3 (module 2)

BF3XX-H TS2 contacts

1-8 & 18-25.

1

Axis 3 Encoder A+

Axis #4 (module 2)
BF3XX-H TS2 contacts
9-17 & 26-34.

Axis 2 Full Current

18 Axis 1 Encoder A- 26 Ground 18 Axis 3 Encoder A- 26 Ground
2 Axis 1 Encoder B+ 10 Ground 2 Axis 3 Encoder B+ 10 Ground
19 Axis 1 Encoder B- 27 Axis 2 Amp. Enable 19 Axis 3 Encoder B- 27 Axis 2 Dir. /| CW
3 Axis 1 Index + 11 AXis 2 Limit - 3 Axis 3 Index + 11 Axis 2 Pulse / CCW
20 Axis 1 Index - 28 Ground 20 Axis 3 Index - 28 Ground
4 Axis 1 Coarse Home 12 AXxis 2 Limit + 4 Axis 3 Coarse Home 12 Axis 2 Drive Enable
21 Axis 1 Encoder Pwr 29 AXis 2 inputs return 21 Axis 3 Encoder Pwr 29 Ground
5 Axis 1 Limit + 13 Axis 2 Coarse Home 5 Axis 3 Limit + 13 Axis 2 Drive Fault
22 Axis 1 inputs return 30 Axis 2 Encoder Pwr 22 Axis 3 inputs return 30 Axis 2 Fault return
6 Ground 14 Axis 2 Encoder A+ 6 Ground 14 Axis 2 Limit -
23 Axis 1 Limit - 31 Axis 2 Encoder A- 23 Axis 3 Limit - 31 AXis 2 Limit - return
7 Axis 1 Amp. Enable 15 Axis 2 Encoder B+ 7 Axis 3 Amp. Enable 15 AXis 2 Limit +
24 Ground 32 Axis 2 Encoder B- 24 Ground 32 Axis 2 Limit + return
8 Ground 16 Axis 2 Index + 8 Ground 16 Axis 2 Home
25 Axis 1 Command 33 Axis 2 Index - Axis 3 Command 33 Axis 2 Home return
17 Ground 17 Ground
34 Ground 34 Ground
224 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-BF300-R Servo Module Breakout Assembly

DCX-BF300-R to DCX-MC300-R Connections:

DCX-BF300

REV. A

PMC CORP.

LTI ad

‘ PG

> > @
T

PRIMARY ENCODER

0000000000000
0000000000000

TO MC300 TS3

LTI

> W N

TS1 AUXILIARY ENCODER

* PR R

Terminal strip TS1

Crs Home & Limits return
Limit -

Limit +

Crs Home & Limits return
Coarse Home

Amp Fault supply/return
Amplifier Fault

Amp Enable/Dir. return
Amplifier Enable
Direction

Shield

Analog Ground

Analog Command output
Shield

Terminal strip TS2
Prim. Encoder Phase A+
Prim. Encoder Phase A-
Prim. Encoder Phase B+
Prim. Encoder Phase B-
Prim. Encoder Index+
Prim. Encoder Index-
Encoder Power
Ground
Shield

© 00 ~NO UL WNPE

Terminal strip TS3
Aux. Encoder Phase A+
Aux. Encoder Phase B+
Aux. Encoder Index Z+
Encoder Power
+5VDC
+12 VDC
-12 vDC
Ground
Shield

© 0O ~NO O WNPE

DCX-PCI300 User’'s Manual

225

Connectors, Jumpers, and Schematics

DCX-BF300-R to DCX-MC300 Connections (continued):

Connector J1: From MC300

1 Analog Ground
2 Analog Command output
3 +12 VDC
4 -12vDC
5 Ground
6 +5VDC
7 Direction
8 Primary Encoder Index +
9 Coarse Home
10 Amplifier Fault
11 Amplifier Enable
12 Amp Enable/Dir. return
13 Amp Fault supply/return
14 Limit +
15 Limit -
16 Prim. Encoder Phase A+
17 Encoder Power
18 Crs Home & Limits return
19 Prim. Encoder Phase A-
20 Prim. Encoder Phase B-
21 Aux. Encoder Phase A
22 Aux. Encoder Phase B
23 Prim. Encoder Phase B+
24 Aux. Encoder Index+
25 Prim. Encoder Index-
26 Ground

226 Precision MicroControl

Connectors, Jumpers, and Schematics

Ji

1 AGND

2 Analog Command

3 +12 VDC

4 -12 VDC

5 DCX Ground

6 +5 VDC

7 Direction

8 Encoder 1 Index+

9 Coarse Home

10 Amplifier Fault

11 Amplifier Enable

12 Amp Enable & Dir Return
13 Amplifier Fault Return
14 Limit Positive

15 Limit Negative

16 Encoder 1 Phase A+
17 Encoder Power

18 Coarse Home & Limits Return
19 Encoder 1 Phase A-
20 Encoder 1 Phase B-
21 Encoder 2 Phase A
22 Encoder 2 Phase B
23 Encoder 1 Phase B+
24 Encoder 2 Index

25 Encoder 1 Index-

26 DCX Ground

Encoder 1 Phase A+

INPRET

TS1

LIMNEG

LIMPOS

INPRET

COARSE

AMPERET

AMPFLT

AMPERET

AMPENA

© |0 N o o |s [w]|N |-

DIRN

[
o

SHIELDS

[
[

AGND

[
N

ASIG

[
w

SHIELD

[iN
IS

TS2

Encoder 2 Phase A

Encoder 1 Phase A-

TS3

Encoder 2 Phase B

Encoder 1 Phase B+

Encoder 2 Index

Encoder 1 Phase B-

Encoder Power

Encoder 1 Index Z+

+5 VDC

Encoder 1 Index Z-

+12 VDC

Encoder Power

-12VDC

Shield

O |00 N |o o s |w (N |-

Shield

O | |N|o |a|s |w][N |-

DCX-BF300

D | 70.330.A

PRECISION MICROCONTROL CORP.

DCX-PCI300 User’'s Manual

227

Connectors, Jumpers, and Schematics

DCX-BF320-R Servo Module Breakout Assembly

J1
DCX-BF320
REV. A OO0O00O000O00O0OO
PMC CORP. 0000000000000

TS2 TO MC320 TS3

o MHiHHH i o

> > N N
T+ U+

PRIMARY ENCODER

* FAFTRERTR

DCX-BF320-R to DCX-MC320-R Connections:

Terminal strip TS1 Terminal strip TS2

1 Crs Home & Limits return 1 Prim. Encoder Phase A+
2 Limit - 2 Prim. Encoder Phase A-
3 Limit + 3 Prim. Encoder Phase B+
4 Crs Home & Limits return 4 Prim. Encoder Phase B-
5 Coarse Home 5 Prim. Encoder Index+

6 Amp Fault supply/return 6 Prim. Encoder Index-

7 Amplifier Fault 7 Encoder Power

8 Amp Enable/Dir. return 8 Ground

9 Amplifier Enable 9 Shield

10 Phase W

11 Phase V

12 Phase U Terminal strip TS3

13 Analog Ground

14 Shield Hall Sensor A+
Hall Sensor B+
Hall Sensor C+
Encoder Power
+5VDC

+12 VDC

-12 vDC
Ground

Shield

O© 0O ~NOO O WNPRE

228 Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-BF320-R to DCX-MC320 Connections (continued):

Connector J1: From MC300

Analog Ground

Phase U

Phase V

Phase W

Ground

+5VDC

Compare

Primary Encoder Index +
Coarse Home

Amplifier Fault

Amplifier Enable

Amp Enable/Dir. return
Amp Fault supply/return
Limit +

Limit -

Prim. Encoder Phase A+
Encoder Power

Crs Home & Limits return
Prim. Encoder Phase A-
Prim. Encoder Phase B-
Hall Sensor A+

Hall Sensor B+

Prim. Encoder Phase B+
Hall Sensor C+

Prim. Encoder Index-
Ground

DCX-PCI300 User’'s Manual

229

Connectors, Jumpers, and Schematics

J1

1 AGND

2 Phase U

3 Phase V

4 Phase W

5 DCX Ground

6 +5 VDC

7 Compare

8 Encoder 1 Index+

9 Coarse Home

10 Amplifier Fault

11 Amplifier Enable

12 Amp Enable & Dir Return
13 Amplifier Fault Return
14 Limit Positive

15 Limit Negative

16 Encoder 1 Phase A+
17 Encoder Power

18 Coarse Home & Limits Return
19 Encoder 1 Phase A-
20 Encoder 1 Phase B-
21 Hall Sensor A+

22 Hall Sensor B+

23 Encoder 1 Phase B+
24 Hall Sensor C+

25 Encoder 1 Index-

26 DCX Ground

Encoder 1 Phase A+

TS2

TS1

INPRET

LIMNEG

LIMPOS

INPRET

COARSE

AMPERET

AMPFLT

AMPERET

© | |N o o | [w N |-

AMPENA

Phase W

=
o

Phase V

oy
[

Phase U

[
N

AGnd

i
w

SHIELD

[
N

Encoder 1 Phase A-

Encoder 1 Phase B+

Encoder 1 Phase B-

Encoder 1 Index Z+

Encoder 1 Index Z-

Encoder Power

Shield

© | |N o o | [w N |-

TS3

Hall Sensor A+

Hall Sensor B+

Hall Sensor C+

Encoder Power

+5 VDC

+12 VDC

-12VDC

© |00 |N o o™ W N |-

Shield

DCX-BF320

D | 70.400.A

PRECISION MICROCONTROL CORP.

230

Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-BF360-R Stepper Module Breakout Assembly

DCX-BF360

REV. A 0000000000000
PMC CORP. 0000000000000

TS2 TO MC360 TS3

LI

> > W WN N
+ + U+

®
z
o

LICJCITICIC I

DCX-BF360-R to DCX-MC360-R Connections:

Terminal strip TS1
1 Crs Home & Limits return
2 Limit -
3 Limit +
4 Aux Encoder Crs Home
5 Home return
6 Home
7 Ground
8 +5VDC
9 Full/Half Current
10 Full/Half Step
11 Drive Enable
12 Direction
13 Step
14 Shield

Terminal strip TS2
Aux. Encoder Phase A+
Aux. Encoder Phase A-
Aux. Encoder Phase B+
Aux. Encoder Phase B-
Aux. Encoder Index+
Aux. Encoder Index-
Encoder Power
Ground
Shield

© 00 ~NO UL WNPE

Terminal strip TS3
FNRET
Driver Fault
Null

+5VDC
+12 VDC
-12 vDC
Ground
Shield

© 0O ~NO O WNPE

DCX-PCI300 User’'s Manual

231

Connectors, Jumpers, and Schematics

DCX-BF300-R to DCX-MC360 Connections (continued):

Connector J1: From MC360
1 Ground
2 +5VDC
3 Direction
4 Pulse / CCW Pulse
5 FNRET
6 LIMCRSRET
7 Drive Fault
8 Limit Positive
9 Limit Negative
10 | Auxiliary Encoder Power
11 Aux. Enc Coarse Home
12 HOMRET
13 Home
14 Full/Half Step
15 Full/Half Current
16 Driver Enable
17 Null Position
18 Aux Encoder Phase A+
19 Aux Encoder Phase A-
20 Aux Encoder Phase B+
21 Aux Encoder Phase B-
22 | Auxiliary Encoder Index+
23 Auxiliary Encoder Index-

24 +12 VDC

25 -12vDC

26 Ground
232

Precision MicroControl

Connectors, Jumpers, and Schematics

J1i

Encoder 1 Phase A+

TS2

TS1

LIMCRSRET

Limit Negative

Limit Positive

Encoder Coarse Home

Home Return

Home

DCX Gnd

+5VDC

© | N |o |a|s |w N |-

Full Current

Half Step

[
o

[
[

Driver Enable

DIRN

[
N

STEP

[
w

SHIELD

=
N

Encoder 1 Phase A-

Encoder 1 Phase B+

Encoder 1 Phase B-

Encoder 1 Index Z+

Encoder 1 Index Z-

Encoder Power

1 DCX GND

2 +5 VDC

3 DIRN

4 STEP

5 FNRET

6 LIMCRSRET

7 Driver Fault

8 Limit Positive

9 Limit Negative

10 Encoder Power

11 Encoder Coarse Home
12 Home Return

13 Home

14 Half Step

15 Full Current

16 Driver Enable

17 Null

18 Encoder 1 Phase A+
19 Encoder 1 Phase A+
20 Encoder 1 Phase B+
21 Encoder 1 Phase B-
22 Encoder 1 Index+
23 Encoder 1 Index-

24 +12 VDC

25 -12 VDC

26 DCX Ground

Shield

© | [N |o |0 s |w][N |-

TS3

FNRET

Driver Fault

Null

+5 VDC

+12 VDC

-12VDC

O | |N|o | |s W N |-

Shield

DCX-BF360

D | 70.340.A |

PRECISION MICROCONTROL CORP.

DCX-PCI300 User’'s Manual

233

Troubleshooting

Chapter Contents

DCX System Troubleshooting
Communications Troubleshooting
Troubleshooting — Tuning a Servo Motor
Troubleshooting - Servo Motion chart #1
Troubleshooting - Servo Motion chart #2
Troubleshooting - Servo Motion chart #3
Troubleshooting — Stepper Motion chart #1

Troubleshooting — Limits and Home

234

Precision MicroControl

Chapter

10

Troubleshooting

On the following pages you will find troubleshooting flow charts to assist the with diagnosis of motion
control system failures.

The steps described in these flow charts will direct the user to PMC programs (Motion Integrator,
Motor Mover, CWdemo, etc...) and utilities (Servo Tuning, WinControl) that are used to diagnose and
resolve system operation.

DCX-PCI300 User’'s Manual 235

Troubleshooting

DCX System Troubleshooting

Are the
Servo motors working
as expected?

Are the
Stepper motors working
as expected?

Axis 1/O (Limits,
Home, Index, Amp Enable,
Amp Fault) working as
expected?

General
purpose |/O (digital 1/0 and
or analog 1/0) working
as expected?

Yes

Is the DCX control system
operating as expected?

Go to the
Communications
Troubleshooting flow
chart

Go to the Servo
Motor
Troubleshooting flow
charts

Go to the Stepper
Motor
Troubleshooting flow
charts

Go to the Limits and
Home
Troubleshooting flow
charts

Go to the General
Purpose /0
Troubleshooting flow
charts

Go to the
Miscellaneous
operation
Troubleshooting flow
charts

236

Precision MicroControl

Troubleshooting

Yes

After Windows
has loaded are the 2 Gree
LED's (Power & Run) on
and the Yellow LED
(Watchdog) off?

Launch the
Motor Mover program
(Start\Programs\Motion Control\
MotionIntegrator\Motor Mover).
Is an error message
returned?

Use Motor
Mover to move the
motors.Does Motor Mover
open and run as
expected?

Yes

Verify installation
of MCAPI rev 3.01 or
higher. Go to Control Panel\
Motion Control\Properties\
Info Tab

The DCX-PCI300 requires
MCAPI rev. 3.01 or higher.
Install MCAPI from
MotionCD or PMC web
site.

Yes

Communications Troubleshooting

Turn off PC
power , remove all DC
modules from DCX-PCI300.
Turn on 'PC' power. Are the
2 Green LED's on and
Yellow LED off?

DCX-PCI300 User’'s Manual

237

Troubleshooting

Does the
motor stop near the
target?

The axis may have errored out:,
open the Status Panel utility
(\Start\Programs\Motion Control\Motion
Control AP\Status Panel). If the Error
and Motor Error LED's are on one
or more of the following may be
true:

1) Velocity is too high

2) Accel / decel too high

2) Proportional gain too low
3) Following error too low

Is the
axis within 5% of
the target?

Increase the Proportional
gain and/or Integral gain

Does the axis oscillate?

Increase the Derivative
gainand/or decrease the
proportional gain.

Do you hear a grinding
noise?

Yes

Derivative sampling period
too short. Increase the
derivative sampling period
and retune the axis
derivative and integral
gains.

Near but not
at target?

Yes

Increase the Integral gain /
Integral limit.
Recommended Integral
Gain Option set to Zero.

238

Precision MicroControl

Troubleshooting

Is the
motor on?

Turn the motor on
MCEnable Axis()

Red error LED's
off?

Resolve the error
condition (limit+/-,
following error,
amp fault, ...)

Does
the motor resist
rotation?

Yes

The encoder may
have failed, refer to
Motion Integrator
encoder checkout

Did
the encoder
checkout?

Replace the
encoder

Tune the
servo using
the Servo
Tuning utility

The servo control system

Is the has failed.

: 2
motion OK? Contact PMC technical
support

Yes

DCX-PCI300 User’'s Manual

239

Troubleshooting

Encoder
properly

Change encoder
phasing or 'swap' the
encoder inputs
(AtoB,BtoA).

Panel
error LED's
on?

The encoder or
wiring has failed,
remove and replace.

240

Precision MicroControl

Troubleshooting

The commanded
maximum velocity,
Tune the ty
Status accel, or decel exceeds

Panel error Servo using the system capability.

the Servo
's Off?
LED's off? Tuning utility

Reduce the trajectory
parameters

Yes

Friction may
be present in mechanical Clean and
components. Has mechanical adjust
system operation been mechanics
optimized?

Yes Y

DCX-PCI300 User’'s Manual 241

Troubleshooting

Troubleshooting - Open Loop Stepper Motion chart #1

Is the
motor turned
on?

Turn the motor on
MCEnableAxis ()

Status
Panel error
LED's off?

Resolve the error
condition (limit+, Limit -)

Yes

Driver Enable is Low
active. Verify wiring/
operation.Connect
voltmeter to Drive
Enable pin, should be
less than 0.7V when axis
turned on

Is the stepper
driver enabled?,

Using CWDemo:
zero position, move relative 50
steps. Did the
motor move

Yes
Yes

Do the Actual,
Optimal, and Target position
readoutsall display 50?

242 Precision MicroControl

Troubleshooting

Problem

Troubleshooting - Limits and Home

No

with a Limit
input?

Yes

Limit
input wired

Refer to the DCX

User's Manual for

module pinout and
wiring examples

Connect
voltmeter across
Limit pins of the module J3
connector. Activate Limit
sensor. 5 volts
(+/- 1 volt)?

Yes

With sensor
active, does the Motion
Integrator Test Panel
indicate that the Limit
sensor is active?

Yes

Input voltage range
is 5 volts +/- 1 volts.
Min. current for is
10ma.
Contact PMC
technical support.

DCX sensor input
circuit has failed.

Contact PMC
technical support

Home
input wired
correctly

Refer to the DCX

User's Manual for

module pinout and
wiring examples

Connect
voltmeter across
Home pins of module J3
connector. Activate Limit
sensor. 5 volts
(+/- 1 volt)?

Yes

With sensor
active, does the Motion
Integrator Test Panel
indicate that the Home
sensor is active?

Yes

Issue move
command toward
home sensor, followed by
Wait for Edge and Stop
(@WEO0,aST). Did the
motor stop?

Yes

Input voltage range
is 5 volts +/- 1 volts.
Min. current for is
10ma.
Contact PMC
technical support.

DCX sensor input
circuit has failed.

Contact PMC
technical support

Contact PMC
technical support

243

DCX-PCI300 User’'s Manual

Controller Error Codes

Chapter Contents

e MCAPI Error codes

¢ MCCL Error codes

244 Precision MicroControl

Controller Error Codes

Both the MCAPI and the Motion Control Command Language (MCCL) provide error code and
interface status information to the user.

DCX-PCI300 User’'s Manual 245

Controller Error Codes

MCAPI Error Codes

MCAPI defined error messages are listed numerically in the table below. Where possible corrective
action is included in the description column. Please note that many MCAPI function descriptions also
include information regarding errors that are specific to that function.

0 MCERR_NOERROR No error has occurred

1 MCERR_NO_CONTROLLER No controller assigned at this ID. Use MCSETUP to configure a controller.

2 MCERR_OUT_OF HANDLES MCAPI driver out of handles. The driver is limited to 32 open handles. Applications
that do not call MCClose() when they exit may leave handles unavailable, forcing
a reboot.

3 MCERR_OPEN_EXCLUSIVE Cannot open - another application has the controller opened for exclusive use

4 MCERR_MODE_UNAVAIL Controller already open in different mode. Some controller types can only be open
in one mode (ASCII or binary) at a time

5 MCERR_UNSUPPORTED_MODE = Controller doesn't support this mode for MCOpen() - i.e. ASCII or binary

6 MCERR_INIT_DRIVER Couldn't initialize the device driver

7 MCERR_NOT_PRESENT Controller hardware not present

8 MCERR_ALLOC_MEM Memory allocation error. This is an internal memory allocation problem with the
DLL, contact Technical Support for assistance

9 MCERR_WINDOWSERROR A windows function returned an error - use GetLastError () under WIN32 for details

10 reserved

11 MCERR_NOTSUPPORTED Controller doesn't support this feature

12 MCERR_OBSOLETE Function is obsolete

13 MCERR_AXIS_TYPE Axis type doesn't support this feature

14 MCERR_CONTROLLER Invalid controller handle

15 MCERR_WINDOW Invalid window handle

16 MCERR_AXIS_NUMBER Axis number out of range

17 MCERR_ALL_AXES Cannot use MC_ALL_AXES for this function

18 MCERR_RANGE Parameter was out of range

19 MCERR_CONSTANT Constant value inappropriate

20 MCERR_UNKNOWN_REPLY Unexpected or unknown reply

21 MCERR_NO_REPLY Controller failed to reply

22 MCERR_REPLY_SIZE Reply size incorrect

23 MCERR_REPLY_AXIS Wrong axis for reply

24 MCERR_REPLY_COMMAND Reply is for different command

25 MCERR_TIMEOUT Controller failed to respond

26 MCERR_BLOCK_MODE Block mode error. Caused by calling MCBIockEnd() without first calling
MCBlockBegin() to begin the block

27 MCERR_COMM_PORT Communications port (RS232) driver reported an error

28 MCERR_CANCEL User canceled action (such as when an MCDLG dialog box is dismissed with the
CANCEL button

29 MCERR_NOT_INITIALIZED Feature was not correctly initialized before being enabled or used

246 Precision MicroControl

Controller Error Codes

MCCL Error Codes

When executing MCCL (Motion Control Command Language) command sequences the command
interpreter will report the following error code when appropriate:

Description Error code

No error 0
Unrecognized command 1
Bad command format 2
I/O error 3
Command string to long 4
Command Parameter Error -1
Command Code Invalid -2
Negative Repeat Count -3
Macro Define Command Not First -4
Macro Number Out of Range -5
Macro Doesn't Exist -6
Command Canceled by User -7
Contour Path Command Not First -8
Contour Path Command Parameter Invalid -9
Contour Path Command Doesn't Specify an AXIS -10
Axis error (over travel error, max. following error exceeded -13
No axis specified -14
Axis not assigned -15
Axis already assigned -16
Axis duplicate assigned -17
Insufficient memory -18
Unrecognized variable name -19
Invalid background task ID -20
Command not supported -21

Many error code reports will not only include the error code but also the offending command. In the
following example the Reset Macro command was issued. This command clears all macro’s from
memory. The next command sequence turns on 3 motors and then calls macro 10. The command
MC10 is a valid command but with no macros in memory error code —6 is displayed.

] WinControl32 H[=]

File Edt Help

O & 4 R -l e
>AM

>1MN,2MN,3MN,MC10

2-6

{C3} MC10

>

>
>
>
E

DCX-PCI300 User’'s Manual 247

Printing a PDF Document

Chapter Contents

Introduction to PDF

Printing a complete PDF document

Printing selected pages of a PDF document
Paper

Binding

Pricing

Obtaining a Word 2000 version of this user manual

248

Precision MicroControl

Printing a PDF Document

Introduction to PDF

PDF stands for Portable Document Format. It is the defacto standard for transporting electronic
documents. PDF files are based on the PostScript language imaging model. This enables sharp,
color-precise printing on almost all printers.

Printing a complete PDF document

Itis not recommended that large PDF documents be printed on personal computer printers. The
‘wear and tear’ incurred by these units, coupled with the difficulties of two sided printing, typically
resulting in degraded performance of the printer and a whole lot of wasted paper. PMC recommends
that PDF document be printer by a full service print shop that uses digital (computer controlled) copy
systems with paper collating/sorting capability.

Printing selected pages of a PDF document
While viewing a PDF document with Adobe Reader (or Adobe Acrobat), any page or range of pages
can be printed by a personal computer printer by:

Selecting the printer icon on the tool bar
Selecting Print from the Adobe File menu

Paper

The selection of the paper type to be used for printing a PDF document should be based on the target
market for the document. For a user's manual with extensive graphics that is printed on both sides of
a page the minimum recommended paper type is 24 pound. A heavier paper stock (26 — 30 pound)
will reduce the ‘bleed through’ inherent with printed graphics. Typically the front and back cover pages
are printed on heavy paper stock (50 to 60 pound).

Binding
Unlike the binding of a book or catalog, a user's manual distributed in as a PDF file will typically use

DCX-PCI300 User’'s Manual 249

Printing a PDF Document

‘comb’ or ‘coil’ binding. This service is provided by most full service print shops. Coil binding is
suitable for documents with no more than 100 pieces of paper (24 pound). Comb binding is
acceptable for documents with as many as 300 pieces of paper (24 pound). Most print shops stock a
wide variety of ‘combs’. The print shop can recommend the appropriate ‘comb’ based on the number
of pages.

Pricing
The final cost for printing and binding a PDF document is based on:

e Quantity per print run
¢ Number of pages
o Paper type

The price range for printing and binding a PDF document similar to this user manual will be $15 to
$30 (printed in Black & White) in quantities of 1 to 10 pieces.

Obtaining a Word 2000 version of this user manual
This user document was written using Microsoft's Word 2000. Qualified OEM’s, Distributors, and
Value Added Reps (VAR’s) can obtain a copy of this document for

o Editing
e Customization
e Language translation.

Please contact Precision MicroControl to obtain a Word 2000 version of this document.

250 Precision MicroControl

Glossary

Accuracy - A measure of the difference between the expected position and actual position of a motion
system.

Actuator - Device that creates mechanical motion by converting energy to mechanical energy.

Axis Phasing - An axis is properly phased when a commanded move in the positive direction causes
the encoder decode circuitry of the controller to increment the reported position of the axis.

Back EMF - The voltage generated when a permanent magnet motor is rotated. This voltage is
proportional to motor speed and is present regardless of whether the motor windings are energized or
de-energized.

Closed Loop - A broadly applied term, relating to any system in which the output is measured and
compared to the input. The output is then adjusted to reach the desired condition. In motion control,
the term typically describes a system utilizing a velocity and/or position transducer to generate
correction signals in relation to desired parameters.

Command Set — Defines the operations that can be executed by the motion controller

Commutation - The action of applying currents or voltages to the proper motor phases in order to
produce optimum motor torque.

Critical Damping - A system is critically damped when the response to a step change in desired
velocity or position is achieved in the minimum possible time with little or no overshoot.

DAC - The digital-to-analog converter (DAC) is the electrical interface between the motion controller
and the motor amplifier. It converts the digital voltage value computed by the motion controller into an
analog voltage. The more DAC bits, the finer the analog voltage resolution. DACs are available in
three common sizes: 8, 12, and 16 bit. The bit count partitions the total peak-to-peak output voltage

DCX-PCI300 User’'s Manual 251

Glossary

swing into 256, 4096, or 65536 DAC steps, respectively.
Dead Band - A range of input signals for which there is no system response.

Driver - Electronics that convert step and direction inputs to high power currents and voltages to drive
a step motor. The step motor driver is analogous to the servo motor amplifier.

Dual Loop Servo — A servo system that combines a velocity mode amplifier/tachometer with a position
loop controller/encoder. It is recommended that the encoder not be directly coupled to the motor. The

linear scale encoder should be mounted on the external mechanics, as closely coupled as possible to
the ‘end effector’

Duty Cycle - For a repetitive cycle, the ratio of on time to total time:

Efficiency - The ratio of power output to power input.

Encoder - A type of feedback device that converts mechanical motion into electrical signals to indicate
actuator position or velocity.

End Effector — The point of focus of a motion system. The tools with which a motion system will work.
Example: The leading edge of the knife is the end effector of a three axis (XYZ) system designed to
cut patterns from vinyl.

Feed Forward - Defines a specific voltage level output from a motion controller, which in turn
commands a velocity mode amplifier to rotate the motor at a specific velocity.

Following Error - The difference between the calculated desired trajectory position and the actual
position.

Friction - A resistance to motion caused by contacting surfaces. Friction can be constant with varying
speed (Coulomb friction) or proportional to speed (viscous friction).

Holding Torque - Sometimes called static torque, holding torque specifies the maximum external
torque that can be applied to a stopped, energized motor without causing the rotor to rotate
continuously.

Inertia - The measure of an object's resistance to a change in its current velocity. Inertia is a function
of the object's mass and shape.

Kd - Kis a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant.
The lower case ‘d’ designates derivative gain.

Ki - K is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant.
The lower case ‘i’ designates integral gain.

Kp - K is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant.
The lower case ‘p’ designates proportional gain.

252 Precision MicroControl

Glossary

Limits - Motion system sensors (hard limits) or user programmable range (soft limits) that alert the
motion controller that the physical end of travel is being approached and that motion should stop.

MCAPI - The Motion Control Application Programming Interface - this is the programming interface
used by Windows programmers to control PMC's family of motion control cards.

MCCL - Motion Control Command Language - this is the command language used to program PMC's
family of motion control cards.

Micro-Stepping - Stepper drive systems have a fixed number of electromechanical detents or steps.

Micro stepping is an electronic technique to break each detent or step into smaller parts. This results
in higher positional resolution and smoother operation.

Open Loop — A control system in which the control output is not referenced or scaled to an external
feedback.

Position Error - see following error.

Position Move - Unlike a velocity move, a position move includes a predefined stopping position. The
trajectory generator will determine when to begin deceleration in order to ensure the actual stopping
point is at the desired target position.

PWM - Pulse Width Modulation is a method of controlling the average current in a motor’s phase
windings by varying the duty cycle of transistor switches.

Repeatability - The degree to which the positioning accuracy for a given move performed repetitively

can be duplicated.

Resonance - A condition resulting from energizing a motor at a frequency at or close to the motor's
natural frequency.

Resolution - The smallest positioning increment that can be achieved.
Resolver - A type of feedback device that converts mechanical position into an electrical signal. A

resolver is a variable transformer that divides the impressed AC signal into sine and cosine output
signals. The amplitude of these signals represents the absolute position of the resolver shaft.

Servo - An automatic system in which the output is constantly compared with the input through some
form of feedback. The error (or difference) between the two quantities can be used to bring about the
desired amount of control.

Servo tuning — the process in which the appropriate gain values for the PID filter are determined

Slew - That portion of a move made at constant, non-zero velocity.

Step Response - An instantaneous command to a new position. Typically used for tuning a closed

DCX-PCI300 User’'s Manual 253

Glossary

loop system, ramping (velocity, acceleration, and deceleration) is not applied nor calculated for the
move.

Tachometer - A device attached to a moving shaft that generates a voltage signal directly proportional
to rotational speed.

Torque -
Velocity Mode Amplifier — An amplifier that requires a tachometer to provide the feedback used to
close the velocity loop within the amplifier.

Velocity Move - A move where no final stopping position is given to the motion controller. When a start
command is issued the motor will rotate indefinitely until it is commanded to stop.

254 Precision MicroControl

Glossary

DCX-PCI300 User’'s Manual 255

Appendix

Appendix Contents

e Power Supply Requirements

o Default Settings

256 Precision MicroControl

Appendix

Power Supply Requirements

DCX-PCI300 0.9 wom e
DCX-MC300 4 01 .01 A
DCX-MC320 4 .01 .01 A
DCX-MC360 7 — A
DCX-MC400 25 e e A
DCX-MC500 1 * * A

* Current depends on output loading

DCX-PCI300 User’'s Manual 257

Appendix

Default Settings

Programmed Velocity 10,000
Programmed Acceleration 10,000
Programmed Deceleration 10,000
Minimum Velocity 1,000
Current Velocity 0
Velocity Gain 0
Acceleration Gain 0
Deceleration Gain 0
Velocity Override 1
Torgue Limit 10
Proportional Gain 2
Derivative Gain 1
Integral Gain .01
Integration Limit 50
Maximum Following Error 1024
Motion Limits disabled
Low Limit of Movement 0

High Limit of Movement 0
Servo Loop Rate MS
Stepper Pulse Range HS
Position Count 0
Optimal Count 0
Index Count 0
Auxiliary Status 0
Position 0
Target 0
Optimal Position 0
Breakpoint Position 0
Position Dead band 0

User Scale 1

User Zero 0

User Offset 0

User Rate Conversion 1

User Output Constant 1
Sampling Frequency 0
Slave Ratio 1

258 Precision MicroControl

Index

Index
(<] o] o 1= ST PR TP URTT PR PRPRPRPRPRPN 95
LE1S) (13T P 99
A WITING <ottt ee e 98, 99
) Axis number
Acceleration CRANGING ..o, 118
s_ettlng .. 49, 58 Axis settings
Active level restoring user defined settings...........c..c......... 109
limit SWItCheS .. 74 saving user defined Settings...........c...ooooee.... 108
Addressing the controller.............ccccocveeeeiiins 3,19
Analog I/0O
(o7] 01T | ¢ To [144 B
L01S] 1] o R 144
Analog input Backlash compensation
FEPONING . ceeitteieee ittt 144 AESCHPLION ..eeeieiiiiee e 100
Analog output ENADIE.....coii 100
calibrationccccviii 145 Band pass filter ..o 104
AESCHIPLON ..eeeiiiiiiiiiiiee e 142 BF022
Max. [0adingcccceeiiiiiii e 143 mounting fOOtPrintcccooiiiiiiiiiieii i 217
SEHING .« 145 Breakout
AFC MOLION Leeiiiiiiiie et 61 ribbon cable..........occoveiiii 8
Contour buffer.......cccccovviee i 63 Breakout assemblies 219, 225, 228, 231
ENADIE ... 64 Brushless servo
on the fly changes.......ccccccciviiie 68 COMMUEALIONvviiieree e ee e 180
Vector accelerationcccccevvvvveeeviiieeennineen, 62
Vector deceleration.........ccccceeeeviiiiiiiiinenee s 62
VeCtor VEIOCILYc.covvveeeiiiiiiieiiieee e 62 C
At target))
COMMANAING ..., 89 Calibration
AESCHIPLION .o 87 analog module OUtpULSc.cviiieiees 145
Auto Initialize StEPPEr, ON POWET UP ..evivrieieeeeeeianiiirreeeeeee e 30
loading user defined settings................cco....... 108 Capture data
Auxiliary encoder actual POSItIONoovcvvieiiieie e 119
AU TOOP SEIVO ..o, 95 DAC (_)utput .. 119
SEIVO vttt ettt 95 following @rror.........ooviiiii, 119
259

DCX-PCI300 User’'s Manual

Appendix

optimal POSItIoONueieiiiiiiieee e, 119 DCX-BF360-R ... 8
Capture POSItIONcoovvvreeiiiiiee e 115 DCX-MC300.....cccciiiiieeiiiiieeeiiiee e siree e eiee e 6
Changing the axis numbercccoociiiieennnn. 118 DCX-MC302....coiiiiiiieeeee et 7
Closed loop stepper DCX-MC320......ccccctiiieiee et eesiveee e 6

1L 1L PP PR 53 DCX-MC360.....ccceeiiiieeiiiiiee it 6
Closed loop stepper control DCX-MC3B2......ccccctriieieee et 7

described ... 52 DCX-MCA00......cccoiiiiieiiiiiee et 7

ROMING ..o 80 DCX-MCBXO0......ccictrieeiie e iecteie e a e 7
Commutation DCX-BF3XX-H

SEIUD 1ttt 180 PINOULS ...ttt 221, 224
Compare output DCX-MC300

described ... 116 fEALUIES woevveee e 6

mode, schematic, axis /Occccceeiiiiiiiiiiinen 169, 176

1OgGIE. e 117 upgrading from DCX-MC200...........ccccceeerinnnnnee 131

mode, 0Ne-Shot..........cooiiiiii e, 117 wiring example, open collector drivers............ 171

Mode, PErOd......ccceeeveeeiiiiiiiiee e 117 wiring example, opto isolators.............cccee...... 170
Connector DCX-MC302

DCX-BFO22ccoitiieeiiiiiie e 215, 216 fEALUMES ..evii it 7

DCX-BF300-R....ovvveiieeeiiiiiiiieeeee e, 225 WINNG €XamMPIE ...vveeeeeee e 224

DCX-BF320-R....cuviieieeiiiiiiiieieeee e, 228 wiring example, open collector drivers............ 178

DCX-BF360-R.....ceeeiiiiiiiiiiiiiiiieeeeiieeen e 231 wiring example, opto isolators...........ccocveeeennee 178

DCX-BF3XX-H...cooiieiiiii e 219 DCX-MC320

DCX-MC300-H.....cceeviiiiiiiiiiiiiiiiiiieieieieieieieieieens 166 fEAtUIES woevveee e 6

DCX-MC300-R.......cceeiiiieeiiiiieeeiiiee e eiee e 167 schematic, axis /Occccoccvveeivciie e 185

DCX-MC302-H....oueeiiiiiiiiiiiiiieieeiieeeeeee 175 wiring example, open collector drivers............ 188

DCX-MC320-H.....oeeiiiiiiiiiiiiiiiieeiieeeeee, 183 wiring example, opto isolators.............cccceeeeee. 187

DCX-MC320-R......cceeiiiiiieiiiiieeeiiiiee e eniee e 184 DCX-MC360

DCX-MC360-H.......cccoviiireiiiiiieeiiiiee e 193 fEALUMES ..evii i 6

DCX-MC360-R.......cceeiiiieeiiiiiieeiiiiee e eniee e 194 schematic, axis /Occccovvveeiiciiee e 196

DCX-MC362-H.....ovvvveeeiiiiiiieieieee e, 202 upgrading from DCX-MC260.........ccccceeeerinnnns 132

DCX-MC400-H.....uveeeeeeiiiiiiieeeeee e, 208 wiring example, open collector drivers.... 198, 206

DCX-MCA400-R....ouveeieeeiiiiiiiieeieee e, 209 wiring example, opto isolators................. 197, 205

DCX-MC500-H.........covctiieeeiiiiee e 212 DCX-MC362

DCX-MCBEXO0 ..cciiiiiiiiiiiiiiieiiiiiiiieieeeieveveveieveieneees 213 fEAtUIES oo 7

DCX-PCI300cceteeeiiiieeeeeeeeeeeeeeeeeeeeie e 160 schematic, axisS /Occooeevvviiiviiiieieeeeeee, 204
Contact Precision MicroControl.............cccccceeeennnns iii WIFNG €XamMPIe ...ooeiiiiiiiiiie e 224
Contour buffer DCX-MC400

AESCIIPLION ..eeviiieiiiiiiee e 63 fEALUIES ..oeieie i 7

tell contour CouNntoeveviiiiieiiie e, 63 DCX-MC500
Cubic spline interpolationcccccvvvveeeeeeeiinnnns 68 fEALUIES wovvvei e 7
Current sink/source DCX-PCI300

digital outputcooovie e, 137, 155 documentation...........cccvveeereeee e ii

(=511 11 Vo TSR 120

upgrading from DCX-AT200.........cccceevveeennnnnn. 131
D Deceleration

L1 11 T RS 49, 58
DCX command (MCCL) Default SEHNGSveeeeeeeeeeeeeeeeeeeeeeee e, 258

AESCHIPLION ..o 24 Derivative gain

fOI’mat ... 24 descrlptlon ... 30

pausing a command / SEQUENCE...........c..cc..co..., 27 SAMPIING PEIIOU.....coiveveririiie et 38

repeating ... 26 SOING ..ot 38

SiNgle SePPING ..o, 121 DEVICE TMVETS ..., 4

terminating a command / sequence 27 Digital I/O
DCX module _ CONFIGUITNG . 138

changing the axis nUMber...........ccccooooennn, 118 AESCIIPHON ..., 137
DCX system components output, Max CUIENtcccevevveeeeerrenane. 137, 155

DCX-BF300-R.....cciiiiiiiiiiiiiieiiiieieiiiieeieeeieneeeienenenes 8 PCI300, PN OUL....eveeeeeeeeeeeeeeee e 160

DCX-BF320-R.oiii 8 TESHING ..t 138
260 Precision MicroControl

Index

TUMN Off e 140 effects upon SYStemcccccceeiiiiiiiiieeeee e 40
TUMN ON Lo 140 Frictionless servo
Direction using output deadband...............cccccvieeeeeeiinnns 48
SEHING «ooeieee e 60
Documentation
DCX-PCI300 motion controllerccccccevvvveeenees ii G
Dual loop servo control _
velocity mode amp..........cccovevrecrenccinnnns 45, 95 Gearing
Dual ported memory enable R R RRRL LI L L L LR R R ELLLLLLELEEEEER RS RLLLE 71
data tADIES ... 257 SEUNG FAUO......ooviii 1
AESCHPLON ..., 257 terminate ... 71
E H
Encoder High pass filter ..., 104
AUXITIAIY ...veveecee e 95 Home sensor
CRECKOUL. ..o 32 ChECKOUL......ctiiiiiii s "
Checkout’ Stepper .. 53 WII’Ing L L e L L LR LR AR L LI L L LR 77
AESCHItPION .. 30 Home switch/sensor
rEVErse PRASEdccocvevvrivieiicriece s 56 voltage range................... 163, 172, 181, 190, 200
reversed phased........c.ccveevvieecese e, 38 Homing an axis
FOIOVET ...ttt 103 closed l00p Stepper ... 80
Encoder Index eﬂCOder |ndeX .. 81
CRECKOUL. ..., 78 home SeNSOor ..., 85
AESCHIPHON ... 30 Mt SENSON ..o 82, 86
Error Codes Y S 7/ 1, 77, 80
MCAPL ..o 246 Stepper, OPeN I00P ..o 84
MCCL e 247 troubleshootiNg ... 244
g o QI = B 159
E-stop I
€NADIE ..., 101
EXAMPIES...veiiiiii e 101 '
. IIR filter
Exr::;%gred """"""""""""""""""""""""""""" 101 AiSADIE ..o 104
: . ENADIE.......oiiieeeeeeeee 104
hOMING FOULINE...ovvvvvssssssssssssssssssssssssss 86 (o= To loToT=Y 1ioi =]) £ 104
Inertia
E effects upon System ... 38
Integral gain
Fall Safe Operatlon deSCI’IptIOﬂ SRR e L L L LR R R R R L 30
WatChdog CIrCUILcveveeeeeeeeetece e 135 disable while movingccccooeiiicinn, 128
Feed forward ... 46' 90' 135 Settlng.... .. 40
ACCElerationcccvovereeeeeeeeeeereeeceeeennns 48,91 Integral limit
Calculatlng __ 46, 91 deSCFIptIOﬂ ... 42
deceleratlon ... 48, 91 Sett'ng .. 42
describedooeeiiiiii 46
SEHING e 46, 91 3
Firmware (operating code) update....................... 107
Flash Wizard .
update firmwareccccceeeveiiiiiiieeeee e 107 Jogglsll%pti on 72
Foélggﬁ?se;trﬁr: 32 Joystick controlled motion...........cccccceveeeei i, 72
Lo ISR Jumpering
demonstrated............ccocoeiiiiiiiii 49 DCX-BE022 217
gﬁszcbrl'g“o” """""""""""""""""""""""""""""" gg DCX-MC300 oo 168
£ TOBDIE 3 DOX-MC302 ... 176
... DOX-MC320 . e
261

DCX-PCI300 User’'s Manual

Appendix

DCX-MC360cvvvieeiiiiieeeciiie e esiie e 195
DCX-PCI300ccuutieeiiiieeeiiiie e eiiee e eniee e 160
L
Learning POINtS ..o 109
LED's
BITO e 159
Limit switch/sensor
voltage range.................. 164, 173, 182, 190, 200
Limiting the servo command output.................... 126
Limits
active level ... 74
ChECKOUL.....ccoiiiiiiiiiiiee e 73
AISADIE. ..., 73
ENADIE .. 73
hard (SWitch / SENSOI)cccoviiiieiiiiieiee e, 73
homing an axiS........cccccevviiiiiiiiieiieeee 82, 86
inverting active levelccccccceiiiiiiinen 73,74
normally closed SWitCh...........ccccceiiiiiiiinneen. 73,74
pProgrammable........cccceeveeiiiiiiiieieee e 73
troubleshootingccccveeeiee e 244
1L o SRR 73
Linear interpolation..........cccccceveeeii i 61
Contour buffer........ccccoiiii 63
eNABIE ... 64, 110
on the fly changes..........ococceiiiiieee 68
SPECIHYING ..eeeeiiiiieeiriiie e 62
Vector acceleration...........cccceovviiiiiiiiiineeennens 62
Vector deceleration...........ccccevviiiiiiiieieieeeenens 62
VeCtor VEIOCILYcooviiiiiiiiiiiie e 62
LiN€ar MOOFc.vvveeiiiiiee et 29
LOW Pass filtercceveeiiiiiiiiiieeee e, 104
M
Macro command
as background tasK............ccccevveeeieeee i, 112
defining ... 111
describedccevveiiiiiiii 110
MEMOIY SIZE ..uevviiiieieee e e ceeee e 111
(=] 0o 119 T SR 111
resetting (deleting) ..o 111
single stepping a programcccoeceveeeeriinnenn. 121
VOlatile ... 111
Manual PoSItioNINgc..uvveeeiieeiiiiiiiieie e 72
Master / Slave
(o [=ETor 1] 0] 1T] o NS SR 71
ENADIE ... 71
SIAVE TALIO .evveieveeee e 71
tangential knife control.............cccccvveeveeee i, 122
terminationcccce i 71
threadingc.cevvvvveeiiiiee e 124
MCAPI
SEIUP . ettt 24

MCCL command

[IR filter disable.........ccooiiiiiiiiiiiiieeee, 104
[IR filter enable ..., 104
[IR filter load coefficientsccccccoviviiieeennnnn. 104
MCCL commands
single stepping a program.............cccccvvvveeeennn. 121
Minimum PC requirementsccccceveeevevicivvneeeeeenn, 4
Module
ANAIOG 1O oo 7
Digital 1/O...ovveeeeieeeeeee e 7
MOLION CONEIOL.........viiiieiie e 6
Motion complete
attarget ... 87
AESCHIPLON ... 87
trajectory complete ..., 87
Motion control
backlash compensation..............cccccceveeeeeennins 100
Constant velocity Movecccccvveeeeeeeeeieenns 60
CoNtOUr MOVE......ceiiieiieeeeeeeeeeeeeeeeeeeeeeeee e 61
Learning / Teaching points.........cccccceeevvvvnneen. 109
Master / SIaVecceeeeiiiiieiiie e 71
PAUSE MOLION......ovviiiiiiiieiiiiee e 114
POINt t0 POINTeeeeiiiiiiiiieee e 60
required SettingsS........cccovvvveveiiiieee e 58
FESUME MOLION....cciiiiiiiiiiieeee e 114
Tangential knife ..., 122
theory of operation ..o, 29
threadingcocoiveeiee e, 124
TOrque MOAEuvveieeeeeee it e 126
Motion Control
defined.......ccuveeiii 11
Motion Integrator
analog /O ... 144
analog output calibrationcccccceveeevninns 145
digital O . 138
encoder ChecKOUL............vvveveieeeiiiiieeeee e 32
encoder index checkoutccccviieeeieeinnnns 78
home sensor checkout.............ccccceeeiiiiiiiineen, 77
limit sensor checkout ..., 73
troubleshooting.......ccccccveveiiiieei e, 235
Motor control output
DCX-MC300.....ccceiiiiiieiiiiieeeiiieeeeeniieee e sieeee e 29
DCX-MC320.....cciiiiiieieiiiiiee it 29
DCX-MC360.....ccceiiiiiieiiiiieeeiiieeeeeniieee e nieeee s 30
HMIEING o 126
Mounting footprint
BFO22......ooiieiieiee ettt 217
Moving motors
Motor Mover program...........ccccceeeeeeeeeaeeeenns 49, 57
required SettingsS........cccuvvveerieei e 25
SEIVO MOLOF ..o 30
Stepper MOLOr........ovvviiiiiie e 51
Multiple moves sequences
SEIVO tUNING ...evveieieeee e e e e e e e 44
Multi-tasking
commands not supported...........oevevvvveeereeenn. 112
CPU utilization...........cccveeeeiieeiiiiiiieeeee e 113
described........ccoiiiieii 112
example. ... 112, 113, 114

262

Precision MicroControl

global data registers ..., 113 DCX-MC320-H ...t 183
passing data between............ccccceeeeiiiiiniiiinen, 113 DCX-MC320-R ...ttt 184
private data registerscccccvvveeeee e vcciinnnnn, 113 DCX-MC360-H......ccvviiieeeeeeiiciieeee e 193
quantity sUppOrtedcccceeevieciiieieeee e, 113 DCX-MC360-R......ccvvieeeeeeeiiiciieeee e 194
TErMINALION c.evveeiieeeeeeee e 114 DCX-MC362-H ..., 202
LE1S] 1] o SR 112 DCX-MCA400-H ...t 208
DCX-MCA400-R ...eeiiiiiiiiiiie e, 209
DCX-MC500-Heiiiiiiiiiiiieieeeeeeeee e, 212
N D103 V1) (o 213
o) DCX-PCI300 gen. purpose /O..........ccccuvvveeen. 160
Normally closed limit SWitchc..ccco.... 73,74 Plug and Playccoveveereeeeeeeeeeeeeeeee e 3,19
(L0 (] I 1 L= TR 104 PMC email address. ... iii
PMC web address.......coooeevviiiieieiiiieeeeee e iii
o) Point to point motion
1Sy U ([o R 60
Position
On the fly changes .
arc and linear motioncceeeeeeeeiieeiiieeeeeeeeeenenen 68 PoF\s)i?iCo %r(ilggtu.r.é """"""""""""""""""""""""""" e
Constant velocity motion.........cccccccoeecvvvveeereennn. 89 cap
PoiNt t0 POINt.......cevreeeeiiiiiee e 89 dgscnpﬂon """"""""""""""""""""""""""""" 115
Trapezoidal velocity profileccccccoevviiinnnnneen. 89 Pojglsi':i ct(i)g:lpare 116
Operating SYStEMSuveeiiiiiiieeiiiiee e 4 : otion.......... S
fixed increment distances........ccoooovvvevevevvnnenn. 116
user defined poSitionsSccoooiiiiiieiiieennns 116
P Position mode
ENADIE.....ceeei e 60
Parabo”c Ve|0city prof”e Printing a PDF document 248, 249
AESCIIPLON ..., 60 Programming)
Pause MOLION .o 114 tutorlal.... .. 1l
Pausing Programming languages
MCCL command / SEQUENCEecveeveeerreereerens 27 Suppprted TR T T LT ILRLE 4
PC requirements Proportional gain
MHNIMUMIS. .+t ee e e eeeeeeee e 4 AESCrIPLON ... 30
PDE L1 11 T RSP 37
describedouveeiiiii e, 249
document printingcccceeeeevevciiineeeeeenn 248, 249 R
viewing a doCUMEeNtccevveeevvirivinineeeeeeiniens 249
Phc?ustlggt/encoder 33 38 Recording position data..........ccccceveeeviiiiiiinennnnn, 119
PID digital filtercccc...... See Tuning the servo Repeating
algorithm ... 30 COMMANG OF SEQUENCE........ovevvenessssinnnnesoss 26
1D @I M oo 30 Report ,
AESCIIPLON ..eeiiiiiiiiiiiiiiee e 30 BXIS ALIAIGEL 89
I term 30 captured datacccceeeeeviiiiiiiiiee e, 119
I s 3 B 24, 25 51
rate selé.c“tli;)“r; """""""""""""""""""""""""""" 34 Status Of XIS ...coovvvvevieieeeeeee e 74,75
restoring settlngslos trajectory complete........oooccvvveieieee e, 88
S Reset
Pi;hggtry OF OPEIAUON ... 30 =] 1= | R 120, 160
DCX-BF022 215. 216 the controller.........coovvveeiiiei e, 120
DCX-BF300-R.....oooovoeoeooooooeoeoooeoeoeoooooo 225 Restore .
DCX-BE320-R 298 cont_roller settmgs R T N 108
DCX-BE360-R.... o 231 Restoring user defined axis settings................... 109
DCX-BE3XX-H .. o 219 RESUME MOLION......coivveiiiiieeee e 114
DOXMCRO0H """ g Reverse phased
DCX-MC300-R ... e 167 Roe”r(;r\:/%?er ... 56
DCX-MCBOZ2H . 175 ENCOAET ..ottt ee e 103
263

DCX-PCI300 User’'s Manual

Appendix

S T

SalES SUPPOIT ..ottt iii Tangential knife control

Saving user defined axis settings............ccceeeuee. 108 AESCHPLION ..eeeieiiiieee e 122

Scaling EXAMPIE ..o 122
defining USer UNitS........ccccoooviiiiiiieiiieeee e, 132 Teaching POINtS........oooviiiiiii e 109

Schematic Technical SUPPOIt........cccuiiiiiieii e iii
MC300, axis /Occccevvviiiiiiieeee e, 169, 176 Terminating
MC320, axiS /Occceeeviiiiiiiiieeiee e, 185 MCCL command / SEqUENCE..........ccceeveerurrnnnn. 27
MC360, axiS /Occcccoviiiiiiiieiiee e, 196 Testing
MC362, axiS /Ocoeeeevieciiieieeee e, 204 ANAIOG /O ... 144

S-curve velocity profile digital /O ..o 138
[0 1= ETor 1] o] 1] o S 60 Threading operations

Servo command output AESCHPLION ..eeeieiiiie e 124
NG e 126 Trajectory complete

Servo loop AESCHIPLION ..t 87
AESCIPLON ..eeiiieiiiiiiiiee e 30 Trajectory generator

Servo loop rate demOoNStratedoooviiiiiiiiiie e 49
SElECHION ... 34 AESCHIPLON ...t 29

Servo motor control AISADIE ..coiiiie 37
hOMING ..o, 77,80 enable.........cccoi 49
theory of operation..........ccccccevee i 29 Trapezoidal velocity profile
tuNiNg the SErVO ..o, 35 [o = ETod 1] o] 1T o I 60

Servo systems Troubleshooting
TULOIAl . ii encoder CheckOUL...........c.vuvivvieei i 32

Servo tuning encoder checkout, stepper........cccocvevviieeeennne, 53
TULOFTAL . ii ENETAl ..ooiiiiiiii 236

Setup home Sensor INPUL.........oviiiiiiiieee 244
MCAP L ..coii it 24 [IMit SWItCNESvvveiiiiiiic e 244

Single stepping a programccccccoevecvvvieeeeeeenn 121 NO MOtION DY @ SErVO.......cooiiiiiiiiiieie e 15

Software oscillation by a Servo........cccceeeeeiiiiiiiiineeee e 15
Motion Integrator 73, 138, 144, 235 'PC' bus communication.............cccevvveeeeeeeininns 237
MOLOr MOVETcceveieeiieiiieieieieieieieieeeeeeeeeees 49, 57 SEIVO MOLION....coiiiieeiiiiie e 239, 241
Servo Tuning Utilityococvveevree e, 35 SEIVO tUNING..cevieieeiee e e 238
Status Panel ..., 33,75, 88 StatUS LED'S .ooooviiiieeeieeeeeee e 159
WINControlccevveeeviiiciieecee e 121, 247 Tuning the servo

Specifications derivative gain ... 38
DCX-MC300ovvriveieeiiiiiiiieeene e 29, 150 derivative sampling periodcccccovviieeennnne. 38
DCX-MC302oviiiiiieiiiiiireeee e 151 AESCHIPLION .. 35
DCX-MC320eutiiieiiiaeeeiiiiieeee e 29, 152 high inertia SysStemscccooviiii i, 38
DCX-MC360ccvvvireiiiiiieeiiiireeeeiiee e 30, 153 initial SEttiNGS......vvvveiiiie e 37
DCX-MC3B2tvviieieeeiiiiiiieeeee e ceinvneee e 154 integral gain.......cccccoe i 40
DCX-MCA400ccvvveeeiiiiie et 155, 207 intergal imit........cccooviiiieni e, 42
DCX-MCBXO0cvvviiieeeeeiiiiiiiiieeee e 155, 213 multiple move SeqUENCES.........cccceeeeeeveeinrnnnnen. 44
DCX-PCI300......uuiieiieeeieiieiieeeeee e 149 proportional gain.........ccccceeereee e 37

Status LED'S.....ccccvviieeeee e 159 range of slide controls...........ccccceeveeiiivciiinnnnnn. 43

Status Panel utilityooecviviveeeeeninnns 33, 75, 88 Saving SettiNgS....ccvveeevv i 43, 48

Stepper motor Servo tuning Utilityoocveeiiiiieeeiniieee i, 35
reverse phased ... 56 TULONTAIS e ii

Stepper motor control Velocity mode amplifier..........cccooceiiiiiniennnn, 45
changing the direction of motor 51 Tutorials
ClOSEA 100D ..eeiieiieiiiiiiiiee e 52, 80 DCX SEIrVO tUNING ...evvveeiieieeiiiiieeee e ii
NOMING ..o 84 Installing a motion controllercccccceeeeiins ii
fo] o =T T (oo o ISR 51 Intro to motoin control programming ii
theory of operation..........cccccceeeeiiiiiiiiiinee e, 30 INtro 10O PMC ... ii

Servo Systems Primerccccevvecccvivveeeeee e s ii
264 Precision MicroControl

Index

U Velocity profiles
Contour mode MOtioN.......cccceeiiiiiiiiiiieieee s 61
Update ParaboliCccccccovviiiiiiii e 29, 60
firmware (operating code)..........ccccvevvivveeennnnn 107 S-CUIVE ..o 29, 60
Upgrade Trapezoidal.........ccccveviiieeeiiiiiieeiee e, 29, 60
DCX-PCI300 from DCX-AT200ccovveeenneen. 131
User units W
controller time basecccccovveeeiviiieee i, 134
Lo =T Tor 1 0] 1 o] o SRR 132 .
MACNINE ZEIO ..o 134 Wait . ,
OUEDUE CONSEANG +-vvvvvveoeoeoeoeeoeeeoeoeoeeoo 135 for 'at .target ... 89
PAIT ZEI0...ui i 134 for trajectqry (_:omplete """""""""""""""""""" 88
SEHING <o 132 Watchdpg.cwcwt
trajectory time ... 133 Wedbezglg?;':: """"""""""""""""""""""""""""" 135
USEI SCAIE ..vvvieiiiiiiiiii e 133 PMC Motion Control ... i
Wiring
\Vi auxiliary encoderccccceeveeeiiiiiiiiieeeeeeenn, 98, 99
BF3XX-H breakout.........ccccccovcvvvveiiinnnnnn. 221, 224
VeCtor aCCelEration............ocveeoeeeeeeeeeeeeeeeeesenann 62 closed 100p StePPET ... 53
Vector decelerationcccccveveveveveveeeeesseeenns 62 encoder, reversed phased ... 38
VECHOr VEIOCILY ... 62 E-StOp oo 101
Velocity NOME SENSON......cciiiiiiiiiiie e 77
AiSADIE.....eeiiii 37 IMIt SENSOT ... 73
FESLONNG SEHNGS ...vvveeeeeeeeeeeeeeeeeeeee e, 108 MC300, open collector drivers 171
St 100 NIGN oo 33 MC300, 0pto iSOIAtOrScooviiiii 170
Y1 111010 [P TOTT TP 49 MC302......convininiinii, 224
VEIOCItY GAIN ..o 135 MC302, open collector drivers 178
Velocity mode MC302, opto isSolatorsccuveeeeeeeeiiiiiiiiee, 178
ENADIE ... 60 MC320, open collector drivers ... 188
Ve|ocity mode amp"ﬁer MC320, OptO ([0 F= 1 0] £ 187
AESCHPLON . 45, 90 MC360, open collector drivers 198, 206
TUNING v 45 MC360, opto isolatorscccceeeue. 197, 205
Ve|0city mode move MECBB2.....ee 224
EXECULION. ... 60 servo axes, dual...........cooiiiii, 224
setting the direction............ccocoeveveeeeeeeeeeeeeen. 60 stepper axes, dual...........cooviiiiiin, 224
LS 2= Lt 1] o [SRR 61
265

DCX-PCI300 User’'s Manual

A9PMC

Fimc o, Miciplonbon Com

Precision MicroControl Corporation
2075-N Corte del Nogal
Carlsbad, CA 92009-1415 USA

Tel: (760) 930-0101
Fax: (760) 930-0222

WWW.pmCCor p.com

Information: info@pmccorp.com
Technical Support: support@pmccorp.com

	Prologue
	Introduction
	DCX Motion Control Primer
	The Command Set - the Heart of the Motion Controller
	The Modular Architecture of the DCX-PCI300
	Why does a servo need to be tuned?

	PC Communication Interfaces
	High Speed Binary interface
	ASCII MCCL Interface

	DCX Operation Basics
	Introduction
	Low Level DCX Operations

	Motion Control
	Theory of DCX Motion Control
	DCX Servo Basics
	Tuning the Servo
	DCX Stepper Basics
	Closed Loop Steppers
	Moving Motors with Motor Mover
	Defining the Characteristics of a Move
	Velocity Profiles
	Point to Point Motion
	Constant Velocity Motion
	Contour Motion (arcs and lines)
	Electronic Gearing
	Jogging
	Defining Motion Limits
	Homing Axes
	Motion Complete Indicators
	On the Fly changes
	Feed Forward (Velocity, Acceleration, Deceleration)
	Save and Restore Axis Configuration

	Application Solutions
	Auxiliary Encoders
	Backlash Compensation
	Emergency Stop
	Encoder Rollover
	User Defined Filters (Notch, Low Pass, High Pass, and Band Pass)
	Flash Memory Firmware Update
	Initializing and Restoring Controller Configuration
	Learning/Teaching Points
	Building MCCL Macro Sequences
	MCCL Multi-Tasking
	Pause and Resume Motion
	Position Capture
	Position Compare
	Reassigning Axis Numbers
	Record Motion Data
	Resetting the DCX
	Single Stepping MCCL Programs
	Tangential Knife Control
	Threading Operations
	Torque Mode Output Control
	Turning off Integral gain during a move
	Upgrading from a DCX-AT200 motion control system
	Defining User Units
	DCX Watchdog

	General Purpose I/O
	DCX Motherboard Digital I/O
	Configuring the DCX Digital I/O
	Using the DCX Digital I/O
	DCX Module Analog I/O
	Using the Analog I/O
	Calibrating the MC500/MC520 +/- 10V Analog Outputs:

	DCX Specifications
	Motherboard: DCX-PCI300
	DCX-MC300 - +/- 10 Volt Analog Servo Motor Control Module
	DCX-MC302 – Dual +/- 10 Volt Servo Motor Control
	DCX-MC320 - Brushless Servo Commutation Control Module
	DCX-MC360 - Stepper Motor Control Module
	DCX-MC362 – Dual Stepper Motor Control Module
	DCX-MC400 - 16 channel Digital I/O Module
	DCX-MC5X0 - Analog I/O Module

	Connectors, Jumpers, and Schematics
	DCX-PCI300 Motion Control Motherboard
	DCX-MC300 +/- 10V Servo Motor Control Module
	DCX-MC302 Dual Axis +/- 10V Servo Motor Control Module
	DCX-MC320 Brushless Servo Commutation Control Module
	DCX-MC360 Stepper Motor Control Module
	DCX-MC362 Dual Axis Stepper Motor Control Module
	DCX-MC400 Digital I/O Module
	DCX-MC500/510/520 Analog I/O Module
	DCX-BF022 Relay Rack Interface
	DCX-BF3XX-H High Density Breakout Assembly
	DCX-BF300-R Servo Module Breakout Assembly
	DCX-BF320-R Servo Module Breakout Assembly
	DCX-BF360-R Stepper Module Breakout Assembly

	Troubleshooting
	Controller Error Codes
	MCAPI Error Codes
	MCCL Error Codes

	Printing a PDF Document
	Glossary
	Appendix
	Power Supply Requirements
	Default Settings

	Index

