

DCX-PCI300
Modular Multi-Axis Motion Control System

Motion Controller User’s Manual
Revision 1.2b

Precision MicroControl Corporation
2075-N Corte del Nogal

Carlsbad, CA 92009-1415 USA

Tel: (760) 930-0101
Fax: (760) 930-0222

www.pmccorp.com

Information: info@pmccorp.com
Technical Support: support@pmccorp.com

LIMITED WARRANTY

All products manufactured by PRECISION MICROCONTROL CORPORATION are guaranteed to be
free from defects in material and workmanship, for a period of five years from the date of shipment.
Liability is limited to FOB Factory repair, or replacement, of the product. Other products supplied as
part of the system carry the warranty of the manufacturer.

PRECISION MICROCONTROL CORPORATION does not assume any liability for improper use or
installation or consequential damage.

(c)Copyright Precision Micro Control Corporation, 1994-2001. All rights reserved.

Information in this document is subject to change without notice.

IBM and IBM-AT are registered trademarks of International Business Machines Corporation.
Intel and is a registered trademark of Intel Corporation.
Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corporation.
Acrobat and Acrobat Reader are registered trademarks of Adobe Corporation.

Precision MicroControl
2075-N Corte del Nogal
Carlsbad, CA 92009-1415

Phone: (760)930-0101
Fax: (760)930-0222
World Wide Web: www.pmccorp.com
Email:
 Information: info@pmccorp.com
 Technical support: support@pmccorp.com
 Sales: sales@pmccorp.com
Precision MicroControl

Table of Contents

D

P
I
D

P

D

M

A

 Table of Contents
CX-PCI300 User’s Manual

i

rologue ...ii
ntroduction.. 3
CX Motion Control Primer... 11
The Command Set - the Heart of the Motion Controller.. 12
The Modular Architecture of the DCX-PCI300 .. 14
Why does a servo need to be tuned?.. 15

C Communication Interfaces... 19
High Speed Binary interface.. 19
ASCII MCCL Interface ... 19

CX Operation Basics .. 23
Introduction .. 23
Low Level DCX Operations ... 24
otion Control ... 29
Theory of DCX Motion Control .. 29
DCX Servo Basics ... 30
Tuning the Servo ... 35
DCX Stepper Basics .. 51
Closed Loop Steppers ... 52
Moving Motors with Motor Mover .. 57
Defining the Characteristics of a Move.. 58
Velocity Profiles ... 59
Point to Point Motion.. 60
Constant Velocity Motion... 60
Contour Motion (arcs and lines) .. 61
Electronic Gearing ... 71
Jogging .. 72
Defining Motion Limits ... 73
Homing Axes ... 77
Motion Complete Indicators ... 87
On the Fly changes.. 89
Feed Forward (Velocity, Acceleration, Deceleration) .. 90
Save and Restore Axis Configuration.. 92

pplication Solutions ... 95
Auxiliary Encoders ... 95
Backlash Compensation.. 100
Emergency Stop .. 101
Encoder Rollover ... 103
User Defined Filters (Notch, Low Pass, High Pass, and Band Pass) ... 104
Flash Memory Firmware Update ... 107
Initializing and Restoring Controller Configuration .. 108
Learning/Teaching Points .. 109
Building MCCL Macro Sequences... 110
MCCL Multi-Tasking .. 112
Pause and Resume Motion ... 114
Position Capture .. 115
Position Compare .. 116
Reassigning Axis Numbers.. 118
Record Motion Data... 119
Resetting the DCX... 120
Single Stepping MCCL Programs.. 121
Tangential Knife Control .. 122
Threading Operations .. 124

Table of Contents

Precision MicroControl

ii

Torque Mode Output Control ... 126
Turning off Integral gain during a move... 128
Upgrading from a DCX-AT200 motion control system .. 131
Defining User Units.. 132
DCX Watchdog .. 135

General Purpose I/O ... 137
DCX Motherboard Digital I/O... 137
Configuring the DCX Digital I/O... 138
Using the DCX Digital I/O .. 140
DCX Module Analog I/O .. 142
Using the Analog I/O.. 144
Calibrating the MC500/MC520 +/- 10V Analog Outputs: .. 145

DCX Specifications.. 149
Motherboard: DCX-PCI300.. 149
DCX-MC300 - +/- 10 Volt Analog Servo Motor Control Module .. 150
DCX-MC302 – Dual +/- 10 Volt Servo Motor Control Module ... 151
DCX-MC320 - Brushless Servo Commutation Control Module... 152
DCX-MC360 - Stepper Motor Control Module... 153
DCX-MC362 – Dual Stepper Motor Control Module ... 154
DCX-MC400 - 16 channel Digital I/O Module.. 155
DCX-MC5X0 - Analog I/O Module... 155

Connectors, Jumpers, and Schematics .. 159
DCX-PCI300 Motion Control Motherboard.. 159
DCX-MC300 +/- 10V Servo Motor Control Module ... 162
DCX-MC302 Dual Axis +/- 10V Servo Motor Control Module ... 172
DCX-MC320 Brushless Servo Commutation Control Module ... 180
DCX-MC360 Stepper Motor Control Module... 189
DCX-MC362 Dual Axis Stepper Motor Control Module... 199
DCX-MC400 Digital I/O Module... 207
DCX-MC500/510/520 Analog I/O Module ... 211
DCX-BF022 Relay Rack Interface... 215
DCX-BF3XX-H High Density Breakout Assembly ... 219
DCX-BF300-R Servo Module Breakout Assembly .. 225
DCX-BF320-R Servo Module Breakout Assembly .. 228
DCX-BF360-R Stepper Module Breakout Assembly... 231

Troubleshooting... 235
Controller Error Codes .. 245

MCAPI Error Codes ... 246
MCCL Error Codes .. 247

Printing a PDF Document.. 249
Glossary .. 251
Appendix.. 257

Power Supply Requirements ... 257
Default Settings ... 258

Index.. 259

Table of Contents

DC

User manual revision history

Rev. Date Description
1.0 Pre 3/12/2001 Preliminary release

 4/26/2001 Added MCCL & Multi-Tasking descriptions
 5/3/2001 Miscellaneous edits
 5/14/2001 Added - Initializing and Restoring Controller Configuration description
 5/21/2001 BF320 pinouts
 5/21/2001 BF3XX-H pinouts and high density connectors module mapping
 5/21/2001 Flash Wizard 2.20 now supported
 5/24/2001 Updated for firmware revision 1.1a
 5/24/2001 IIR filter description
 5/24/2001 Integral gain option description
 6/7/2001 Noted that the DCX-MC360 does not currently support Capture & Compare

1.0 6/7/2001 Initial release
1.1 7/26/2001 Added support for Motion Integrator

 8/14/2001 Miscellaneous edits
1.2 1/15/2002 Added Dual Axis Motion Control Modules (DCX-MC302-H, DCX-MC362-H)

 1/15/2002 Added Windows XP as a supported operating system
 1/22/2002 Updated to match firmware revision 2.0a
 1/23/2002 Added MCAPI support to Position Capture / Position Compare description
 1/25/2002 Added MCAPI support for User Define digital filters
 2/7/2002 Added MCAPI support to closed loop stepper description
 2/7/2002 Changed Homing routines
 2/13/2002 Updated to match firmware revision 2.1a
 2/26/2002 Updated to match MCAPI 3.2

1.2b 8/16/2002 Updated ribbon cable connector manufacturer part number
 12/19/2003 Added J5 connector label to DCX-PCI300 motherboard drawing

Contact us at:

Precision MicroControl
2075-N Corte del Nogal
Carlsbad, CA 92009-1415

Phone: (760)930-0101
Fax: (760)930-0222
World Wide Web: www.pmccorp.com
Email:
 Information: info@pmccorp.com
 Technical support: support@pmccorp.com
 Sales: sales@pmccorp.com
X-PCI300 User’s Manual iii

Table of Contents

Precision MicroControl

iv

Precision MicroControl

ii

Prologue

The documentation set for the DCX-PCI300 is divided into four volumes. The titles of each of the
individual volumes are:

 DCX-PCI300 Introduction and Installation Guide
 DCX-PCI300 User’s Manual
 Motion Control Application Programming Interface (MCAPI) Reference Manual
 Motion Control Command Language (MCCL) Reference Manual

All four volumes of the documentation set are available on PMC’s MotionCD. In addition to PDF
versions of the DCX-PCI300 documentation set the MotionCD includes:

• Tutorials (PowerPoint presentations)
 An Introduction to PMC Motion Control
 Installing a PMC Motion Controller (Does not Address PCI bus controllers)
 Introduction to Motion Control Programming with the Motion Control API
 Servo Systems Primer
 DCX Servo Tuning

• PMC AppNOTES – detailed descriptions of specific motion control applications

• PMC TechNOTES – one page technical support documents

• PMC Product catalogs and brochures

DCX-PCI300 User’s Manual

3

Introduction

This document describes the use of the DCX-PCI300 Modular Multi-Axis Motion Control System. For
controller and software installation information please refer to the DCX-PCI300 Introduction and
Installation Guide.

The DCX-PCI300 is an Intel compatible PC computer based servo motor, stepper motor, and I/O
controller.

3

QED

#1#3#5#7

#8 #6 #4 #2

1

1

Figure 1: The high density connector version (DCX-PCI300-H) of the DCX-PCI300 Motion Controller

The DCX-PCI 300 is a true PCI ‘plug and play’ card. When the PC is turned on, the DCX-PCI300 is
dynamically addressed into the memory map of the PC. The PC communicates to the motion
controller via dual ported memory on the DCX-PCI300. By communicating via dual ported memory the
PC is able to issue commands (move a motor, change the velocity, etc.) to the controller, and retrieve
data from the controller (report to position of an axis, report the state of a digital input, etc.) without
interrupting the basic operations of the controller

But a hardware based motion control card provides only one half of the overall motion control solution.
State of the art motion control systems typically require sophisticated multi-threaded application
programs and eye catching operator interfaces. PMC’s Motion Control Application Programming

Chapter

1

Introduction

Precision MicroControl

4

Interface (MCAPI) provides the machine designer with device drivers and a powerful function library
for Windows XP/2000/NT/Me/98 based applications.

Figure 2: PMC's Windows Motion Control Panel

MCEnableAxis(HCTRLR hCtlr, Word xAxis, short int bState);
MCMoveRelative(HCTRLR hCtlr, Word xAxis, double Distance);
MCIsStopped(HCTRLR hCtlr, Word xAxis, double Timeout);

Figure 3: Function Library examples

The MCAPI supports today’s popular programming environments including:

• C/C++
• Visual Basic
• Delphi
• LabVIEW

The DCX-PCI300 Motion Controller can be installed in most any Windows PC computer. It executes
motion functions independent of the host, so other than the minimum requirements for the selected
operating environment (XP/2000/NT/ME/98), the DCX-PCI300 does not require or use any
additional PC resources (CPU speed, PC memory, hard disk space, etc...). All documentation,
tutorials, and software (drivers, function library, diagnostics and utilities) are available on PMC’s
MotionCD.

DCX Motion
Control System

PC computer

PMC
Motion CD
Volume 2.0

Documentation
Applications
Drivers

PMC's Motion CD
 Device drivers
 Integration software tools
 Sample programs
 User manuals
 Powerpoint tutorials

Introduction

DCX-PCI300 User’s Manual

5

The term DCX refers to a system consisting of from 1 to 9 circuit boards assembled together to form a
motion control assembly. The platform for a main component of the DCX system is the DCX-PCI300
"motherboard".

3

QED

#1#3#5#7

#8 #6 #4 #2

Figure 4: DCX-PCI300-H Motion Control Motherboard

On to this platform the user installs one or more DCX modules, which are two inch square daughter
cards. These modules provide the low level motion control processing and control signals (+/- 10V
command, Step/Direction, Limit +, Limit -, Amp/Drive Enable, etc.). For a detailed description of the
capabilities and part numbers of the components that make up the DCX-PCI300 Modular Motion
Control System please refer to Chapters 1 and 5 of the DCX-PCI300 Introduction and Installation
Guide.

Introduction

6

DCX Motion Control Modules

1

226

25

JP1

JP2

JP3
1

1

1

DCX-MC300

1

226

25

JP1

JP2

1

1

1

JP3 DCX-MC320

DCX-MC360

DCX-MC300 Servo Motor Control Module
 DCX-MC300-H (for high density cabling)
 DCX-MC300-R (for ribbon cable connections)

Supported motor type: DC Brushless, Brush, Hydraulic Servo Valves, Pneumatic Servo Valves

Command output: +/- 10 volt, 16 bit analog for use with servo amplifier

I/O
Inputs (opto isolated)- Encoder Coarse Home, Limit +, and Limit -, Amplifier Fault
Output (opto isolated) – Amplifier Enable
Feedback: Quadrature Incremental Encoder Interface, 10 MHz
 Primary - Quadrature Incremental Encoder, 10MHz, Single ended (A, B, Z) or
 Differential (A+, A-, B+, B-, Z+, Z-)
 Auxiliary - Quadrature Incremental Encoder, 10 MHz, Single ended (A, B, Z+, Z-)

Precision MicroControl

DCX-MC320 AC Brushless Servo Motor Control Module with on-board Sine
Commutation

DCX-MC320-H (for high density cabling)
 DCX-MC320-R (for ribbon cable connections)

Supported motor type: Brushless AC Servo, Linear Motor

Command output: dual +/- 10 volt, 16 bit analog for use with servo amplifier

I/O
Inputs (opto isolated) - Encoder Coarse Home, Limit +, and Limit -, Amplifier Fault
Output (opto isolated) – Amplifier Enable
Feedback:
 Primary - Quadrature Incremental Encoder, 10 MHz, Single ended (A, B, Z) or
 Differential (A+, A-, B+, B-, Z+, Z-)
 Auxiliary – Hall Effect Sensors (A, B, C)

DCX-MC360 Stepper Motor Control Module
 DCX-MC300-H (for high density cabling)
 DCX-MC300-R (for ribbon cable connections)

Supported motor type: Open loop stepper, Closed loop stepper, Step/Dir controlled
 servo

Command output: Step/Direction or CW/CCW (software programmable), open
collector drivers (+5 to +30 volts @ 125 ma)

I/O
Inputs (opto isolated)- Home, Limit +, and Limit -, Null
Outputs (open collector driver) – Drive Enable, Half/Full step, Full/Half current
Feedback (optional):
 Quadrature Incremental Encoder, 10MHz, Single ended (A, B, Z) or
 Differential (A+, A-, B+, B-, Z+, Z-)

Introduction

DCX-PCI300 User’

DCX Motion Control Modules (continued)

DCX-MC302

DCX-MC362

DCX General Purpose I/O Modules

MC400

D
C

X-M
C

500

DCX-MC400 - 16 Channel Digital I/O Expansion module
 DCX-MC400-H (for high density cabling)
 DCX-MC400-R (for ribbon cable connections)

Each channel is individually programmable as either an input or output
TTL level (0 – 5 volt, 2 ma sink/source)
DCX-MC500 – 4 Channel Analog I/O Expansion module
 MC500-H – 4 input channels & 4 output channels (high density cabling)
 MC510-H – 4 input channels only (high density cabling)
 MC520-H – 4 output channels only (high density cabling)

MC500-R – 4 input channels & 4 output channels (ribbon cable connections)
MC510-H – 4 input channels only (ribbon cable connections)
MC520-H – 4 output channels only (ribbon cable connections)

Inputs – 4 channels, 0 – 5 volts, 12 bit
Outputs – 4 channels, 0 – 5 volts and/or –10 - +10 volts, 12 bit

DCX-MC302-H Dual Servo Motor Control Module

Supported motor type: DC Brushless, Brush, Hydraulic Servo Valves, Pneumatic Servo Valves

Command output: Dual +/- 10 volt, 16 bit analog for use with servo amplifier

I/O
Inputs (opto isolated)- Dual Encoder Coarse Home, Dual Limit +, Dual Limit -, Dual Amp. Fault
Output (opto isolated) – Dual Amplifier Enable
Feedback: Dual Quadrature Incremental Encoder Interface, 10 MHz

Single ended (A, B, Z) or Differential (A+, A-, B+, B-, Z+, Z-)

DCX-MC362-H Dual Stepper Motor Control Module

Supported motor type: Open loop stepper or Step/Dir controlled servo

Command output: Dual Step/Direction or CW/CCW (software programmable), open
collector drivers (+5 to +30 volts @ 125 ma)

I/O
Inputs (opto isolated)- Dual Home, Dual Limit +, Dual Limit -, Dual Drive Fault
Outputs (open collector driver) – Dual Drive Enable Dual Full/Half current
s Manual 7

Introduction

Precision MicroControl

8

DCX Motion Control Breakout Assemblies

High Density Connection Breakouts

DCX-BF3XX-H
REV. A
PMC CORP.

TS1
TO DCX-PCI300-H

TS2

 1
18

 2
19

 3
20

 4
21

 5
22

 6
23

 7
24

 8
25

 9
26

10
27

11
28

12
29

13
30

14
31

15
32

16
33

17
34

 1
18

 2
19

 3
20

 4
21

 5
22

 6
23

 7
24

 8
25

 9
26

10
27

11
28

12
29

13
30

14
31

15
32

16
33

17
34

Ribbon Cable Connection Breakouts

DCX-BF300
REV. A
PMC CORP.

J1

R
ETU

R
N

LIM
 N

EG

LIM
 PO

S
R

ETU
R

N
C

O
AR

SE

FAU
LT

R
ETU

R
N

D
IR

'N

R
ETU

R
N

EN
ABLE

SH
IELD

SH
IELD

R
ETU

R
N

C
O

M
M

AN
D

SH
LD

G
N

D
PW

R
Z-Z+B-B+A-A+ SH

LD
G

N
D

-12
+12
+5PW

R
ZBA

TO MC300

PRIMARY ENCODER AUXILIARY ENCODERTS1

TS2 TS3

DCX-BF320
REV. A
PMC CORP.

J1

R
ETU

R
N

LIM
 N

EG
LIM

 PO
S

R
ETU

R
N

C
O

AR
SE

FAU
LT

R
ETU

R
N

D
IR

'N

R
ETU

R
N

EN
ABLE

SH
IELD

SH
IELD

R
ETU

R
N

Phase U

SH
LD

G
N

D
PW

R
Z-Z+B-B+A-A+ SH

LD
G

N
D

Phase W
Phase V
+5PW

R
H

all #3
H

all #2
H

all #1

TO MC320

PRIMARY ENCODER TS1

TS2 TS3

DCX-BF360
REV. A
PMC CORP.

J1

R
ETU

R
N

LIM
 N

EG
LIM

 PO
S

C
O

AR
SE

R
ETU

R
N

G
R

O
U

N
D

H
O

M
E

1/2 STEP

+5 VD
C

1/2 C
U

R

EN
ABLE

SH
IELD

D
IR

/C
C

W
STEP/C

W

SH
LD

G
N

D
PW

R
Z-Z+B-B+A-A+ SH

LD
G

N
D

-12
+12
+5N

U
LL

FAU
LT

R
ETU

R
N

TO MC360

AUXILIARY ENCODER TS1

TS2 TS3

DCX-BF300-R – DIN Rail mounted breakout assembly for DCX Servo
Motor Control Module (DCX-MC300-R).

DCX-BF360-R – DIN Rail mounted breakout assembly for DCX Stepper
Motor Control Module (DCX-MC360-R).

DCX-BF320-R – DIN Rail mounted breakout assembly for DCX AC
Brushless Servo Motor Control Module (DCX-MC320-R).

DCX-BF3XX-R – DIN Rail mounted breakout
assembly for all -H DCX Modules. Each unit
DCX-BF3XX-H breakouts out all signals for 2
DCX module locations.

Introduction

DCX-PCI300 User’s Manual

9

DCX Motion Control Primer

Precision MicroControl

10

Chapter Contents

• Typical motion control system

• The Command Set is the Heart of the Motion Controller

• The Modular Architecture of the DCX-PCI300

• Why does a servo need to be tuned?

DCX-PCI300 User’s Manual

DCX Motion Control Primer

First things first, what is motion control?

 Using a digital processor to coordinate the movement of mechanical systems

In years past the typical motion control system was comprised of :

• A PLC (Programmable Logic Controller) which served as the digital processor
• A user interface from which the user could program and monitor the actions of the PLC
• One or more motors, either servo or stepper
• An amplifier/driver for each motor – provides the drive current for the motor windings
• A feedback device is required to ‘close the loop’ if servo motors are being controlled
• End of travel (or Limit switches) sensors are used for linear motion axes
• The load – here a platform (or stage) is mounted on bearings. A lead screw is coupled to the

motor shaft. When the motor rotates, the stage moves along the lead screw.

Chapter

2

Motor - servo or stepper

Lead screw

Encoder (servo only)

Stage

Positive Limit
sensor

Negative Limit
sensor

CRT & keyboard

PLC

Servo amplifier
Figure 5: Traditional PLC motion control system

11

DCX Motion Control Primer

12

Today’s state of the art motion control systems require sophisticated GUI’s (Graphical User Interface)
and sophisticated multi-threaded application programs to allow the machine operator to communicate
with the machine. The GUI is typically implemented using high level programming languages (C/C++)
designed to run on today’s powerful Windows PC’s.

The PLC motion control system (figure 5), which was programmed in cryptic and proprietary
languages, is replaced by a PC computer and a motion control card with Windows device drivers. The
machine designer is offered the freedom of multiple operating systems (Windows XP/2000, NT, 98 &
95) and programming environments (C/C++, Visual Basic, Delphi, & LabVIEW).

The Command Set - t
The motion controller is much m
primary task of a PC based moti
processor. While most of today’s
missile defense systems of a sm
motion controller would be nothi
motion control card does (and fo
command set. The command se

Figure

PC computer

Motion Control card

Motor - servo or stepper

Precision MicroControl

he Heart of the Motion Controller
ore than an I/O card with DAC outputs and encoder inputs. The
on controller is to off load control and monitoring duties from the PC
 motion controllers have CPU’s powerful enough to control the
all nation, without a powerful and efficient low level command set the

ng more than a very expensive, very dumb I/O card. Everything that a
r that matter everything that it does not do) is dependent on the
t of a state of the art motion controller should include:

 6: Typical PC based motion control system

Lead screw

Encoder (servo only)

Stage

Positive Limit
sensor

Negative Limit
sensor

DCX Motion Control Primer

DCX-P

• Moving one, some, or all motors simultaneously
• Calculating the trajectories and executing synchronized motion (linear interpolation, circular

contouring, helical motion)
• Setting trajectory parameters (maximum velocity, acceleration, deceleration)
• Setting PID filter parameters (proportional gain, derivative gain, derivative sampling period,

integral gain, integral limit, allowable following error
• Indicating when a move is complete
• Reporting the status of an axis, current position of an axis, target of a move, current following

error
• Electronic gearing of axes
• Homing an axis

The command set for the DCX-PCI300 is called MCCL (Motion Control Command Language) and it
supports well over 200 operations. For a complete listing and description of the DCX-PCI300
command set please refer to the DCX-PCI300 MCCL Reference Manual.

The primary market for the DCX-PCI300 is multi-threaded Windows NT applications programmed in
C/C++. In these types of environments the application program issues calls to PMC’s motion control
function library (MCAPI). The MCAPI converts the function call into the equivalent MCCL
command/commands. The device driver then handles passing the MCCL command code to the
motion control card.

For the non programmer, or when it is necessary to determine if unexpected machine behavior is the
fault of hardware or software, The MCAPI includes a utility that allows the user to issue MCCL
commands directly to the DCX-PCI300. From the keyboard MCCL commands can be entered one
character at a time and executed when the user enters a carriage return. From the File Menu the user
can download a MCCL text file to the controller.

Figure 7: WinControl allows the user to issue MCCL commands directly to
the DCX-PCI300
CI300 User’s Manual 13

DCX Motion Control Primer

Precision MicroControl

14

The Modular Architecture of the DCX-PCI300
The DCX-PCI300 is a modular multi-axis motion control card. The architecture of the DCX controller is based on the concept of Distributed
Control. Unlike control cards that use a single DSP for communication, motion control, and event sequencing, the DCX controller distributes the
processing load, resulting in more deterministic behavior. Here is a diagram detailing the modular DCX-PCI300 and associated components.

PC Computer

Application Programming
Interface

Windows Device Driver

PCI Interface

Command Processor
(implements the motion control

command set MCCL)

General Purpose Digital I/O
(PLC type event sequencing)

Trajectory Generator
(Synchronizes operations of, and

calculates the profiles for, all axes)

DCX-MC300 Servo Control Module

Servo
Amplifier

Servo
MotorQuadrature

Encoder

Encoder Decode

PID FIlter

Axis I/O
(Limits, Home, Amp Enable)

DAC (+/- 10V)

I/O Buffering
(opto isolated)

+5 V

Figure 8: DCX-PCI block diagram

A 192MHz MIPS processor on the DCX motherboard handles PC bus communication and trajectory planning. Low level motion control (PID filter &
encoder decode) and dedicated I/O for each axis are handled on the DCX motion control module by a 40 MHz DSP.

DCX Motion Control Primer

DCX-PCI300 User’s Manual

15

Why does a servo need to be tuned?
A servo is a closed loop system, which the dictionary describes as:

An automatic system in which the output is constantly compared with the input through
some form of feedback. The error (or difference) between the two quantities can be used
to bring about the desired amount of control.

In typical servo systems:

• The output is a +/- 10 volt (torque or velocity) command that is applied as an input to a servo
amplifier

• The input described in the dictionary definition comes from an encoder. An encoder is an opto
electric device that generates two pulse trains that are phase shifted by 90 degrees

• In order for a servo system to perform properly, the difference (error) between the input and
output is multiplied by a set of gain values which results in a new output, bringing about the
desired amount of control

Servo tuning is the process in which the gain values are determined. From one servo axis to another
the gain values will change depending on differences between the motion controller, motor, encoder,
and load. When a user attempts to move an axis without first tuning the servo (determining the gain
values) the motion controller will not be able to calculate the appropriate output command to apply to
the servo amplifier. One of the two following undesirable results will probably be observed:

• The axis will not move at all
• The axis moves but does not stop at the target, oscillation will probably be present

Imagine a seesaw, with the +/- 10 volt torque/velocity command on one side and the response of the
motor/load (feedback from an encoder) on the other side.

Output

(command signal)

Input

(encoder)

DCX Motion Control Primer

Precision MicroControl

16

Until the servo is tuned, the system is effectively out of balance. Only after a servo has been tuned
can the controller calculate the appropriate torque/velocity command output for a given user defined
motion.

To tune a servo axis use the Servo Tuning program included with PMC’s Motion Integrator software.
For assistance with servo tuning refer to the Motion Control chapter of this manual or view the
PowerPoint tutorials Servo Systems Primer and DCX-AT300 Servo Tuning Tutorial on PMC’s
MotionCD.

Figure 9: The Servo Tuning program is used to select PID gain values

Output
(command signal)

Input
(encoder)

Servo tuning

DCX Motion Control Primer

DCX-PCI300 User’s Manual

17

PC Communication Interfaces

Precision MicroControl

18

Chapter Contents

• High Speed Binary Interface

• ASCII MCCL Interface

DCX-PCI300 User’s Manual

19

PC Communication Interfaces

High Speed Binary interface
For PC based application programs the DCX controller provides a high speed binary interface for
communicating with the PC via the PCI bus. This interface is implemented using dual ported memory
and is mapped into the PC by the BIOS during ‘Plug and Play’ bus enumeration. PMC’s MCAPI
provides Windows device drivers and a high level function library for C++, Visual Basic, Delphi, and
LabVIEW applications programming. For additional information about available software and
integration tools please refer to the Programming, Software, and Utilities chapter of the
Introduction and Installation Guide.

ASCII MCCL Interface

The DCX-PCI300 also provides a PCI ASCII communication interface. When using the WinControl
utility the ASCII interface allows the user to communicate directly with the DCX in its native language,
MCCL (Motion Control Command Language). The WinControl utility is installed as a component of the
MCAPI (Motion Control Application Programming Interface), which is available from PMC’s Motion
CD or web site www.pmccorp.com

Chapter

3

PC Communication Interfaces

Precision MicroControl

20

In addition to allowing the user to issue MCCL commands from the keyboard one character at a time,
the WinControl utility supports downloading a MCCL text file to the controller. Simply store the
command lines in a file using a text editor. Use WinControl’s File menu option to open the file. Each
command line will be executed as it is displayed. Documenting commands can be added to the MCCL
program by preceding the comment by a semi colon.

PC Communication Interfaces

DCX-PCI300 User’s Manual

21

DCX Operation Basics

Precision MicroControl

22

Chapter Contents

• Introduction

• Low Level DCX Operations

DCX-PCI300 User’s

DCX Operation Basics

Introduction
At its lowest level the operation of the DCX is similar to a microprocessor, it has a predefined
instruction set of operations that it can perform. This instruction set, known as MCCL (Motion Control
Command Language), consists of over 200 operations that include motion, setup, conditional
(If/Then), mathematical, and I/O operations.

However the typical PC based application will never use these low level commands. Instead the
programmer will call high level functions (C++, Visual Basic, Delphi, or LabVIEW), which are passed
to the DCX via the MCAPI device driver. A example MCAPI function description is:

Move to relative position

This command generates a motion of relative distance of n in the specified direction. A motor number
must be specified and that motor must be in the on state for any motion to occur. If the motor is in the
off state, only its internal target position will be changed.

compatibility: MC300, MC320, M3260
see also: Move to absolute position

C++ Function: void MCMoveRelative(HCTRLR hCtlr, WORD wAxis, double Distance);
Delphi Function: procedure MCMoveRelative(hCtlr: HCTRLR; wAxis: Word; Distance: Double);
VB Function: Sub MCMoveRelative (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal distance As Double)
MCCL command: aMRn a = Axis number n = integer or real

LabVIEW VI:

Chapter

4
Manual 23

DCX Operation Basics

Precision MicroControl

24

Throughout this manual, when a DCX operation is referenced, the MCAPI command function will be
identified by bold, italicized text. The following description differentiates between an absolute and
relative move.

i

Point to Point motion is commanded using one of two DCX functions. To
move an axis to an absolute position use the function
MCMoveAbsolute. To move an axis a relative distance from the current
position use the function MCMoveRelative.

Low Level DCX Operations
The WinControl utility allows the user to communicate with the DCX in the native language (MCCL) of
the controller. This utility communicates with the controller via the PCI ASCII interface. All MCCL
commands are described in detail in the DCX-PCI300 MCCL Reference Manual.

i

Note – For information on installing the MCAPI and the DCX-PCI300
please refer to the DCX-PCI300 Introduction and Installation Guide.

MCCL commands are two character alphanumeric mnemonics built with two key characters from the
description of the operation (eg. "MR" for Move Relative). When the command is received by the
DCX (followed by a carriage return) it will be executed. The following graphic shows the result of
executing the VE command. This command causes the DCX to report firmware version and the
amount of installed memory.

All axis related MCCL commands will be preceded by an axis specifier, identifying to which axis the
operation is intended. The following graphic shows the result of issuing the Tell Position (aTP)
command to axis number one.

DCX Operation Basics

DCX-PCI300 User’s Manual

25

Note that each character typed at the keyboard should be echoed to your display. If you enter an
illegal character or an illegal series of valid characters, the DCX will echo a question mark character,
followed by an error code. The MCCL Error Code listing can be found in the Chapter 11 of this
manual. On receiving this response, you should re-enter the entire command/command string. If you
make a mistake in typing, the backspace can be used to correct it, the DCX will not begin to execute a
command until a carriage return is received.

Once you are satisfied that the communication link is correctly conveying your commands and
responses, you are ready to check the motor interface. When the DCX is powered up or reset, each
motor control module is automatically set to the "motor off" state. In this state, there should be no
drive current to the motors. For servos it is possible for a small offset voltage to be present. This is
usually too small to cause any motion, but some systems have so little friction or such high amplifier
gain, that a few millivolts can cause them to drift in an objectionable manner. If this is the case, the
"null" voltage can be minimized by adjusting the offset adjustment potentiometer on the respective
servo control module.

Before a motor can be successfully commanded to move certain parameters must be set by issuing
commands to the DCX. These include; PID filter gains (servo only), trajectory parameters (maximum
velocity, acceleration, and deceleration), allowable following error (servo only), configuring motion
limits (hard and soft).

At this point the user should refer to the Motion Control chapter sections titled Theory of Operation
– Motion Control, Servo Operation and Stepper Operation. There the user will find more specific
information for each type of motor, including which parameters must be set before a motor should be
turned on and how to check the status of the axis.

Assuming that all of the required motor parameters have been defined, the axis is enabled with the
Motor oN (aMN) command. Parameter ‘a’ of the Motor oN command allows the user to turn on a
specific axes or all axes. To enable all, enter the Motor oN command with parameter ‘a’ = 0. To
enable a single axis issue the Motor oN command where ‘a’ = the axis number to be enabled.

After turning a particular axis on, it should hold steady at one position without moving. The Tell Target
(aTT) and Tell Position (aTP) commands should report the same number. There are several
commands that are used to begin motion, including Move Absolute (aMAn) and Move Relative
(aMRn). To move axis 2 by 1000 encoder counts, enter 2MR1000 and a carriage return. If the axis is
in the "Motor oN" state, it should move in the direction defined as positive for that axis. To move back

DCX Operation Basics

Precision MicroControl

26

to the previous position enter 2MR-1000 and a carriage return.

With the DCX controller, it is possible to group together several commands. This is not only useful for
defining a complex motion that can be repeated by a single keystroke, but is also useful for
synchronizing multiple motions. To group commands together, simply place a comma between each
command, pressing the return key only after the last command.

A repeat cycle can be set up with the following compound command:

2MR1000,WS0.5,MR-1000,WS0.5,RP6 <return>

This command string will cause axis 2 to move from position 1000 to position –1000 7 times. The
RePeat (RPn) command at the end causes the previous command to be repeated 6 additional times.
The Wait for Stop (aWSn) commands are required so that the motion will be completed (trajectory
complete) before the return motion is started. The number 0.5 following the WS command specifies
the number of seconds to wait after the axis has ceased motion to allow some time for the mechanical
components to come to rest and reduce the stresses on them that could occur if the motion were
reversed instantaneously. Notice that the axis number need be specified only once on a given
command line.

A more complex cycle could be set up involving multiple axes. In this case, the axis that a command
acts on is assumed to be the last one specified in the command string. Whenever a new command
string is entered, the axis is assumed to be 0 (all) until one is specified.

Entering the following command:

2MR1000,3MR-500,0WS0.3,2MR1000,3MR500,0WS0.3,RP4 <return>

will cause axis 2 to move in the positive direction and axis 3 to move in the negative direction. When
both axes have stopped moving, the WS command will cause a 0.3 second delay after which the
remainder of the command line will be executed.

After going through this complex motion 5 times, it can be repeated another 5 times by simply
entering a return character. All command strings are retained by the controller until some character
other than a return is entered. This comes in handy for observing the position display during a move.
If you enter:

1MR1000 <return>
1TP <return>
(return)
(return)
(return)
(return)

The DCX will respond with a succession of numbers indicating the position of the axis at that time.
Many terminals have an "auto-repeat" feature that allows you to track the position of the axis by
simply holding down the return key.

Another way to monitor the progress of a movement is to use the Repeat command without a value. If
you enter:

1MR10000 <return>
1TP,RP <return>

The position will be displayed continuously. These position reports will continue until stopped by the
operator pressing the Escape key.

DCX Operation Basics

DCX-PCI300 User’s Manual

27

While the DCX is executing commands, it will ignore all alphanumeric keys that are pressed. The user
can abort a currently executing command or string by pressing the escape key. If the user wishes only
to pause the execution of commands, the user should press the space bar. In order to restart
command execution press the space bar again. If after pausing command execution, the user decides
to abort execution, this can be done by pressing the escape key.

Motion Control

Precision MicroControl

28

Chapter Contents

• Theory of DCX Motion Control

• DCX Servo Basics

• Tuning the Servo

• DCX Stepper Basics

• Closed Loop Steppers

• Moving Motors with PMC demo’s

• Defining the Characteristics of a Move

• Velocity Profiles

• Point to Point Motion

• Constant Velocity Motion

• Contour Motion (arcs and lines)

• Electronic Gearing

• Jogging

• Defining Motion Limits

• Homing Axes

• Motion Complete Indicators

• On the Fly Changes

• Feed Forward (Velocity, Acceleration, Deceleration)

• Save and Restore Axis Configuration

DCX-PCI300 User’s Manual

29

Motion Control

This chapter describes the basic building blocks of DCX motion control. In general, the modes of
motion described in this chapter are common to both servo and stepper motors, with specific
differences detailed in the text.

Theory of DCX Motion Control
The DCX motherboard (DCX-PCI300) uses a 192 MHz 32 bit MIPS processor that is programmed to
perform motion control tasks. Specially designed servo or stepper motor control modules are installed
on the motherboard to configure it for controlling from 1 to 8 servos or stepper motors. Each DCX
motion control module (DCX-MC300, DCX-MC320, DCX-MC360) installed on the motherboard
provides all the circuitry required to control one motor and its associated axis I/O (home, limits,
amp/driver enable, fault, etc...).

The motherboard processor implements a trajectory generator (trapezoidal, S curve, and parabolic)
that calculates the desired position and velocity of each servo or stepper motor at fixed time intervals.
These values are sent to the respective servo (DCX-MC300 or DCX-MC320) or stepper module
(DCX-MC360) installed on the DCX motherboard. Each servo or stepper module has a 40 MHz DSP
which is programmed to provide the appropriate control of the servo or stepper motor interfaced to the
module.

Servo Motor Control
The DCX servo modules use a velocity feed-forward and position feedback loop to control the servo.
The DCX-MC300 uses a 16 bit, +/-10 volt analog output signal to an external servo amplifier. The
DCX-MC320 uses two 16 bit, +/- 10 volt analog outputs to provide the phase A and B commutation
commands allowing a Sine drive amplifier to control brushless servo’s and linear motors.

Incremental encoder inputs to these modules provide feedback for closing the position loop. In
operation, the servo module subtracts the actual position (feedback position) from the desired position
(trajectory generator position), and the resulting position error is processed by the module’s digital
filter. The output of the digital filter and the velocity feed-forward are combined to set the module’s

Chapter

5

Motion Control

Precision MicroControl

30

output level. The external amplifier uses the command signal to drive the motor to the desired
position.

The DCX modules DSP monitors the motor's position via an incremental encoder. The two quadrature
signals from the encoder are used to keep track of the absolute position of the motor. Each time a
logic transition occurs at one of the quadrature inputs, the DCX position counter is incremented or
decremented accordingly. This provides four times the resolution over the number of lines provided by
the encoder. The encoder interface is buffered by a differential line receiver on the DCX module.
Jumpers on the DCX module allow the user to configure the differential receiver for use with single
ended or differential encoder.

A "Proportional Integral Derivative" (PID) digital filter on the module is used to compensate the servo
feedback loop. The motor is held at the desired position by applying a restoring force to the motor that
is proportional to the position error, plus the integral of the error, plus the derivative of the error. The
following discrete-time equation illustrates the control performed by the servo controller:

 u(n) = Kp*E(n) + Ki sum E(n) + Kd[E(n') - E(n' - 1)]

where u(n) is the module's output signal output at sample time n, E(n) is the position error at sample
time n, n' indicates sampling at the derivative sampling rate, and kp, ki, and kd are the discrete-time
filter parameters loaded by the users. The first term, the proportional term, provides a restoring force
proportional to the position error. The second term, the integration term, provides a restoring force
that grows with time. The third term, the derivative term, provides a force proportional to the rate of
change of position error. It provides damping in the feedback loop. The sampling interval associated
with the derivative term is user-selectable; this capability enables the servo controller to control a
wider range of inertial loads.

Stepper Motor Control
The MC360 stepper module contains a pulse generator that is used to provide step and direction (or
clockwise/counter clockwise) signals to an external stepper motor driver. In addition to auto calibration
on power up, the module has an internal feedback loop which accurately maintains the output pulse
frequency. The auxiliary encoder inputs of the module can be connected to an optional incremental
encoder for motor position verification or closed loop stepper control.

DCX Servo Basics

The basic steps required to implement closed loop servo motion are:

• Proper encoder operation
• Setting the allowable following error
• Verify proper motor/encoder phasing
• Tuning the servo (PID)

Quadrature Incremental Encoder
All closed loop servo systems require position or velocity feedback. These feedback devices output
signals that relay position and/or velocity with which motion controller ‘closes the loop’. The most
common feedback device used with intelligent motion control systems is a quadrature incremental
encoder.

Motion Control

DCX-PCI300 User’s Manual

31

A quadrature incremental encoder is an opto electric feedback device. A light source and photo
sensor pickup are used to detect markings on a glass ‘scale’. The more markings on the glass scale,
the higher the resolution of the encoder. Circuitry connected to the photo sensor generates two wave
forms (Phase A and Phase B), which have a phase difference of 90 degrees. This phase difference is
used by the encoder input circuitry of the DCX to:

 Determine the direction of rotation (positive or negative) of the encoder/motor
 Enhance the resolution of the encoder by a factor of 4.

For example, a 500 line quadrature incremental encoder will have 2000 encoder counts per full
rotation. The 90 degree phase difference is also used to determine the direction of motion of the
encoder. If phase A comes before phase B, the DCX will determine that motion is in the positive or
clockwise direction. If phase B comes before phase A, the DCX will determine that motion is in the
negative or counter-clockwise direction.

Some quadrature encoders include an additional ‘mark’ on the glass scale, which is used to generate
an index pulse. This signal, which ‘goes active’ once per rotation, is used by the motion controller to
accurately home (re-define the position of an axis) the axis. Please refer to the Homing Axes section
of this chapter.

There are few options that are typically associated with quadrature encoders.

Output type: Differential or single ended
Differential outputs (A+, A-, B+, B-) are recommended for superior noise immunity but the DCX
supports either output type

Index or no Index (used for homing the axis)
Differential Index (Z+, Z-) is recommended but the DCX supports single ended Z+ or Z-

+5 volt supply required or +12 volt supply required.
A +5 volt encoder is recommended but the DCX also supports a +12V encoder

Glass scale

LED Photo
sensor

Phase
generation

circuitry

Phase A

Phase B

Index

Motion Control

Precision MicroControl

32

Encoder Checkout
The Motion Integrator program provides easy to use tools for testing the operation of an encoder.. The
user has the option of using the Connect Encoder Wizard or the Motion System Setup Test Panel.

i

Note – Unlike the Connect Encoder Wizard, the Motion System Setup
Test panel does not allow the user to verify the operation of the encoder
Index.

Manually rotate the motor/encoder in either direction, the position reported should increment or
decrement accordingly. Refer to the Troubleshooting guide if the DCX does not report a change of
position.

Setting the Allowable Following Error
Following error is the difference between where an axis ‘is’ and where the controller has ‘calculated
it should be’. All servo systems require ‘some’ position error to generate motion. When a servo axis
is turned on, if a position error exists, the PID algorithm will cause a command voltage to be applied to
the servo to correct the error.

While an axis is executing a move, the following error will typically be between 20 and 1000 encoder
counts. Very high performance systems can be ‘tightly tuned’ to maintain a following error within 5 to
10 encoder counts. Systems with low resolution encoders and/or high inertial loads will typically
maintain a following error between 150 and 5000 encoder counts during a move.

The DCX supports ‘hard coded’ following error checking. If at anytime the difference between the
optimal position and the current position exceeds the user defined ‘allowable following error’, an error
condition will be indicated. The axis will be disabled (Amplifier Enable output turned off, output
command signal set to 0.0V) and the axis status word will indicate that an error has occurred. The
MCEnableAxis() function is used to clear a following error condition. To disable ‘hard coded’
following error checking set the allowable following error to zero.

Motion Control

DCX-PCI300 User’s Manual

i

The three conditions that will typically cause a following error are:

 1) Improper servo tuning (Proportional gain too low)
 2) Velocity profile that the system cannot execute (moving too fast)

 3) The axis is reversed phased (positive command results in
 negative motion)

The Status Panel screen shot below shows the typical display when a following error has occurred.

Selecting the Servo Loop Rate
The DCX supports three servo loop rates:

When the red Error
and Fol Error LED's
are on it indicates
that a following
error has occurred
33

Motion Control

Precision MicroControl

34

Servo Loop Rate Setting Description
High 8 KHz servo loop rate
Medium 4 KHz servo loop rate (default)
Low 2 KHz servo loop rate

Motion Control

DCX-PCI300 User’s Manual

35

Tuning the Servo
A servo motor motion system is a closed loop system with negative feedback. Servo tuning is the
process of adjusting the gains (proportional, derivative, and integral) of this axis controller to get the
best possible performance from the system. A servo motor and its load both have inertia, which the
servo amplifier must accelerate and decelerate while attempting to follow a change in the input (from
the motion controller). The presence of inertia will tend to result in over-correction, with the system
oscillating or "ringing" beyond either side of its target (under-damped response). This ringing must be
damped, but too much damping will cause the response to be sluggish (over-damped response).
Proper balancing will result in an ideal or critically-damped system.

i

Comprehensive PowerPoint tutorials covering servo system basics and
a step by step procedure for tuning servos are available on PMC’s
MotionCD.

The servo system is tuned by applying a command output or ‘step response’, plotting the resulting
motion, then adjusting parameters of the digital PID filter until an acceptable system response is
achieved. A step response is an output command by the motion controller to a specific position. A
typical step response distance used for tuning a servo is 100 encoder counts. If the system requires:

• Very short duration moves (less than 100 msec’s)
• Very small following error value (less than 20 encoder counts)

Then a step response of 50 encoder counts is recommended. If the servo system is moving a high
inertial load (minimal friction) then the step response should be increased to 200 – 1000 encoder
counts. There is a ‘loose’ relationship between the step response and the following error of the
system. The shorter the step response when tuning the servo, the lower the following error during

Motion Control

Precision MicroControl

36

application motion.

!

Note – Using a short step response (5 – 20 counts) may result in an
unstable system that oscillates during and after a commanded move.

From the Windows Start menu open the Servo Tuning program (Programs\MotionControl\
MotionIntegrator\Servo Tuning). From the menu bar select Setup and then Test Setup. Configure the
Test Setup dialog as shown (these settings will command a step response of 100 encoder counts plot
window time period of 500 msec’s):

Figure 10:Setting the step response distance and plot window period

From the menu bar select Setup and then Servo Setup. Configure the Servo Setup dialog as shown:

Figure 11:Configure the servo parameters

Motion Control

DCX-PCI300 User’s Manual

37

While setting proportional and derivative gain, the step response should occur with the Trajectory
Generator disabled. This will result in the magnitude of the output signal being determined only by a
PD filter, the controller will not apply a maximum velocity or ramping (acceleration/deceleration).

Setting Proportional Gain
Proportional gain controls the responsiveness of a servo system. Set the slide controls for ‘I’ (Integral
gain) and ‘D’ (Derivative gain) to 0. Set the slide control for ‘P’ for .05. Turn the Motor On. Make sure
the Trajectory Generator is off. Press the Step Plus button, the motor should move and a position
versus time plot will be displayed.

Figure 12: First move (using only proportional gain)

Motion Control

Precision MicroControl

38

Adjust the proportional gain until the plotted path crosses the target three times (no more, no less)
and stops within 5% of the target.

Figure 13: Adjust P (proportional gain) until the motor crosses the target 3 times , no more and no less

If no plotted position path is shown:

• If the Motor On LED is still on, the proportional gain is to low. Increase ‘P’ by 100%.

• If the Motor On LED is off an error has occurred. The most likely cause is a following error
has occurred which would indicate that the servo is reversed phased. Open the Servo Setup
dialog box and select the Reverse Phase option or ‘swap’ the phase A and B connections from
the encoder to the DCX servo module. Turn the motor back on and proceed with the tuning
process. If a position path plot is still not displayed refer to the Troubleshooting chapter of this
manual.

Setting Derivative Gain
Derivative gain acts as a dampening factor for the servo system. The DCX-PCI300 defaults to
calculating the derivative term every time the PID filter is executed (every 125 usec’s). For many
servo systems this will cause the derivative term to be too large, which may cause a buzzing or
grinding noise. For most servo systems it is recommended that the derivative term be calculated
every 4 to 8 servo loops. Open the Servo Setup dialog and set the derivative sampling period to
0.00075 (every 6 servo loops). For high inertia (heavy load with minimal friction) applications, the
derivative sampling period should be set to between .001 and .002.

Motion Control

DCX-PCI300 User’s Manual

39

Figure 14:Set Derivative Sampling Period to 0.00075 seconds (every 6 PID loops)

Add a little Derivative gain and then move the motor. Repeat this process until the amount of
overshoot (difference between the target and the most positive position) is between 20% to 25%. The
goal is to identify the derivative gain setting that:

 1) Limits overshoot to between 20% to 25%
 2) The final position is as close to the target as possible

Figure 15:Use Derivative Gain (D) to limit overshoot to 25%

Motion Control

Precision MicroControl

40

Setting the Integral Gain
Due to friction, ‘sticktion’, amplifier offset, etc... most servo systems are unable to settle at the target if
using only proportional and derivative gain. Integral gain provides a restoring force that increases with
time. It is used to correct a static position error of a servo system. If the servo is unable to repeatedly
position within +/- one encoder count of the target Integral Gain will, in most cases, position the servo
at the target.

To configure the Servo Tuning utility for setting the integral gain:

• Enable the trajectory generator.
• Define trajectory parameters (max. velocity, acceleration, and deceleration) in the Servo Setup

dialog
• Define a typical application move distance and duration in the Test Setup dialog

For this example:

• Maximum velocity = 100,000 counts per second
• Acceleration and deceleration = 100,000 counts per second per second
• Move distance = 3,000 counts
• Plot window time = 700 msec’s

Figure 16:Turn on the Trajectory Generator, define trajectory parameters, select a velocity profile

Motion Control

DCX-PCI300 User’s Manual

41

Figure 17:Define move distance and plot window period

With the trajectory generator enabled, a step response will cause two plot traces to be displayed in
the upper window. The blue trace is a plot of the actual positions of the servo. The yellow trace is a
plot of the calculated (or optimal) positions of the servo. The optimal positions are the result of
calculations by the DCX based on the trajectory parameters (max. velocity, acceleration, and
deceleration) defined in the Servo Setup dialog. With the Trajectory Generator enabled a plot of the
following error (red trace in the middle window) is also displayed. Select the Step Plus button to move
the axis.

Figure 18:Results of a typical application move prior to setting the Integral Gain

Motion Control

Precision MicroControl

42

Without executing another move, slowly increase the integral gain (I slide control) until the position
readout indicates that the axis has reached the target position of the move.

Figure 19:With an Integral Gain setting of 0.0057 the axis repeatedly positions to the target. The axis is
now tuned.

i

If the ‘I’ control has reached 50% and the axis has not reached the target
either:

• The Integral Limit is too low, limiting the restoring force that the
integral gain can apply. Double the value in the Servo Setup
dialog

• The Integral gain slide control range needs to be increased. In
the PID setup dialog double the value for the integral gain upper
limit

Once the position readout indicates that the axis is at the target execute another move (Step Plus). If
the axis stops and settles within one encoder count of the target the servo has been successfully

Motion Control

DCX-PCI300 User’s Manual

43

tuned. If the position readout indicates that the servo is unable to settle, reduce the setting of the
integral gain (I term). Execute additional moves until the axis settles at the target. For additional
information on integral gain please refer to the description of Turning off integral gain during a
move in the Application Solutions chapter of this manual.

Saving the Tuning Parameters
Once an axis has been tuned you should save the PID and trajectory parameters. Select Save All
Axis Settings from the File menu. Selecting this option will load all servo settings into the MCAPI.INI
file (in the Widows folder). In addition when you elect to close the Servo Tuning program it will prompt
the user about saving the settings.

i

Electing to save the Auto Initialize settings causes the Servo Tuning
utility to call the MCAPI Common Dialog function MCDLG_SaveAxis. All
servo parameters (PID, Trajectory, Limits, etc...) will be saved in the
dialog

To define these servo parameters from a user’s application program, call
the MCAPI Common Dialog function MCDLG_RestoreAxis.

Changing the Scale of the Slide Controls
At the top of each slide control is a value showing the current setting as a percentage of the current
maximum setting. To change the range of one or more slide controls select the Zoom In (+) or Zoom
Out (-) buttons.

Motion Control

Precision MicroControl

44

For additional information on servo tuning please refer to the tutorials on the MotionCD.
Executing cycle operations from the Servo Tuning program
Beginning with revision 2.4 the servo tuning program allows the user to execute cycle operations.
From the Test Setup dialog define the move distance, dwell between positive and negative moves,
cycle repeat count, and dwell between cycles.

Figure 20: Use the Test Setup dialog to configure the
distance, dwell, and repeat count of cycle operations

Motion Control

DCX-PCI300 User’s Manual

45

Figure 21: Plotting position and following error of three 1000 count move cycles

Tuning Velocity Mode Amplifier Servo Systems
A velocity mode amplifier incorporates an analog tachometer to provide the feedback for the velocity
loop, which is closed within the amplifier. The velocity loop is considered the primary or ‘inner’ loop of
this type of servo system. The DCX, which is a position controller, will close the secondary or ‘outer’
position loop of the servo system. Combining a velocity mode amplifier with a position loop controller
results in what is known as a dual loop system. When this type of system is to be used, it is
recommended that the encoder not be directly coupled to the motor. The encoder should be mounted
on the external mechanics, as closely coupled as possible to the load or ‘end effector’. Typically in a
dual loop system, a linear scale (encoder) will be mounted on the slides of each axis.

!

The most important step of tuning a servo that uses a velocity mode
amplifier is to follow the amplifier manufacturers setup instructions to the
letter. Since the amplifier provides the primary servo control, if it is not
setup correctly there is no possibility of attaining acceptable servo
system performance.

There are significant differences when tuning servo systems that close the velocity loop external to
the DCX (position loop) controller. The digital PID filter of the DCX becomes a secondary component
in the generation of the output signal that is applied to the velocity mode amplifier. The primary
component that the DCX will use to generate the servo command signal is the Feed Forward term.

Motion Control

Precision MicroControl

46

i

Feed Forward defines a voltage level output from the DCX, which in turn
commands the velocity mode amplifier to rotate the motor at a specific
velocity.

Prior to tuning the servo system the velocity feed forward term must be determined. The following
example describes how to calculate and set velocity feed forward of a servo axis:

Setting the Velocity Feed Forward
The main component required to set the velocity feed forward of a DCX servo axis is to determine the
output level of the tachometer at a specific motor velocity. For this example, a typical tachometer
specification would state:

 Output Range 0.0 to +10V
 Tach Output @ 1K RPM 1.0 volt

The specification describes a tachometer with an output range of 0 – 10V. The tachometer output
ratio is 1.0V per 1,000 RPM’s. The resolution of the linear scale encoder is 2000 encoder counts per
inch, and the maximum velocity of the axis is 50 inches per second. Note: the servo amplifier may
require scaling adjustments for the RPM/Tachometer voltage output ratio. The velocity feed forward is
calculated as follows:

 DCX output = Velocity (encoder counts/sec) X Feed forward term (encoder counts/volt/sec.)

 10 volts = 100,000 counts/sec. X Feed forward term (encoder counts * volt/sec.)

 Feed forward = 10 volts / 100,000 counts per sec.

 0.0001 = 10 volts / 100,000 counts per sec.

1VG0.0001 ;set velocity gain (velocity feed
 ;forward) with MCCL command

// set velocity gain (velocity feed forward) using MCAPI function
//
 MCGetFilterConfig(hCtrlr, iAxis, &Filter);
 Filter.VelocityGain = (hCtlr, 1, 0.0001);
 MCSetFilterConfig(hCtrlr, iAxis, &Filter);

Tuning the Servo
After setting the velocity feed forward (velocity gain) as shown above, open the Servo Tuning Utility.
Configure the utility as follows:

 1) From the Setup menu, select Servo Setup and define the trajectory parameters (velocity,
 acceleration, and deceleration) to match the application requirements.

 2) From the Test Setup menu define a typical application move distance and duration. For this
 example, the move distance is 2000 encoder counts. The move duration is set to 420
 milliseconds.

 3) Set the Proportional (P), Integral (I), and Derivative (D) slide controls to 0%.

Motion Control

DCX-PCI300 User’s Manual

47

 4) Turn on the Trajectory generator

 5) Turn the motor on

 6) Press the Step Plus pushbutton

A response similar to the following graphic should be observed:

Increase the ‘P’ term 1-2 % at a time until the position display indicates that the axis is within +/- 2
counts of the target.

Increase the “I” term 1% at a time until the axis repeatedly positions to the target. If increasing the
Integral setting causes the axis becomes unstable:

Motion Control

Precision MicroControl

48

 1) Reduce the Integral Limit setting (Setup – Servo Setup)
 2) Reduce the scale of the ‘I’ term slide control (Setup – PID setup)

Saving the Tuning Parameters
When servo tuning is complete, closing the tuning utility will prompt this message about saving the
Auto Initialize setting, selecting Yes will store all settings for all installed axes. Selecting No will cause
all settings to be discarded.

Acceleration and Deceleration Feed Forward
For most applications velocity feed forward is sufficient for accurately positioning the axis. However
for applications that require a very high rate of change, acceleration and deceleration gain must be
used to reduce the following error at the beginning and end of a move.

Acceleration and deceleration feed forward values are calculated using a similar algorithm as used for
velocity gain. The one difference is the velocity is expressed as encoder counts per second, while
acceleration and deceleration are expressed as encoder counts per second per second.

 DCX output = Accel./Decel. (encoder counts/sec/sec.) X Feed forward term (encoder counts * volt/sec./sec.)

i

Acceleration and deceleration feed forward values should be set prior to
using the Servo Tuning Utility to set the proportional and integral gain.

Systems with Electrical or Mechanical Dead Band
Some servo systems may demonstrate significant dead band due to friction, sticktion, or insufficient
amplifier drive power. This will typically be indicated when the output command to the servo is
relatively high but the axis does not move.

Systems of this type can be very difficult to ‘tune’. To overcome the limitations of the system and get
the axis moving, the proportional gain would need to be set very high. This will tend to make the
system become unstable, causing the axis to ‘oscillate’ at the end of a move. The Output Deadband
(aODn) command is used to compensate for the electrical and or mechanical dead band in a system
by modifying the calculated output signal, allowing the module to simulate a ‘frictionless’ system. The
deadband value will be added to a positive output and subtracted from a negative output.

Programming an Output Offset

Motion Control

DCX-PCI300 User’s Manual

49

Both the MC300 and MC320 servo modules have output offset adjustment potentiometers for
manually setting the zero point of the servo command output. The Output Offset command allows the
user to enter a programmable output offset ranging from –10V to +10V.

Moving an Axis
Once the servo is tuned, the axis is ready to perform velocity profile moves. PMC’s Motor Mover
program allows the user to execute absolute, relative, and cycle move sequences, monitor position
and status of the axis. By selecting the Setup button the user can; set velocity parameters (maximum
velocity, acceleration, and deceleration), set velocity profile (Trapezoidal, S curve, or Parabolic), and
enable motion limits.

Figure 22: PMC's Motor Mover can be used to move as many as 8 axes simultaneously

By turning on the Trajectory Generator while in the Servo Tuning Utility, its plotting capabilities can be
used to display the performance of the axis during a velocity profile move. In this mode two sets of
points are plotted. The yellow trace is the optimal position (as calculated by the DCX), the blue trace
is the actual position of the axis. The difference between the two plots is the following error (red).

Motion Control

Precision MicroControl

50

Motion Control

DCX-PCI300 User’s Manual

DCX Stepper Basics

The DCX motion control system supports both open loop and closed loop stepper motion.

Open Loop Stepper Motion
Commanding motion of a stepper motor with no position or velocity feedback is known as 'Open
Loop'. To successfully complete the commanded move, the DCX controller counts each step pulse
issued to the stepper motor driver. When the position of an axis is queried (by issuing the function
MCGetPosition () or MCCL Tell Position (aTP) command), the number of pulses issued to the
stepper driver is reported. Since there is no position (or velocity) feedback there is no need to 'tune'
the axis. However, the axis module must be configured (Trajectory parameters, Velocity Profile, Limits
etc...). Please refer to the following stepper setup dialog:

Figure 23: Stepper axis Setup dialog

i

The Minimum Velocity of a stepper axis must be set to a non zero
The default value is 1,000 steps per second. The recommended
of the minimum velocity is from 1% to 10% of the maximum veloc

i

Stepper drivers typically use the Direction output from the steppe
controller signals to determine the observed direction of motion. I
observed direction of motion is not correct (moving positive cause
counter clockwise instead of clockwise rotation) set axis scaling t

Define velocity
parameters

Closed loop
Stepper
parameters

Set Step Rate Range

Low - 0.1 to 78K steps/sec.
Medium - 20 to 625K steps/sec.
High - 153 to 5.0M steps/sec.

Select Velocity Profile
Enable Hard and Soft
Motion Limits
51

 value.
setting
ity.

r
f the
s

o -1.0.

Motion Control

Precision MicroControl

52

Closed Loop Steppers

i

Closed loop stepper control requires a DCX-MC360 stepper module (the
DCX-MC362 dual stepper does not support closed loop mode) and
MCAPI revision 3.2 or higher.

i

When configured as a closed loop stepper the DCX-MC360 does not
support Position Capture or Position Compare.

The advancements in stepper motor/micro stepping driver technology have allowed many machine
builders to maintain ‘servo like’ performance while reducing costs by moving to closed loop stepper
systems. While closed loop steppers are still be susceptible to ‘stalling’, they are not plagued with the
familiar open loop stepper system problem of loosing steps due to friction (mechanical binding) or
system resonance.

For high accuracy stepper applications, the DCX supports closed loop control of stepper motors using
quadrature incremental encoders for position feedback. The stepper axis will be controlled as if it is a
closed loop servo, the quantity and frequency of step pulses applied to the stepper driver is based on
the trajectory parameters of the move and the position error of the axis. Prior to attempting to operate
a stepper motor in closed loop mode the basic system components (motor, driver, wiring, and
controller) should be verified by moving in open loop mode. For information on operating an open loop
stepper please refer to the DCX Stepper Basics and Moving Motors with Motor Mover sections in
this chapter. If the stepper motor does not operate as expected please refer the Troubleshooting
chapter.

i

While executing closed loop stepper motion, when the target position
equals the current encoder position, the DCX-MC360 step pulse
generator (PID filter) will be turned off within 1 micro second.

Unlike a closed loop servo, if the final position of the stepper encoder is
beyond the target position of the move the motor will not be
commanded to move back to the target.

Closed Loop Stepper Setup
There are four steps required to configure a stepper to operate in closed loop :

1) Connect and verify operation of the encoder
2) Define the Encoder / Steps ratio
3) Set the trajectory parameters
4) Tune the axis

Motion Control

DCX-PCI300 User’s Manual

53

Connect and verify the encoder
 Connect the stepper motor's encoder to the DCX-MC360 stepper module as shown in the following
diagram (for detailed wiring information please refer to the Connectors, Jumpers, and Schematics
chapter in this manual).. If a single ended encoder is being used inputs A-, B- and Z- are not
connected.

Stepper Driver

Step/CCW

Ground

Dir/CW

Ground

Enable

Ground

DCX-MC360-H
Axis #1 (module #1)

Connector J3

1
35
2
36
3
37

12
46
13
47
5
39

14
48
15
49
16
50
11
45

Limit Positive (input, opto. isolated)

Limit Negative (input, opto isolated)

Limit Positive Return / Supply

Step / CCW Pulse (output, open coll.)

Ground

Dir. / CW Pulse (output, open coll.)

Drive Enable (output, open coll.)

Encoder Phase A+

Encoder Phase A- (Differential only)
Encoder Phase B+

Encoder Phase B- (Differential only)

Encoder Index +
Encoder Index -

Encoder Power (output, +5 or +12)

Ground

Ground

Ground

Home Return / Supply

+5VDC
Power supply

+
_

1
2
3
4
5
6

17
18
19
20
9
10

26
22
23
24
25
26
16

DCX-PCI300H
Connector J1

Limit Negative Return / Supply

Home (input, opto isolated)

Stepper MotorQuadrature
Encoder
(optional)

Stepper Motor
(optional)

Figure 24: Typical closed loop stepper interconnections

To verify the operation of the encoder open the Motor Mover program (Start\Programs\Motion
Control\Motion Integrator\Motor Mover). From the Stepper Setup dialog select Closed Loop Mode
and OK.:

Figure 25:Select Setup to open the dialog

Figure 26:From the Stepper Setup dialog select the Closed Loop Mode check box

When closed loop mode is enabled the Motor Mover position readouts will display the position of the

Motion Control

Precision MicroControl

54

encoder. Rotate the motor / encoder shaft back and forth and verify that the position display changes
accordingly.

Figure 27: In closed loop mode the Motor Mover position readout displays encoder position

i

After switching a stepper axis into or out of closed loop mode, use the
MCEnableAxis () function to disable and then enable the axis
(reinitialize the position registers.

Define the motor steps per rotation / encoder counts per rotation ratio
When operating in closed loop mode, move commands are issued in units of encoder counts. The
EncoderScaling member of the MCFILTEREX data structure is used to configure the controller for
converting encoder units to step pulses. The value is calculated by dividing motor steps per rotation
by encoder counts per rotation. For example, if there 2000 encoder counts per rotation (500 line
encoder) and the stepper motor has 51,200 steps per rotation, the Encoder Scaling value would be

EncoderScaling = motor steps per rotation / encoder counts per rotation.
EncoderScaling = 51,200 / 2000
EncoderScaling = 25.6

The Encoder Scale can also be defined from the Stepper Setup dialog of the Servo Tuning or Motor
Mover programs.

Figure 28:Enter the closed loop steps / encoder scale

Motion Control

DCX-PCI300 User’s Manual

55

Set the trajectory parameters
As with an open loop stepper, the trajectory parameters (maximum velocity, acceleration,
deceleration, and minimum velocity) must be set prior to commanding motion. These values can be
set using the MCMOTION data structure or can be entered from the Stepper Setup dialog of Servo
Tuning or Motor Mover.

i

Closed loop stepper trajectory parameters (and move distances) are
specified in encoder units, not motor step units.

Tune the axis
When a stepper axis is configured for closed loop operation the default proportional gain is set to
0.0001, which should be sufficient to move the axis near the specified target. Further adjustments of
the proportional and integral gain allow the controller to:

Minimize the following error while moving
 Eliminate slow speed slewing of the axis near the end of the move
 Settle within 1 encoder count of the target

Use the PMC Servo Tuning program (\Start\Programs\Motion Control\Motion Integrator\Servo Tuning)
to tune the closed loop stepper.

Step 1 - Enter a typical move distance (in encoder counts) and move duration (in milliseconds) using

 the Test Setup dialog (Setup\Test Setup).

Step 2 - Verify that the Trajectory Generator is on (yellow LED)

Step 3 - Set the Proportional gain Slide Control Scale 0.20% (Press P+ zoom button)

Step 4 - Verify that the Proportional gain is set to 0.0001, Integral and Derivative gain = 0. Generally

 Derivative gain and Integral gain are not required to tune a closed loop stepper.

Step 5 - From the Servo Setup dialog verify that Closed Loop Mode is enabled and that the

 Encoder Scaling has been set

Step 6 - Toggle the Motor Off and Motor On buttons to initialize the closed loop position registers

Step 7 - Start the move with the Move + or Move - buttons

Step 8 - Observe the plot of following error during the move

Step 9 - Increase the proportional gain and repeat the move until the point of diminishing returns is

 reached (the following error no longer decreases). Further increases of the proportional gain
 will tend to cause the motor to emit a grinding noise or stall during a commanded move.

Step 10 - If the axis moves slowly near the end of the move and/or stops a few counts short of the
 target the Minimum Velocity is probably set too low.

Motion Control

Precision MicroControl

56

Step 11 - Save the closed loop stepper settings by selecting Save All Axes Settings from the Servo
 Tuning File menu. This operation will copy all settings into the MCAPI.INI file so that any

windows application program can load axis settings upon opening.

i

For additional information on using the Servo Tuning program please
refer to:

 The Tuning the Servo section of the Motion Control chapter
 The Servo Tuning program on-line help

i

To disable closed loop stepper operation, issue the MCSetInoutMode
function with Mode = MC_IM_OPEN_LOOP or deselect the closed loop
check box in the Servo Tuning Servo Setup dialog..

Reverse Phasing of a closed loop stepper
If the closed loop stepper is reverse phased, issuing a move command will cause the motor to 'take
off' in the wrong direction at full torque / speed. Once the position error exceeds the value entered for
the allowable following error (default = 1024) a motor error will occur and the axis will stop. To change
the phasing either:

• Issuing the MCSetServoOutputPhase () function with Phase = MC_PHASE_REVERSE
• Selecting the Reverse Phase option in the Servo Tuning Servo Setup dialog
• Swap the encoder phase A and B connections to the MC360 module.

Closed loop stepper example
Axis number one is a 51,200 micro steps per rotation stepper motor. A 2,000 count (500 line)
incremental encoder is coupled to the stepper motor shaft. The required maximum step rate for this
application is 896,000 steps per second (1050 RPM), which requires the axis to be configured for
High Speed step range. After verifying the operation of the closed loop stepper from within the Servo
Tuning program, save the configuration with the File menu Save All Axis Settings option. From a
users application program to load the closed loop configuration call the MCDLG_RestoreAxis
function from the PMC Common Motion Dialog Library. To load the closed loop axis configuration
from a PMC application program (Servo Tuning or Motor Mover) select Auto Initialize from the File
menu.

Motion Control

DCX-PCI300 User’s Manual

57

Moving Motors with Motor Mover

After defining the step output mode and the step range the axis is ready to execute motion. The Motor
Mover program allows the user to execute absolute, relative, and cycle move sequences, monitor
position and status of the axis. By selecting the Setup button the user can; set velocity parameters
(maximum velocity, acceleration, and deceleration), set velocity profile (Trapezoidal, S curve, or
Parabolic), and enable motion limits.

Figure 29: PMC's Motor Mover can be used to command motion for as many as 8 axes simualtaneously

Motion Control

Precision MicroControl

58

Defining the Characteristics of a Move

Prior to executing any move, the user should define the parameters of the move. The components
that make up a move are:

// Set axis 1 maximum velocity
// Set axis 1 acceleration
// Set axis 1 deceleration
// Set profile as Trapezoidal
// Set Position mode
// Set target (10000), begin move

MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 100000.0);
MCSetVelocity(hCtlr, 1, 100000.0);
MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOID);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCMoveRelative(hCtlr, 1, 100000.0);

The parameters defined in the program example above specify a move to position 100,000. During
the move the velocity will not exceed 10,000 encoder counts per second. A trapezoidal velocity profile
will be calculated by the DCX. The rate of change (acceleration and deceleration) will be 100,000
encoder counts per second/per second, there by reaching the maximum velocity (10,000 counts per
second) in 100 msec’s. The resulting velocity and acceleration profiles follow:

Velocity
(encoder counts per second)

Time (msec's)

100 200 300 400 500 600 700 800 900 1000

2500

5000

10000

7500

Motion Control

DCX-PCI300 User’s Manual

59

100000

100000

Acceleration / Deceleration
(encoder counts per sec / sec)

Time (msec's)

Velocity Profiles
The user can select one of three different velocity profiles that the DCX will then use to calculate the
trajectory of a move.

DCX Accel / Decel Profiles

Trapezoidal Profile

Time

Accel
100,000 counts /

sec. / sec.

Decel
100,000 counts /

sec. / sec.

Parabolic Profile S curve Profile

DCX Velocity Profiles

Time

Max. Velocity
10,000 counts / sec.

Trapezoidal Profile

Time

Parabolic Profile

Time

S curve Profile

Motion Control

Precision MicroControl

60

Trapezoidal Profile – (servo & steppers) MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOID);
 Shortest time to target when using the same trajectory parameters
 Profile most likely to result ‘jerk’ and/or oscillation
 Supports ‘on the fly’ target changes

Parabolic Profile – (stepper only) MCSetProfile(hCtlr, 1, MC_PROF_PARABOLIC);
 Slow ‘roll off’ minimizes lost steps at high velocity
 Initial linear rate of change eliminates ‘cogging’
 On the fly changes will cause the axis to first decelerate to a stop

S curve Profile – (servo only) MCSetProfile(hCtlr, 1, MC_PROF_SCURVE);
 ‘True sine’ rate of change effectively eliminates ‘jerk’ and/or oscillation
 Longest time to target when using the same trajectory parameters
 On the fly changes will cause the axis to first decelerate to a stop

Point to Point Motion

To perform point to point motion of a servo or stepper motor, the following steps are required:

// Enable the axis
// Enable Position mode
// Define the velocity profile (trapezoidal, S curve, or parabolic)
// define maximum velocity
// define acceleration
// define deceleration
// execute the move

MCEnableAxis(hCtlr, 1, TRUE);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOIDAL);
MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 25000.0);
MCSetDeceleration(hCtlr, 1, 50000.0);
MCMoveRelative(hCtlr, 1, 122.5);

 Constant Velocity Motion

To move a servo or stepper at a continuous velocity until commanded to stop:
// Enable the axis
// Enable Velocity mode
// Define the velocity profile (trapezoidal, S curve, or parabolic)
// define maximum velocity
// define acceleration
// define deceleration
// define the direction (positive or negative) of the move
// begin motion of axis 1
// wait for digital I/O #4 to be true
// reduce velocity
// wait for digital I/O #2 to be true
// stop the motion of axis 1

MCEnableAxis(hCtlr, 1, TRUE);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_VELOCITY);

Motion Control

DCX-PCI300 User’s Manual

61

MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOIDAL);
MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 100000.0);
MCSetDeceleration(hCtlr, 1, 100000.0);
MCSetDirection(hCtlr, 1, POSITIVE);
MCGo(hCtlr, 3);
MCWait For DigitalIO(hCtlr, 4, TRUE);
MCSetVelocity(hCtlr, 1, 5000.0);
MCWait For DigitalIO(hCtlr, 2, TRUE);
MCStop(hCtlr, 1);

Time in seconds

Velocity
(encoder counts per seconds)

1 2 3 4 5 6

2500

5000

7500

10000

Digital input #4 'turned on"
Digital input #2 'turned on"

Contour Motion (arcs and lines)

The DCX supports Linear Interpolated motion with any combination of two to fifteen axes and Circular
Contouring on as many as four groups of two axes. Executing a multi axis contour move requires:

 Turn the axes on
 Define the axes in the contour group and the controlling axis
 Define the trajectory (Vector Velocity, Vector Acceleration and Vector Deceleration)
 Define the type of contour move (Linear, Circular, user defined) and the move targets
 Loading the Contour Buffer for Continuous Path Contouring

Defining the contour group
The MCSetOperatingMode() command is used to define the axes in a contour group. Issue this
command to each of the axes in the contour group. The parameter wMaster should be set to the
lowest axis number of the servo or stepper motor that will be moving on the contour. This axis will
then be defined as the 'controlling' axis for the contour group. The following example configures axis
1, 2, and 3 for contour motion with axis #1 defined as the controlling axis.

Motion Control

Precision MicroControl

62

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 3, 1, MC_MODE_CONTOUR);

Define the trajectory parameters
The MCGetContourConfig(), MCSetContourConfig(), and MCContour data structure are used to
define the trajectory parameters of a contour motion. The default units of the vector velocity are
encoder counts or steps per second. The default units of vector acceleration and vector deceleration
are encoder counts or steps per second per second. The default units of velocity override is a
percentage the setting for vector velocity.

// Motion settings (GetDlgItemDouble() is a helper function defined
// elsewhere)
//
case IDOK:
 MCGetContourConfig(hCtrlr, iAxis, &Motion);
 Contour.Vector.Accel = GetDlgItemDouble(hDlg, IDC_TXT_ACCEL);
 Contour.VectorDecel = GetDlgItemDouble(hDlg, IDC_TXT_DECEL);
 Contour.VectorVelocity = GetDlgItemDouble(hDlg, IDC_TXT_VELOCITY);
 Contour.VelocityOverride = GetDlgItemDouble(hDlg, IDC_TXT_MAX_TORQUE);
 MCSetContourConfig(hCtrlr, iAxis, &Motion);

Define the type of contour move
The nMode parameter of the MCBlockBegin() function is used to define the type of contour move to
be executed. The following types of contour motion are supported:

nMode parameter Contour move type Description
MC_BLOCK_CONTR_USER User defined, 1 to 6 axes Specifies that this block is a user

defined contour path motion. lNum
should be set to the controlling axis
number.

MC_BLOCK_CONTR_LIN Linear interpolated move,
1 to 6 axes

Specifies that this block is a linear
contour path motion. lNum should be
set to the controlling axis number.

MC_BLOCK_CONTR_CW Clockwise arc, 2 axes Specifies that this block is a clockwise
arc contour path motion. lNum should be
set to the controlling axis number.

MC_BLOCK_CONTR_CCW Counter Clockwise arc, 2
axes

Specifies that this block is a counter-
clockwise arc contour path motion. lNum
should be set to the controlling axis
number.

Examples of a linear move and a clockwise arc follow:

Motion Control

DCX-PCI300 User’s Manual

63

// Linear move
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
 MCMoveAbsolute(hCtlr, 1, 10000.0);
 MCMoveAbsolute(hCtlr, 2, 20000.0);
 MCMoveRelative(hCtlr, 3, -5000.0);
MCBlockEnd(hCtlr, NULL);

// Clockwise arc move
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
 MCArcCenter(hCtlr, 1, MC_CENTER_ABS, 20000.0);
 MCArcCenter(hCtlr, 2, MC_CENTER_ABS, 0.0);
 MCMoveAbsolute(hCtlr, 1, 40000.0);
 MCMoveAbsolute(hCtlr, 2, 0.0);
MCBlockEnd(hCtlr, NULL);

Loading the Contour Buffer for Continuous Path Contouring
The DCX Contour Buffer is used to support Continuous Path Contouring. When a single contour move
is executed, the axes will decelerate (at the specified vector velocity) and stop at the target. If multiple
contour move commands are issued, the contour buffer allows moves to smoothly transition from one
to the other. The vector motion will not decelerate and stop until the contour buffer is empty or an
error condition (max following error exceeded, limit sensor ‘trip’, etc...) occurs.

When axis 1 is the controlling axis, up to 256 linear or 128 arc motions (an arc move takes up twice as
much buffer space) can be queued up in the Contouring Buffer. If one of the other five axes is the
controlling axis, only 16 motions can be queued up. The MCGetContouringCount() command will
report how many contour moves have been executed since the axes were last configured for contour
motion with MCSetOperatingMode(). The contouring count is stored as a 32 bit value, which means
that 2,147,483,647 contour moves can be executed before the contour count will ‘roll over’.

To delay starting contour motion until the contour buffer has been loaded use the MCEnableSynch()
command. This command should be issued to the controlling axis before issuing any contour moves.
Moves issued after the MCEnableSynch() command will be queued into the contour buffer. To begin
executing the moves in the buffer, issue the MCGoEx() command to the controlling axis . To return to
normal operation (immediate execution of contour move commands), issue MCEnableSynch() to
the controlling axis with the state = FALSE.

Multi Axis Linear Interpolated moves
An example of three linear interpolated moves is shown below. Once the first compound move
command is issued, motion of the three axes will start immediately (at the specified vector velocity).
The other two compound commands are queued into the contouring buffer. As long as additional
contour moves reside in the contour buffer continuous path contour motion will occur. In this example,
smooth vector motion will continue (without stopping) until all three linear moves have been
completed (the contour buffer has been emptied). At this time the axes will simultaneously decelerate
and stop.

Motion Control

Precision MicroControl

64

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 3, 1, MC_MODE_CONTOUR);

// Motion settings (GetDlgItemDouble() is a helper function defined
// elsewhere)
//
case IDOK:
 MCGetContourConfig(hCtrlr, iAxis, &Motion);
 Contour.Vector.Accel = GetDlgItemDouble(hDlg, IDC_TXT_ACCEL);
 Contour.VectorDecel = GetDlgItemDouble(hDlg, IDC_TXT_DECEL);
 Contour.VectorVelocity = GetDlgItemDouble(hDlg, IDC_TXT_VELOCITY);
 Contour.VelocityOverride = GetDlgItemDouble(hDlg, IDC_TXT_MAX_TORQUE);
 MCSetContourConfig(hCtrlr, iAxis, &Motion);

// Linear move #1
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
 MCMoveAbsolute(hCtlr, 1, 85000.0);
 MCMoveRelative(hCtlr, 2, 12000.0);
 MCMoveAbsolute(hCtlr, 3, -33000.0);
MCBlockEnd(hCtlr, NULL);

// Linear move #2
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
 MCMoveAbsolute(hCtlr, 1, 0.0);
 MCMoveAbsolute(hCtlr, 2, 0.0);
 MCMoveAbsolute(hCtlr, 3, 0.0);
MCBlockEnd(hCtlr, NULL);

// Linear move #3
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
 MCMoveAbsolute(hCtlr, 1, 5000.0);
 MCMoveRelative(hCtlr, 2, 23000.0);
 MCMoveAbsolute(hCtlr, 3, -16000.0);
MCBlockEnd(hCtlr, NULL);

Arc Motion
The DCX supports specifying an arc motion in two axes in any of three different ways:

 Specify center and end point
 Specify radius and end point (not supported by MCAPI)
 Specify center and ending angle (not supported by MCAPI)

When the first arc motion is issued, motion of the two axes will start immediately (at the specified
vector velocity). Additional contour motions will be queued into the contouring buffer. As long as
additional contour moves reside in the contour buffer continuous path contour motion will occur. In this
example, smooth vector motion will continue (without stopping) until all both arc motions have been
completed (the contour buffer has been emptied). At this time the axes will simultaneously decelerate
and stop.

Motion Control

DCX-PCI300 User’s Manual

65

Arc motions by specifying the center point and end point
The MCArcCnter() command is used to specify the center position of the arc. This command also
defines which two axes will perform the arc motion. The MCMoveAbsolute() or MCMoveRelative()
commands are used to specify the end point of the arc. A spiral motion will be performed if the
distance from the starting point to center point is different than the distance from the center point to
end point. An example of two arc motions is shown below:

Y

X

10,000

-10,000
1st move - 180 degree clockwise arc
2nd move - 180 degree clockwise arc

Arc center X 10,000
 Y 0

Starting
point

End point of
first arc

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);

// Motion settings (GetDlgItemDouble() is a helper function defined
// elsewhere)
//
case IDOK:
 MCGetContourConfig(hCtrlr, iAxis, &Motion);
 Contour.Vector.Accel = GetDlgItemDouble(hDlg, IDC_TXT_ACCEL);
 Contour.VectorDecel = GetDlgItemDouble(hDlg, IDC_TXT_DECEL);
 Contour.VectorVelocity = GetDlgItemDouble(hDlg, IDC_TXT_VELOCITY);
 Contour.VelocityOverride = GetDlgItemDouble(hDlg, IDC_TXT_MAX_TORQUE);
 MCSetContourConfig(hCtrlr, iAxis, &Motion);

// Clockwise arc move #1
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
 MCArcCenter(hCtlr, 1, MC_CENTER_ABS, 10000.0);
 MCArcCenter(hCtlr, 2, MC_CENTER_ABS, 0.0);
 MCMoveAbsolute(hCtlr, 1, 20000.0);
 MCMoveAbsolute(hCtlr, 2, 0.0);
MCBlockEnd(hCtlr, NULL);

Motion Control

Precision MicroControl

66

// Clockwise arc move #2
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CCW, 1);
 MCArcCenter(hCtlr, 1, MC_CENTER_REL, -10000.0);
 MCArcCenter(hCtlr, 2, MC_CENTER_REL, 0.0);
 MCMoveRelative(hCtlr, 1, -20000.0);
 MCMoveRelative(hCtlr, 2, 0.0);
MCBlockEnd(hCtlr, NULL);

Arc motions by specifying the radius and end point
The MCArcRadius() function is used to execute an arc move by specifying the radius and end point
of an arc. The Axis parameter should equal the controlling axis for the contour move. The parameter
Radius should equal the radius of the arc. If the arc is greater than 180 degrees, the parameter
Radius must be expressed as a negative number. The MCMoveAbsolute() or MCMoveRelative()
commands are used to specify the end point of the arc. An example of two arc motions is shown
below:

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);

// 90 degree Clockwise arc move #1
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
 MCArcRadius(hCtlr, 1, 10000.0);
 MCMoveRelative(hCtlr, 1, 10000.0);
 MCMoveRelative(hCtlr, 2, 10000.0);
MCBlockEnd(hCtlr, NULL);

// 270 degree Clockwise arc move #2
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
 MCArcRadius(hCtlr, 1, -10000.0);
 MCMoveRelative(hCtlr, 1, -10000.0);
 MCMoveRelative(hCtlr, 2, -10000.0);
MCBlockEnd(hCtlr, NULL);

Motion Control

DCX-PCI300 User’s Manual

67

Y

X
10,000

10,000

-10,000
1st move - 90 degree clockwise arc
2nd move - 270 degree clockwise arc

Radius = 10,000

Starting
point

End point of
first arc

Arc motions by specifying the center point and ending angle
The MCArcEndingAngle() function is used to execute an arc move by specifying the ending angle
and center point of an arc. The Axis parameter should equal the controlling axis for the contour move.
The parameter Angle should equal the ending angle (absolute or relative) of the arc. When using this
method to specify an arc, the MCMoveAbsolute() and MCMoveRelative() functions are not used.
The MCArcCenter() function defines the radius of the arc. An example of two arc motions is shown
below:

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);

// Clockwise arc move #1
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
 MCArcCenter(hCtlr, 1, MC_CENTER_ABS, 10000.0);
 MCArcCenter(hCtlr, 2, MC_CENTER_ABS, 0.0);
 MCArcEndAngle(hCtlr, 1, MC_ABSOLUTE, 0.0);
MCBlockEnd(hCtlr, NULL);

// Clockwise arc move #2
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
 MCArcCenter(hCtlr, 1, MC_CENTER_REL, -10000.0);
 MCArcCenter(hCtlr, 2, MC_CENTER_REL, 0.0);
 MCArcEndAngle(hCtlr, 1, MC_RELATIVE, 1800.0);
MCBlockEnd(hCtlr, NULL);

Motion Control

Precision MicroControl

68

 Y
(90 degrees)

X
(0 degrees)10,000

10,000

-10,000

Starting
point

End point of
first arc

-Y
(270 degrees) 1st move - 180 degree clockwise arc

2nd move - 180 degree clockwise arc

-X
(180 degrees)

Center
point

Changing the velocity ‘on the fly’
‘On the fly’ velocity changes during contour mode motion are accomplished by using the
VelocityOverride member of the MCContour data structure. Issue the command (to the controlling
axis) to scale the vector velocity of a linear or arc motion. The rate of change is defined by the current
settings for vector acceleration and vector deceleration.

i

Changing the velocity of a contour group using Velocity Override
is not supported for S-curve and/or Parabolic velocity profiles.

Cubic Spline Interpolation of linear moves
To have the DCX perform ‘curve fitting’ (cubic spline interpolation) on a series of linear moves, issue
the MCEnableSynch() command to the controlling axis. Next issue linear contour path commands to
points on the curve. After loading the desired number of moves into the contour buffer, issue a
MCGOEx() command with the value Param set to 1. Motion will continue from the first to the last
point in the contour buffer. To return to normal operation, issue the MCEnableSynch() command
with parameter pState = FALSE.

i

Note that when performing cubic spline interpolation, only 128 motions
can be queued up if axis 1 is the controlling axis. If the controlling axis
is not axis one, only 16 motions can be queued up in the controller.

Motion Control

DCX-PCI300 User’s Manual

69

User Defined Contour path
When executing contour motion the DCX assumes that the axes are arranged in an orthogonal
geometry. The controller will calculate the distance and period of a move as follows:

 Beginning position: X=0 Y=0 Z=0
 Target position: X=10,000 Y=10,000 Z=1000

 Calculated Contour Distance = √(X2 + Y2 + Z2)
 = √(10,0002 + 10,0002 + 1,0002)
 = √(100,000,000 + 100,000,000 + 1,000,000)
 = √201,000,000
 = 14177.44

The period, or elapsed time of the move, is a simple matter of applying the current settings for Vector
Acceleration + Vector Velocity + Vector Deceleration to the Calculated Contour Distance.

For applications where orthogonal geometry is not applicable, the DCX allows the user to define a
custom contour distance. This is accomplished by:

 1) The command sequence must be preceded by the Contour Path (aCPn) command (a = the
 controlling axis) with parameter n = 0.
 2) Contour Distance (aCDn) must be the last command in the compound command sequence,
 with parameter n = the Calculated Contour Distance of the move

The DCX will use the current settings for vector velocity, vector acceleration, and vector deceleration
to calculate the period of the motion. When a User Defined Contour Path is selected (MCBlockBegin
with parameter nMode set to MC_BLOCK_CONTR_USER), the MCContourDistance() function is
used to enter the non-orthogonal contour distance.

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 3, 1, MC_MODE_CONTOUR);

// User defined move #1
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_USER, 1);
 MCMoveAbsolute(hCtlr, 1, 1000.0);
 MCMoveAbsolute(hCtlr, 2, 1000.0);
 MCMoveAbsolute(hCtlr, 3, 1000.0);
 MCContourDistance(hCtlr, 1, 10000.0);
MCBlockEnd(hCtlr, NULL);

// User defined move #2 - the Distance parameter is 10,000 + 10,000 = 20,000
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_USER, 1);
 MCMoveAbsolute(hCtlr, 1, 0.0);
 MCMoveAbsolute(hCtlr, 2, 0.0);
 MCMoveAbsolute(hCtlr, 3, 0.0);
 MCContourDistance(hCtlr, 1, 20000.0);
MCBlockEnd(hCtlr, NULL);

Motion Control

Precision MicroControl

70

i

For the MCContourDistance() function, the parameter Distance is an
absolute value, relative to the positions of the included axes when the
MCSetOperatingMode() function was last issued. Re-issuing the
MCSetOperatingMode() function will reset the current contour distance
to zero.

Special case: setting the Maximum Velocity of an Axis
When executing simple point to point or velocity mode motions the maximum velocity of each axis is
set individually. When executing multi axis contour moves, the maximum velocity is typically
expressed as the velocity of the ‘end effector’ of the contour group. In a cutting application the ‘end
effector’ would be the tool doing the cutting (torch, laser, knife, etc…). Setting the maximum velocity of
an axis in the contoured group is not typically supported.

By combining a user define contour path (MCBlockBegin with parameter nMode set to
MC_BLOCK_CONTR_USER) with the MCContourDistance() command with parameter Distance =
0, the user can execute multi axis contour moves and limit the maximum velocity of an individual axis.
In this mode of operation the MCVectorVelocity() command is not used to set the velocity of the
contour group. The axis with the longest move time (calculated by distance, velocity, acceleration,
and deceleration) will define the total time for the contour move. For moves of sufficient distance
where the axis has enough time to fully accelerate, this one axis will move at its preset maximum
velocity. All axes will move at or below their specified maximum velocities. All axes will start and stop
at the same time. In the following example, axes 1 and 2 are commanded to move the same distance
but the maximum velocity for axis two is 1/3 that of axis one. Since both axes are moving the same
distance, they will both travel at a maximum velocity of 100 counts per second.

MCSetVelocity(hCtlr, 1, 300.0);
MCSetAcceleration(hCtlr, 1, 1000.0);
MCSetDeceleration(hCtlr, 1, 1000.0);

MCSetVelocity(hCtlr, 2, 100.0);
MCSetAcceleration(hCtlr, 2, 1000.0);
MCSetDeceleration(hCtlr, 2, 1000.0);

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);

MCContourdistance(hCtlr, 1, 0.0);

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_USER, 1);
 MCMoveRelative(hCtlr, 1, 1000.0);
 MCMoveRelative(hCtlr, 2, 1000.0);
MCBlockEnd(hCtlr, NULL);

If the commanded move distance of axis one was 2000 counts it would move at a higher velocity than
axis two, but it would not reach its maximum velocity as set by the MCSetVelocity() command.

Motion Control

DCX-PCI300 User’s Manual

71

Electronic Gearing

The DCX supports slaving any axis or axes to a master. Moving the master axis will cause the slave
to move based on the specified slave ratio. The optimal position of the slave axis is calculated by
multiplying the optimal position of the master by the gearing ratio of the slave. The slave's optimal
position is maintained proportional to the master's position. This can be used in applications where
multiple motors drive the same load. Gearing supports both servos and stepper axes, with the master
axis operating in jogging, position, velocity, or contouring mode. If a following error or limit error
occurs on any of the geared axes (master or slaves) all axes in the geared group will stop.

The MCAPI function MCEnableGearing() configures and initiates gearing. The slave ratio can be set
to any integer or real value. If the slave ratio is a positive value, a move in the positive direction of the
master will cause a move in the positive direction of the slave. If the slave ratio is a negative value, a
move in the positive direction of the master will cause a move in the negative direction of the slave.
The following program example configures axes 2, 3, and 4 as slaves of axis 1.

// Enable gearing of axis 2, 3, and 4
// Move axis 1 (master), slaves (axes 2, 3, and 4) will move at define ratio
MCEnableGearing(hCtlr, 2, 1, 0.5, TRUE);
MCEnableGearing(hCtlr, 3, 1, 12.87, TRUE);
MCEnableGearing(hCtlr, 4, 1, -125, TRUE);
MCMoveRelative (hCtlr, 1, 215.0);

// disable gearing
MCEnableGearing(hCtlr, 2, 1, 0.5, FALSE);
MCEnableGearing(hCtlr, 3, 1, 12.87, FALSE);
MCEnableGearing(hCtlr, 4, 1, -125, FALSE);

!

Note – if the slave axes are servo’s, the PID parameters for each axis
must be defined prior to beginning master/slave operation.

!

Note – Changing the slave ratio ‘on the fly’ may cause the mechanical
system to ‘jerk’ or the DCX to ‘error out’ (following error).

Motion Control

Precision MicroControl

72

Jogging
In some applications it may be necessary to have a means of manually positioning the motors. Since
the DCX is able to control the motion of servos and steppers with precision at both low and high
speeds, all that is required to support manual positioning is: .

• A PC with a game port
• A PC joystick
• PC based software that positions the axes in Velocity mode

Jogging without writing software
One of the tools provided with the MCAPI is the Joystick Demo. This tool allows the user to configure
and then jog one or two axes.

Figure 30: Joystick Demo program

Using the Joystick Demo in your application program
After the MCAPI has been installed the source files for the Joystick Demo are available in the Motion
Control folder \Program Files\Motion Control\Motion Control API\Sources\Joy.

Motion Control

DCX-PCI300 User’s Manual

73

Defining Motion Limits

The DCX Motion Controller implements two types of motion limits error checking. End of travel or
'Hard' limit switch/sensor inputs and 'soft' user programmable position limits.

Servo or stepper
motor

StageLead screw

Positive Limit
sensor

Negative Limit
sensor

Hard Limits
The Limit + and Limit - inputs of MC3XX motion control modules use bi-directional optical isolators for
interfacing to the external limit sensors. The following wiring example details the typical connections
for a limit switch.

Bi-directional
Optical isolator

74LS14

+5VDC

MC300/302/320/360/362

Limit+
J3-17: Limit +

J3-18: Limit + Return

+5VDC
Power Supply

+
_

360

This limit circuit wll indicate that a limit is active if the switch is closed

Limit + switch
(normally open)

MOT MOC256

!

When limit error checking is enabled by the MCSetLimits() function, the
limit tripped flags (MC_STAT_PLIM_TRIP and MC_STAT_MLIM_TRIP)
indicate an error condition. For a normally closed limit switch, the
MC_LIMIT_INVERT parameter must be used to re-define the active level
of the limit circuit.

Use the Motion Integrator Motion System Setup Test Panel to test the limit sensors, wiring, and
MC3XX operation.

Motion Control

Precision MicroControl

74

!

If a normally closed limit sensor circuit is used, the Motion Integrator
Test Panel will indicate that the limit sensor is active when the optical
isolator (MOC256) is conducting.

The limit LED’s of the Motion Integrator Test Panel display the current
state (MC_STAT_PLIM and MC_STAT_MLIM), not the ‘tripped’ flag
(MC_STAT_PLIM_TRIP and MC_STAT_MLIM_TRIP) of the limit inputs.

The DCX supports two levels of limit switch handling:

 Auto axis disable
 Simple monitoring

The MCAPI function MCSetLimits() allows the user to enable the Auto Axis Disable capability of the
DCX. This feature implements a hard coded operation that will stop motion of an axis when a limit
switch is active. This background operation requires no additional DCX processor time, and once
enabled, requires no intervention from the user’s application program. However it is recommended
that the user periodically check for a limit tripped error condition using the MCGetStatus(),
MCDecodeStatus() functions. The MCSetLimit() function provides the following limit flags:

Flag Description
MC_LIMIT_PLUS Enables the Positive/High hard limit
MC_LIMIT_MINUS Enables the Negative/Low hard limit
MC_LIMIT_BOTH Enables the Positive and Negative hard limits
MC_LIMIT_OFF Turn off the axis when the hard limit input ‘goes’ active
MC_LIMIT_ABRUPT Stop the axis abruptly when the hard limit input goes active
MC_LIMIT_SMOOTH Decelerate and stop the axis when the hard limit input goes active
MC_LIMIT_INVERT Invert the active level of the hard limit input to high true. Typically used

for normally closed limit sensors

When a limit event occurs, motion of that axis will stop and the error flags (MC_STAT_ERROR and
MC_STAT_PLIM_TRIP or MC_STAT_MLIM_TRIP) will remain set until the motor is turned back on
by MCEnable(). The axis must then be moved out of the limit region with a move command

Motion Control

DCX-PCI300 User’s Manual

(MCMoveAbsolute(), MCMoveRelative()). The Status Panel screen shot below shows the typical
display when a hard limit sensor is tripped during a move.

// Set the both hard limits of axis 1 to stop smoothly when tripped,
// soft limits:
//
MCSetLimits(hCtlr, 1, MC_LIMIT_BOTH | MC_LIMIT_SMOOTH, 0, 0.0, 0.0)

// Set the positive hard limit of axis 2 to stop by turning the motor
// Because axis 2 uses normally closed limit switches we must also in
// polarity of the limit switch. Soft limits are ignored.
MCSetLimits(hCtlr, 2, MC_LIMIT_PLUS | MC_LIMIT_OFF | MC_LIMIT_INVERT
0.0);

If the user does not want to use the Auto Axis Disable feature, the current state of th
be determined by polling the DCX using the MCGetStatus(), MCDecodeStatus() f
for testing the state of the Limit + input is MC_STAT_INP_PLIM. The flag for testing
Limit - input is MC_STAT_INP_MLIM.

Soft Limits
Soft motion limits allow the user to define an area of travel that will cause a DCX err
When enabled, if an axis is commanded to move to a position that is outside the ran
defined by the MCSetLimit() function, an error condition is indicated and the axis w
MCSetLimit() function provides the following limit flags:

Flag Description
MC_LIMIT_PLUS Enables the High/Positive soft limit
MC_LIMIT_MINUS Enables the Low/Negative soft limit
MC_LIMIT_BOTH Enables the High and Low soft limits
MC_LIMIT_OFF Turn off the axis when the hard limit input ‘goes’ active
MC_LIMIT_ABRUPT Stop the axis abruptly when the hard limit input goes active
MC_LIMIT_SMOOTH Decelerate and stop the axis when the hard limit input goes

The yellow +Hlim E
and -HLim E LED's
indicated that hard
coded limit error
checking is enabled.
When the red Error
and +HLim T or -
HLim T LED's are
on it indicates that a
over travel error has
occurred
75

ignore

;

 off.
vert the

, 0, 0.0,

e limit inputs can
unctions. The flag
 the state of the

or condition.
ge of motion
ill stop. The

 active

Motion Control

Precision MicroControl

76

When a soft limit error event occurs, the error flags (MC_STAT_ERROR and
MC_STAT_PSOFT_TRIP or MC_STAT_MSOFT_TRIP) will remain set until the motor is turned back
on by MCEnable(). The axis must then be moved back into the allowable motion region with a move
command (MCMoveAbsolute(), MCMoveRelative()).

// Assume axis 3 is a linear motion with 500 units of travel. Set the both
// hard limits of this axis to stop abruptly. Set up soft limits that will
// stop the motor smoothly 10 units from the end of travel (i.e. at 10
// and 490).

MCSetLimits(hCtlr, 3, MC_LIMIT_BOTH | MC_LIMIT_ABRUPT, MC_LIMIT_BOTH |
MC_LIMIT_SMOOTH, 10.0, 490.0);

Motion Control

DCX-PCI300 User’s Manual

77

Homing Axes

When power is applied or the DCX is reset, the current position of all servo and stepper axes are
initialized to zero. If they are subsequently moved, the controller will report their positions relative to
the position where they were last initialized. At any time the user can call the MCSetPosition()
function to re-define the position of an axis.

In most applications, there is some position/angle of the axis (or mechanical apparatus) that is
considered 'home'. Typical automated systems utilize electro-mechanical devices (switches and
sensors) to signal the controller when an axis has reached this position. The controller will then define
the current position of the axis to a value specified by the user. This procedure is called a homing
sequence. The DCX is not shipped from the factory programmed to perform a specific homing
operation. Instead, it has been designed to allow the user to define a custom homing sequence that is
specific to the system requirements. The DCX provides the user with two different options for homing
axes:

 1) High level function calls using the MCAPI - Easy to program homing sequences using
 MCAPI function calls.

 2) MCCL Homing macro’s stored in on-board memory - When executed as background tasks,
 MCCL homing macro’s allow the user to home multiple axes simultaneously. For additional
 information on macro’s and background tasks please refer to the DCX-PCI300 MCCL
 Command Reference manual.

Connecting a Home Sensor
The Home inputs (Coarse Home - servo’s & closed loop steppers, Home – open loop stepper) of
MC3XX motion control modules use bi-directional optical isolators for interfacing to the external home
sensor. The following wiring example details the typical connections for a Home sensor switch.

Bi-directional
Optical isolator

74LS14

+5VDC

DCX-MC300

Coarse
J3-9: Coarse Home

J3-10: Home & Limits Return

+5VDC
Power Supply

+
_

360

This Coarse Home circuit wll indicate that the input is active if the switch
is closed

Coarse Home switch
(normally open)

MOT MOC256

Verifying the operation of the Home Sensor
Most motion applications will use a home sensor as a part of the homing sequence. Use Motion
Integrator’s Connect Axis I/O Wizard or Motion System Setup Test Panel to verify the proper

Motion Control

Precision MicroControl

78

operation of the encoder index.

Verifying the operation of the Index Mark of an Encoder
Most closed loop system applications will use the Index mark of the encoder to define the ‘home’
position of a servo. Use Motion Integrator’s Connect Encoder Wizard to verify the proper operation of
the encoder index.

Programming Homing Routines
The DCX-PCI300 provides sophisticated programming support for homing Closed Loop Servos,
Closed Loop Steppers, and Open Loop Steppers. The following two tables summarize which
commands are provided for homing operations.

MCAPI homing functions
 Axis Type Module Type Functions Input Notes
Closed Loop Servo MC300, MC302,

MC320
MCIndexArm
MCWaitForIndex
MCIsIndexFound

Encoder Index

Closed Loop Servo MC300, MC302,
MC320

MCFindIndex Encoder Index Use only from within
background task

Closed Loop Stepper MC360 MCIndexArm
MCWaitForIndex
MCIsIndexFound

Aux. Encoder
Index

Closed Loop Stepper MC360 MCFindIndex Aux. Encoder
Index

Use only from within
background task

Open Loop Stepper MC360, MC362 MCIndexArm

MCWaitForIndex
MCIsIndexFound

Home

Open Loop Stepper MC360, MC362 MCFindEdge Home Use only from within
background task

Motion Control

DCX-PCI300 User’s Manual

79

 MCCL homing commands
Axis Type Module Type Command Input Notes
Closed Loop Servo MC300, MC302, MC320 IA & WI Encoder Index
Closed Loop Servo MC300, MC302, MC320 FI Encoder Index Use only from within

background task
Closed Loop Stepper MC360 IA & WI Aux. Encoder

Index

Closed Loop Stepper MC360 FI Aux. Encoder
Index

Use only from within
background task

Open Loop Stepper MC360, MC362 EL & WE Home
Open Loop Stepper MC360, MC362 FE Home Use only from within

background task

Homing a Rotary Stage (closed loop servo or closed loop stepper) with the Encoder Index
Many servo motor encoders generate an index pulse once per rotation. For a multi turn rotary stage,
where one rotation of the encoder equals one rotation of the stage, an index mark alone is sufficient
for homing the axis. When an axis need only be homed within 360 degrees no additional qualifying
sensors (coarse home) are required.

i

The following C example uses the MCIndexArm(), MCIsIndexFound(
), and MCWaitForIndex() functions for homing a closed loop system.
For complete C code homing samples that can be cut and pasted into an
application program please refer to the MCAPI on-line help
(MCAPI.HLP).

// Arm index and wait for index to be found
//
MCIndexArm(hCtlr, 1, 0.0);
if (!MCIsIndexFound(hCtlr, 1, 10.0)) {
 // Index not found within time limit (10 seconds),
 // error handling code goes here
}

//
// Process index and stop motor
//
MCWaitForIndex(hCtlr, 1); // controller 'processes' index data
MCStop(hCtlr, 1); // stop
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
Sleep(100); // let motor settle 100 msec (WIN32 API function)

i

The following MCCL example uses the Index Arm (aIAn) and the Wait
for Index (aWI) commands to home a closed loop system. For complete
MCCL homing samples that can be downloaded to the controller and
executed please refer to the MotionCD (\PCI300\MCCL\Homing).

Motion Control

Precision MicroControl

80

;MCCL rotary axis homing sequence index mark
MD10,1IA0,LU"STATUS",1RL@0,IC10,JR-3,NO,1WI,MJ11
 ;arm and capture index
MD11,1ST,1WS.01,1PM,1MN,1MA0,1WS.01 ;stop, initialize axis, move to index
 ;mark

Homing a Closed Loop Axis with Coarse Home and Encoder Index Inputs
A typical axis will incur multiple rotations of the motor/encoder over the full range of travel. This type of
system will typically utilize a coarse home sensor to qualify which of the index pulses is to be used to
home the axis. The Limit Switches (end of travel) provide a dual purpose:

 1) Protect against damage of the mechanical components.
 2) Provide a reference point during the initial move of the homing sequence

 The following diagram depicts a typical linear stage.

Servo motor
and encoder

StageLead screw

Coarse Home
sensor

Positive Limit
sensor

Negative Limit
sensor

When power is applied or the DCX is reset, the position of the stage is unknown. The axis is
commanded to execute a velocity mode move, checking the status of both the Coarse Home sensor
and the Limit + sensor. Once the axis is within the Coarse Home sensor the MCIndexArm(),
MCIsIndexFound(), and MCWaitForIndex() functions are used to reference the reported position of
the axis to the index mark. The MCEnableAxis() function completes the homing operation by
reinitialize all position registers. The following flow chart describes a typical homing procedure. If the
positive limit sensor is activated the stage will change direction prior to homing the axis.

Motion Control

DCX-PCI300 User’s Manual

81

Homing a Closed Loop System -
Encoder Index, Coarse Home Sensor, and Over Travel Limits

Coarse
 Home sensor

active?

Limit +
 sensor

 tripped?

Enable hard limit
 error checking

Stop axis,
change

direction

Coarse
 Home sensor

active?

Start velocity
mode move

in the
positive
direction

No

Enable axis
to clear limit.

Move neg.
to Coarse

Home
sensor

Yes

Coarse
 Home sensor

active?

No

Coarse
 Home sensor

inactive?

Yes

No

Yes

No

Stop axis,
change

direction

Yes

No

Capture
Encoder

Index

Yes

Stop, turn
Motor oN,
move to

index mark

Homing complete

Figure 31: Typical homing routine for a servo

i

The following C example uses the MCIndexArm(), MCIsIndexFound(
), and MCWaitForIndex() functions for homing a closed loop system.
For complete C code homing samples that can be cut and pasted into an
application program please refer to the MCAPI on-line help
(MCAPI.HLP).

// MCAPI linear stage homing sequence using the index mark
//
MCIndexArm(hCtlr, 1, 1000.0);
if (!MCIsIndexFound(hCtlr, 1, 10.0)) {
 // Index not found within time limit (10 seconds),
 // error handling code goes here

Motion Control

Precision MicroControl

82

}
// Process index and stop motor
MCWaitForIndex(hCtlr, 1); // controller 'processes' index data
MCStop(hCtlr, 1); // stop
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
Sleep(100); // let motor settle 100 msec (WIN32 API function)

// Move back to location of index mark
//
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 1, TRUE);
MCMoveAbsolute(hCtlr, 1, 0.0);
MCIsStopped(hCtlr, 1, 2.0);
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
Sleep(100);

i

The following MCCL example uses the Index Arm (aIAn) and the Wait
for Index (aWI) commands to home a closed loop system. For complete
MCCL homing samples that can be downloaded to the controller and
executed please refer to the MotionCD (\PCI300\MCCL\Homing).

;MCCL linear stage homing sequence using the index mark
MD10,1IA1000,MC20,1WI,1ST,1WS.01,MJ11 ;capture index (position = 1000) then stop
MD11,1PM,1MN,1MA1000,1WS.1 ;initialize axis, move to index

;homing sub routines
MD20,LU"STATUS",1RL@0,IS10,BK,NO,JR-5 ;test for Index Found

Homing a Closed Loop Axis with a Limit sensor
An axis can be homed even if no index mark or coarse home sensor is available. This method of
homing utilizes one of the limit (end of travel) sensors to also serve as a home reference.

i

This method is not recommended for applications that require high
repeatability and accuracy. To achieve the highest possible accuracy
when using this method, significantly reduce the velocity of the axis
while polling for the active state of the limit input.

The following MCAPI and MCCL sequences will home an axis at the position where the positive limit
sensor ‘goes active’:

Motion Control

DCX-PCI300 User’s Manual

83

i

The following C example uses the MCSetPosition() function to
redefine the encoder position a closed loop system. For complete C
code homing samples that can be cut and pasted into an application
program please refer to the MCAPI on-line help (MCAPI.HLP).

// MCAPI homing sequence (using positive limit sensor)
// the axis must have already been moved into (and tripped) the positive limit
// sensor

// Once the positive limit switch is active, move negative until switch is inactive
//
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
MCEnableAxis(hCtlr, 1, TRUE);
MCDirection(hCtlr, 1, MC_DIR_NEGATIVE);
MCSetVelocity(hCtlr, 1, 1000.0);
MCGoEx(hCtlr, 1, 0.0));
dwStatus = MCGetStatus(hCtlr, 1);
if (!MCDecodeStatus(hCtlr, dwStatus, MC_STAT_INP_PLIM)) {
 dwStatus = MCGetStatus(hCtlr, 1)
}

// Stop the axis and define the leading edge of the limit switch as position 0
//
MCAbort(hCtlr, 1);
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
MCSetPosition(hCtlr, 1, 0.0);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 1, TRUE);
MCMoveAbsolute(hCtlr, 1, -100.0);

i

The following MCCL example uses the Define Home (aDHn) command
to redefine the encoder position of a closed loop system. For complete
MCCL homing samples that can be downloaded to the controller and
executed please refer to the MotionCD (\PCI300\MCCL\Homing).

; MCCL linear stage homing sequence using the positive limit sensor
MD1,1LM2,1LN3,MJ10 ;call homing macro
MD10,1VM,1DI0,1GO,LU”STATUS”,1RL@0,IS17,MJ11,NO,JR-5
 ;move and poll the Limit + sensor
MD11,1WS0.01,1MN,1DI1,1SV1000,1GO,LU”STATUS”,1RL@0,IC28,MJ12,NO,JR-5
 ;move negative until limit + inactive
MD12,1AB,1WS.1,1DH0,1PM,1MN,1MA-100 ;stop immediately when limit + not active,
 ;define position as 0. Move to position –100.

Motion Control

Precision MicroControl

84

Homing open loop steppers
Open loop steppers are typically homed based on the position of a home sensor. Unlike servos that
use a precision reference index mark, steppers are more prone to homing inaccuracies due the lower
repeatability of the single electro mechanical home sensor. To achieve the highest possible
repeatability; reduce the velocity of the axis and always approach the home sensor from the same
direction. Here is a typical linear axis controlled by an open loop stepper motor. A home sensor
defines the home position of the axis. End of travel or Limit Switches are used to protect against
damage of the mechanical components.

Stepper motor
Lead screw

Home sensor Positive Limit
sensor

Negative Limit
sensor

Stage

When power is applied or the DCX is reset, the position of the stage is unknown. The following
command sequence will move the stage in the positive direction. If the positive limit sensor is
activated before the Home sensor the stage will change direction, until home sensor is located. When
the Home sensor is activated the MCEdgeArm () and MCIsEdgeFound () functions are used to
capture the position of the Home sensor active edge.

Homing an Open Loop Stepper -
 Home Sensor and Over Travel Limits

Home
sensor
 active?

Enable hard limit
 error checking

Slow down

Limit +
 sensor

 tripped?

Start velocity
mode move

in the
positive
direction

No

Enable axis,
Move neg.
towards
Home
sensor

No

Stop axis,
change

direction

Yes

Stop, move
to position 0
(where index

mark was
captured)

Homing complete

Home
 sensor

inactive?

Capture
sensor edge
MCEdgeLatch

MCWairForEdge

Yes

No

Yes

Figure 32: Typical homing routine for a stepper

Motion Control

DCX-PCI300 User’s Manual

85

i

The following C example uses the MCEdgeArm(), MCIsEdgeFound(),
and MCWaitForEdge() functions for homing a closed loop system. For
complete C code homing samples that can be cut and pasted into an
application program please refer to the MCAPI on-line help
(MCAPI.HLP).

// MCAPI open loop stepper linear stage homing sequence using the home sensor
//
MCEdgeArm(hCtlr, 1, 1000.0);
if (!MCIsEdgeFound(hCtlr, 1, 10.0)) {
 // Edge not found within time limit (10 seconds),
 // error handling code goes here
}
// Process edge and stop motor
MCWaitForEdge(hCtlr, 1); // controller 'processes' edge data
MCStop(hCtlr, 1); // stop
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
Sleep(100); // let motor settle 100 msec (WIN32 API function)

// Move back to location of home sensor edge
//
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 1, TRUE);
MCMoveAbsolute(hCtlr, 1, 0.0);
MCIsStopped(hCtlr, 1, 2.0);
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
Sleep(100);
// Enable / disable axis to set MC_STAT_INP_INDEX to monitor the current
// state (not capture & latch) of Home sensor
MCEnableAxis(hCtlr, 1, FALSE);
MCWait(hCtlr, 0.01);
MCEnableAxis(hCtlr, 1, TRUE);

i

Prior to issuing MCEdgeArm () the status flag MC_STAT_INP_INDEX
will indicate the current state of the Home Sensor (1 = active, 0 =
inactive). After issuing MCEdgeArm () MC_STAT_INP_INDEX will be
latched when the Home sensor edge has been captured. To clear
latching of MC_STAT_INP_INDEX issue:
 MCEnableAxis(hCtlr, 1, FALSE);
 MCEnableAxis(hCtlr, 1, TRUE);

Motion Control

Precision MicroControl

86

i

The following MCCL example uses the Edge Arm (aEAn) and the Wait
for Edge (aWE) commands to home a closed loop system. For complete
MCCL homing samples that can be downloaded to the controller and
executed please refer to the MotionCD (\PCI300\MCCL\Homing).

; MCCL Stepper linear stage homing sequence using Home & positive limit ;sensors
MD1,1LM2,1LN3,MJ10 ;enable limits, call homing macro
MD10,1VM,1DI0,1SV10000,1GO,LU"STATUS",1RL@0,IS24,MJ11,NO,IS17,MJ13,NO,JR-8
 ;test for sensors (home and +limit)
MD11,LU"STATUS",1RL@0,IC24,MJ12,NO,JR-5 ;continue moving until home sensor off
MD12,1ST,1WS.1,1DI1,1SV5000,1GO,MJ14 ;move back to the home sensor
MD13,1WS0.01,1MN,1DI1,1SV5000,1GO,MJ14 ;move out of limit sensor range
 ;back toward the home sensor
MD14,1EL0,MC15,1WE,1ST,1WS.1,1MF,1MN,1PM,1MA-100
 ;capture the active edge of the
 ;home sensor. Stop axis and
 ;define a position 0, ;move to
 ;position -100
MD15,LU"STATUS",1RL@0,IS10,BK,NO,JR-5 ;loop status for Edge found bit set

i

Prior to issuing Edge Latch (aELn) the status bit 24 Index / Home will
indicate the current state of the Home Sensor (1 = active, 0 = inactive).
After issuing Edge Latch (aELn) status bit 24 will be latched when the
Home sensor edge has been captured. To clear latching issue:
 1MF,1MN

Homing a Open Loop Stepper with a Limit sensor
An axis can be homed even if no home sensor is available. This method of homing utilizes one of the
limit (end of travel) sensors to also serve as a home reference. The following MCAPI and MCCL
sequences will home an axis at the position where the positive limit sensor ‘goes active’:

i

The following C example uses the MCSetPosition() function to
redefine the encoder position a closed loop system. For complete C
code homing samples that can be cut and pasted into an application
program please refer to the MCAPI on-line help (MCAPI.HLP).

// MCAPI homing sequence (using positive limit sensor)
// the axis must have already been moved into (and tripped) the positive limit
// sensor

// Once the positive limit switch is active, move negative until switch is inactive
//
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
MCEnableAxis(hCtlr, 1, TRUE);
MCDirection(hCtlr, 1, MC_DIR_NEGATIVE);
MCSetVelocity(hCtlr, 1, 1000.0);

Motion Control

DCX-PCI300 User’s Manual

87

MCGoEx(hCtlr, 1, 0.0));
dwStatus = MCGetStatus(hCtlr, 1);
if (!MCDecodeStatus(hCtlr, dwStatus, MC_STAT_INP_PLIM)) {
 dwStatus = MCGetStatus(hCtlr, 1)
}

// Stop the axis and define the leading edge of the limit switch as position 0
//
MCAbort(hCtlr, 1);
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
MCSetPosition(hCtlr, 1, 0.0);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 1, TRUE);
MCMoveAbsolute(hCtlr, 1, -100.0);

i

The following MCCL example uses the Define Home (aDHn) command
to redefine the encoder position of a closed loop system. For complete
MCCL homing samples that can be downloaded to the controller and
executed please refer to the MotionCD (\PCI300\MCCL\Homing).

; MCCL linear stage homing sequence using the positive limit sensor
MD1,1LM2,1LN3,MJ10 ;call homing macro
MD10,1VM,1DI0,1GO,LU”STATUS”,1RL@0,IS17,MJ11,NO,JR-5
 ;move and poll the Limit + sensor
MD11,1WS0.01,1MN,1DI1,1SV1000,1GO,LU”STATUS”,1RL@0,IC28,MJ12,NO,JR-5
 ;move negative until limit + inactive
MD12,1AB,1WS.1,1DH0,1PM,1MN,1MA-100 ;stop immediately when limit + not active,
 ;define position as 0. Move to position –100.

Motion Complete Indicators

When the DCX receives a move command, the Trajectory Generator calculates a velocity profile. This
profile is based on:

 The target position (absolute or relative)
 The user defined trajectory parameters (velocity, acceleration, and deceleration)

The velocity profile, as calculated by the DCX trajectory generator, is made up by a series of
calculated ‘Optimal Positions’ that are evenly spaced along the motion path in increments of 1 msec’s.
These 1 msec optimal positions are passed to the DCX servo modules, which then performs a linear
interpolation at the selected servo loop rate.

Motion Control

Precision MicroControl

88

Velocity
(encoder counts per second)

Time (msec's)4 8 12 16 20

25000

50000

100000

75000

= Optimal positions

Optimal position - Actual position = Following error

calculated trajectory complete
(status bit 3 set)

= Calculated trajectory
= Actual trajectory

= Following Error

For a closed loop servo, when the calculated optimal position of an axis is equal to the move target,
the calculated ‘digital trajectory’ of the move has been completed and the MC_STAT_TRAJ status
flag (MCCL status trajectory complete bit 3) will be set (as shown in the Status Panel graphic below).
For a closed loop stepper axis when the encoder position is equal to the move target, the trajectory of
the move has been completed and the MC_STAT_TRAJ status flag will be set. For an open loop
stepper axis when the step count (pulses issued) is equal to the move target, the trajectory of the
move has been completed and the MC_STAT_TRAJ status flag will be set.

Figure 33: MCAPI Status Panel utility

The MC_STAT_TRAJ status flag is the conditional component of the MCIsStopped() and
MCWaitForStop() functions. As shown by the trajectory graph above, the typical lag or following

Motion Control

DCX-PCI300 User’s Manual

89

error during a servo move can cause the MC_STAT_TRAJ flag to be set before the axis has
reached its target. Issuing MCIsStopped() with a timeout value specified or MCWaitForStop() with
a Dwell time specified allows the user to delay execution move has been completed (following error =
0). In the example below, the MCIsStopped() function (with a 2 second timeout) is used to poll the
axis for MC_STAT_TRAJ = true. The Windows SLEEP function is used to allow the axis to stop and
settle for 100 milliseconds. command includes a Dwell of 5 msec’s, allowing the axis to stop and
settle.

MCMoveRelative(hCtlr, 2, 500.0); // move 500 counts
MCIsStopped(hCtlr, 1, 2.0);
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
Sleep(100);

Another method of indicating the end of a move of a servo is to use MCIsAtTarget() or
MCWaitForTarget() functions. To satisfy the conditions of MCIsAtTarget() and MCWaitForTarget(
) , the axis must be within the Deadband range (encoder counts +/- or stepper pulses +/-) for the time
period specified by DeadbandDelay, both of which are defined within the MCMotion data structure.
The MC_STAT_AT_TARGET flag will be set when the conditions for both Deadband and
Deadbanddelay have been met.

MCMoveRelative(hCtlr, 1, 1250.0); // move 1250 counts
MCWaitForTarget(hCtlr, 1, 0.005); // wait till MC_STAT_TRAJ set plus
 // msec’s

MCIsAtTarget(hCtlr, 1, 2.0);
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to reach the target within time limit (2 seconds),
 // error handling code goes here
}
Sleep(100);

On the Fly changes

During a point to point or constant velocity move of one or more axes, the DCX supports ‘on the fly’
changes of:

• Target
• Maximum Velocity
• Acceleration
• Deceleration
• PID parameters

Changes made to any or all of these motion settings while an axis is moving will take affect within 1
msec.

Motion Control

Precision MicroControl

90

!

Note – Changing the PID parameters (Proportional gain, Derivative gain,
Integral gain) ‘on the fly’ may cause the axis to jump, oscillate, or ‘error
out’.

i

S-curve or Parabolic velocity profiles:
 1) Changing the target position on the fly will cause the axis to
 decelerate to a stop before proceeding to the new target
 2) On the fly changes of trajectory parameters (max. velocity, accel,
 decel) will not be implemented until the current move has been
 completed

i

If an “on the fly” target position change requires a change of direction the
axis will first decelerate to a stop. The axis will then move in the opposite
direction to the new target. This will occur if:

 1) The new target position is in the opposite direction of the current
 move
 2) A ‘near target’ is defined. A near target is a condition where the
 current deceleration rate will not allow the axis to stop at the
 new target position. In this case the axis will decelerate to a stop at
 the user define rate, which will result in an overshoot. The axis will
 then move in the opposite direction to the new target.

If an on the fly change requires the axis to change direction, the DCX
command interpreter will stall, not accepting any additional commands,
until the change of direction has occurred (deceleration complete).

Feed Forward (Velocity, Acceleration, Deceleration)
Feed forward is a method in which the controller increases the command output to a servo in order to
reduce the following error of an axis. Traditionally feed forward is associated with servo systems that
use velocity mode amplifiers, but simple current mode amplifiers used for high velocity and high rate
of change applications can also benefit from the use of feed forward.

The basic concept of feed forward is to match the servo command voltage output of the controller to a
specific velocity of axis. This essentially adds a user defined offset to the digital PID filter, resulting in
more accurate motion by reducing the following error. For example:

Motion Control

DCX-PCI300 User’s Manual

91

The maximum velocity of an axis is 500,000 encoder counts per second. With a typical load applied,
the user determines that a servo command voltage of 8.25V will cause the motor to rotate at 500,000
encoder counts per second. The feed forward algorithm used by the DCX to generate the servo
command output is:

 DCX output = Velocity (encoder counts/sec) X Feed forward term (encoder counts/volt/sec.)

with a velocity of 500,000 counts per second at a command input of 8.25V the algorithm will be:

 8.25 volts = 500,000 counts/sec. X Feed forward term (encoder counts * volt/sec.)

 Feed forward = 8.25V / 500,000 counts per sec.

 0.0000165 = 10 volts / 100,000 counts per sec.

1VG0.0000165 ;set velocity gain (velocity feed
 ;forward) with MCCL command

// set velocity gain (velocity feed forward) using MCAPI function
//
 MCGetFilterConfig(hCtrlr, iAxis, &Filter);
 Filter.VelocityGain = (hCtlr, 1, 0.0000165);
 MCSetFilterConfig(hCtrlr, iAxis, &Filter);

i

An axis that has been tuned without feed forward will need to be re-
tuned when the feed forward has been changed to a non zero value.

See the description of Tuning a Velocity Mode amplifier in the Tuning
the Servo section of the Motion Control chapter

When feed forward is incorporated into the digital PID filter it becomes the primary component in
generating the servo command output voltage. Typically the setting of the other terms of the filter will
be:

 Proportional gain – reduced by 25% to 50%
 Integral gain – reduced by 5% to 25%
 Derivative gain – set to zero, if the axis is too responsive reduce the gain of the amplifier

Acceleration and Deceleration Feed Forward
For most applications, velocity feed forward is sufficient for accurately positioning the axis. However
for applications that require a very high rate of change, acceleration and deceleration gain must be
used to reduce the following error at the beginning and end of a move.

Acceleration and deceleration feed forward values are calculated using a similar algorithm as used for
velocity gain. The one difference is the velocity is expressed as encoder counts per second, while
acceleration and deceleration are expressed as encoder counts per second per second.

Motion Control

Precision MicroControl

92

 DCX output = Accel./Decel. (encoder counts/sec/sec.) * Feed forward term (encoder counts * volt/sec./sec.)

i

Acceleration and deceleration feed forward values should be set prior to
using the Servo Tuning Utility to set the proportional and integral gain.

Save and Restore Axis Configuration

The MCAPI Motion Dialog library includes MCDLG_SaveAxis() and MCDLG_RestoreAxis().
These high level dialogs allow the programmer to easily maintain and update the settings for servo
and stepper axes.

MCDLG_SaveAxis() encodes the motion controller type and module type into a signature that is
saved with the axis settings. MCDLG_RestoreAxis() checks for a valid signature before restoring the
axis settings. If you make changes to your hardware configuration (i.e. change module types or
controller type) MCDLG_RestoreAxis() will refuse to restore those settings.

You may specify the constant MC_ALL_AXES for the wAxis parameter in order to save the
parameters for all axes installed on a motion controller with a single call to this function.

If a NULL pointer or a pointer to a zero length string is passed as the PrivateIniFile argument the
default file (MCAPI.INI) will be used. Most applications should use the default file so that configuration
data may be easily shared among applications. Acceptance of a pointer to a zero length string was
included to support programming languages that have difficulty with NULL pointers (e.g. Visual Basic).

Motion Control

DCX-PCI300 User’s Manual

93

Application Solutions

Precision MicroControl

94

Chapter Contents

• Auxiliary Encoders
• Backlash Compensation
• Emergency Stop
• Encoder Rollover
• User Defined Filters (Notch, Low Pass, High Pass, and Band Pass)
• Flash Memory Firmware Upgrade
• Initializing and Restoring Controller Configuration
• Learning/Teaching Points
• Building MCCL Macro Sequences
• MCCL Multitasking
• Pause and Resume Motion
• Position Capture
• Position Compare
• Reassigning Axis Numbers
• Record and Motion Data
• Manually Resetting the DCX
• Single Stepping MCCL Programs
• Tangential Knife Control
• Threading Operations
• Torque Mode Output Control
• Turning off Integral gain during a move
• Upgrading from a DCX-AT200 motion control system
• Defining User Units
• DCX Watchdog

DCX-PCI300 User’s Manual

95

Application Solutions

Auxiliary Encoders

i

Dual axis modules (DCX-MC302, DCX-MC362) do not support auxiliary
encoders.

Servo systems typically use an encoder for position feedback. The encoder is usually mounted to the
motor housing and the glass scale of the encoder is coupled directly to the shaft of the motor. This
direct coupling provides the DCX with position feedback of the motor shaft, allowing the controller to
position the shaft of the motor independent of external mechanical inaccuracies (slipping belts, gear
backlash, lead screw runout).

However the ‘task at hand’ of most motion control applications is not to rotate the shaft of a motor, it is
to automate a manual operation. To accomplish this, the shaft of the motor is connected to the
external mechanics that will actually be doing the work. Take for example a pick and place machine
with axes X, Y, and Z. Due to a myriad of gears, pulleys, belts, and lead screws there may be no more
than a ‘loose’ association between the motor shaft of the X axis and the actual position of the X axis’
‘end effector’. This is where an auxiliary encoder can be used to significantly improve the positioning
accuracy of a servo or stepper system.

Servo Axes with Auxiliary Encoders
An auxiliary encoder is required when the user must reposition an axis to compensate for the
discontinuity between the motor shaft and the mechanics that position the ‘end effector’.

i

While similar in connections, the operation and configuration of a servo
and auxiliary encoder is significantly different from a Dual Loop Servo.
For a description, please refer to the Dual Loop Servo section of the
Motion Control chapter.

Chapter

6

Application Solutions

Precision MicroControl

96

Typically an auxiliary encoder is added to a closed loop servo to allow the user to retrieve the position
of the ‘end effector’ at the end of a move. The position of the auxiliary encoder is not a component of
the servo command output as calculated by the digital PID filter. The auxiliary encoder is used to
determine whether or not the axis is properly positioned.

// After a move compare the target and auxiliary encoder position.
// If short of the target, execute a move = the difference of the target &
// encoder position

MCMoveAbsolute(hCtlr, 1, 1675.5);
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
if (MCGetTargetEx(hCtlr, 2, &Target) == MCERR_NOERROR)
if (MCGetAuxEncPosEx(hCtlr, 1, &Position) == MCERR_NOERROR)
 if (Position < 1674.0)
 (Target – Position = AuxEncDiff)
 MCMoveRelative(hCtlr, 1, AuxEncDiff);
 if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
 }
 if (MCGetAuxEncPosEx(hCtlr, 1, &Position) == MCERR_NOERROR)
 if (Position < 1675.0)
 . . . // print error message

Open Loop Stepper Axes with Auxiliary Encoders
An auxiliary encoder may be used in conjunction with a stepper motor to provide verification of a
move. The advantages of an open loop stepper over a closed loop axis are:

 The output pulse train of an open loop system is much more stable
 Easier to configure - open loop systems require no tuning

Typically an encoder is added to an open loop stepper to allow the user to retrieve the encoder
position at the end of a move. The reported position of the auxiliary encoder is used to determine
whether or not the axis is properly positioned.

// After a move compare the target and auxiliary encoder position.
// If short of the target, execute a move = the difference of the target &
// encoder position

MCMoveAbsolute(hCtlr, 1, 122.5);
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
if (MCGetTargetEx(hCtlr, 2, &Target) == MCERR_NOERROR)
if (MCGetAuxEncPosEx(hCtlr, 1, &Position) == MCERR_NOERROR)
 if (Position < 122.0)
 (Target – Position = AuxEncDiff)
 MCMoveRelative(hCtlr, 1, AuxEncDiff);
 if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
 }
if (MCGetAuxEncPosEx(hCtlr, 1, &Position) == MCERR_NOERROR)
 if (Position < 122.0)

Application Solutions

DCX-PCI300 User’s Manual

97

 . . . // print error message

For information about closed loop stepper motion, please refer to the Closed Loop Steppers and
Homing Axes sections of the Motion Control chapter.

Homing the Auxiliary Encoder
The auxiliary encoder of a servo or stepper may be homed in one of two ways:

 Home the encoder using the Auxiliary Encoder Index input
 Re-define the position of the auxiliary encoder when the primary axis position is initialized

If the encoder includes an index mark output it is recommended that this signal be used to home both
the reported position of the axis and the auxiliary encoder. The repeatability of a system homed using
the index mark will be significantly better than that of a system that uses a mechanical
switch/electromechanical sensor. The following programming example will reference both the reported
position of an open loop stepper and the auxiliary encoder at the location of the Index mark:

i

The following C example uses the MCFindAuxEncIdx(),
MCSetAuxEncPos (), and MCSetPosition () functions to redefine the
step count and encoder position an open loop stepper with an auxiliary
encoder. For complete C code homing samples that can be cut and
pasted into an application program please refer to the MCAPI on-line
help (MCAPI.HLP).

MCFindAuxEncIdx(hCtlr, 1, 0.0);
dwStatus = MCGetStatus(hCtlr, 1);
while (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT_INP_AUX))
 dwStatus = MCGetStatus(hCtlr, 1);
MCStop(hCtlr, 1);
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
MCGetAuxEncIdxEx(hCtlr, 1, &CapturedAuxEncoderPosition);
MCGetAuxEncPosEx(hCtlr, 1, &AuxEncoderPosition);
EncoderPulsesFromIndex = AuxEncoderPosition - CapturedAuxEncoderPosition;
MCSetAuxEncPos(hCtlr, 1, EncoderPulsesFromIndex);
StepsFromIndex = EncoderPulsesFromIndex * EncoderPulsesToSteps;
MCSetPosition(hCtlr, 1, StepsFromIndex);

i

Unlike the MCFindIndex() function, which re-defines the position
reported by a servos’ encoder, MCSetAuxEncPos() does not re-define
the position of the auxiliary encoder. MCSetAuxEncPos() only arms the
capture of the encoder index mark, which is then indicated by the status
bit MC_STAT_INP_AUX being set.

Application Solutions

Precision MicroControl

98

;MCCL example - define positions at auxiliary encoder index mark
1AF,LU"STATUS",1RL@0,IS27,BK,NO,JR-5 ;Enable aux. encoder index mark
 ;capture, loop until index captured
1AX,AR100 ;load accumulator with encoder
 ;position when index occurred, store
 ;the value in user register 100

i

For MCCL homing samples that can be downloaded to the controller and
executed please refer to the MotionCD (\PCI300\MCCL\Homing).

If no encoder index mark output is available, the position of the auxiliary encoder can
be redefined at anytime using the MCAPI function MCSetAuxEncPos().

Auxiliary Encoder Connections
The two diagrams that follow illustrate the typical wiring connections required for interfacing DCX
motion control modules to an auxiliary encoder. For additional information please refer to the
Connectors, Jumpers, and Schematics chapter.

Servo MotorQuadrature
Encoder

Stage

DCX-MC300H
I/O Connector J3

Ground

16
13
14
15

21
22
23
24
25
26
16

Encoder Phase A+

Encoder Index +
Encoder Index -

Encoder Phase A- (Differential only)

Encoder Phase B+

Encoder Phase B- (Differential only)

Encoder Power (+5 / +12)

Encoder Power

Auxiliary Encoder Phase A
Auxiliary Encoder Phase B

Auxiliary Encoder Index +

Ground
Belt

Linear Scale
(auxiliary encoder)

Closed Loop Sevo with Auxiliary Encoder

Application Solutions

DCX-PCI300 User’s Manual

99

Stage

Linear Scale
(auxiliary encoder)

Stepper Motor

Belt

DCX-MC360H
I/O Connector J3

16
21
22
23
24
25
26
2 Ground

Auxiliary Encoder Phase A+

Auxiliary Encoder Phase B+

Auxiliary Encoder Phase A-

Auxiliary Encoder Phase B-

Auxiliary Encoder Index-

Auxiliary Encoder Index+

Encoder Power (+5VDC)

Open Loop Stepper with
Auxiliary Encoder

Verifying the Operation of the Auxiliary Encoder
Enabling Closed Loop Mode (from the Stepper Setup dialog) causes PMC's Motor Mover to display
the position of auxiliary encoder.

Figure 34: Rotate the motor / encoder shaft back and forth.
Verify that the position is changing accordingly

From WinControl, issuing the Auxiliary encoder Tell position (aAT) command will cause the current
position of the auxiliary encoder to be reported.

Application Solutions

Precision MicroControl

100

Backlash Compensation

In applications where the mechanical system isn't directly connected to the motor, it may be required
that the motor move an extra amount to compensate for system backlash. When backlash
compensation is enabled, the DCX controller will offset the target position of a move by the user
defined backlash distance. This feature is only available for servos (MC300 MC320) at this time.

The function MCEnableBacklash() is used to initiate backlash compensation. The Backlash
parameter of this function sets the amount of compensation and should be equal to one half of the
amount the axis must move to take up the backlash when it changes direction. The units for this
command parameter are encoder counts, or the units established by the MCSetScale() command for
this axis.

When this feature is enabled, the controller will add or subtract the backlash distance from the motor's
commanded position during all subsequent moves. If the motor moves in a positive direction, the
distance will be added; if the motor moves in a negative direction, it will be subtracted. When the
motor finishes a move, it will remain in the compensated position until the next move.

Prior to enabling backlash compensation, the motor should be positioned halfway between the two
positions where it makes contact with the mechanical gearing. This will allow the controller to take up
the backlash when the first move in either direction is made, without "bumping" the mechanical
position.

While backlash compensation is enabled, the response to the MCGetPosition(), MCTellTarget()
and MCTellOptimal() commands will be adjusted to reflect the ideal positions as if no mechanical
backlash was present.

For the example below assume that the system has 200 encoder counts of backlash. This example
moves the system to the middle of the backlash range and enables compensation. Note that the
compensation value (in encoder counts) used with MCEnableBacklash() is half of the total amount of
backlash.

MCMoveRelative(hCtlr, 1, -100.0); // move to middle of backlash
MCWaitForStop(hCtlr, 1); // let motion finish
MCEnableBacklash(hCtlr, 1, 100.0, TRUE); // enable backlash compensation

Gear backlash

Application Solutions

DCX-PCI300 User’s Manual

101

Emergency Stop
Many applications that use motion control systems must accommodate regulatory requirements for
immediate shut down due to emergency situations. Typically these requirements do not allow an
emergency shut down to be controlled by a programmable computing device. The drawing below
depicts an application where an emergency stop must be a completely ‘hard wired’ event.

Computer Control
Panel

Motor

Servo
Amplifier

Motor

Servo
Amplifier

Motor

Servo
Amplifier AC Power In

Relay - NC

E-stop Switch

+5 VDC

Amplifier
Power Supply

AC In

Figure 35:Typical 'hard wired' E-stop

This ‘hard wired’ E-stop circuit uses a relay to disconnect power from the servo amplifiers. The motors
and amplifiers would certainly be disabled, but the motion controller and the application program will
have no indication that an error condition exists.

Wiring the E-Stop switch to the DCX
There are two ways to wire the DCX so that it can monitor the E-stop switch:

 1) Connect the E-stop switch to one of the general purpose digital I/O lines
 2) Connect the Amplifier Fault (MC300 & MC320) and Drive Fault (MC360) inputs to the E-stop
 switch

E-stop switch connected to DCX General Purpose Digital Input
Wire the E-stop switch to a general purpose digital I/O (channel #1). Each DCX digital channel has a
4.7K resistor pulled up to +5 volts. A background task is used to monitor the state of the input. If the
channel is configured for low ‘low true’ operation, the input will report its state as ‘off’ until the E-stop
switch is activated. The WaitForDigitalIO() function will stay active in background until the input
‘goes true’. For additional information on macro’s and background tasks please refer to the DCX-
PCI300 MCCL Command Reference manual.

Application Solutions

Precision MicroControl

102

AC Power In

Relay - NC

E-stop Switch

+5 VDC

Amplifier
Power Supply

DCX Digital I/O Channel #1
DCX-AT200 connector J3 pin 19

3

QED

#1#3#5#7

#8 #6 #4 #2J31

Figure 36:E-stop switch wired to DCX-PCI300 general purpose digital input

if (MCBlockBegin (hCtlr,MC_BLOCK_TASK, 0) ==MCERR_NOERROR) {
 MCSetRegister (hCtlr, 100, 0, MC_TYPE_LONG);
 MCConfigureDigitalIO (hCtlr, 1, MC_DIO_LOW);
 MCWaitForDigitalIO (hCtlr, 1, TRUE);
 MCSetRegister hCtlr, 100, 1, MC_TYPE_LONG);
 MCEnableAxes(hCtlr, MC_ALL_AXES, FALSE);
 MCBlockEnd (hCtlr, NULL);
}

// periodically poll the user register #100 for a value of 1. If true the user
// can jump to an E-stop handling routine.

MCGetUserRegister (hCtlr, 100, &Estop, MC_TYPE_LONG);

E-stop switch connected to Amplifier Fault servo module input
The Amplifier Fault inputs of MC300 and MC320 servo modules and/or the Drive Fault inputs of a
MC360 stepper module can be used to disable motion with no user software action required. The E-
stop switch is wired to the Amplifier/Drive Fault input (connector J3 pin 10 for servo modules or pin 7
for stepper modules) of each module. Auto shut down of motion upon activation of the E-stop switch
is enabled by the MCMotion structure member EnableAmpFault. When the E-stop switch is
activated:

 1) The axis is disabled (PID loop terminated, Amplifier Enable output turned off)
 2) The status flag MC_STAT_AMP_FAULT will be set for each axis
 3) The status flag MC_STAT_ERROR will be set for each axis

When the E-stop condition has been cleared, motion can be resumed after issuing the
MCEnableAxis function with the parameter wAxis set to MC_ALL_AXES.

Application Solutions

DCX-PCI300 User’s Manual

103

AC Power In

Relay - NC

E-stop Switch

+24 VDC

Amplifier
Power Supply

DCX-MC300/320/360 connector J3 pin 7

+5 VDC
Amp/Drive Fault opto supply/return

3

QED

#1#3#5#7

#8 #6 #4 #2J31

Figure 37:E-stop circuit wired to the fault input of DCX modules

Encoder Rollover
The DCX motion controller provides 32 bit position resolution, resulting in a position range of
 –2,147,483,647 to 2,147,483,647. For an application where the axis is moving at maximum velocity
(1million encoder counts/steps per second), the encoder would rollover in approximately 3.58
minutes. When the encoder rolls over, the reported position of the axis will change from a positive to a
negative value. For example, if the axis is at position 2,147,483,647 the next positive encoder count
will cause the DCX to report the position as –2,147,483,647.

If a user scaling other than 1:1 has been defined the DCX controller will report the position in user
units. The reported position at which the value will rollover is based on the user scaling. If user scaling
is set to 10,000 encoder counts to one position unit, the reported position will rollover at position
214,748.3647. The next positive encoder count will cause the DCX to report the position as
 –214,748.3647.

Encoder rollover during Position Mode moves
The DCX does not support executing Position Mode moves when the encoder rolls over. No matter
what the commanded position, the axis will stop at the rollover position (2,147,483,647 or
 –214,748.3647).

Encoder rollover during Velocity Mode moves
No disruption or unexpected motion will occur if a rollover occurs during a Velocity mode
(MCSetOperatingMode, MC_MODE_VELOCITY) move.

!

Prior to executing a velocity mode move in which the encoder position
may rollover the axis must be homed (MCFindIndex or MCSetPosition)
to position 0. Defining a offset to the home position will cause the axis to
pause at the rollover point.

Application Solutions

Precision MicroControl

104

User Defined Filters (Notch, Low Pass, High Pass, and Band
Pass)

i

The DCX-MC302 Dual Servo Control module does not support user
defined filters.

The DCX-PCI300 supports user defined IIR (Infinite Impulse Response) filters for each axis of servo
motion. User defined filters include:

• Notch filter, otherwise known as a Band Stop filter, allows the user to define a specific
frequency to be attenuated.

• Low Pass filter - removes the high frequency response of a servo system.
• High Pass filter - removes the low frequency response from the system.
• Band Pass filter - blocks both low and high frequency.

Frequency

M
agnitude

Notch Filter

Frequency

M
agnitude

Band Pass

Frequency

High Pass

Frequency

Low Pass

M
agnitude

M
agnitude

It is not uncommon for a servo system and its load to exhibit mechanical resonance’s. One or more
Notch filters can be cascaded to attenuate these resonance’s.

i

The DCX-PCI300, DCX motion control modules, and associated
software is not designed to detect, record, or display mechanical
resonance’s. The user is responsible for providing the necessary
equipment for analyzing resonance's.

Each axis supports as many as six biquad stages, providing up to 12th order performance. The form of
a biquad stage is shown in the following equation:

 y2 = a0 * x2 + a1 * x1 + a2*x3 + b1 * y0 + b2 * y1

Application Solutions

DCX-PCI300 User’s Manual

105

i

The DCX-PCI300 supports as many as two IIR filters per servo axis.
Usually this would means that the user could define two Notch filters, the
controller does support combining two different filter types (Notch & Low
Pass, Notch and High Pass, etc...).

The setting of the PID filter loop rate (HS, MS, LS) determines how many biquad stages an axis can
execute. The table below details the association:

Biquad
Stages

High Speed Medium Speed Low Speed

1 Yes Yes Yes
2 Yes Yes
3 Yes Yes
4 Yes Yes
5 Yes
6 Yes

While cascading filter stages will increase attenuation (the deeper notch), it will also tend to increase
ripple. In other words, don’t use any more stages than you need

Calculating the filter coefficients
A DOS utility program IIRFilter.exe available on the MotionCD (PCI300\iir filter\) allows the user to
define the type, quantity, and frequency response for an axis. The utility will then generate a MCCL
command file that can be downloaded to the controller via WinControl or the MCDLG_DownloadFile
MCAPI common dialog.

Figure 38: The DOS IIR filter utility (iirfilter.exe) calculates the filter coefficients, which can then be
downloaded to the controller via WinControl

Application Solutions

Precision MicroControl

106

Example – Defining a Notch filter
A machine builder has detected that axis one of a four axis machine has a significant resonance at
100 Hz. The following steps will configure the DCX-PCI300 to implement a Notch filter at 100 Hz with
a bandwidth of 10Hz.

Step #1 – Define the filter and calculate the coefficients
 Open the IIR filter utility (IIRFilter.exe). Enter the following:

 Select controller type: 1 = PCI300 <enter>
 Select the filter type: 4 = Band Stop (Notch) filter <enter>
 Select PID loop speed: 3 = High Speed <enter>
 Enter the Center Frequency: 100 <enter>
 Bandwidth: 10 <enter>

The utility will calculate the filter coefficients and store them in an MCCL command file named
Flt_Coef.pci3.

Magnitude

Frequency (Hz)

1.0

0.2

0.4

0.6

0.8

100 200 300 400 500

Figure 39: 100 Hz Notch filter frequency response

1ZF ;Zero filter to clear previous loaded filter coefficients

;1 Band Stop (Notch) Filters with center frequency at 100 Hz and bandwidth 10 Hz

1FL0.998531 ;Load filter 1 coefficient a0
1FL-1.990906 ;Load filter 1 coefficient a1
1FL0.998531 ;Load filter 1 coefficient a2
1FL1.986358 ;Load filter 1 coefficient b1
1FL-0.992514 ;Load filter 1 coefficient b2

Application Solutions

Download the filter coefficient file to the controller with WinControl or use the PMC Common Motion
Dialog function MCDLG_DownloadFile. To enable the digital filter issue the Yes IIR Filter (aYF)
command from WinControl or call the MCEnableDigitalFilter () function from a high level program.
Enable the axis with the MCEnableAxis function ().

i

The servo will perform significantly different with the IIR filter enabled so
you will need to re-tune the axis.

!

The Save and Restore functions of MCAPI 3.2.0000 do not support the
IIR filter parameters. Each time the controller is initialized (reset or power
cycle) you will need to download the coefficient file.

Flash Memory Firmware Update

Each time the PC is re-booted (reset or power cycle) the operating code (typically called firmware) for
the DCX-PCI300 is loaded into on-board SDRAM (Static Dynamic Random Access Memory). The
source files for the operating code is written to the PC’s hard disk drive during the installation of the
MCAPI.

PMC’s Flash Wizard (the DCX-PCI300 requires Flash Wizard rev. 2.20) is a windows utility that
allows the user to easily update the operational code. Code updates are available from the MotionCD
or from PMC’s web site www.pmccorp.com.

DCX-PCI300 User’s Manu

!

With W
during
Wizard

al

indows 98 and MCAPI 3
 code download. To comp
 and restart the PC.
.02.000 a verification error
lete the firmware upgrade

107

may occur
close Flash

Application Solutions

Precision MicroControl

108

Initializing and Restoring Controller Configuration
When the controller is reset or the computer is turned on all motion (PID settings,
Vel/Accel/Decel,Limits), I/O (High / Low true), and global controller (User Scaling) settings revert to
default values (default setting are listed on page 258).

New Applications & First Time users
PMC’s Motion Integrator was designed specifically for first time users and new applications. Not only
does it proceed step by step through the testing and configuration of a motion control system, it
automatically saves all settings by creating an initialization file. Upon completion of Motion Integrator
(including Servo Tuning) , all other PMC application programs can be directed to load the setting by
selecting Auto Initialize from the File menu.

Figure 40: Launch Motor Mover with user defined controller setting by selecting Auto Initialize

Saving user define settings
Upon recognition by the MCAPI that one or more DCX motion controllers are installed, an initialization
file (mcapi.ini) is copied into the Windows folder. Initially this file contains only information about the
controller type and interface settings. If at anytime the user selects Save All Axes Settings from the
File menu of any of PMC’s application programs, the current settings for all installed axes will be
written into the mcapi.ini file.

Figure 41: Saving axis settings to mcapi.ini from PMC's Servo Tuning program

To define controller settings from a user’s application program, call the Motion Control Dialog function
MCDLG_SaveAxis.

Application Solutions

DCX-PCI300 User’s Manual

109

!

Selecting Save All Axes from the File menu of a PMC application
program will over write all previously stored settings.

Restoring controller settings
Other than opening a handle for the controller, the first step in all user application programs should be
to restore all previously defined axis settings. This is accomplished by calling the Motion Dialog
MCDLG_RestoreAxis.

Learning/Teaching Points
As many as 256 points can be stored for each axis in the DCX's point memory by using the
MCLearnPoint() function. A stored point can be either the actual position of an axis
(MC_LRN_POSITION) or the target position of an axis (MC_LRN_TARGET).

The value MC_LRN_POINT would typically be used in conjunction with jogging. The operator would
jog the axes along the desired path, issuing the MCLearnPoint() command at regular intervals. The
MCMovePoint() command would then be used to ‘play back’ the path traversed by the operator.

For applications where the target point data was previously recorded and stored in the PC, the value
MC_LRN_TARGET would be used to load the target points into the DCX. For some applications,
using MCLearnPoint() to load a series of moves may be ‘easier’ than issuing a series of contour
mode linear moves, even though the results would be the same.

Once all points have been stored, the axes are commanded to move to the stored positions with
MCMoveToPosition(). The parameter wIndex indicates to which stored point the axis should move.

// Move axis 1 and store position in consecutive point storage locations.

WORD wIndex;
MCEnableAxis(hCtlr, 1, TRUE); // motor on
MCGoHome(hCtlr, 1); // start from absolute zero
MCWaitForStop(hCtlr, 1, 0.100);

for (wIndex = 0; wIndex < 5; wIndex++) {
 MCMoveRelative(hCtlr, 1, 1234.0); // move
 MCWaitForStop(hCtlr, 1, 0.100); // are we there yet?
 MCLearnPoint(hCtlr, 1, wIndex, MC_LRN_POSITION);
}

// Store several positions for axis 4 without actually moving the axis. Note // that
axis is disabled with MCEnableAxis() prior to storing positions

WORD wIndex;
MCEnableAxis(hCtlr, 4, FALSE); // motor off
for (wIndex = 0; wIndex < 5; wIndex++) {
 MCMoveRelative(hCtlr, 4, 2468.0); // nothing actually moves
 MCLearnTarget(hCtlr, 4, wIndex, MC_LRN_TARGET);
}

Application Solutions

Precision MicroControl

110

// This example moves to the stored positions, dwelling for 0.2 seconds at
// each point.

WORD wIndex;
MCEnableAxis(hCtlr, 4); // enable axis
for (wIndex = 0; wIndex < 5; wIndex++) {
 MCMoveToPoint(hCtlr, 4, wIndex); // move to next point
 MCWaitForStopped(hCtlr, 4, 0.2);
}

To cause the DCX to perform linear interpolated moves between the taught points, place each of the
axes in contour mode. Use the lowest axis number as the contour mode command parameters, this is
the controlling axis. Set the vector velocity and accelerations of the controlling axis. Issue a single
MCMoveToPoint() command to the controlling axis with the point numbers as the command
parameter. Note that when point memory is used with motors in contour mode, point 0 should not be
used. This example executes linearly interpolated moves through three stored points of axes 1, 2, and
3.

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 3, 1, MC_MODE_CONTOUR);

// Linear interpolated move sequence through stored points

for (wIndex = 1; wIndex < 4; wIndex++) {
 MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
 MCMoveToPoint(hCtlr, 1, wIndex);
 MCMoveToPoint(hCtlr, 1, wIndex);
 MCMoveToPoint(hCtlr, 1, wIndex);
 MCBlockEnd(hCtlr, NULL);
}

Building MCCL Macro Sequences
A powerful feature of the DCX is the ability to define MCCL (Motion Control Command Language)
command sequences as macros.

i

For additional information on macro’s and MCCL (Motion Control
Command Language) commands please refer to the MCCL Reference
Manual.

A DCX macro is a user define sequence of operations that is executed by issuing a single command.
For example:

1MR1000,WS0.25,MR-1000,WS0.25

will cause the motor attached to axis 1 to move 1000 counts in the positive direction, wait one quarter
second after it has reached the destination, then move back to the original position followed by a
similar delay. If this sequence were to represent a frequently desired motion for the system, it could
be defined as a macro command. This is done by inserting a Macro Define (MDn) command as the
first command in the command string. For example:

MD3,1MR1000,WS0.25,MR-1000,WS0.25

Application Solutions

DCX-PCI300 User’s Manual

111

will define macro #3. Whenever it is desired to perform this motion sequence, issue the command
Macro Call (MC3). To command the DCX to display the contents of a macro, issue the Tell Macro
(TMn) command with parameter ‘n’ = the number of the macro to be displayed. To display the
contents of all stored macro’s issue the Tell macro command with parameter ‘n’ = -1.

!

Once a macro operation has begun, the host will not be able to
communicate with the DCX until the macro has terminated. For
information on communicating with the controller while executing
macro’s please refer to the section titled MCCL Multi-Tasking.

The DCX can store up to 1000 user defined macros. Each macro can include as many as 255 bytes.
Depending on the type of command and type of parameter, a command can range from 2 bytes (a
command with no parameter) to 10 bytes (a command with a 64 bit floating point parameter).

All memory on the DCX-PCI300 is volatile, which means that the data in memory will be cleared
when the controller is reset or power to the board is turned off. The Reset Macro (RMn) command is
used to erase macros.

Since the DCX provides no protection against overflowing the macro storage space, it is suggested
that the user monitor the amount of memory available for macro storage. The Tell Macro (TMn)
command can be used to display the amount of RAM memory available for macros storage at any
give time.

To terminate the execution of any macro that was started from WinControl press the escape key.
To start a macro that runs indefinitely without ‘locking up’ communication with the host, start the
macro’s with the generate a Background task (GT) command instead of the Call macro command
(MC). This will allow the operations called by macro 0 to execute as a background task. Please refer
to the next section Multi-Tasking.

i

The DCX-PCI300 supports Single Stepping of any MCCL macro
command executing as the foreground task. For additional information
please refer to Single Stepping MCCL Programs later in this chapter.

Application Solutions

Precision MicroControl

112

MCCL Multi-Tasking
The DCX command interpreter is designed to accept commands from the user and execute them
immediately. With the addition of sequencing commands, the user is able to create sophisticated
command sequences that run continuously, performing repetitive monitoring and control tasks. The
drawback of running a continuous command sequence is that the command interpreter is not able to
accept other commands from the user.

!

Once a macro operation has begun, the host will not be able to
communicate with the DCX until the macro has terminated.

The DCX supports Multi-tasking, which allows the controller to execute continuous monitoring or
control sequences as background tasks while the foreground task communicates with the ‘host’.

With the exception of reporting commands (Tell Position, Tell Status, etc...), any MCCL commands
can be executed in a background task. Prior to executing a command sequence/macro as a
background task, the user should always test the macro by first executing it as a foreground
task. When the user is satisfied with the operation of the macro, it can be run as a background task
by issuing the Generate Task (GTn) command, specifying the macro number as the command
parameter. After the execution of the Generate Task command, the accumulator (register 0) will
contain an identifier for the background task. Within a few milliseconds, the DCX will begin running the
macro as a background task in parallel with the foreground command interpreter. The DCX will be
free to accept new commands from the user.

;Multitasking example – while axis #1 is moving, monitor the state of digital
;input #4. When the input goes active, stop axis #1 and terminate the
;background task

AL0,AR10 ;define user register 10 as input #4 active
 ;flag register
AL0,AR100 ;define user register #100 as background task
 ;ID register

MD100,IN4,MJ101,NO,1JR-3 ;jump to macro 101 when digital input #4
 ;turns on
MD101,1ST,1WS.05,AL1,AR10,ET@100 ;stop axis #1. Terminate background task

GT100,AR@100,1VM,1DI0,1GO ;spawn macro #10 as background task. Store
 ;task ID into register #100. Start axis #1
 ;moving in velocity mode,

i

Note: Immediately after ‘spawning’ the background task (with the GTn
command), the value in the accumulator (task identifier) should be
stored in a user register. This value will be required to terminate
execution of the background task.

Application Solutions

DCX-PCI300 User’s Manual

113

Another way to create a background task is to place the Generate Task command as the first
command in a command line, using a parameter of 0. This instructs the command interpreter to take
all the commands that follow the Generate Task command and cause them to run as a background
task. The commands will run identically to commands placed in a macro and generated as a task.

;Multitasking example – while axis #1 is moving, monitor the state of the
;motor error status bit (bit 7). If error occurs set bit #1 of user
;register 200

GT0,AR@100,LU”STATUS”,1RL@0,IC7,JR-3,NO,AL1,AR200,ET@100
 ;loop on axis #1 status bit 7, if set; set
 ;bit #1 of register 200, terminate task using
 ;Task ID (in register #100)

Within the background task, the commands can move motors, wait for events, or perform operations
on the registers, totally independent of any commands issued in the foreground. However, the user
must be careful that they do not conflict with each other. For example, if a background task issues a
move command to cause a motor to move to absolute position +1000, and the user issues a
command at the same time to move the motor to -1000, it is unpredictable whether the motor will go
to plus or minus 1000.

In order to prevent conflicts over the registers, the background task has its own set of registers 0
through 9 (register 0 is the accumulator). These are private to the background task and are referred to
as its 'local' registers. The balance of the registers, 10 through 255, are shared by the background
task and foreground command interpreter, they are referred to as 'global' registers. If the user wishes
to pass information to or from the background task, this can be done by placing values in the global
register. Note that when a task is created, an identifier for the task is stored in register 0 of both the
parent and child tasks.

The DCX is able to run multiple background tasks, each with their own set of registers, but can only
have one foreground command interpreter. The maximum number of background tasks is 13. Each
background task and the foreground command interpreter get an equal share of the DCX processor's
time. When one or more background tasks are active the DCX Task Handler will begin issuing local
DCX interrupts every 1 millisecond. Each time the task handler interrupt is asserted, the DCX will
switch from executing one task to the next. For example if three background tasks are active, plus the
foreground task (always active), each of the four tasks will receive 1 msec of processor time every 4
msec’s.

DCX CPU Processing
(msec's)

Foreground task

Background task #1

Background task #2

Background task #3

5 6 7 8

Active task

1 2 3 4

Application Solutions

Precision MicroControl

114

While a background task executes a Wait command, that task no longer receives any processor time.
For tasks that perform monitoring functions in an endless loop, the command throughput of the DCX
can be improved by executing a Wait command at the end of the loop until the task needs to run
again.

A common way for a background task to be terminated, is when the command sequence of the task
finishes execution. This will occur at the end of the macro or if a BreaK (BK) command is executed.
When a task is terminated, the resources it required are made available to run other background
tasks.

;Multitasking example – this background task will terminate itself if the
;motor error status bit for axis #1 is set. This sequence is similar to the
;previous example except that the task is self terminating, so register #100
is not required.

GT0,LU”STATUS”,1RL@0,IC7,JR-3,NO,AL1,AR200
 ;loop on axis #1 status bit 7, if set; set
 ;bit #1 of register 200, task self terminates
 ;(no commands left to execute)

Alternatively, the Escape Task (Ten) command can be used to force a background task to terminate.
When a task is generated by the GT command, a value known as the Task ID is placed into the
accumulator. This value should immediately be copied into a user register. The parameter to this
command must be the value that was placed in accumulator (register 0) of the parent task, when the
Generate Task command was issued.

;Multitasking example – Terminating a background task with the Escape Task
command.

GT100,AR@150 ;call macro #100 as a background task, copy
 ; task ID into user register 150

ET@150 ;to terminate background task issue escape
 ; task command with parameter n = Task ID

Pause and Resume Motion

i

The current release of the Motion Control API (3.2.0000) does not
provide high level function calls for Pause and Resume. The following
descriptions use MCCL commands to configure an axis for position
compare. The MCAPI OEM low level function pmccmdex() can be used
to issue MCCL commands via the MCAPI.

Future releases of the MCAPI will resolve this lack of support.

The Save Configuration (aSCn) and Restore Configuration (aRCn) commands can be used with the
Velocity Override command to pause and resume motion.

Application Solutions

DCX-PCI300 User’s Manual

115

Each of these commands takes an axis specifier a and requires a file number as the command
parameter n. These commands save and restore the entire motor table. This includes the public motor
table in dual port memory and the private motor table in internal RAM.

These commands allow the motors to be stopped (aVO0) during a contour move, their configurations
saved, switched to any other mode (except contouring), moved about and then returned to their
original positions, their configurations restored, and then commanded to continue the contour move
(aVO1.0).

!

Note: Prior to resuming motion it is very important that the axes be
returned to the exact position at which the motor table was saved. If this
is not done, the axis will either jump to the position at which motion was
paused or it may error out.

Position Capture

i

The DCX-MC302, DCX-MC320, and DCX-MC362 do not support
position capture.

The DCX supports capturing the position of the primary encoder (MC300) or the step count register
(MC360) on the leading edge of the Position Capture input. As many as 512 captured positions can
be stored in the recording memory of the DCX module. For servo modules the maximum frequency of
position captures is based on the servo loop setting (High = 8KHz, Medium = 4 KHz, Low = 2 KHz).
For stepper axes the maximum frequency is fixed at 1 KHz.

The MCAPI function MCEnableCapture () is used to initiate position capture. When this feature is
enabled the current position will be recorded on the rising edge of the capture input. If parameter
count equals 1 the module will capture only one position. If parameter count equals 2 the module will
capture two positions, and so on. When the number of positions captured = count , the
MC_STAT_POS_CAPT flag (bit 11 of the axis status) will be set. To report the number of positions
captured issue the MCGetCount () function with the type = MC_COUNT_CAPTURE. To disable
position capture issue MCEnableCapture () with parameter count equal to 0. Captured positions
may be retrieved using the MCGetCapturedData() function.

Long int count;
double data{10};

MCEnableAxis(hCtlr, 1, 1);
MCMoveRelative(hCtlr, 1, 10000.0);

// Capture 10 positions
//
MCEnableCapture(hCtlr, 1, 10.0);

// Retrieve the 10 captured positions into local array

Application Solutions

Precision MicroControl

116

//

do {

MCGetCount((hCtlr, 1, MC_COUNT CAPTURE, &count);
} while (count <10);

MCGetCaptureData(hCtlr, 1, MC_CAPTURE_ACTUAL, 0, 10, &data);

Position Compare

i

The DCX-MC302, DCX-MC320, and DCX-MC362 do not support
position compare.

The DCX modules provide a high speed open collector output to indicate that a position compare
event has occurred. The assertion of this output is based on the position of the primary encoder
(MC300) or the step count register (MC360). As many as 512 compare positions can be stored in the
recording memory of the DCX module.

Compare pre defined positions
To configure an axis for position compare first use the MCAPI function McConfigureCompare () to
define the number of compare positions (as many as 512) and the compare output mode. Then issue
the MCAPI function MCEnableCompare () with the flag = MC_COMPARE_ENABLE. This will
terminate any current compare operation and initializes the compare index to 0. After starting a move,
when the actual position is equal to the compare position the compare output will be turned on (pulled
to ground) and the next compare position will be loaded into the compare register. When all position
compare events have been completed the MC_STAT_BREAKPOINT flag of the axis status will be
set.

Compare at incremental distances
For compare events at fixed distances of travel use the function MCEnableCompare () and:

1) Store the beginning point (first compare position) in the first location of values
2) Set the num parameter to 1
3) Set the inc parameter to the distance (counts or steps) between compare events

Maximum compare frequency
The position update frequency of a DCX servo module (MC300/320) module is based on the setting of
the servo loop rate (High = 8KHz, Medium = 4 KHz, Low = 2 KHz). Therefore the distance between
compare positions cannot be such that the time from one compare event to the next is less than the
position update frequency of the module (High = 125usec. , Medium = 250 usec., Low = 500 usec.).
For MC360 stepper modules the update frequency is always 1KHz. The time between compare
events cannot be less than 1000 usec’s.

Application Solutions

DCX-PCI300 User’s Manual

117

Compare output signal configuration
When the compare output is activated as the result of a compare or breakpoint occurrence, the
compare output signal will react according to the which mode has been selected with the mode
parameter of the MCConfigureCompare () function.

mode Description
MC_COMPARE_DISABLE Disables the compare output
MC_COMPARE_INVERT Inverts the active level of the compare output
MC_COMPARE_ONESHOT Configures the compare output for one shot operation (one

shot period is defined by the period parameter of
McConfigureCompare () function. The one shot pulse
period range is from 1usec. to 1.0 second. For one shot
periods less than 50 milliseconds the timer resolution is 1
micro second. For one shot periods greater than 50
milliseconds the timer resolution is 50 milliseconds.

MC_COMPARE_STATIC Configures the compare output to turn on when a compare
event occurs. The output will stay on until a new compare
event is called

MC_COMPARE_TOGGLE Configures the compare output to toggle between the
active and inactive state each time a compare event
occurs

For all of the output modes, the compare output will be activated within 1/2 microsecond of the
encoder reaching the position. The optical isolator on the compare output signal takes an additional 2
to 3 microseconds to turn on depending on the load circuit. This optical isolator will take about 50
microseconds to turn off (depending on the load). When the compare output mode is set to Disabled,
the output will be at its' in-active level. The controller sets the output mode to Disabled on power up or
reset.

To report the number of compare events that have occurred issue the MCGetCount () function with
the type = MC_COUNT_COMPARE. To disable position compare issue MCEnableCompare () with
parameter flag value = MC_COMPARE_DISABLE.

//
// Use positions spaced 5 units apart, beginning at 10.0 as compare
// positions. Toggle the output pin on valid compares. Wait for 20
// compares to complete.
//
data[0] = 10.0; // starting point
MCConfigureCompare(hCtlr, 1, data, 1, 5.0, MC_COMPARE_TOGGLE, 0.0);

MCEnableCompare(hCtlr, 1, MC_ENABLE_COMPARE); // enable compare
MCMoveRelative(hCtlr, 1, 100.0);

do { // wait for 5 points
 MCGetCount(hCtlr, 1, MC_COUNT_COMPARE, &count);
} while (count < 20);

Application Solutions

Precision MicroControl

118

Reassigning Axis Numbers

i

The current release of the Motion Control API (3.2.0000) does not
provide high level function calls for reassigning axis numbers. The
following descriptions use MCCL commands to configure an axis for
position compare. The MCAPI OEM low level function pmccmdex() can
be used to issue MCCL commands via the MCAPI.

Future releases of the MCAPI will resolve this lack of support.

The DCX defaults to assigning axis numbers logically, not based on a motor module’s physical
location. In the following graphic three modules are installed on a DCX-PCI300. When the computer is
power up the MC320 in module location #1 will automatically be defined as axis one. The MC320 in
module location #3 would be defined as axis two. The MC300 in module location #5 would be defined
as axis three.

3

QED

#1#3#5#7

#8 #6 #4 #2

MC320
Axis #2

MC320
Axis #1

MC300
Axis #3

Figure 42:Assigning axis numbers to DCX motion control modules

Using the Use Physical (aUPn) command the user can redefine the axis number of DCX motion
control module. Referencing the previous graphic, to redefine axes 2 and 3 as axes 3 and 5:

UP ;issue the UP command with no axis
 ;specifier a or parameter n, this step
 ;is required to clear the logical axis
 ;number assignment performed by the
 DCX-PCI300 on power up.

3UP3 ;Reassign the module in physical
 ;location 3 (parameter n) as axis 3
 ;(axis specifier a)
5UP5 ;Reassign the module in physical
 ;location 5 (parameter n) as axis 5
 ;(axis specifier a)

Application Solutions

DCX-PCI300 User’s Manual

119

!

Note – The reassignment of axes must be done before sending any
commands (setup, move, etc…) to the controller.

!

Note – The first step to changing axis numbers is to clear all axis
assignments by issuing the Use Physical assignment (aUPn) command
with no axis specifier a and parameter n. Once this has been done all
axes must be reassigned with the UP command, even the axes for
which the automatically assigned axis number was correct.

Record Motion Data
The DCX supports capturing and retrieving motion data for servo axes (MC300, MC302, MC320) and
closed loop stepper axes (MC360). Captured position data is typically used to analyze servo motor
performance and PID loop tuning parameters. PMC's Servo Tuning utility uses this function to analyze
servo performance. The MCAPI function MCCaptureData() is used to acquire motion data for a
servo axis. This function supports capturing:

• Actual Position versus time
• Optimal Position versus time
• Following error versus time
• DAC output versus time (DCX-MC300 and MC320)

The time base (8 KHz, 4 KHz, 2 KHz) for captured data is set by Rate member of the MCMotion data
structure. The function MCGetCapturedData() is used to retrieve the captured data. This example
captures 1000 data points from axis 3, then reads the captured data into an array for further
processing.

double Data[1000];

MCBlockBegin(hCtlr, MC_BLOCK_COMPOUND, 0);
MCCaptureData(hCtlr, 3, 1000, 0.001, 0.0);
MCMoveRelative(hCtlr, 3, 1000.0);
MCWaitForStop(hCtlr, 3, 0.0);
MCBlockEnd(hCtrlr, NULL);

// Retrieve captured actual position data into local array
//
if (MCGetCaptureData(hCtlr, 3, MC_DATA_ACTUAL, 0, 1000, &Data) {
 . . . // process data

Application Solutions

Precision MicroControl

120

Resetting the DCX

The DCX supports software controlled reset. To reset the DCX-PCI300 motherboard and all installed
axes issue the MCAPI function MCReset(). For additional information please refer to the DCX-
PCI300 MCAPI Reference Manual.

Most PMC application programs (Motor Mover, Servo Tuning, WinControl) allow the user to reset the
controller by selecting Reset Controller from the WinControl File menu.

Figure 43: Resetting the DCX-PCI300

Resetting the DCX-PCI300 from a user application program (with MCReset()) or from one of a PMC’s
software programs (by selecting Reset Controller from: Motor Mover, WinControl, Servo Tuning,
etc...) will cause the controller to revert to default settings (PID, velocity, accel/decel, limits, etc...). For
information restoring the user defined settings please refer to the Initializing and Restoring
Controller Configuration section in this chapter.

!

In the event of a ‘hang up’ of the application program and/or controller,
the application program may fail to resume operation after issuing the
MCReset() function. The user will have to terminate and then re-open
the application program.

i

 Until the DCX has fully re-initialized the Reset Relay will be energized.

Application Solutions

DCX-PCI300 User’s Manual

121

Single Stepping MCCL Programs

While the DCX is executing any Motion Control Command Language (MCCL) macro program, the
user can enable single step mode by entering <ctrl> . Each time this keyboard sequence is
entered, the next MCCL command in the program sequence will be executed. The following macro
program will be used for this example of single stepping:

MD10,WA1,1MR1000,1WS.1,1TP,1MR-1000,1WS.1,1TP,RP

This sample program will: wait for 1 second, move 1000 encoder counts, report the position 100
msec’s after the calculated trajectory is complete, move -1000 encoder counts, report the position 100
msec’s after the calculated trajectory is complete, repeat the command sequence.

This command sequence can be entered directly into the memory of the DCX by typing the command
sequence in the terminal interface program WinCtl32.exe or by downloading a text file via
WinControl’s file menu.

To begin single step execution of the above example macro enter MC10 (call macro #10) then <ctrl>
 the following will be displayed:

 {C1,MC10} 1MR1000 <

The display format of single step mode is: {Command #,Macro #} Next command to be executed

To end single stepping and return to immediate MCCL command execution press <Enter>. To abort
the MCCL program enter <Escape>. Single step mode is not supported for a MCCL sequence that is
executing as a background task.

Single stepping can also be enabled from within a MCCL program by using the break command
immediately followed by a “string” parameter. When the break command is executed the controller will

Application Solutions

Precision MicroControl

122

display the characters in the string (inside the quotation marks) and then delay additional command
execution until the space bar (execute next command and then delay) or the enter key (terminate
single stepping and resume program execution) are selected. In the following example axis one will
move 1000 counts, report the position, move –1000 counts, report the position, halt command
execution until the space bar is entered, repeat one time.

MC10 1MR1000,1WS0.100000,1TP,1MR-1000,1WS0.100000,1TP,BK"wait",RP1

>mc10
01 997
01 0
BREAK AT COMMAND 6, MACRO 10
wait
 {C7,M10} RP10 [REPEAT] <
 <space bar>
01 997
01 0
BREAK AT COMMAND 6, MACRO 10
wait
 {C7,M10} RP10 [REPEAT] <
>

i

Note: Firmware revision 1.6c or higher is required for single step mode

Tangential Knife Control
A variation of Master/Slave mode supports using the position of two master axes to control the
position of a third axis. The slave's optimal position will equal the arctangent of the ratio of the master
axes' velocities. If the master axes are driving an X-Y table, the slave's position will equal the table's
direction of travel. This dual master capability can be used to control the knife in cutting applications.
This function is only available when the slave is a servo, and the two master axes, which can be
servos or steppers, are in contour mode.

i

The current release of the Motion Control API (3.2.0000) does not
provide a high level function call that enables tangential knife control.
The following description uses the MCAPI OEM low level function
pmccmdex() to issue the MCCL command Set Master (aSMn) with a
parameter n, which configures the axis that controls the rotation of the
knife.

Future releases of the MCAPI will resolve this lack of support.

Set the scaling of the knife axis to one unit equals 360 degrees of rotation of the knife. Issue the Set
Master (aSMn) command to the slave axis with a parameter n that specifies the two master axes. The
value of the Set Master parameter should be calculated as follows:

Not supported at this time

Application Solutions

DCX-PCI300 User’s Manual

123

 parameter n = master 1 axis number + (master 2 axis number x 16)

With two master operation, the slave axis will begin to track the master axis's direction when the first
(and subsequent) contour mode move is issued. The blade of the knife will remain tangential to the
contour path. To terminate the master and slave connections between the axes, issue the Set Master
command to the slave axis with a parameter of 0, followed by either the Position Mode (PM) or the
Velocity Mode (VM) command. If a significant change in direction (like a corner) of the X and/or Y
axes occurs the knife will instantaneously. If this is undesirable, lift the blade, place the slave in
position mode, re-position the blade, and lower the blade.

The following example will cut a 5 inch square out of a piece of linoleum. Axes 1 and 2 (X and Y
respectively) are designated as the two master axes. Axis 3 will position the knife. Axis four (Z) is
used to lift the knife at a corner, where an instantaneous change of direction in X and/or Y would be
undesirable.

// define scaling of axis 3, 2000 encoder counts per revolution sets 1 unit to
// 1 ;revolution
//
MCGetScale(hCtlr, 3, &Scaling);
Scaling.Scale = 2000.0;
MCSetScale(hCtlr, 3, &Scaling);

// Use the MCCL command Set Master to configure axis 3 as a slave to axes 1 and 2.
// Header file MCAPI.H must be included
//
if (pmcrdy(hCtlr)) {
 arg = 33;
 if (pmccmdex(hCtlr, 3, SM, &arg, MC_TYPE_LONG) == MCERR_NOERROR) {
 }
}

// turn on axes 1, 2, 3, & 4
//
MCEnableAxis(hCtlr, 1, MC_ALL_AXES);

//Execute 1st linear move
//
MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR); // axis 1 contour mode

// Linear move, first side of triangle
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
 MCMoveAbsolute(hCtlr, 1, 1000.0);
 MCMoveAbsolute(hCtlr, 2, 0.0);
MCBlockEnd(hCtlr, NULL);

// wait for end of contour move, lift blade, rotate blade, lower blade
//
MCWaitForStop(hCtlr, 1, 0.1);
MCMoveRelative(hCtlr, 4, 1000.0);
MCWaitForStop(hCtlr, 4, 0.1);
MCMoveRelative(hCtlr, 3, 0.333);
MCWaitForStop(hCtlr, 3, 0.1);
MCMoveRelative(hCtlr, 4, -1000.0);
MCWaitForStop(hCtlr, 4, 0.1);

// Linear move, second side of triangle

Application Solutions

Precision MicroControl

124

//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
 MCMoveAbsolute(hCtlr, 1, 500.0);
 MCMoveAbsolute(hCtlr, 2, 1000.0);
MCBlockEnd(hCtlr, NULL);

// wait for end of contour move, lift blade, rotate blade, lower blade
//
MCWaitForStop(hCtlr, 1, 0.1);
MCMoveRelative(hCtlr, 4, 1000.0);
MCWaitForStop(hCtlr, 4, 0.1);
MCMoveRelative(hCtlr, 3, 0.333);
MCWaitForStop(hCtlr, 3, 0.1);
MCMoveRelative(hCtlr, 4, -1000.0);
MCWaitForStop(hCtlr, 4, 0.1);

// Linear move, third side of triangle
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
 MCMoveAbsolute(hCtlr, 1, 0.0);
 MCMoveAbsolute(hCtlr, 2, 0.0);
MCBlockEnd(hCtlr, NULL);

// wait for end of contour move, lift blade, rotate blade, lower blade
//
MCWaitForStop(hCtlr, 1, 0.1);
MCMoveRelative(hCtlr, 4, 1000.0);
MCWaitForStop(hCtlr, 4, 0.1);
MCMoveRelative(hCtlr, 3, 0.333);
MCWaitForStop(hCtlr, 3, 0.1);
MCMoveRelative(hCtlr, 4, -1000.0);
MCWaitForStop(hCtlr, 4, 0.1);

!!! now disable tangential knife control !!!

Threading Operations
Threading operations require not only tight synchronization between the primary axes, but also the
ability to begin motion of the slave axis relative to a specific position of the master. The DCX
implementation of threading uses the encoder index mark of the master axis to trigger motion of the
slave.

i

The current release of the Motion Control API (3.2.0000) does not
provide a high level function call for enabling threading operations. The
following description uses the MCAPI OEM low level function
pmccmdex() to issue the MCCL command Set Master (aSMn) with a
parameter n, which configures the DCX controller for threading.

Future releases of the MCAPI will resolve this lack of support.

To enable Master/Slave Threading mode, issue the Set Master (aSMn) command where:

Not supported at this time

Application Solutions

DCX-PCI300 User’s Manual

125

 a = the axis number of the slave
 n = the axis number of the master + 2

A move absolute, move relative, or go home command can also be issued to the slave axis to set a
target position where the axis will be taken out of slave mode. The Index Arm or Find Index command
must be issued to the master axis after the Set Master command has been issued to the slave axis.
The slave will be synchronized to the master's position when its encoder index pulse occurs. In the
following example the spindle (master) is axis #2 and the thread cutting tool is positioned by axis #1
(slave).

// Set scaling of master axis. For the spindle, this would typically be set to
// the number of encoder counts per revolution.
//

MCGetScale(hCtlr, 2, &Scaling);
Scaling.Scale = 2000.0;
MCSetScale(hCtlr, 2, &Scaling);

//Set scaling of the slave axis
//
MCGetScale(hCtlr, 1, &Scaling);
Scaling.Scale = 4000.0;
MCSetScale(hCtlr, 1, &Scaling);

MCMoveAbsolute(hCtlr, 1, 0.0); // move slave to starting position

MCWaitForStop(hCtlr, 1, 0.1); // wait till we're there

// Set the slave ratio. This is the lead or pitch when cutting a thread.
//
MCEnableGearing(hCtlr, 1, 2, 0.1, TRUE);

// Use the MCCL command Set Master to configure axis 2 as a slave to axis 1.
// Enable threading by n = 2 + 256. Header file MCAPI.H must be included
//
if (pmcrdy(hCtlr)) {
 arg = 258;
 if (pmccmdex(hCtlr, 3, SM, &arg, MC_TYPE_LONG) == MCERR_NOERROR) {
 }
}

// Set the target position. This is the position at which slave mode is
// terminated and axis #1 will stop.
//
MCMoveAbsolute(hCtlr, 1, 1.0);

// Start master axis moving in torque mode.
//
MCSetTorque(hCtlr, 2, 3.0);

// Arm the index capture of the master axis. When the index pulse occurs, the
// slave will begin tracking the master axis until // the slave reaches its
// target position.
2IA

Application Solutions

Precision MicroControl

126

// This command sequence will repeat until auxiliary status bit 22 is clear,
// indicating that the slave has reached its target.
//
1RL16,IS22,JR-2,NO,2SQ0

The following bits of the axis auxiliary status word are used for monitoring the status of the slave axis
during a threading operation:

 Bit 22 = Axis is slaved to master's encoder position
 Bit 23 = Axis is slaved and waiting for master's index mark

Torque Mode Output Control
The DCX servo modules (MC300, MC302, & MC320) provide two methods of directly and
completely controlling the Torque/Velocity of a axis. When executing closed loop servo motion in
Position or Velocity mode, the MCSetTorque() command allows the user to limit the output signal or
duty cycle to a specific level. The following graph depicts a simple position mode move of 1000
encoder counts with the default torque setting of 10 volts (no limit).

Analog
 output

Time (msec's)

+10V

+7.5V

+2.5V

+5.0V

25 75 125 175 200 22550 100 150

Maximum voltage
output

The graphic below depicts the same 1000 encoder count move, but the maximum voltage output has
been limited to 5.0 volts.

MCSetTorque(hCtlr, 1, 5.0);
MCMoveRelative(hCtlr, 1, 1000.0);

Application Solutions

DCX-PCI300 User’s Manual

127

Analog
 output

Time (msec's)

+10V

+7.5V

+2.5V

+5.0V

25 75 125 175 200 22550 100 150

Maximum voltage
output

Servo Modules as simple D/A output with encoder reader
Selecting Torque mode using the MCSetOperatingMode() function allows the user to directly write
values to the servo control DAC. This mode does not support closed loop servo control, but the user
can read the position of the encoder at any time.

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_VELOCITY);
MCSetTorque(hCtlr, 1, 2.5); ;axis 1 output to 2.5V (MC300)
MCSetTorque(hCtlr, 1, 7.5); ;set duty cycle to 75% (MC320)

Application Solutions

Precision MicroControl

128

Turning off Integral gain during a move
State of the art servo controllers primarily use Proportional gain to determine the current/velocity
command signal that the controller applies to the servo amplifier during a move. For motion control
applications integral gain is used primarily to reduce the static position error at the end of a move.
For additional information about servo tuning and integral gain please refer to :

• the Servo Tuning in the Motion Control chapter of this manual
• the Servo tuning tutorials on PMC’s MotionCD

For some applications, integral gain has a tendency to cause bounce or oscillation of the command
signal during a move. This tendency can be is especially problematic in:

• High gain servo systems
• Systems with high and / or irregular friction
• Systems with unbalanced loads
• Systems with unbalanced and / or high offset amplifiers

The following graphic shows the typical response of a high gain servo system when integral gain is
enabled through out the move. Even though the following error never exceeds 10 encoder counts
during the 100,000 count move, a significant oscillation (+/- 10 counts) occurred.

Figure 44: Typical servo response when integral gain is enabled throughout the move

Application Solutions

DCX-PCI300 User’s Manual

129

By disabling the integral gain term until after the trajectory is complete (desired position = target
position) the same move is accomplished with a following error of +/- 3 counts versus +/- 10 counts.

Figure 45: Typical servo response when integral gain is disabled until the calculated is complete

The IntegralOption member of the MCFilterEx structure allows the user to select from three different
mode of integral gain operation for servo or closed loop stepper.
IntegralOptiont value Notes – (all other servo parameters

remaining unchanged)
MC_INT_NORMAL - integral term always on
(default)

Smallest following error during move. As the
integral term is increased the command
output / following error will tend to bounce

MC_INT_FREEZE - Freezes accumulation of
integration term during movement. Integration
will continued once the calculated trajectory
(trajectory complete, status bit 3 = 1) has been
completed.

Ideal for applications with unbalanced loads
(robotic arm with vertical axis, hoist)

MC_INT_ZERO - Zero and freeze accumulation
of the integration term when motion begins.
When the calculated trajectory (trajectory
complete, status bit 3 = 1) has completed,
enable the integration term

Most stable command signal / servo
performance during the move. Largest
following error during the move. Not
acceptable for applications with unbalanced
load.

Application Solutions

Precision MicroControl

130

From PMC application programs like Servo Tuning and Motor Mover the integral gain mode can be
selected from the Servo Setup Dialog.

Figure 46: Using Servo Tuning’s Servo Setup Dialog to set the integral gain mode of operation

Application Solutions

DCX-PCI300 User’s Manual

131

Upgrading from a DCX-AT200 motion control system
For most motion control applications the DCX-PCI300 Modular Multi-Axis motion control system offers
significant advantages over its predecessor, the DCX-AT200 system. The PCI300 enhancements
include:

 Servo motor control

• Texas Instrument DSP, 40 MHz, 16 bit, zero wait state (MC300 & MC320) versus 12 MHz,
8/16 bit micro controller (MC200)

• 16 bit DAC output (MC300 & MC320) versus 12 bit DAC (MC200)
• 8 KHz, 4 KHz, or 2 KHz servo loop rate (MC300 & MC320) versus 4 KHz (no integral

term), 2 KHz, or 1 KHz (MC200)
• 10 MHz encoder frequency (MC300 & MC320) versus 1 MHz encoder frequency (MC200)
• High speed Position Capture: from 1 to 512 positions, 8 KHz (125 msec.) max frequency
• Position Compare: Open collector output, 1 to 512 user defined compare positions or fixed

increment distance
• Bi-directional Optical isolation (MC300 & MC320) versus TTL level inputs (MC200)
• 32 bit Floating point PID parameters (MC300 & MC320) versus 16 bit integer PID

parameters (MC200)

 Stepper motor control

• Texas Instrument DSP, 40 MHz, 16 bit, zero wait state (MC360) versus 12 MHz, 8/16 bit
micro controller (MC260)

• 5 MHz maximum step rate (MC360) versus 1 MHz maximum step rate (MC260)
• High speed Position Capture: from 1 to 512 positions, 8 KHz (125 msec.) max frequency
• Position Compare: Open collector output, 1 to 512 user defined compare positions or fixed

increment distance
• Bi-directional Optical isolation (MC360) versus TTL level inputs (MC260)

Upgrading to the DCX-MC300 servo control module
The DCX-MC300 is similar in function to the DCX-MC200 servo control module. Other than the
addition of Position Capture and Compare signals and the optical isolator supply/return lines, the pin-
out of the MC200 and MC300 are the same. The changes that must be made when replacing a
MC200 with a MC300 are:

• The PID parameters will need to be changed (the axis will need to be re-tuned)
• The axis inputs (Coarse Home, Limit +, Limit -, Amplifier Fault) use bi-directional optical

isolators. These circuits operate with voltage levels from +12 to +24 VDC. See the wiring
examples in the Defining Motion Limits and Homing Axes sections of the Motion
Control chapter and in the DCX-MC300 section of the Connectors, Jumpers, and
Schematics chapter.

• The Amplifier Enable output circuit uses an optical isolator/open collector driver (versus
basic TTL gate). The Amplifier Enable return (J3 pin 12) must be referenced to the
return/ground of the servo amplifier. The Amplifier Enable output requires an external pull-

Application Solutions

Precision MicroControl

132

up (+5 to +24 VDC). See the wiring examples in the DCX-MC300 section of the
Connectors, Jumpers, and Schematics chapter.

• The DCX-MC300 does not provide a connection for the Index – output of an auxiliary
encoder.

Upgrading to the DCX-MC360 stepper control module
The DCX-MC360 is similar in function to the DCX-MC260 stepper control module. Other than the
addition of Position Capture and Compare signals and the optical isolator supply/return lines, the pin-
out of the MC260 and MC360 are the same. The changes that must be made when replacing a
MC260 with a MC360 are:

• The axis inputs (Home, Limit +, Limit -, Drive Fault, Null) use bi-directional optical isolators.
These circuits operate with voltage levels from +12 to +24 VDC. See the wiring examples
in the Defining Motion Limits and Homing Axes sections of the Motion Control chapter
and in the DCX-MC360 section of the Connectors, Jumpers, and Schematics chapter.

• The Driver Enable output circuit uses an open collector driver (versus basic TTL gate). The
ground of the module (J3 pin 1 and/or 26) must be referenced to the return/ground of the
stepper driver. The Driver Enable output requires an external pull-up (+5 to +24 VDC). See
the wiring examples in the DCX-MC300 section of the Connectors, Jumpers, and
Schematics chapter.

• The Stopped output (J3 pin 7) has been replaced with the Drive Fault input
• The Jog input (J3 pin 10) has been replaced by the Auxiliary Encoder Power output
• The TTL output circuits for Full/Half Step (J3 pin 14) and Full/Half Current (J3 pin 15) now

use open collector drivers. These outputs require an external pull-up (+5 to +24 VDC). See
the wiring examples in the DCX-MC300 section of the Connectors, Jumpers, and
Schematics chapter.

• The Auxiliary Encoder Index – connection, which was connector J3 pin 22 is now found on
connector J3 pin 23.

• An Auxiliary Encoder Index + connection, which was not available on the DCX-MC260, is
now available on connector J3 pin 22 of the DCX-MC360

• The Auxiliary Encoder Coarse Home input, which was found on pin 23 of the DCX-MC260,
is now available on pin 11 of the DCX-MC360.

• Due to the increased maximum step rate of the DCX-MC360, the user may need to change
the step rate range setting of an application program that used a DCX-MC260.

Defining User Units

When power is applied or the DCX is reset, it defaults to encoder counts or stepper pulses as its units
for motion command parameters. If the user issues a move command to a servo with a target of 1000,
the DCX will move the servo 1000 encoder counts. If the user issues the same command to a stepper
motor, it will move 1000 motor steps.

In many applications there is a more convenient unit of measure than the encoder counts of the servo
or steps of the stepper motor. If there is a fixed ratio between the encoder counts or steps and the
desired 'user units', the DCX can be programmed with this ratio and it will perform conversions
implicitly during command execution.

Defining user units is accomplished with the function MCSetScale(), which uses the MCSCALE data
structure. This function provides a way of setting all scaling parameters with a single function call

Application Solutions

DCX-PCI300 User’s Manual

133

using an initialized MCSCALE structure. To change scaling, call MCGetScale(), update the
MCSCALE structure, and write the changes back using MCSetScale().

MCScale Data Structure

typedef struct {

double Constant; // Define output constant
 double Offset; // Define the work area zero
 double Rate; // Define move (vel., accel, decel) time
units
 double Scale; // Define encoder scaling
 double Zero; // Define part zero
 double Time; // Define time scale

} MCMOTION;

Setting Move (Encoder/Step) Units
The value of the Scale member is the number of encoder counts or steps per user unit. For example,
if the servo encoder on axis 1 has 1000 quadrature counts per rotation, and the mechanics move 1
inch per rotation of the servo, then to setup the controller for user units of inches:

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);
Scaling.Scale = 1000.0; // 1000 encoder counts/inch
MCSetScale(hCtlr, 3, &Scaling);

Prior to issuing the Scale member, the parameters to all motion commands for a particular axis are
rounded to the nearest integer. After setting a new encoder scale and calling MCEnableAxis() to
initialize the axis, motion targets are multiplied by the ratio prior to rounding to determine the correct
encoder position. Calling the MCGetPosition() will load the scaled encoder position.

i

Note – setting a user scale other than 1:1 will also scale trajectory
settings (Velocity, acceleration, and deceleration) but not PID settings.

Trajectory Time Base
The value of the Rate member sets the time unit for velocity, acceleration and deceleration values, to
a time unit selected by the user. If velocities are to be in units of inches per minute, the user time unit
is a minute. The value of the Rate member is the number of seconds per 'user time unit'. If the
velocity, acceleration and deceleration are to be specified in units of inches per minute and inches per
minute per minute for axis 1, then the Rate value should be set to 60 seconds/1 minute = 60 (1UR60).
The function MCEnableAxis() must be issued before the user rate will take effect.

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);
Scaling.Rate = 60.0; // set rate to inches per minute
MCSetScale(hCtlr, 3, &Scaling);

Typical Rate values

Application Solutions

Precision MicroControl

134

Time Unit User Rate Conversion
second 1 (default)
minute 60
hour 3600

Defining the Time Base for Wait commands
For the MCWait(), WaitForStop() and WaitForTarget() functions, the default units are seconds. By
setting the member Time, these three commands can be issued with parameters in units of the user's
preference. The parameter to member is the number of 1 second periods in the user's unit of time. If
the user prefers time parameters in units of minutes, Time = 60 should be issued.

MCSCALE Scaling;

MCGetScale(hCtlr, &Scaling);
Scaling.Time = 60.0; // set Wait time unit to minutes
MCSetScale(hCtlr, &Scaling);

Defining a System/Machine zero
The member Offset allows the user to define a ‘work area’ zero position of the axis. The Offset value
should be the distance from the servo or stepper motor home position, to the machine zero position.
This offset distance must use the same units as currently defined by set User Scaling command.
Offset does not change the index or home position of the servo or stepper motor, it only establishes
an arbitrary zero position for the axis.

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);
Scaling.Offset = 12.25; // define offset to 12.25 inches
MCSetScale(hCtlr, 3, &Scaling);

Defining a Part Zero
The member Zero would typically be used in conjunction with Offset to define a ‘part zero’ position. A
PCB (Printed Circuit Board) pick and place operation is a good example of how this function would be
used. After a new PCB is loaded and clamped into place the X and Y axes would be homed. The
Offset member is used to define the ‘work area’ zero of the PCB. The Zero member is used to define
the ‘part program’ or ‘local’ zero position. This way a single ‘part placement program’ can be
developed for the PCB type, and a ‘step and repeat’ operation can be used to assemble multiple part
assemblies.

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);
Scaling.Offset = 12.25; // define offset to 12.25 inches
Scaling.Zero = 1.25; // define ‘part zero’ to 1.25 inches
MCSetScale(hCtlr, 3, &Scaling);

Application Solutions

DCX-PCI300 User’s Manual

135

XY Pick and Place Assembly

PCB clamp assembly

X & Y servo
motor home

Work area
zero

(UserOffset)
Part program zero

(User Zero)

Defining the output constant for velocity gain
The member Constant allows the user to define the units to be used for setting the Velocity Gain
parameters. Please refer to the description of Using Velocity Gain in the Application Solutions
chapter of this user manual.

DCX Watchdog

The DCX incorporates a watchdog circuit to protect against improper CPU operation.

After a reset or power cycle, once the firmware (operational code) has been loaded by the operating
system (approximately 3 seconds), the watchdog circuit is enabled.

If the DCX processor fails to properly execute firmware code for a period of 10 msec's, the watchdog
circuit will 'time out' and the on-board reset will be latched by the ‘watchdog reset relay’. This in turn
will hold the DCX modules in a constant state of reset. All motor outputs (+/- 10V & Step/Direction) will
be disabled. When the watchdog circuit has tripped, the green Run LED will be disabled. To clear the
watchdog error either:

 Cycle power to the computer (recommended)
 Reset the computer

General Purpose I/O

Precision MicroControl

136

Chapter Contents

• DCX Motherboard Digital I/O

• Configuring the DCX Digital I/O

• Using the DCX Digital I/O

• DCX Motherboard Analog Inputs

• Using the Analog I/O

• Calibrating the MC500/MC520 +/- 10V Analog Outputs

DCX-PCI300 User’s Manual

137

General Purpose I/O

DCX Motherboard Digital I/O

The DCX-PCI300 Motion Controller motherboard has 16 general purpose digital I/O channels.
Channels 1 – 8 are TTL inputs and channels 9 – 16 are TTL outputs. These signals can be accessed
on connector J3 of the motherboard. The DCX-PCI300 section of the Connectors, Jumpers, and
Schematics chapter includes a pin-out for this connector. Each digital channel is configured via
software (high true or low true).

Interfacing to the ‘Outside World’
The TTL digital I/O channels can be connected directly to external circuits if output loading (1ma
maximum sink/source) and input voltages (0.0V to +5.0V) are within acceptable limits.

The DCX Digital I/O channels are not suitable for driving optical
isolators, relays solenoids, etc...

Alternatively, a DCX-BFO22 interface board can be used to connect the module's I/O to a relay rack in
order to provide optically isolated inputs and outputs.

The DCX-BFO22 interface board provides a convenient means of connecting the DCX-PCI300 TTL
digital I/O channels to a 16 position relay rack available from two manufacturers, Opto22 (P/N PB16H)
and Grayhill (P/N 70RCK16-HL). These relay racks accept up to 16 optically isolated input or output
modules for interfacing with external electrical systems. Using one of these relay racks and a DCX-
BFO22, an optically isolated I/O module can be connected to each of the DCX's digital I/O channels.

Chapter

7

General Purpose I/O

Precision MicroControl

138

3

QED

#1#3#5#7

#8 #6 #4 #2

DCX-BF022

1 25
J2

Figure 47:A DCX-BF022 is used to interface DCX digital I/O to an OPTO22 relay rack

As shown above, the DCX-BFO22 plugs directly into the relay rack's 50 pin header connector and
then connects to the DCX-PCI300 via a 26 conductor ribbon cable. Note that the relays are numbered
sequentially starting from 0, while the DCX digital I/O channels are numbered sequentially starting
with 1.

Although the relay rack has screw terminals for connecting a logic supply, it is not necessary to make
this connection. By installing a shorting block on jumper JP17 of the BFO22, the 5 volt supply of the
DCX will be supplied to the relay rack.

For detailed information on configuring the DCX-BF022, please refer to the schematic and jumper
table in the DCX-BF022 Appendix in this user manual.

Configuring the DCX Digital I/O

The configuration of both the DCX-PCI300 and the DCX-MC400 digital I/O channels is accomplished
using either PMC’s Motion Integrator software or the MCAPI function MCConfigureDigitalIO(). The
screen shot that follows shows the Motion Integrator Digital I/O test panel. This tool is used to both
configure each I/O channel and then verify its operation. A comprehensive on-line help document is
provided.

General Purpose I/O

DCX-PCI300 User’s Manual

139

 Each channel is individually programmable as:

 Input (MC_DIO_INPUT) or Output (MC_DIO_OUTPUT)
 High true/Positive logic (MC_DIO_HIGH) or Low true/Negative logic (MC_DIO_LOW)

The 16 channels of the DCX-PCI300 motherboard are defined as channels 1 – 16. If one or more
DCX-MC400 Digital I/O modules are installed, the additional I/O channels are assigned to
succeeding channel/numbers in blocks of 16 (e.g. 17-32, 33-48, etc.). All I/O channels accept the
same configuration, monitoring and control.

i

Note – If a BFO22 interface and relay rack are connected to the DCX
Digital I/O, a MC_DIO_LOW command set to ALL_AXES should be
issued to the DCX. This will cause "normally open" relays to turn on
when the Channel oN command is issued, and off when the Channel oFf
command is issued.

This example configures all the digital I/O channels on a controller for output, then turns each channel
on (in order) for a half second.

General Purpose I/O

Precision MicroControl

140

MCPARAM Param;

MCGetMotionConfig(hCtlr, &Param);

for (i = 1; i <= Param.DigitalIO; i++) {
 MCConfigureDigitalIO(hCtlr, i, MC_DIO_OUPUT | MC_DIO_HIGH);

for (i = 1; i <= Param.DigitalIO; i++) {
 MCEnableDigitalIO(hCtlr, i, TRUE);
 MCWait(hCtlr, 0.5);
 MCEnableDigitalIO(hCtlr, i, FALSE);
}

Using the DCX Digital I/O
After configuring the Digital I/O channels, three MCAPI functions are available for activating and
monitoring the digital I/O:

 MCEnableDigitalIO() set digital output channel state
 MCGetDigitalIO() get digital input channel state
 MCWaitForDigitalIO() wait for digital input channel to reach specific state

Enable Digital IO

Turns the specified digital I/O on or off, depending upon the value of bState.

 TRUE Turns the channel on.
 FALSE Turns the channel off.

The I/O channel selected must have previously been configured for output using the
MCConfigureDigitalIO() command. Note that depending upon how a channel has been configured
"on" (and conversely "off") may represent either a high or a low voltage level.

compatibility: MC400
see also: Configure Digital IO

C++ Function: void MCEnableDigitalIO(HCTRLR hCtlr, WORD wChannel, short int bState);
Delphi Function: procedure MCEnableDigitalIO(hCtlr: HCTRLR; wChannel: Word; bState: SmallInt);
VB Function: Sub MCEnableDigitalIO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)
MCCL command: CF, CN

LabVIEW VI:

General Purpose I/O

DCX-PCI300 User’s Manual

141

Get Digital IO

Returns the current state of the specified digital I/O channel. This function will read the current state of
both input and output digital I/O channels. Note that this function simply reports if the channel is "on"
or "off"; depending upon how a channel has been configured "on" (and conversely "off") may
represent either a high or a low voltage level.

compatibility: MC400
see also:

C++ Function: short int MCGetDigitalIO(HCTRLR hCtlr, WORD wChannel);
Delphi Function: function MCGetDigitalIO(hCtlr: HCTRLR; wChannel: Word): SmallInt;
VB Function: Function MCGetDigitalIO (ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer
MCCL command : TC

LabVIEW VI:

Wait for Digital IO

Waits for the specified digital I/O channel to go on or off, depending upon the value of bState.

compatibility: MC400
see also: Wait for digital channel on

C++ Function: void MCWaitForDigitalIO(HCTRLR hCtlr, WORD wChannel, short int bState);
Delphi Function: procedure MCWaitForDigitalIO(hCtlr: HCTRLR; wChannel: Word; bState: SmallInt);
VB Function: Sub MCWaitForDigitalIO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)
MCCL command: WF, WN

LabVIEW VI:

This example configures all the digital I/O channels on a controller for output, then turns each channel
on (in order) for a half second.

General Purpose I/O

Precision MicroControl

142

MCPARAM Param;

MCGetMotionConfig(hCtlr, &Param);

for (i = 1; i <= Param.DigitalIO; i++) {
 MCConfigureDigitalIO(hCtlr, i, MC_DIO_OUPUT | MC_DIO_HIGH);

for (i = 1; i <= Param.DigitalIO; i++) {
 MCEnableDigitalIO(hCtlr, i, TRUE);
 MCWait(hCtlr, 0.5);
 MCEnableDigitalIO(hCtlr, i, FALSE);
}

//
// Next re-configure channel 3 for input, and put up a message
// box based on the input state
//
if (MCConfigureDigitalIO(hCtlr, 3, MC_DIO_INPUT | MC_DIO_HIGH)) {
 val = MCGetDigitalIO(hCtlr, 3);
 if (val) // MessageBox is a Windows API function
 MessageBox(hParent, "Channel 3 input voltage high (>2.4VDC)",
 "MCAPI Sample", MB_ICONINFORMATION);
 else
 MessageBox(hParent, "Channel 3 input voltage low (<0.4VDC)",
 "MCAPI Sample", MB_ICONINFORMATION);
 }

DCX Module Analog I/O

The DCX-MC500 Analog I/O Module provides additional analog I/O capability to a DCX Motion
Controller. One or more of these modules can be installed in any available position on a DCX
motherboard. Analog input channels can be used to monitor signal levels from external sensors.
Output channels can be used to control external devices.

Three models of the DCX-MC500 are available:
Part Number Description
DCX-MC500 4 Inputs and 4 Outputs
DCX-MC510 4 Inputs
DCX-MC520 4 Outputs

On each DCX-MC500/510 Analog I/O Module all analog input channels are numbered sequentially in
groups of four. Likewise, all analog output channels are numbered sequentially in groups of four.
When installed on the DCX-PCI300, the MC500/510 in the lowest module location will have its 4
analog input channels defined as 1 – 4. The four analog inputs of a MC500/510 installed in the next
lowest module location will be defined as channels 5 – 8.

Because the DCX controller board is implemented in digital electronics, all analog input signals must
be converted into a representative numerical value. This function is done by an Analog to Digital
Converter (ADC) on the DCX-MC500/510. Similarly, analog output signals originate on the DCX board
as numerical values. These numbers must be written to a Digital to Analog Converter (DAC) on the
DCX-MC500/520, which converts them to a corresponding analog output signal level.

General Purpose I/O

DCX-PCI300 User’s Manual

143

The DCX-MC500 is designed to accurately measure voltage levels on the input channels. These
inputs are very high impedance with leakage currents less than 10 nano amps. The output channels
are designed to provide signals with accurate voltage levels. The current requirement from these
outputs should not exceed 10 milliamps.

Each of the analog input and analog output channels has 12 bits of resolution. This means that the
digital value read from the ADC, or the digital value written to DAC, must be in the range 0 to 4095.
For both inputs and outputs, a digital value of 0 translates to the lowest analog voltage. A digital value
of 4095 translates to the highest analog voltage.

Input signals on pins 1, 3, 5 and 7 of the module J3 connector are wired directly to the ADC. No
amplification or clamping to the input voltage range is provided on the module.

A voltage level greater than 5.6 volts will damage the analog input
channels of a DCX-MC5X0 module. The schematic below is
recommended to protect an analog input from damage due to an over
voltage condition. This circuit will limit the maximum voltage applied to
the A/D converter to 5.6 VDC.

In some applications, the signals from a sensor may not be absolute voltage levels, but proportional to
some reference voltage. In these cases, it may be desirable to supply the reference signal to the ADC
on the module through pin 18 of the J3 connector (and setting jumper JP1 accordingly). This will result
in a "ratiometric" conversion of the input signal relative to the reference voltage.

The outputs from the DAC on the DCX-MC500 module are voltage levels in the range 0 to +5 volts.
These outputs have no gain or offset adjustment. These signals are available on pins 10, 12, 14 and
16 of the module J3 connector.

The outputs from the DAC are also connected to operational amplifiers on the module, which offset
and amplify them to provide a +/-10 volt range. Each of these outputs has a 20 turn trim pot for offset
adjustment, and a single turn pot for gain adjustment. The offset pot provides a minimum 0.5 volt
adjustment, and the gain pot provides a nominal 2% range adjustment. These output signals are
available on pins 2, 4, 6 and 8 of the module J3 connector.

General Purpose I/O

Precision MicroControl

144

After reset the outputs of the DCX-MC500 will be initialized to their mid-scale point. For the 0 to +5
volt outputs, this will be 2.5 volts. For the -10 to +10 volt outputs, this will be 0.0 volts.

Using the Analog I/O
The configuration and operation of the DCX-MC5X0 analog I/O channels is accomplished using either
PMC’s Motion Integrator program or the MCAPI functions MCSetAnalog() , MCGetAnalog(). The
screen capture that follows shows the Motion Integrator Analog I/O test panel. This tool is used to
both configure each I/O channel and then verify its operation. A comprehensive on-line help document
is provided.

Two MCAPI functions are available for setting and monitoring the MC500 analog I/O:

 MCSetAnalog() set digital output channel state
 MCGetAnalogIO() get digital input channel state

Get Analog

Reads the digitized input state of the specified input wChannel. The four 8-bit analog input channels
accessed on connectors J3 are numbered 1,2,3 and 4. For each of these channels, this function will
read a number between 0 and 255. These numbers are the ratio of the analog input voltage to the
reference input voltage multiplied by 256. The reference voltage for the first four channels must be
supplied to the DCX on the J3 connector pin 23, and can be any voltage between 0 and +5 volts DC.
The analog input channels on any installed MC500 modules will be numbered sequentially starting
with channel 5. See the description of Analog Inputs in the DCX General Purpose I/O chapter.

General Purpose I/O

DCX-PCI300 User’s Manual

145

compatibility: MC500, MC510
see also: Set Analog

C++ Function: WORD MCGetAnalog(HCTRLR hCtlr, WORD wChannel);
Delphi Function: function MCGetAnalog(hCtlr: HCTRLR; wChannel: Word): Word;
VB Function: Function MCGetAnalog (ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer
MCCL command: TA

LabVIEW VI:

Set Analog

Sets the output level of an analog channel. Analog output ports on MC500 and MC520 Analog
Modules accept values in the range of 0 to 4095 counts (12 bits). This range of values corresponds to
an output voltage of 0 to 5V or -10 to +10V, depending upon how the output is configured (See the
description of Analog Inputs in the DCX General Purpose I/O chapter).

compatibility: MC500, MC520
see also: Get Analog

C++ Function: void MCSetAnalog(HCTRLR hCtlr, WORD wChannel, WORD wValue);
Delphi Function: procedure MCSetAnalog(hCtlr: HCTRLR; wChannel, value: Word);
VB Function: Sub MCSetAnalog (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal Value As Integer)
MCCL command: OA

LabVIEW VI:

Calibrating the MC500/MC520 +/- 10V Analog Outputs:
The analog inputs of the DCX-MC500 require no calibration, and the only option is use of the internal
+5, or an external, reference voltage. The analog outputs with the 0 to +5 volt range also have no
adjustments. The reference for the DAC is fixed to the internal reference voltage.

The four 0.0 to +5.0 analog outputs require no calibration. The four +10 to –10 volt analog outputs are
calibrated at the factory. There are four single turn trim pots that are used to adjust the gain of each of
the four analog outputs. There are also four 20 turn trim pots for adjusting the offsets of each of the
analog outputs. It is strongly recommended that the +10 to –10 volt outputs be calibrated using the
Motion Integrator Calibration Wizard.

General Purpose I/O

Precision MicroControl

146

The analog outputs can also be calibrated using MCCL command sequences. For a description of
MCCL commands and the WinControl command interface utility please refer to the MCCL section
of the appendix at the end of this user manual. Refer to the module layout diagram in the
Connectors, Jumpers, and Schematics chapter of this user manual. Using the following command
sequence, and reading the analog output voltage level with a voltmeter, an analog output can be
calibrated to provide the specified -10 to +10 volt range:

AL0,OAn,WA2,AL2048,OAn,WA2,AL4095,OAn,WA2,RP

where: n = channel number = 1, 2, 3, 4, ...

This command sequence will cycle the specified analog output from the minus limit, to the mid-point,
to the positive limit. There is a 2 second delay at each voltage level, during which the voltmeter can
settle and display the current reading.

The first step in calibrating an analog output is to adjust the gain using the single turn pot to achieve a
20.00 volt "swing". This is the difference between the most positive level reading, and the most
negative level reading. It is not necessary for the two readings to be centered about 0 volts for this
step.

The second step is to adjust the offset using the 20 turn pot. This adjustment will place the mid-point
of analog output at the 0 volt level. When the output changes to the mid- point level turn the pot to
achieve a 0.000 volt reading.

After the second step of the calibration procedure, the output swing should still be 20.00 volts. If not,
repeat steps 1 and 2 again.

General Purpose I/O

DCX-PCI300 User’s Manual

147

DCX Specifications

Precision MicroControl

148

Chapter Contents

• Motherboard: DCX-PCI300

• DCX-MC300 - +/- 10 Volt Analog Servo Motor Control Module

• DCX-MC302 – Dual +/- 10 Volt Analog Servo Motor Control Module

• DCX-MC320 - Brushless Servo Commutation Control Module

• DCX-MC360 - Stepper Motor Control Module

• DCX-MC362 – Dual Stepper Motor Control Module

• DCX-MC400 - 16 channel Digital I/O Module

• DCX-MC5X0 - Analog I/O Module

DCX-PCI300 User’s Manual

149

DCX Specifications

Motherboard: DCX-PCI300
Function 15 Axis Motion Controller
Installation Intel PC compatible computer
Configuration 8 User Installed Modules

Main Processor QED 5231 200MHz MIPS RISC
Processor Clock 192 MHz
Memory 512k x 8 bit Flash Memory
 1Meg X 32 Synchronous Dynamic Ram
Processor Fault Detection Watchdog Circuit with Reset Relay
Status LED's Power, Reset, Run, General Purpose (8)
Standard Communication Interface PCI Bus

4 Kilobytes dual ported memory in Memory Address Space
‘Plug and Play’ dynamic addressing

Undedicated Digital I/O Channels 16 TTL (0 – 5 VDC), 1ma max. sink/source with 4.7K ohm pull

up to +5V
2 groups (8 inputs, 8 outputs)

Connection options DCX-PCI300-H - VHDCI Ultra SCSI (SCSI V)

DCX-PCI300-R – 26 conductor, dual row, ribbon cable

Required Supply Voltages +5,+12 and -12 vdc
Form Factor Full Size PCI card (4.2" x 12.28")
Operating Temperature range 0 degrees C to 60 degrees C
Weight 10 oz + 1.2 oz per module (approx.)

Chapter

8

DCX Specifications

Precision MicroControl

150

DCX-MC300 - +/- 10 Volt Analog Servo Motor Control Module

Function Closed Loop Servo Controller with Dual Encoder Inputs
Installation DCX-PCI300 Motion Control Motherboard

Operating Modes Position, Velocity, Contouring, Torque, and Gain
Filter Algorithm PID with Velocity and Acceleration Feed-Forwards
Filter Update Rate 8, 4 or 2 KHz, software selectable
Trajectory Generator Trapezoidal, Parabolic or S-Curve

Independent Acceleration and Deceleration

Command output Analog Signal (+/- 10 vdc @ 10 ma, 16 bit)

Position Feedback Incremental Encoder with Index
Position and Velocity Resolution 32 bit
Primary Encoder
 Encoder and Index Inputs Differential or single ended, -7 to +7 vdc max.
 Encoder Count Rate 10,000,000 Quadrature Counts/Sec.
 Encoder Supply Voltage +5 or +12 vdc, jumper selectable
Auxiliary Encoder
 Encoder and Index Inputs Differential or single ended, -7 to +7 vdc max.
 Encoder Count Rate 10,000,000 Quadrature Counts/Sec.
 Encoder Supply Voltage +5 or +12 vdc, jumper selectable

Axis Inputs Limit+, Limit-, Coarse Home, Amplifier Fault

Optically isolated (Motorola MOC256)
 Voltage range +2.5V to +7.5V
 Minimum current required 10 ma

Axis Outputs Amplifier Enable, Direction

Optically isolated Open Collector (Motorola MOC223)
 Maximum voltage 30V
 Maximum current sink 125ma

Connection options DCX-MC300-H - VHDCI Ultra SCSI (SCSI V)

DCX-MC300-R – 26 conductor, dual row, ribbon cable

Operating Temperature range 0 degrees C to 60 degrees C

DCX Specifications

DCX-PCI300 User’s Manual

151

DCX-MC302 – Dual +/- 10 Volt Servo Motor Control Module

Function Dual Closed Loop Servo Controller
Installation DCX-PCI300 Motion Control Motherboard

Operating Modes Position, Velocity, Contouring, Torque, and Gain
Filter Algorithm PID with Velocity and Acceleration Feed-Forwards
Filter Update Rate 8, 4 or 2 KHz, software selectable
Trajectory Generator Trapezoidal, Parabolic or S-Curve

Independent Acceleration and Deceleration

Command output Axis 1 - Analog Signal (+/- 10 vdc @ 10 ma, 16 bit)

Axis 2 - Analog Signal (+/- 10 vdc @ 10 ma, 16 bit)

Position Feedback Incremental Encoder with Index
Position and Velocity Resolution 32 bit
Encoder
 Encoder and Index Inputs Axis 1 - Differential or single ended, -7 to +7 vdc max.

Axis 2 - Differential or single ended, -7 to +7 vdc max.
 Encoder Count Rate 10,000,000 Quadrature Counts/Sec.
 Encoder Supply Voltage Axis 1 - +5 or +12 vdc, jumper selectable

Axis 2 - +5 or +12 vdc, jumper selectable

Axis Inputs Axis 1 - Limit+, Limit-, Coarse Home, Amplifier Fault

 Optically isolated (Seimens ILDC256)
Axis 2 - Limit+, Limit-, Coarse Home, Amplifier Fault
 Optically isolated (Seimens ILDC256)

 Voltage range +2.5V to +7.5V
 Minimum current required 10 ma

Axis Outputs Axis 1 - Amplifier Enable Open Collector (TI 75453B)

Axis 2 - Amplifier Enable Open Collector (TI 75453B)
 Maximum voltage 30V
 Maximum current sink 125ma

Connection options DCX-MC302-H - VHDCI Ultra SCSI (SCSI V)

Operating Temperature range 0 degrees C to 60 degrees C

DCX Specifications

Precision MicroControl

152

DCX-MC320 - Brushless Servo Commutation Control Module

Function Closed Loop Servo Controller with Dual Encoder Inputs
Installation DCX-PCI300 Motion Control Motherboard

Operating Modes Position, Velocity, Contouring, Torque, and Gain
Filter Algorithm PID with Velocity and Acceleration Feed-Forwards
Filter Update Rate 8, 4 or 2 KHz, software selectable
Trajectory Generator Trapezoidal, Parabolic or S-Curve

Independent Acceleration and Deceleration

Command output Phase A (+/- 10 vdc @ 10 ma, 16 bit)

Phase B (+/- 10 vdc @ 10 ma, 16 bit)

Position Feedback Incremental Encoder with Index
Position and Velocity Resolution 32 bit
Primary Encoder
 Encoder and Index Inputs Differential or single ended, -7 to +7 vdc max.
 Encoder Count Rate 10,000,000 Quadrature Counts/Sec.
 Encoder Supply Voltage +5 or +12 vdc, jumper selectable
Hall Sensor / Auxiliary Encoder
 Encoder and Index Inputs Differential or single ended, -7 to +7 vdc max.
 Encoder Count Rate 10,000,000 Quadrature Counts/Sec.
 Encoder Supply Voltage +5 or +12 vdc, jumper selectable

Axis Inputs Limit+, Limit-, Coarse Home, Amplifier Fault

Optically isolated (Motorola MOC256)
 Voltage range +2.5V to +7.5V
 Minimum current required 10 ma

Axis Outputs Amplifier Enable, Optically isolated Open Collector

 (Motorola MOC223)
 Maximum voltage 30V
 Maximum current sink 125ma

Connection options DCX-MC320-H - VHDCI Ultra SCSI (SCSI V)

DCX-MC320-R – 26 conductor, dual row, ribbon cable

Operating Temperature range 0 degrees C to 60 degrees C

DCX Specifications

DCX-PCI300 User’s Manual

153

DCX-MC360 - Stepper Motor Control Module

Function Open or Closed Loop Stepper Controller
Installation DCX-PCI300 Motion Control Motherboard

Operating Modes Position, Velocity, and Contouring
Trajectory Generator Trapezoidal, Parabolic or S-Curve

Independent Acceleration and Deceleration
Position Feedback Incremental Encoder with Index (for closed loop stepper

operation or position verification of an open loop stepper)
Position and Velocity Resolution 32 bit

Step Outputs Pulse/Direction or CW/CCW (software selectable),

50% duty cycle open collector drivers (max. 30V, 125ma
current sink)

Step Rates (Software Selectable) High Speed - 153 Steps/Sec. - 5.0M Steps/Sec.
Medium Speed - 20 Steps/Sec. - 625K Steps/Sec.
Low Speed - .1 Steps/Sec. – 78K Steps/Sec.

Axis Inputs Limit+, Limit-, Home, Drive Fault (Optically isolated Motorola

MOC256)
 Voltage range +2.5V to +7.5V
 Minimum current required 10 ma

Axis Outputs Drive Enable, Full/Half Current (Open Collector TI 75453B)
 Maximum voltage 30V
 Maximum current sink 125ma

Connection options DCX-MC360-H - VHDCI Ultra SCSI (SCSI V)

DCX-MC360-R – 26 conductor, dual row, ribbon cable

Operating Temperature range 0 degrees C to 60 degrees C

DCX Specifications

Precision MicroControl

154

DCX-MC362 – Dual Stepper Motor Control Module

Function Dual Open Loop Stepper Controller
Installation DCX-PCI300 Motion Control Motherboard

Operating Modes Position, Velocity, and Contouring
Trajectory Generator Trapezoidal, Parabolic or S-Curve

Independent Acceleration and Deceleration
Position Feedback None
Position and Velocity Resolution 32 bit

Step Outputs Axis 1 - Pulse/Direction – CW/CCW (software selectable),

 50% duty cycle, open collector drivers (max. 30V,
 125ma current sink)
Axis 2 - Pulse/Direction – CW/CCW (software selectable),
 50% duty cycle, open collector drivers (max. 30V,
 125ma current sink)

Step Rates (Software Selectable) High Speed - 153 Steps/Sec. - 5.0M Steps/Sec.
Medium Speed - 20 Steps/Sec. - 625K Steps/Sec.
Low Speed - .1 Steps/Sec. – 78K Steps/Sec.

Axis Inputs Axis 1 - Limit+, Limit-, Home, Drive Fault

 Optically isolated (Motorola MOC256)
Axis 2 - Limit+, Limit-, Home, Drive Fault
 Optically isolated (Motorola MOC256)

 Voltage range +2.5V to +7.5V
 Minimum current required 10 ma

Axis Outputs Axis 1 - Drive Enable, Full/Half Current, Open Collector (TI

 75453B)
Axis 2 - Drive Enable, Full/Half Current, Open Collector (TI
 75453B)

 Maximum voltage 30V
 Maximum current sink 125ma

Connection options DCX-MC362-H - VHDCI Ultra SCSI (SCSI V)

Operating Temperature range 0 degrees C to 60 degrees C

DCX Specifications

DCX-PCI300 User’s Manual

155

DCX-MC400 - 16 channel Digital I/O Module
Function 16 Channel Digital I/O module
Installation DCX-PCI300 Motion Control Motherboard

Channels 16, individually programmable as input s or outputs
Output low voltage (min) 0.0 volt
Output high voltage (min) 2.4 volt
Current sink 1 ma max
Current source 1 ma max.
Input Low voltage -0.3V min. to 0.8V max.
Input High voltage 2.0V min. to 5.3V max.
Input termination 4.7K ohm pull up to +5V per channel
Relay rack interface DCX-BF022

Connection options DCX-MC400-H - VHDCI Ultra SCSI (SCSI V)

DCX-MC400-R – 26 conductor, dual row, ribbon cable

Operating Temperature range 0 degrees C to 60 degrees C

.

DCX-MC5X0 - Analog I/O Module
Function DCX-MC500 – 4 A/D channels, 4 D/A channels

DCX-MC510 – 4 A/D channels
DCX-MC520 – 4 D/A channels

Installation DCX-PCI300 Motion Control Motherboard

Inputs resolution 12 bit
Input voltage range 0.0V to +5.0V

Output resolution 12 bit
Output voltage range 0.0V to +5.0V (@ 5ma), -10V to +10V (@ 5ma)
Output Offset Adjustment 20 turn trim pot
Output Full Scale Adjustment single turn trim pot

Connection options DCX-MC5__0-H - VHDCI Ultra SCSI (SCSI V)

DCX-MC5__0-R – 26 conductor, dual row, ribbon cable

Operating Temperature range 0 degrees C to 60 degrees C

DCX Specifications

Precision MicroControl

156

DCX-MC500 Electrical Specifications
Parameter Min. Max Unit
Input Resolution 12 Bits
Input Conversion Rate 10 KHz
Input Zero Error
 Using Internal Reference
 Using External Reference

+/- 3

+/- 1/2

LSB
LSB

Input Full-Scale Error
 Using Internal Reference
 Using External Reference

+/- 15
+/- 1/2

LSB
LSB

Input Zero Temp. Coefficient 0.5 ppm/C
Input Differential Nonlinearity +/- 1 LSB
Input Total Unadjusted Error
 Using Internal Reference
 Using External Reference

+/- 15
+/- 1

Input Voltage Range
 Using Internal Reference
 Using External Reference

0.0
0.0

5.0
Vref

Input Capacitance 8
Input Leakage Current 100
External Reference Voltage 4.0 6.0

Parameter Min. Max Unit
Output Resolution 12 Bits
Output Zero Code Error * LSB
Output Full Scale Error * LSB
Output Nonlinearity * LSB
Output Total Unadjusted Error * LSB
Output Voltage Range 0.0

-10.0
5.0

+10.0
V
V

* These values are for 0 to +5.0 volt outputs

DCX Specifications

DCX-PCI300 User’s Manual

157

Connectors, Jumpers, and Schematics

Precision MicroControl

158

Chapter Contents

• DCX-PCI300 Motion Control Motherboard

• DCX-MC300 +/- 10V Servo Motor Control Module

• DCX-MC302 – Dual +/- 10 Volt Analog Servo Motor Control Module

• DCX-MC320 Brushless Servo Commutation Control Module

• DCX-MC360 Stepper Motor Control Module

• DCX-MC362 – Dual Stepper Motor Control Module

• DCX-MC400 Digital I/O Module

• DCX-MC500/MC510/MC520 Analog I/O Module

• DCX-BF022 Relay Rack Interface

• DCX-BF3XX-H High Density Cable Breakout

• DCX-BF300-R Servo Module Breakout Assembly

• DCX-BF320-R Servo Module Breakout Assembly

• DCX-BF360-R Stepper Module Breakout Assembly

DCX-PCI300 User’s Manual

159

Connectors, Jumpers, and Schematics

DCX-PCI300 Motion Control Motherboard

Status LED Indicators
LED # Color Description

D1 Green +5 VDC logic supply OK
D2 Yellow DCX Reset active
D3 Green Run (processor fault or watchdog tripped if off)
L1 Red Motor Module #1 initialization error (will blink when reset)
L2 Red Motor Module #2 initialization error (will blink when reset)
L3 Red Motor Module #3 initialization error (will blink when reset)
L4 Red Motor Module #4 initialization error (will blink when reset)
L5 Red Motor Module #5 initialization error (will blink when reset)
L6 Red Motor Module #6 initialization error (will blink when reset)
L7 Red Motor Module #7 initialization error (will blink when reset)
L8 Red Motor Module #8 initialization error (will blink when reset)

(Refer to diagram at the end of this appendix)

Chapter

9

Connectors, Jumpers, and Schematics

Precision MicroControl

160

General Purpose I/O (Digital I/O and Analog inputs) Connector J5
Pin # Description
1 +5 VDC
2 RESET RELAY CONTACT #1 *
3 DIGITAL OUTPUT CHANNEL 16
4 RESET RELAY CONTACT #2 *
5 DIGITAL OUTPUT, CHANNEL 15
6 DIGITAL OUTPUT, CHANNEL 14
7 DIGITAL OUTPUT, CHANNEL 13
8 DIGITAL OUTPUT, CHANNEL 12
9 DIGITAL OUTPUT, CHANNEL 11
10 DIGITAL OUTPUT, CHANNEL 10
11 DIGITAL OUTPUT, CHANNEL 09
12 DIGITAL INPUT, CHANNEL 08
13 DIGITAL INPUT, CHANNEL 07
14 DIGITAL INPUT, CHANNEL 06
15 DIGITAL INPUT, CHANNEL 05
16 DIGITAL INPUT, CHANNEL 04
17 DIGITAL INPUT, CHANNEL 03
18 DIGITAL INPUT, CHANNEL 02
19 DIGITAL INPUT, CHANNEL 01
20 NO CONNECT
21 +12 VDC
22 NO CONNECT
23 NO CONNECT
24 GROUND
25 -12 VDC
26 GROUND
Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

 * - Reset Relay contacts (normally open). The relay is energized (contacts 1 and 2 connected) when
the DCX-PCI300 is held in reset.

Alternative +12 volt supply connector (not supported at this time)
Pin # Description
1
2
3
4
Mating Connector:__________________________

J31 – +12 volt supply input select
Pins Description
Open +12 volt supply provided via connector J33
2 to 3 +12 volt supply provided via PCI bus

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

161

3

QED

#1#3#5#7

#8 #6 #4 #2J31

J5

Figure 48: DCX-PCI300-R motherboard (ribbon cable version)

VHDCI connectors as viewed from the back of the computer
(component side down)

J1 - Module locations 1 & 7J2 - Module locations 2 & 8

J3 - Module locations 5 & 3J4 - Module locations 6 & 4

#1

#35

#34

#68

#1

#68

#34

#35

Figure 49: DCX-PCI300-H high density connectors pin numbering

Power OK
Processor OK

Module
Initialization
error LED's

Connectors, Jumpers, and Schematics

Precision MicroControl

162

DCX-MC300 +/- 10V Servo Motor Control Module
SIGNAL DESCRIPTIONS:

Analog Command Return
connection point: MC300-H J3 - pin 1, MC300-R J3 - pin 1
signal type: ground
notes:
explanation: Provides the signal ground for the modules Analog Command Signal output. This return
path is common to the ground plane of the DCX motherboard, but is connected in such a way as to
reduce digital noise. Typical servo amplifiers will have a connection for the analog command (or Ref-)
return where this signal should be connected.

Analog Command Output
connection point: MC300-H J3 - pin 2, MC300-R J3 - pin 2
signal type: +/- 10V analog, 16 bit
notes: connects to servo amplifier motor command input (Ref+)
explanation: This module output signal is used to control the servo amplifier's output. When
connected to the command input of a velocity mode amplifier, the voltage level on this signal should
cause the amplifier to drive the servo at a proportional velocity. For current mode amplifiers, the
voltage level should cause a proportional current to be supplied to the servo. In its default Bipolar
output mode, the module provides an analog signal that is in the range -10 to +10 volts, with 0 volts
being the null output level. Positive voltages indicate a desired velocity or current in one direction.
Negative voltages indicate velocity or current in the opposite direction. By using the Output Mode
command, the output can be changed to Unipolar, where the analog signal range is 0 to +10 volts,
and a separate signal is used to indicate the desired direction of velocity or current. The maximum
drive current of this signal is +/-10 milliamps.

Compare / Direction Output
connection point: MC300-H J3 - pin 3, MC300-R J3 - pin 7
signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation:
Compare – Used to indicate when a position compare event has occurred. See the description of
Position Compare in the Application Solutions chapter.

Direction - For servo drives requiring a Unipolar output. The velocity or current command input
consists of a magnitude signal and a separate direction signal . The magnitude signal is provided by
the modules Analog Command Signal (J3 pin 2) previously described, while this signal provides a
digital direction command.

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them. When the axis is moving in the positive direction the output will be pulled low.
When the axis is moving in the negative direction the open collector driver will be turned off and the
output will be pulled high.

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

163

Coarse Home Input
connection point: MC300-H J3 - pin 9, MC300-R J3 - pin 9
signal type: Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes: Supply/Return using INPRET (J3 pin 18)
explanation: This module input is used to determine the proper zero position of the servo. In servo
systems that use rotary encoders with index outputs, an index pulse is generated once per rotation of
the encoder. While this signal occurs at a very repeatable angular position on the encoder, it may
occur many times within the motion range of the servo. In these cases, a Coarse Home switch
connected to this module input can be used to qualify which index pulse is the true zero position of the
servo. By setting this switch to be activated near the end of travel of the servo, and using DCX motion
commands to position the servo within this region prior to searching for the index pulse, a unique zero
position for the servo can be determined. The input device is a bi-directional optical isolator. The
allowable voltage range for this signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher
voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).
The minimum current required to turn on the optical isolator is 10ma. Bi-directional optical isolator
wiring examples are provided later in this section.

Amplifier Fault Input
connection point: MC300-H J3 - pin 7, MC300-R J3 - pin 10
signal type: Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes: Supply/Return using AMPFRET (J3 pin 13)
explanation: - This module input is designed to be connected to the servo amplifiers Fault or Error
output signal. The state of this signal will appear as a status bit in the servo's status word. The
EnableAmpFault member of the MCMotion structure will enable the module to shut off the axis if the
Amplifier Fault input is active. No further servo motion will occur until the fail signal is deactivated and
the axis is enabled. The input device is a bi-directional optical isolator. The allowable voltage range for
this signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external
resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Amplifier Enable Output
connection point: MC300-H J3 - pin 5, MC300-R J3 - pin 11
signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation: - This module output signal should be connected to the enable input of the servo
amplifier. When the DCX is turned on or reset, this signal will immediately go to its' inactive high level.
When the MCEnableAxis() is called, this signal will go to its' active low level. Anytime there is an
error on the respective servo axis, including exceeding the following error, a limit switch input
activated or the Amplifier Fault input activated, the Amplifier Enable signal will be deactivated.
This signal can also be deactivated by the Motor oFf command.

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them.

Connectors, Jumpers, and Schematics

Precision MicroControl

164

Limit Positive and Limit Negative Inputs
connection point: Limit Positive: MC300-H J3 - pin 17, MC300-R J3 - pin 14
 Limit Negative: MC300-H J3 - pin 19, MC300-R J3 - pin 15
signal type: Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes: MC300-H Limit Positive Supply/Return J3 pin 18
 MC300-H Limit Negative Supply/Return J3 pin 20
 MC300-R Limits Supply/Return J3 pin 18
explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it
reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving
in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of
the direction it is moving if either limit switch is activated. There are three modes of stopping
(decelerate to a stop, stop immediately, turn off the axis) that can be configured by the MCSetLimits(
). The limit switch inputs can be enabled and disabled by MCSetLimits(). See the description of
Motion Limits in the Motion Control chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is 2.5
VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external resistor (12 volt
I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Position Capture / Auxiliary Encoder Index +
connection point: MC300-H J3 - pin 15, MC300-R J3 - pin 24
signal type: TTL or Differential driver output (-7V to +7V)
notes:
explanation: -
Position Capture – Used to initiate the capture of position data. See the description of Position
Capture in the Application Solutions chapter.

Auxiliary Encoder Index + - This input signal can be used to define the home position of an auxiliary
encoder.

Primary Encoder Inputs (Phase A+, Phase -, Phase B+, Phase B-, Index+, Index-)
connection point: see pin-out table
signal type: TTL or Differential driver output (-7V to +7V)
notes: The encoder power jumper JP3 sets the ‘mid point’ for the differential receiver
explanation: These input signals should be connected to an incremental quadrature encoder for
supplying position feedback information for the servo controller. The plus (+) and minus (-) signs refer
to the two sides of differential inputs. By setting jumpers JP1 and JP2 appropriately, the plus signal
inputs can be configured for single ended inputs.

Auxiliary Encoder Inputs (Phase A, Phase B, Index+, Index-)
connection point: see pin-out table
signal type: TTL or Differential driver output (-7V to +7V)
notes:
explanation: - These input signals can be used for an auxiliary encoder.

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

165

Encoder Power Output
connection point: J3 pin 17MC300-H J3 - pin 16, MC300-R J3 - pin 17
signal type: +5 VDC PC power supply output or +12 VDC PC power supply output
notes: The encoder power jumper JP3 selects +5VDC or +12VDC (max. load 250 mA).
explanation: This module pin provides a convenient supply voltage connection for the encoders. The
jumper JP3 located on the module can be used to connect either the +5 or +12 volt supply to the
Encoder Power pin. The setting of this jumper also selects the threshold voltage for the module's
single ended phase and index encoder inputs. When JP1 is set for +5 volts, the threshold will be 2.5
volts, for +12 volts, the threshold will be +6 volts. The threshold voltage determines at what voltage
the input changes between on and off.

SUPPLY CONNECTIONS (+5, +12, -12, GROUND) - These module pins provide access
to the DCX supply voltages.

Connectors, Jumpers, and Schematics

Precision MicroControl

166

DCX-MC300-H High Density connector signal map

Module #1 Module #2 Module #3 Module #4 Module #5 Module #6 Module #7 Module #8 J3 Pin # Description
 J1 – 1 J2 – 1 J3 - 19 J4 - 19 J3 – 1 J4 – 1 J1 – 19 J2 - 19 1 Analog Command return
 J1 – 35 J2 - 35 J3 – 53 J4 – 53 J3 – 35 J4 – 35 J1 – 53 J2 – 53 2 Analog Command output
 J1 – 2 J2 – 2 J3 – 20 J4 – 20 J3 – 2 J4 – 2 J1 – 20 J2 – 20 3 Compare / Direction: output
 J1 – 36 J2 - 36 J3 – 54 J4 – 54 J3 – 36 J4 – 36 J1 – 54 J2 – 54 4 Compare / Direction return
 J1 – 3 J2 – 3 J3 - 21 J4 - 21 J3 – 3 J4 – 3 J1 – 21 J2 - 21 5 Amplifier Enable: output
 J1 – 37 J2 - 37 J3 – 55 J4 – 55 J3 – 37 J4 – 37 J1 – 55 J2 – 55 6 Amp Enable return
 J1 – 4 J2 – 4 J3 – 22 J4 – 22 J3 – 4 J4 – 4 J1 – 22 J2 – 22 7 Amplifier Fault: input
 J1 – 38 J2 - 38 J3 – 56 J4 – 56 J3 – 38 J4 – 38 J1 – 56 J2 – 56 8 Amp Fault opto isolator supply/return
 J1 – 5 J2 – 5 J3 – 23 J4 – 23 J3 – 5 J4 – 5 J1 – 23 J2 – 23 9 Coarse Home: input
 J1 – 39 J2 - 39 J3 – 57 J4 – 57 J3 – 39 J4 – 39 J1 – 57 J2 – 57 10 Coarse Home return
 J1 – 6 J2 – 6 J3 – 24 J4 – 24 J3 – 6 J4 – 6 J1 – 24 J2 – 24 Ground
 J1 – 40 J2 - 40 J3 – 58 J4 – 58 J3 – 40 J4 – 40 J1 – 58 J2 – 58 11 Reserved
 J1 – 7 J2 – 7 J3 – 25 J4 – 25 J3 – 7 J4 – 7 J1 – 25 J2 – 25 12 Reserved
 J1 – 41 J2 - 41 J3 – 59 J4 – 59 J3 – 41 J4 – 41 J1 – 59 J2 – 59 Ground
 J1 – 8 J2 – 8 J3 – 26 J4 – 26 J3 – 8 J4 – 8 J1 – 26 J2 – 26 Ground
 J1 – 42 J2 - 42 J3 – 60 J4 – 60 J3 – 42 J4 – 42 J1 – 60 J2 – 60 13 Auxiliary Encoder Phase A+: input
 J1 – 9 J2 – 9 J3 – 27 J4 – 27 J3 – 9 J4 – 9 J1 – 27 J2 – 27 14 Auxiliary Encoder Phase B+: input
 J1 – 43 J2 - 43 J3 – 61 J4 – 61 J3 – 43 J4 – 43 J1 – 61 J2 – 61 Ground
 J1 – 10 J2 - 10 J3 – 28 J4 – 28 J3 – 10 J4 – 10 J1 – 28 J2 – 28 Ground
 J1 – 44 J2 - 44 J3 – 62 J4 – 62 J3 – 44 J4 – 44 J1 – 62 J2 – 62 15 Position Capture + / Aux. Encoder Index+
 J1 – 11 J2 - 11 J3 - 29 J4 - 29 J3 – 11 J4 – 11 J1 – 29 J2 - 29 16 Encoder Power: output (max. load 250 mA)
 J1 – 45 J2 - 45 J3 – 63 J4 – 63 J3 – 45 J4 – 45 J1 – 63 J2 – 63 Ground
 J1 – 12 J2 - 12 J3 – 30 J4 – 30 J3 – 12 J4 – 12 J1 – 30 J2 – 30 17 Limit Positive: input
 J1 – 46 J2 - 46 J3 – 64 J4 – 64 J3 – 46 J4 – 46 J1 – 64 J2 – 64 18 Limit Positive opto isolator supply/return
 J1 – 13 J2 - 13 J3 – 31 J4 – 31 J3 – 13 J4 – 13 J1 – 31 J2 – 31 19 Limit Negative: input
 J1 – 47 J2 - 47 J3 – 65 J4 – 65 J3 – 47 J4 – 47 J1 – 65 J2 – 65 20 Limit Negative opto isolator supply/return
 J1 – 14 J2 - 14 J3 – 32 J4 – 32 J3 – 14 J4 – 14 J1 – 32 J2 – 32 21 Primary Encoder Phase A+: input *
 J1 – 48 J2 - 48 J3 – 66 J4 – 66 J3 – 48 J4 – 48 J1 – 66 J2 – 66 22 Primary Encoder Phase A-: input
 J1 – 15 J2 - 15 J3 – 33 J4 – 33 J3 – 15 J4 – 15 J1 – 33 J2 – 33 23 Primary Encoder Phase B+: input*
 J1 – 49 J2 - 49 J3 – 67 J4 – 67 J3 – 49 J4 – 49 J1 – 67 J2 – 67 24 Primary Encoder Phase B-: input
 J1 – 16 J2 - 16 J3 – 34 J4 – 34 J3 – 16 J4 – 16 J1 – 34 J2 – 34 25 Primary Encoder Index +:input
 J1 – 50 J2 - 50 J3 – 68 J4 – 68 J3 – 50 J4 – 50 J1 – 68 J2 – 68 26 Primary Encoder Index -:input
 J1 – 17 J2 – 17 J3 – 17 J4 – 17 Ground
 J1 – 51 J2 - 51 J3 – 51 J4 – 51 Ground
 J1 – 18 J2 – 18 J3 – 18 J4 – 18 Ground
 J1 – 52 J3 – 52 J3 – 52 J4 – 52 Ground

For a more complete signal description please refer to the previous five pages
Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

167

DCX-MC300-R Module connector

J3 connector pin-out (Motor command, encoders, and axis I/O)
Pin # Description
1 Analog Command return (analog ground)
2 Analog Command output (output, +/-10 V)
3 +12 VDC (250 mA max.)
4 -12 VDC (50 mA max.)
5 Ground
6 +5 VDC (250 mA max.)
7 Compare / Direction: output (open collector, 100ma max., 30V max.)
8 Primary Encoder Index +:input (active high)
9 Coarse Home: input (optically isolated, 12V – 24V, 15ma min.)
10 Amplifier Fault: input (optically isolated, 12V – 24V, 15ma min.)
11 Amplifier Enable: output (open collector, 100ma max., 30V max.)
12 Amp Enable & Direction return
13 Amp Fault opto isolator supply/return
14 Limit Positive: input (optically isolated, 12V – 24V, 15ma min.)
15 Limit Negative: input (optically isolated, 12V – 24V, 15ma min.)
16 Primary Encoder Phase A+: input *
17 Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (max. load 250 mA)
18 Coarse Home & Limits opto isolator supply/return
19 Primary Encoder Phase A-: input
20 Primary Encoder Phase B-: input
21 Auxiliary Encoder Phase A+: input
22 Auxiliary Encoder Phase B+: input
23 Primary Encoder Phase B+: input*
24 Position Capture + / Auxiliary Encoder Index+: input (active high)
25 Primary Encoder Index-: input (active low)
26 Ground

 * Use A+ and B+ for single-ended ENCODER INPUTS

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

Connectors, Jumpers, and Schematics

Precision MicroControl

168

DCX-MC300 Module Configuration Jumpers - configuration in bold type
denotes default factory shipping configuration

JP1 – Encoder type (single ended or differential)
Pins Description
1 to 2 to 3 Single ended encoder, A, B, Z (three pin jumper provided)
open Differential encoder, A+, A-, B+, B-

JP2 – Encoder Index Active Level Select)
Pins Description
1 to 2 Single ended Index, Z+ (Active high)
2 to 3 Single ended Index, Z- (active low)
open Differential Index, Z+ and Z-

JP3 – Encoder Power Select (+5VDC or +12 VDC)
Pins Description
1 to 2 +5 VDC encoder supply on J3 pin 16/17 (250 mA max.)
2 to 3 +12 VDC encoder supply on J3 pin 16/17 (250 mA max.)

DCX-MC300 Module Output Offset Potentiometer
This multi-turn trimming potentiometer can be used to add an offset to the module's analog output.
The range of this adjustment is approximately +/-1.0 volts.

DCX-MC300 Module Layout

1

226

25

JP1

JP2

JP3
1

1

1

DCX-MC300

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

169

DCX-MC300H Axis I/O Interface Schematic

74LS14
+5VDC

Limit+
4.7K

360 Limit Positive

Limit + Return

J3 - 17

J3 - 18

Motorola MOC256

74LS14
+5VDC

Limit-
4.7K

360 Limit Negative

Limits - Return

J3 - 19

J3 - 20

Motorola MOC256

74LS14
+5VDC

Crs Home
4.7K

360 Coarse Home

Coarse Home Return

J3 - 9

J3 - 10

Motorola MOC256

74LS14
+5VDC

Amp Fault
4.7K

360 Amplifier Fault

Amplifier Fault Return

J3 - 7

J3 - 8

Motorola MOC256

Motorola MOC223

J3 - 5

J3 - 6

4.7K

+5VDC

SN75453B

+5VDC

360

Amp Enable

Amplifier Enable Return

Amplifier Enable

Motorola MOC223

J3 - 3

J3 - 4

4.7K

+5VDC

SN75453B

+5VDC

360

Direction

Compare / Direction Return

Compare / Direction

Enc A+ J3 - 21

J3 - 22

J3 - 23

J3 - 24

J3 - 25

J3 - 26

75175
Enc A-

Enc B+

Enc B-

Enc Z+

Enc Z-

Enc A

Enc B

Enc Z

TL082+

_

-12V

+12V

10.0K

Analog Command J3 - 2
VOUT

Connectors, Jumpers, and Schematics

Precision MicroControl

170

DCX-MC300H Optically Isolated Inputs Wiring Examples

Bi-directional
Optical isolator74LS14

+5VDC

DCX-MC300H

Limit+
J3-17: Limit +

J3-18: Limit + Return

+5VDC
Power Supply

+
_

360

This limit circuit wll indicate that a limit is active if the switch is closed

Limit + switch
(normally open)

Bi-directional
Optical isolator74LS14

+5VDC

DCX-MC300H

Limit+

Limit + switch
(normally closed)

J3-17: Limit +

J3-18: Limit + Return

+5VDC
Power Supply

+
_

360

This limit circuit wll indicate that a limit is active if:
1) The switch is open
2) Any component in the circuit fails (power supply,
 bi-directional opto isolator, broken wire, etc...

This is not the default configuration of the DCX, issue the
MC_LIMIT_INVERT parameter of the MCSetLimits() function.

Bi-directional
Optical isolator74LS14

+5VDC

DCX-MC300H

Limit+

Limit + switch
(normally open)

J3-17: Limit +

J3-18: Limit + Return

+5VDC
Power Supply

360

This limit circuit wll indicate that a limit is active if the switch is closed

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

171

DCX-MC300H Open Collector Driver Wiring Examples

DCX-MC300

Motorola
MOC223

J3 - 5

J3 - 6

4.7K
+5VDC

SN75453B

+5VDC

360

Amp En.

Amplifier Enable Return

Amplifier Enable

Servo Amplifier
VCC

Amp En

4N29
Optical isolator

Connectors, Jumpers, and Schematics

Precision MicroControl

172

DCX-MC302 Dual Axis +/- 10V Servo Motor Control Module
SIGNAL DESCRIPTIONS:

Analog Command Return
connection point: Axis 1: VHDCI connector pin 8 (no connection on module J3 connector)
 Axis 2: VHDCI connector pin 43 (no connection on module J3 connector)
signal type: ground
notes:
explanation: Provides the signal ground for the modules Analog Command Signal output. This return
path is common to the ground plane of the DCX motherboard, but is connected in such a way as to
reduce digital noise. Typical servo amplifiers will have a connection for the analog command (or Ref-)
return where this signal should be connected.

Analog Command Output
connection point: Axis 1: J3 - pin 13
 Axis 2: J3 – pin 14
signal type: +/- 10V analog, 16 bit
notes: connects to servo amplifier motor command input (Ref+)
explanation: This module output signal is used to control the servo amplifier's output. When
connected to the command input of a velocity mode amplifier, the voltage level on this signal should
cause the amplifier to drive the servo at a proportional velocity. For current mode amplifiers, the
voltage level should cause a proportional current to be supplied to the servo. In its default Bipolar
output mode, the module provides an analog signal that is in the range -10 to +10 volts, with 0 volts
being the null output level. Positive voltages indicate a desired velocity or current in one direction.
Negative voltages indicate velocity or current in the opposite direction. The maximum drive current of
this signal is +/-10 milliamps.

Coarse Home Input
connection point: Axis 1: J3 - pin 7
 Axis 2: J3 – pin 19
signal type: Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes: Axis 1 Supply/Return: A1Limret (J3 pin 10)
 Axis 2 Supply/Return: A2Limret (J3 pin 18)
explanation: This module input is used to determine the proper zero position of the servo. In servo
systems that use rotary encoders with index outputs, an index pulse is generated once per rotation of
the encoder. While this signal occurs at a very repeatable angular position on the encoder, it may
occur many times within the motion range of the servo. In these cases, a Coarse Home switch
connected to this module input can be used to qualify which index pulse is the true zero position of the
servo. By setting this switch to be activated near the end of travel of the servo, and using DCX motion
commands to position the servo within this region prior to searching for the index pulse, a unique zero
position for the servo can be determined. The input device is a bi-directional optical isolator. The
allowable voltage range for this signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher
voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

173

Amplifier Enable Output
connection point: Axis 1: J3 - pin 12
 Axis 2: J3 – pin 15
signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation: - This module output signal should be connected to the enable input of the servo
amplifier. When the DCX is turned on or reset, this signal will immediately go to its' inactive high level.
When the MCEnableAxis() is called, this signal will go to its' active low level. Anytime there is an
error on the respective servo axis, including exceeding the following error, a limit switch input
activated or the Amplifier Fault input activated, the Amplifier Enable signal will be deactivated.
This signal can also be deactivated by the Motor oFf command.

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them.

Limit Positive and Limit Negative Inputs
connection point: Axis 1 Limit Positive: J3 - pin 9, Axis 2 Limit Positive: J3 - pin 17
 Axis 1 Limit Negative: J3 - pin 11, Axis 2 Limit Positive: J3 - pin 16
signal type: Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes: Axis 1 Limits +/- Supply/Return: A1Limret (J3 pin 10)
 Axis 2 Limits +/- Supply/Return: A2Limret (J3 pin 18)
explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it
reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving
in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of
the direction it is moving if either limit switch is activated. There are three modes of stopping
(decelerate to a stop, stop immediately, turn off the axis) that can be configured by the MCSetLimits(
). The limit switch inputs can be enabled and disabled by MCSetLimits(). See the description of
Motion Limits in the Motion Control chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is 2.5
VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external resistor (12 volt
I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Encoder Inputs (Phase A+, Phase A-, Phase B+, Phase B-, Index+, Index-)
connection point: see pin-out tables
signal type: TTL or Differential driver output (-7V to +7V)
notes:
explanation: These input signals should be connected to an incremental quadrature encoder for
supplying position feedback information for the servo controller. The plus (+) and minus (-) signs refer
to the two sides of differential inputs. The default shipping configuration is for using a differential
encoder. For a single ended encoder add 0 ohm resistors (Axis 1- R1, R2, R3; Axis 2-R4, R5, R6).

Connectors, Jumpers, and Schematics

Precision MicroControl

174

Encoder Power Output
connection point: Axis 1: J3 - pin 8
 Axis 2: J3 – pin 20
signal type: +5 VDC PC power supply output or +12 VDC PC power supply output
notes: Axis 1: jumper JP1 selects +5VDC or +12VDC (max. load 250 mA)
 Axis 2: jumper JP2 selects +5VDC or +12VDC (max. load 250 mA)
explanation: This module pin provides a convenient supply voltage connection for the encoders. The
jumper can be used to connect either the +5 or +12 volt supply to the Encoder Power pin.

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

175

DCX-MC302-H High Density connector signal map

Module #1 Module #2 Module #3 Module #4 Module #5 Module #6 Module #7 Module #8 J3 Pin # Description
 J1 – 1 J2 – 1 J3 - 19 J4 - 19 J3 – 1 J4 – 1 J1 – 19 J2 - 19 1 Axis 1 Encoder Phase A+: input *
 J1 – 35 J2 - 35 J3 – 53 J4 – 53 J3 – 35 J4 – 35 J1 – 53 J2 – 53 2 Axis 1 Encoder Phase A-: input
 J1 – 2 J2 – 2 J3 – 20 J4 – 20 J3 – 2 J4 – 2 J1 – 20 J2 – 20 3 Axis 1 Encoder Phase B+: input*
 J1 – 36 J2 - 36 J3 – 54 J4 – 54 J3 – 36 J4 – 36 J1 – 54 J2 – 54 4 Axis 1 Encoder Phase B-: input
 J1 – 3 J2 – 3 J3 - 21 J4 - 21 J3 – 3 J4 – 3 J1 – 21 J2 - 21 5 Axis 1 Encoder Index +:input
 J1 – 37 J2 - 37 J3 – 55 J4 – 55 J3 – 37 J4 – 37 J1 – 55 J2 – 55 6 Axis 1 Encoder Index-: input
 J1 – 4 J2 – 4 J3 – 22 J4 – 22 J3 – 4 J4 – 4 J1 – 22 J2 – 22 7 Axis 1 Coarse Home: input (optically isolated)
 J1 – 38 J2 - 38 J3 – 56 J4 – 56 J3 – 38 J4 – 38 J1 – 56 J2 – 56 8 Axis 1 Encoder Power (+5/+12) (250 mA max.)
 J1 – 5 J2 – 5 J3 – 23 J4 – 23 J3 – 5 J4 – 5 J1 – 23 J2 – 23 9 Axis 1 Limit Positive: input (optically isolated)
 J1 – 39 J2 - 39 J3 – 57 J4 – 57 J3 – 39 J4 – 39 J1 – 57 J2 – 57 10 Axis 1 Coarse Home & Limits supply/return
 J1 – 6 J2 – 6 J3 – 24 J4 – 24 J3 – 6 J4 – 6 J1 – 24 J2 – 24 Ground
 J1 – 40 J2 - 40 J3 – 58 J4 – 58 J3 – 40 J4 – 40 J1 – 58 J2 – 58 11 Axis 1 Limit Negative: input (optically isolated)
 J1 – 7 J2 – 7 J3 – 25 J4 – 25 J3 – 7 J4 – 7 J1 – 25 J2 – 25 12 Axis 1 Amplifier Enable: output (open collector)
 J1 – 41 J2 - 41 J3 – 59 J4 – 59 J3 – 41 J4 – 41 J1 – 59 J2 – 59 Ground
 J1 – 8 J2 – 8 J3 – 26 J4 – 26 J3 – 8 J4 – 8 J1 – 26 J2 – 26 Ground
 J1 – 42 J2 - 42 J3 – 60 J4 – 60 J3 – 42 J4 – 42 J1 – 60 J2 – 60 13 Axis 1 Analog Command output (+/-10 V)
 J1 – 9 J2 – 9 J3 – 27 J4 – 27 J3 – 9 J4 – 9 J1 – 27 J2 – 27 14 Axis 2 Analog Command output (+/-10 V)
 J1 – 43 J2 - 43 J3 – 61 J4 – 61 J3 – 43 J4 – 43 J1 – 61 J2 – 61 Ground
 J1 – 10 J2 - 10 J3 – 28 J4 – 28 J3 – 10 J4 – 10 J1 – 28 J2 – 28 Ground
 J1 – 44 J2 - 44 J3 – 62 J4 – 62 J3 – 44 J4 – 44 J1 – 62 J2 – 62 15 Axis 2 Amplifier Enable: output (open collector)
 J1 – 11 J2 - 11 J3 - 29 J4 - 29 J3 – 11 J4 – 11 J1 – 29 J2 - 29 16 Axis 2 Limit Negative: input (optically isolated)
 J1 – 45 J2 - 45 J3 – 63 J4 – 63 J3 – 45 J4 – 45 J1 – 63 J2 – 63 Ground
 J1 – 12 J2 - 12 J3 – 30 J4 – 30 J3 – 12 J4 – 12 J1 – 30 J2 – 30 17 Axis 2 Limit Positive: input (optically isolated)
 J1 – 46 J2 - 46 J3 – 64 J4 – 64 J3 – 46 J4 – 46 J1 – 64 J2 – 64 18 Axis 2 Coarse Home & Limits supply/return
 J1 – 13 J2 - 13 J3 – 31 J4 – 31 J3 – 13 J4 – 13 J1 – 31 J2 – 31 19 Axis 2 Coarse Home: input (optically isolated)
 J1 – 47 J2 - 47 J3 – 65 J4 – 65 J3 – 47 J4 – 47 J1 – 65 J2 – 65 20 Axis 2 Encoder Power (+5/+12) (250 mA max.)
 J1 – 14 J2 - 14 J3 – 32 J4 – 32 J3 – 14 J4 – 14 J1 – 32 J2 – 32 21 Axis 2 Encoder Phase A+: input *
 J1 – 48 J2 - 48 J3 – 66 J4 – 66 J3 – 48 J4 – 48 J1 – 66 J2 – 66 22 Axis 2 Encoder Phase A-: input
 J1 – 15 J2 - 15 J3 – 33 J4 – 33 J3 – 15 J4 – 15 J1 – 33 J2 – 33 23 Axis 2 Encoder Phase B+: input*
 J1 – 49 J2 - 49 J3 – 67 J4 – 67 J3 – 49 J4 – 49 J1 – 67 J2 – 67 24 Axis 2 Encoder Phase B-: input
 J1 – 16 J2 - 16 J3 – 34 J4 – 34 J3 – 16 J4 – 16 J1 – 34 J2 – 34 25 Axis 2 Encoder Index +:input
 J1 – 50 J2 - 50 J3 – 68 J4 – 68 J3 – 50 J4 – 50 J1 – 68 J2 – 68 26 Axis 2 Encoder Index-: input
 J1 – 17 J2 – 17 J3 – 17 J4 – 17 Ground
 J1 – 51 J2 - 51 J3 – 51 J4 – 51 Ground
 J1 – 18 J2 – 18 J3 – 18 J4 – 18 Ground
 J1 – 52 J3 – 52 J3 – 52 J4 – 52 Ground

For a more complete signal description please refer to the previous five pages
Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

Connectors, Jumpers, and Schematics

Precision MicroControl

176

DCX-MC302 Module Configuration Jumpers - configuration in bold type
denotes default factory shipping configuration

JP1 – Axis 1 Encoder Power Select (+5VDC or +12 VDC)
Pins Description
1 to 2 +5 VDC encoder supply on J3 pin 8 (250 mA max.)
2 to 3 +12 VDC encoder supply on J3 pin 8 (250 mA max.)

JP2 – Axis 2 Encoder Power Select (+5VDC or +12 VDC)
Pins Description
1 to 2 +5 VDC encoder supply on J3 pin 20 (250 mA max.)
2 to 3 +12 VDC encoder supply on J3 pin 20 (250 mA max.)

DCX-MC302 Module Layout

DCX-MC302

JP1

JP2

R2

R4
R3

R5
R6

R1

DCX-MC302 top side DCX-MC302 bottom side: remove

R1 – R6 for differential encoder

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

177

DCX-MC302H Axis I/O Interface Schematic

Ax1 Enc A+ J3 - 1

J3 - 2

J3 - 3

J3 - 4

J3 - 5

J3 - 6

75175
Ax1 Enc A-

Ax1 Enc B+

Ax1 Enc B-

Ax1 Enc Z+

Ax1 Enc Z-

Ax1 Enc A

Ax1 Enc B

Ax1 Enc Z

74LS14

+5VDC

Ax1 Lim+
4.7K

360 Axis 1 Limit +

Axis 1 Limit Return

J3 - 9

J3 - 10

Motorola MOC256

74LS14

+5VDC

Ax1 Lim- 4.7K Axis 1 Limit - J3 - 11
360

74LS14

+5VDC

Ax2 Crs Hm
4.7K

360 Axis 2 Coarse Home

Axis 2 Limit Return

J3 - 19

J3 - 18

Motorola MOC256

74LS14

+5VDC

Ax1 Crs Hm 4.7K Axis 1 Coarse Home J3 - 7

J3 - 10Axis 1 Limit Return

360

74LS14

+5VDC

Ax2 Lim+
4.7K

360 Axis 2 Limit +

Axis 2 Limit Return

J3 - 17

J3 - 18

Motorola MOC256

74LS14

+5VDC

Ax2 Lim- 4.7K Axis 2 Limit - J3 - 16
360

J3 - 12

4.7K

+5VDC

SN75453B
Axis 1 Amp En

Axis 1 Amp Enable J3 - 15

4.7K

+5VDC

SN75453B
Axis 2 Amp En

Axis 2 Amp Enable

TL082+

_

-12V

+12V

Axis 1 Analog Command
Ax1 VOUT

J3 - 13

TL082+

_

-12V

+12V

Axis 2 Analog Command
Ax2 VOUT

J3 - 14
Ax2 Enc Z J3 - 25

J3 - 26

Ax2 Enc Z+

Ax2 Enc Z-

Ax2 Enc A+ J3 - 21

J3 - 22

J3 - 23

J3 - 24

75175
Ax2 Enc A-

Ax2 Enc B+

Ax2 Enc B-

Ax1 Enc A

Ax1 Enc B

+5V

2K

0 ohm Ax1 Enc Z-

0 ohm Ax1 Enc B-

0 ohm Ax1 Enc A-

0 ohm Ax2 Enc Z-

0 ohm Ax2 Enc B-

0 ohm Ax2 Enc A-

1K

J3 - 8Ax 1 Enc Pwr

+5 VDC

+12 VDC

JP1

J3 - 20Ax 1 Enc Pwr
+5 VDC

+12 VDC

JP2

Connectors, Jumpers, and Schematics

Precision MicroControl

178

DCX-MC302 Optically Isolated Inputs Wiring Examples

Bi-directional
Optical isolator74LS14

+5VDC

DCX-MC302H

Ax1 Lim+
J3-9: Axis 1 Limit +

J3-10: Axis 1 Home & Limits Return

+5VDC
Power Supply

+
_

360

This limit circuit wll indicate that a limit is active if the switch is closed

Limit + switch
(normally open)

Bi-directional
Optical isolator74LS14

+5VDC

DCX-MC302H

Ax1 Lim+

Limit + switch
(normally closed)

J3-9: Axis 1 Limit +

J3-10: Axis 1 Home & Limits Return

+5VDC
Power Supply

+
_

360

This limit circuit wll indicate that a limit is active if:
1) The switch is open
2) Any component in the circuit fails (power supply,
 bi-directional opto isolator, broken wire, etc...

This is not the default configuration of the DCX, issue the
MC_LIMIT_INVERT parameter of the MCSetLimits() function.

Bi-directional
Optical isolator74LS14

+5VDC

DCX-MC302H

Ax1 Lim+

Limit + switch
(normally open)

J3-9: Axis 1 Limit +

J3-10: Axis 1 Home & Limits Return

+5VDC
Power Supply

360

This limit circuit wll indicate that a limit is active if the switch is closed

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

179

DCX-MC302H Open Collector Driver Wiring Examples

DCX-MC302H

J3 - 12 Axis 1 Amplifier Enable

Servo Amplifier
VCC

Amp En

4N29
Optical isolator

4.7K
+5VDC

SN75453B
Axis 1 Amp En.

Connectors, Jumpers, and Schematics

Precision MicroControl

180

DCX-MC320 Brushless Servo Commutation Control Module

i

The description of how to set up and operate the MC320 Commutation
module was not available when this document was printed.

Please refer to Application Note AN1004 - Brushless AC Motor
Commutation. This PDF document is available on PMC’s MotionCD
(Other Docs and Tools/AppNOTES/Explore AppNOTES/AN1004.PDF)
or from PMC’s web site (www.pmccorp.com)

SIGNAL DESCRIPTIONS:

Analog Command Return
connection point: MC320-H J3 - pin 1 & 3, MC320-R J3 - pin 1
signal type: ground
notes:
explanation: Provides the signal ground for the modules Analog Command Signal output. This return
path is common to the ground plane of the DCX motherboard, but is connected in such a way as to
reduce digital noise. Typical servo amplifiers will have a connection for the analog command (or Ref-)
return where this signal should be connected.

Phase U Torque Command Output
connection point: MC320-H J3 - pin 2, MC320-R J3 - pin 2
signal type: +/- 10V analog, 16 bit
notes: connects to servo amplifier motor command input (Ref+)
explanation: This module output signal is used to control the torque of the U winding of a brushless
servo. The maximum drive current of this signal is +/-10 milliamps.

Phase V Torque Command Output
connection point: MC320-H J3 - pin 4, MC320-R J3 - pin 3
signal type: +/- 10V analog, 16 bit
notes: connects to servo amplifier motor command input (Ref+)
explanation: This module output signal is used to control the torque of the V winding of a brushless
servo. The maximum drive current of this signal is +/-10 milliamps.

Phase W Torque Command Output
connection point: MC320-H not supported, MC320-R J3 - pin 1J3 - pin 4
signal type: +/- 10V analog, 16 bit
notes: connects to servo amplifier motor command input (Ref+)
explanation: This module output signal is used to control the torque of the W winding of a brushless
servo. The maximum drive current of this signal is +/-10 milliamps.

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

181

Coarse Home Input
connection point: MC320-H J3 - pin 9, MC320-R J3 - pin 9
signal type: Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes: MC320-H Supply/Return J3 pin 10

MC320-R Supply/Return J3 pin 18
explanation: This module input is used to determine the proper zero position of the servo. In servo
systems that use rotary encoders with index outputs, an index pulse is generated once per rotation of
the encoder. While this signal occurs at a very repeatable angular position on the encoder, it may
occur many times within the motion range of the servo. In these cases, a Coarse Home switch
connected to this module input can be used to qualify which index pulse is the true zero position of the
servo. By setting this switch to be activated near the end of travel of the servo, and using DCX motion
commands to position the servo within this region prior to searching for the index pulse, a unique zero
position for the servo can be determined. The input device is a bi-directional optical isolator. The
allowable voltage range for this signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher
voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Amplifier Fault Input
connection point: MC320-H J3 - pin 7, MC320-R J3 – pin 10
signal type: Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes: MC320-H Supply/Return J3 pin 8
 MC320-R Supply/Return J3 pin 13
explanation: - This module input is designed to be connected to the servo amplifiers Fault or Error
output signal. The state of this signal will appear as a status bit in the servo's status word. The
EnableAmpFault member of the MCMotion structure will enable the module to shut off the axis if the
Amplifier Fault input is active. No further motion will occur until the fail signal is deactivated and the
axis is enabled. The input device is a bi-directional optical isolator. The allowable voltage range for
this signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external
resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Amplifier Enable Output
connection point: MC320-H J3 - pin 5, MC320-R J3 – pin 11
signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation: - This module output signal should be connected to the enable input of the servo
amplifier. When the DCX is turned on or reset, this signal will immediately go to its' inactive high level.
When the MCEnableAxis() is called, this signal will go to its' active low level. Anytime there is an
error on the respective servo axis, including exceeding the following error, a limit switch input
activated or the Amplifier Fault input activated, the Amplifier Enable signal will be deactivated.
This signal can also be deactivated by the Motor oFf command.

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them.

Connectors, Jumpers, and Schematics

Precision MicroControl

182

Limit Positive and Limit Negative Inputs
connection point: Limit Positive: MC320-H J3 - pin 17, MC320-R J3 - pin 14
 Limit Negative: MC320-H J3 - pin 19, MC320-R J3 - pin 15
signal type: Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes: MC320-H Limit Positive Supply/Return J3 pin 18
 MC320-H Limit Negative Supply/Return J3 pin 20
 MC320-R Limits Supply/Return J3 pin 18
explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it
reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving
in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of
the direction it is moving if either limit switch is activated. There are three modes of stopping
(decelerate to a stop, stop immediately, turn off the axis) that can be configured by the MCSetLimits(
). The limit switch inputs can be enabled and disabled by MCSetLimits(). See the description of
Motion Limits in the Motion Control chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is 2.5
VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external resistor (12 volt
I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Primary Encoder Inputs (Phase A+, Phase -, Phase B+, Phase B-, Index+, Index-)
connection point: see pin-out table
signal type: TTL or Differential driver output (-7V to +7V)
notes: The encoder power jumper JP3 sets the ‘mid point’ for the differential receiver
explanation: These input signals should be connected to an incremental quadrature encoder for
supplying position feedback information for the servo controller. The plus (+) and minus (-) signs refer
to the two sides of differential inputs. By setting jumpers JP1 and JP2 appropriately, the plus signal
inputs can be configured for single ended inputs.

Hall Effect Sensor A, B, and C Inputs
connection point: see pin-out table
signal type: TTL or Differential driver output (-7V to +7V)
notes:
explanation: - These input signals can be used for interfacing to Hall effect sensors.

Encoder Power Output
connection point: MC300-H J3 - pin 16, MC300-R J3 - pin 17
signal type: +5 VDC PC power supply output or +12 VDC PC power supply output
notes: The encoder power jumper JP3 selects +5VDC or +12VDC (250 mA max.)
explanation: This module pin provides a convenient supply voltage connection for the encoders. The
jumper JP3 located on the module can be used to connect either the +5 or +12 volt supply to the
Encoder Power pin. The setting of this jumper also selects the threshold voltage for the module's
single ended phase and index encoder inputs. When JP1 is set for +5 volts, the threshold will be 2.5
volts, for +12 volts, the threshold will be +6 volts. The threshold voltage determines at what voltage
the input changes between on and off.

SUPPLY CONNECTIONS (+5, GROUND) - These module pins provide access to the DCX supply
voltages.

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

183

DCX-MC320-H High Density connector signal map

Module #1 Module #2 Module #3 Module #4 Module #5 Module #6 Module #7 Module #8 J3 Pin # Description
 J1 – 1 J2 – 1 J3 - 19 J4 - 19 J3 – 1 J4 – 1 J1 – 19 J2 - 19 1 Ground
 J1 – 35 J2 - 35 J3 – 53 J4 – 53 J3 – 35 J4 – 35 J1 – 53 J2 – 53 2 Phase U Torque Command: output
 J1 – 2 J2 – 2 J3 – 20 J4 – 20 J3 – 2 J4 – 2 J1 – 20 J2 – 20 3 Ground
 J1 – 36 J2 - 36 J3 – 54 J4 – 54 J3 – 36 J4 – 36 J1 – 54 J2 – 54 4 Phase V Torque Command: output
 J1 – 3 J2 – 3 J3 - 21 J4 - 21 J3 – 3 J4 – 3 J1 – 21 J2 - 21 5 Amplifier Enable: output
 J1 – 37 J2 - 37 J3 – 55 J4 – 55 J3 – 37 J4 – 37 J1 – 55 J2 – 55 6 Amplifier Enable return
 J1 – 4 J2 – 4 J3 – 22 J4 – 22 J3 – 4 J4 – 4 J1 – 22 J2 – 22 7 Amplifier Fault: input
 J1 – 38 J2 - 38 J3 – 56 J4 – 56 J3 – 38 J4 – 38 J1 – 56 J2 – 56 8 Amplifier Fault return
 J1 – 5 J2 – 5 J3 – 23 J4 – 23 J3 – 5 J4 – 5 J1 – 23 J2 – 23 9 Coarse Home: input
 J1 – 39 J2 - 39 J3 – 57 J4 – 57 J3 – 39 J4 – 39 J1 – 57 J2 – 57 10 Coarse Home return
 J1 – 6 J2 – 6 J3 – 24 J4 – 24 J3 – 6 J4 – 6 J1 – 24 J2 – 24 Ground
 J1 – 40 J2 - 40 J3 – 58 J4 – 58 J3 – 40 J4 – 40 J1 – 58 J2 – 58 11 Reserved
 J1 – 7 J2 – 7 J3 – 25 J4 – 25 J3 – 7 J4 – 7 J1 – 25 J2 – 25 12 Reserved
 J1 – 41 J2 - 41 J3 – 59 J4 – 59 J3 – 41 J4 – 41 J1 – 59 J2 – 59 Ground
 J1 – 8 J2 – 8 J3 – 26 J4 – 26 J3 – 8 J4 – 8 J1 – 26 J2 – 26 Ground
 J1 – 42 J2 - 42 J3 – 60 J4 – 60 J3 – 42 J4 – 42 J1 – 60 J2 – 60 13 Hall sensor A+ / Aux. Encoder Phase A+
 J1 – 9 J2 – 9 J3 – 27 J4 – 27 J3 – 9 J4 – 9 J1 – 27 J2 – 27 14 Hall sensor B+ / Aux. Encoder Phase B+
 J1 – 43 J2 - 43 J3 – 61 J4 – 61 J3 – 43 J4 – 43 J1 – 61 J2 – 61 Ground
 J1 – 10 J2 - 10 J3 – 28 J4 – 28 J3 – 10 J4 – 10 J1 – 28 J2 – 28 Ground
 J1 – 44 J2 - 44 J3 – 62 J4 – 62 J3 – 44 J4 – 44 J1 – 62 J2 – 62 15 Hall Sensor C+
 J1 – 11 J2 - 11 J3 - 29 J4 - 29 J3 – 11 J4 – 11 J1 – 29 J2 - 29 16 Encoder Power: output (max. load 250 mA)
 J1 – 45 J2 - 45 J3 – 63 J4 – 63 J3 – 45 J4 – 45 J1 – 63 J2 – 63 Ground
 J1 – 12 J2 - 12 J3 – 30 J4 – 30 J3 – 12 J4 – 12 J1 – 30 J2 – 30 17 Limit Positive: input
 J1 – 46 J2 - 46 J3 – 64 J4 – 64 J3 – 46 J4 – 46 J1 – 64 J2 – 64 18 Limit Positive return
 J1 – 13 J2 - 13 J3 – 31 J4 – 31 J3 – 13 J4 – 13 J1 – 31 J2 – 31 19 Limit Negative: input
 J1 – 47 J2 - 47 J3 – 65 J4 – 65 J3 – 47 J4 – 47 J1 – 65 J2 – 65 20 Limit Negative return
 J1 – 14 J2 - 14 J3 – 32 J4 – 32 J3 – 14 J4 – 14 J1 – 32 J2 – 32 21 Primary Encoder Phase A+: input *
 J1 – 48 J2 - 48 J3 – 66 J4 – 66 J3 – 48 J4 – 48 J1 – 66 J2 – 66 22 Primary Encoder Phase A-: input
 J1 – 15 J2 - 15 J3 – 33 J4 – 33 J3 – 15 J4 – 15 J1 – 33 J2 – 33 23 Primary Encoder Phase B+: input*
 J1 – 49 J2 - 49 J3 – 67 J4 – 67 J3 – 49 J4 – 49 J1 – 67 J2 – 67 24 Primary Encoder Phase B-: input
 J1 – 16 J2 - 16 J3 – 34 J4 – 34 J3 – 16 J4 – 16 J1 – 34 J2 – 34 25 Primary Encoder Index +:input
 J1 – 50 J2 - 50 J3 – 68 J4 – 68 J3 – 50 J4 – 50 J1 – 68 J2 – 68 26 Primary Encoder Index-: input
 J1 – 17 J2 – 17 J3 – 17 J4 – 17 Ground
 J1 – 51 J2 - 51 J3 – 51 J4 – 51 Ground
 J1 – 18 J2 – 18 J3 – 18 J4 – 18 Ground
 J1 – 52 J3 – 52 J3 – 52 J4 – 52 Ground

For a more complete signal description please refer to the previous five pages
Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

Connectors, Jumpers, and Schematics

Precision MicroControl

184

DCX-MC320-R Module connector

J3 connector pin-out (Motor command, encoders, and axis I/O)
Pin # Description
1 Torque Command Return (Ground)
2 Phase U Torque Command: output (10ma max.)
3 Phase V Torque Command: output (10ma max.)
4 Phase W Torque Command: output (10ma max.)
5 Ground
6 +5 VDC (250 mA max.)
7 Reserved
8 Primary Encoder Index +:input (active high)
9 Coarse Home: input (optically isolated, 12V – 24V, 15ma min.)
10 Amplifier Fault: input (optically isolated, 12V – 24V, 15ma min.)
11 Amplifier Enable: output (open collector, 100ma max., 30V max.)
12 Amp Enable & Direction return
13 Amp Fault opto isolator supply/return
14 Limit Positive: input (optically isolated, 12V – 24V, 15ma min.)
15 Limit Negative: input (optically isolated, 12V – 24V, 15ma min.)
16 Primary Encoder Phase A+: input *
17 Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (250 mA max.)
18 Coarse Home & Limits opto isolator supply/return
19 Primary Encoder Phase A-: input
20 Primary Encoder Phase B-: input
21 Hall sensor A+
22 Hall sensor B+
23 Primary Encoder Phase B+: input*
24 Hall Sensor C+
25 Primary Encoder Index-: input (active low)
26 Ground

 * Use A+ and B+ for single-ended Encoder inputs

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

185

DCX-MC320 Module Configuration Jumpers - configuration in bold type
denotes default factory shipping configuration

JP1 – Encoder type (single ended or differential)
Pins Description
1 to 2 to 3 Single ended encoder, A, B, Z (three pin jumper provided)
open Differential encoder, A+, A-, B+, B-

JP2 – Encoder Index Active Level Select)
Pins Description
1 to 2 Single ended Index, Z+ (Active high)
2 to 3 Single ended Index, Z- (active low)
open Differential Index, Z+ and Z-

JP3 – Encoder Power Select (+5VDC or +12 VDC)
Pins Description
1 to 2 +5 VDC encoder supply on J3 pin 16/17 (250 mA max.)
2 to 3 +12 VDC encoder supply on J3 pin 16/17 (250 mA max.)

DCX-MC320 Module Layout

1

226

25

JP1

JP2

1

1

1

JP3 DCX-MC320

Connectors, Jumpers, and Schematics

Precision MicroControl

186

DCX-MC320H Axis I/O Interface Schematic

74LS14
+5VDC

Limit+
4.7K

360 Limit Positive

Limit + Return

J3 - 17

J3 - 18

Motorola MOC256

74LS14
+5VDC

Limit-
4.7K

360 Limit Negative

Limit - Return

J3 - 19

J3 - 20

Motorola MOC256

74LS14
+5VDC

Crs Home
4.7K

360 Coarse Home

Coarse Home Return

J3 - 9

J3 - 10

Motorola MOC256

74LS14
+5VDC

Amp Fault
4.7K

360 Amplifier Fault

Amplifier Fault Return

J3 - 7

J3 - 8

Motorola MOC256

Motorola MOC223

J3 - 5

J3 - 6

4.7K

+5VDC

SN75453B

+5VDC

360

Amp Enable

Amplifier Enable Return

Amplifier Enable

Enc A+ J3 - 21

J3 - 22

J3 - 23

J3 - 24

J3 - 25

J3 - 26

75175
Enc A-

Enc B+

Enc B-

Enc Z+

Enc Z-

Enc A

Enc B

Enc Z

AD7849

J3 - 2Phase U

AD7849

J3 - 4Phase V

Hall A+ / Enc 2 A+
J3 - 21

J3 - 23

J3 - 25

75175

Hall B+ / Enc. 2 B+

Hall C+ / Enc. 2 Z+

Enc A

Enc B

Enc Z

Single Ended Mid Point

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

187

DCX-MC320H Optically Isolated Inputs Wiring Examples

Bi-directional
Optical isolator74LS14

+5VDC

DCX-MC320H

Limit+
J3-17: Limit +

J3-18: Limit + Return

+5VDC
Power Supply

+
_

360

This limit circuit wll indicate that a limit is active if the switch is closed

Limit + switch
(normally open)

Bi-directional
Optical isolator74LS14

+5VDC

DCX-MC320H

Limit+

Limit + switch
(normally closed)

J3-17: Limit +

J3-18: Limits - Return

+5VDC
Power Supply

+
_

360

This limit circuit wll indicate that a limit is active if:
1) The switch is open
2) Any component in the circuit fails (power supply,
 bi-directional opto isolator, broken wire, etc...

This is not the default configuration of the DCX, issue the
MC_LIMIT_INVERT parameter of the MCSetLimits() function.

Bi-directional
Optical isolator74LS14

+5VDC

DCX-MC320H

Limit+

Limit + switch
(normally open)

J3-17: Limit +

J3-18: Limit + Return

+5VDC
Power Supply

360

This limit circuit wll indicate that a limit is active if the switch is closed

Connectors, Jumpers, and Schematics

Precision MicroControl

188

DCX-MC320H Open Collector Driver Wiring Examples

DCX-MC320H

Motorola
MOC223

J3 - 5

J3 - 6

4.7K
+5VDC

SN75453B

+5VDC

360

Amp En.

Amplifier Enable Return

Amplifier Enable

Servo Amplifier
VCC

Amp En

4N29
Optical isolator

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

189

DCX-MC360 Stepper Motor Control Module
SIGNAL DESCRIPTIONS:

Pulse and Direction Outputs
connection point: Direction / CW: MC360-H J3 - pin 3, MC360-R J3 - pin 3
 Pulse / CCW: MC360-H J3 - pin 1, MC360-R J3 - pin 4
signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation: In the control of a stepper motor, the two primary control signals are Pulse and
Direction (or CW Pulse and CCW Pulse). These signals are connected to the external stepper motor
driver that supplies current to the motor windings. In order for the stepper module to move the motor
one step, a pulse is generated on one of these signals.

Both of these signals are driven by high current open collector drivers and are suitable for direct
connection to optically isolated inputs commonly found on stepper motor drivers. Because of the
characteristics of open collector drivers, no voltages will be present on these output signals unless
pull-up resistors are connected to them.

Pulse: The motor driver should advance the motor by one increment for each pulse. The motor may
advance a full step, a half step, or a micro step. This is determined by the mode of the stepper motor
driver. The Pulse signal is normally high, and is pulled low at the beginning of a step. It stays low for
one half the step period (50% duty cycle), and then goes back high. When it is time for the next step,
the signal will be pulled low again.

Direction: This signal indicates the direction the motor will move. When the stepper is incrementing
the current position (moving positive) this signal will remain high (pulled up). When the stepper is
decrementing the current position (moving negative) this signal will be pulled low.

The function MCSetModuleOutputMode() is used to change the operation of these signals to CW
and CCW Pulse. In this mode, pulses will be generated on the CW Pulse output when the current
position is increasing, and on the CCW Pulse output when the current position is decreasing.

Drive Enable Output
connection point: MC360-H J3 - pin 5, MC360-R J3 - pin 16
signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation: This output will be pulled low when an axis is enabled (MCEnableAxis()). It will remain
low until: the axis is disabled or an error condition exists (limits tripped).

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them.

Connectors, Jumpers, and Schematics

Precision MicroControl

190

Limit Positive and Limit Negative Inputs
connection point: Limit Positive: MC360-H J3 - pin 17, MC320-R J3 - pin 8
 Limit Negative: MC360-H J3 - pin 19, MC320-R J3 - pin 9
signal type: Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes: MC360-H Limit Positive Supply/Return J3 pin 18
 MC360-H Limit Negative Supply/Return J3 pin 20
 MC360-R Limits Supply/Return J3 pin 6
explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it
reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving
in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of
the direction it is moving if either limit switch is activated. There are three modes of stopping
(decelerate to a stop, stop immediately, turn off the axis) that can be configured by the MCSetLimits(
). The limit switch inputs can be enabled and disabled by MCSetLimits(). See the description of
Motion Limits in the Motion Control chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is 2.5
VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external resistor (12 volt
I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Home Input
connection point: MC360-H J3 - pin 9, MC360-R J3 - 13
signal type: Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes: MC360-H Home Supply/Return J3 pin 10
 MC360-R Home Supply/Return J3 pin 12
explanation: This input is used to set the zero position of a stepper motor. It is typically connected to
a sensor/switch that is activated at a fixed position in the motor’s range of motion. The input device is
a bi-directional optical isolator. The allowable voltage range for this signal is 2.5 VDC to 7.5 VDC. For
I/O systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W.
24 volt I/O = 4.3K, 5%, 1/4W).

Compare / Full/Half Step Output
connection point: MC360-H J3 - pin 13, MC360-R J3 - 14
signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation:
Compare – Used to indicate when a position compare event has occurred. See the description of
Position Compare in the Application Solutions chapter.

Full/Half Step –This signal is used if the stepper driver has a digital input to select between or
full/micro (or full/half) step modes. The default condition of this signal is to be inactive (pulled high).
Setting the MC_STEP_FULL parameter of the MCMotion structure will cause the signal to be pulled
low.

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them.

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

191

Full/Half Current Output
connection point: MC360-H J3 - pin 14, MC360-R J3 - 15
signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation: This signal is used if the stepper driver has a digital input for current control. The default
condition of this signal is to be inactive (pulled high). Setting the MC_CURRENT_FULL parameter of
the MCMotion structure will cause the signal to be pulled low.

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them.

Drive Fault Input
connection point: MC360-H J3 - pin 7, MC360-R J3 - 7
signal type: Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes: MC360-H Drive Fault Supply/Return J3 pin 8
 MC360-R Drive Fault Supply/Return J3 pin 5
explanation: This module input is designed to be connected to the Fault or Error output signal of a
stepper driver. The state of this signal will appear as a status bit in the servo's status word. The
EnableAmpFault member of the MCMotion structure will enable the module to shut off the axis if the
Drive Fault input is active. No further motion will occur until the fault signal is deactivated and the axis
has been enabled. The input device is a bi-directional optical isolator. The allowable voltage range for
this signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external
resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Null Input
connection point: MC360-H J3 - pin 12, MC360-R J3 - 17
signal type: Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes: MC360-H Null VHDCI connector pin 41 (no connect on module J3 connector)
 MC360-R Null Supply/Return J3 pin 5
explanation: In order to switch from micro stepping to full stepping without the motor shifting
position, the motor should be micro stepped to the "Null" Position. This is the position where the
output of the amplifier will not change if it is switched between full and micro stepping. If the stepper
amplifier provides an output signal that indicates when the motor is at a null position, the DCX can
monitor this signal on the Null Position input of the module.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is 2.5
VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external resistor (12 volt
I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Connectors, Jumpers, and Schematics

Precision MicroControl

192

Position Capture +/- / Auxiliary Encoder Index +/-
connection point: Position Cap. + / Aux. Enc. Index+: MC360-H J3 - pin 25, MC320-R J3 - pin 22
 Position Cap. - / Aux. Enc. Index-: MC360-H J3 - pin 26, MC320-R J3 - pin 23
signal type: TTL or Differential driver output (-7V to +7V)
notes:
explanation: -
Position Capture +/- – Used to initiate the capture of position data. See the description of Position
Capture in the Application Solutions chapter.

Auxiliary Encoder Index +/- - This input signal can be used to define the home position of an
auxiliary encoder.

Auxiliary Encoder Coarse Home Input
connection point: MC360-H J3 - pin 15, MC360-R J3 - 11
signal type: Bi-directional optical isolator, 15ma min. 12V – 24V range
notes: MC360-H Coarse Home VHDCI connector pin 10 (no connect on module J3

connector)
 MC360-R Null Supply/Return J3 pin 6
explanation: This input is used to ‘home’ the auxiliary encoder by qualifying the index mark. It is
typically connected to a switch that is activated at a fixed position in the motors motion range. See the
description of Homing an Axis in the Motion Control chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is
12VDC to 24VDC. The minimum current required to turn on the optical isolator is 10ma. Bi-directional
optical isolator wiring examples are provided later in this section.

Auxiliary Encoder Inputs (Phase A, Phase B, Index+, Index-)
connection point: see pin-out table
signal type: TTL or Differential driver output (-7V to +7V)
notes:
explanation: - These input signals can be used for an auxiliary encoder.

Auxiliary Encoder Power Output
connection point: MC300-H J3 - pin 16, MC300-R J3 - pin 10
signal type: +5 VDC PC power supply output or +12 VDC PC power supply output
notes: The encoder power jumper JP3 selects +5VDC or +12VDC (250 mA max.)
explanation: This module pin provides a convenient supply voltage connection for the auxiliary
encoder. The jumper JP3 located on the module can be used to connect either the +5 or +12 volt
supply to the Encoder Power pin. The setting of this jumper also selects the threshold voltage for the
module's single ended phase and index encoder inputs. When JP1 is set for +5 volts, the threshold
will be 2.5 volts, for +12 volts, the threshold will be +6 volts. The threshold voltage determines at what
voltage the input changes between on and off.

SUPPLY CONNECTIONS (+5, +12, -12, GROUND) - These module pins provide access
to the DCX supply voltages.

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

193

DCX-MC360-H High Density connector signal map

Module #1 Module #2 Module #3 Module #4 Module #5 Module #6 Module #7 Module #8 J3 Pin # Description
 J1 – 1 J2 – 1 J3 - 19 J4 - 19 J3 – 1 J4 – 1 J1 – 19 J2 - 19 1 Step or CCW Pulse: output
 J1 – 35 J2 - 35 J3 – 53 J4 – 53 J3 – 35 J4 – 35 J1 – 53 J2 – 53 2 Ground
 J1 – 2 J2 – 2 J3 – 20 J4 – 20 J3 – 2 J4 – 2 J1 – 20 J2 – 20 3 Direction or CW Pulse: output
 J1 – 36 J2 - 36 J3 – 54 J4 – 54 J3 – 36 J4 – 36 J1 – 54 J2 – 54 4 Ground
 J1 – 3 J2 – 3 J3 - 21 J4 - 21 J3 – 3 J4 – 3 J1 – 21 J2 - 21 5 Driver Enable: output
 J1 – 37 J2 - 37 J3 – 55 J4 – 55 J3 – 37 J4 – 37 J1 – 55 J2 – 55 6 Ground
 J1 – 4 J2 – 4 J3 – 22 J4 – 22 J3 – 4 J4 – 4 J1 – 22 J2 – 22 7 Drive Fault: input
 J1 – 38 J2 - 38 J3 – 56 J4 – 56 J3 – 38 J4 – 38 J1 – 56 J2 – 56 8 Drive Fault return
 J1 – 5 J2 – 5 J3 – 23 J4 – 23 J3 – 5 J4 – 5 J1 – 23 J2 – 23 9 Home: input
 J1 – 39 J2 - 39 J3 – 57 J4 – 57 J3 – 39 J4 – 39 J1 – 57 J2 – 57 10 Home return
 J1 – 6 J2 – 6 J3 – 24 J4 – 24 J3 – 6 J4 – 6 J1 – 24 J2 – 24 Ground
 J1 – 40 J2 - 40 J3 – 58 J4 – 58 J3 – 40 J4 – 40 J1 – 58 J2 – 58 11 Reserved
 J1 – 7 J2 – 7 J3 – 25 J4 – 25 J3 – 7 J4 – 7 J1 – 25 J2 – 25 12 Null Position: input
 J1 – 41 J2 - 41 J3 – 59 J4 – 59 J3 – 41 J4 – 41 J1 – 59 J2 – 59 Ground
 J1 – 8 J2 – 8 J3 – 26 J4 – 26 J3 – 8 J4 – 8 J1 – 26 J2 – 26 Ground
 J1 – 42 J2 - 42 J3 – 60 J4 – 60 J3 – 42 J4 – 42 J1 – 60 J2 – 60 13 Compare / Full/Half Step: output
 J1 – 9 J2 – 9 J3 – 27 J4 – 27 J3 – 9 J4 – 9 J1 – 27 J2 – 27 14 Full/Half Current: output
 J1 – 43 J2 - 43 J3 – 61 J4 – 61 J3 – 43 J4 – 43 J1 – 61 J2 – 61 Ground
 J1 – 10 J2 - 10 J3 – 28 J4 – 28 J3 – 10 J4 – 10 J1 – 28 J2 – 28 Ground
 J1 – 44 J2 - 44 J3 – 62 J4 – 62 J3 – 44 J4 – 44 J1 – 62 J2 – 62 15 Aux. Encoder Coarse Home: input
 J1 – 11 J2 - 11 J3 - 29 J4 - 29 J3 – 11 J4 – 11 J1 – 29 J2 - 29 16 Aux. Enc. Power: output (max. load 250 mA)
 J1 – 45 J2 - 45 J3 – 63 J4 – 63 J3 – 45 J4 – 45 J1 – 63 J2 – 63 Ground
 J1 – 12 J2 - 12 J3 – 30 J4 – 30 J3 – 12 J4 – 12 J1 – 30 J2 – 30 17 Limit Positive: input
 J1 – 46 J2 - 46 J3 – 64 J4 – 64 J3 – 46 J4 – 46 J1 – 64 J2 – 64 18 Limit Positive return
 J1 – 13 J2 - 13 J3 – 31 J4 – 31 J3 – 13 J4 – 13 J1 – 31 J2 – 31 19 Limit Negative: input
 J1 – 47 J2 - 47 J3 – 65 J4 – 65 J3 – 47 J4 – 47 J1 – 65 J2 – 65 20 Limit Negative return
 J1 – 14 J2 - 14 J3 – 32 J4 – 32 J3 – 14 J4 – 14 J1 – 32 J2 – 32 21 Auxiliary Encoder Phase A+: input
 J1 – 48 J2 - 48 J3 – 66 J4 – 66 J3 – 48 J4 – 48 J1 – 66 J2 – 66 22 Auxiliary Encoder Phase A-: input
 J1 – 15 J2 - 15 J3 – 33 J4 – 33 J3 – 15 J4 – 15 J1 – 33 J2 – 33 23 Auxiliary Encoder Phase B+: input
 J1 – 49 J2 - 49 J3 – 67 J4 – 67 J3 – 49 J4 – 49 J1 – 67 J2 – 67 24 Auxiliary Encoder Phase B-: input
 J1 – 16 J2 - 16 J3 – 34 J4 – 34 J3 – 16 J4 – 16 J1 – 34 J2 – 34 25 Position Capture + / Aux. Encoder Index+: input
 J1 – 50 J2 - 50 J3 – 68 J4 – 68 J3 – 50 J4 – 50 J1 – 68 J2 – 68 26 Position Capture - / Aux. Encoder Index-: input
 J1 – 17 J2 – 17 J3 – 17 J4 – 17 Ground
 J1 – 51 J2 - 51 J3 – 51 J4 – 51 Ground
 J1 – 18 J2 – 18 J3 – 18 J4 – 18 Ground
 J1 – 52 J3 – 52 J3 – 52 J4 – 52 Ground

For a more complete signal description please refer to the previous five pages
Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

Connectors, Jumpers, and Schematics

Precision MicroControl

194

DCX-MC360-R Module connector

J3 connector pin-out (Motor command, encoders, and axis I/O)
Pin # Description
1 Ground
2 +5 VDC (max. load 250 mA)
3 Direction or CW Pulse: output (open collector, 100ma max., 30V max.) *
4 Pulse or CCW Pulse: output (open collector, 100ma max., 30V max.) *
5 FNRET: Drive Fault and Null opto isolator supply/return
6 LIMCRSRET: Coarse Home & Limits opto isolator supply/return
7 Drive Fault: input (opto isolator, 15ma min. current, 30V max.)
8 Limit Positive: input (opto isolator, 15ma min. current, 30V max.)
9 Limit Negative: input (opto isolator, 15ma min. current, 30V max.)
10 Auxiliary Encoder Power: output (+5VDC or +12VDC, see jumper JP3) (max. load 250 mA)
11 Aux. Encoder Coarse Home: input (opto isolator, 15ma min. current, 30V max.)
12 HOMRET: Home opto isolator supply/return
13 Home: input (opto isolator, 15ma min. current, 30V max.)
14 Compare / Full/Half Step: output (open collector, 100ma max., 30V max.)
15 Full/Half Current: output (open collector, 100ma max., 30V max.)
16 Driver Enable: output (open collector, 100ma max., 30V max.)
17 Null Position: input (opto isolator, 15ma min. current, 30V max.)
18 Auxiliary Encoder Phase A+: input
19 Auxiliary Encoder Phase A-: input
20 Auxiliary Encoder Phase B+: input
21 Auxiliary Encoder Phase B-: input
22 Position Capture + / Auxiliary Encoder Index+: input (active high)
23 Position Capture - / Auxiliary Encoder Index-: input (active low)
24 +12 VDC (max. load 250 mA)
25 -12 VDC (max. load 50 mA)
26 Ground

* These signals default to DIRECTION and PULSE, use MCSetModuleOutputMode() to change to
 CW and CCW PULSE.

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

195

DCX-MC360 Module Configuration Jumpers - configuration in bold type
denotes default factory shipping configuration

JP1 – Encoder type (single ended or differential)
Pins Description
1 to 2 to 3 Single ended encoder, A, B, Z (three pin jumper provided)
open Differential encoder, A+, A-, B+, B-

JP2 – Auxiliary Encoder Index Active Level Select
Pins Description
1 to 2 Single ended Index, Z+ (Active high)
2 to 3 Single ended Index, Z- (active low)
open Differential Index, Z+ and Z-

JP3 – Auxiliary Encoder Power Select (+5VDC or +12 VDC)
Pins Description
1 to 2 +5 VDC encoder supply on J3 pin 16/10 (max. load 250 mA)
2 to 3 +12 VDC encoder supply on J3 pin 16/10 (max. load 250 mA)

DCX-MC360 Module Layout

1

226

25

DCX-MC360

JP1

JP2

JP3
1

1

1

Connectors, Jumpers, and Schematics

Precision MicroControl

196

DCX-MC360H Axis I/O Interface Schematic

74LS14
+5VDC

Limit+
4.7K

360 Limit Positive

Limits + Return

J3 - 17

J3 - 18

Motorola MOC256

74LS14
+5VDC

Limit-
4.7K

360 Limit Negative

Limits - Return

J3 - 19

J3 - 20

Motorola MOC256

74LS14
+5VDC

Step Home
4.7K

360 Home

Home Return

J3 - 9

J3 - 10

Motorola MOC256

74LS14
+5VDC

DrvFlt
4.7K

360 Drive Fault

Amplifier Fault Return

J3 - 7

J3 - 8

Motorola MOC256

74LS14
+5VDC

Crs Home
4.7K

360 Enc Coarse Home J3 - 15
Motorola MOC256

74LS14
+5VDC

NullPos
4.7K

360 Null J3 - 12
Motorola MOC256

J3 - 1

4.7K

+5VDC

SN75453B
Step Pulse

Step

J3 - 3

4.7K

+5VDC

SN75453B
Dirn

Direction

J3 - 5

4.7K

+5VDC

SN75453B
DrvEna

Drive Enable

J3 - 14

4.7K

+5VDC

SN75453B
FullCurr

Full Current

J3 - 13

4.7K

+5VDC

SN75453B
HalfStp

Compare / Half Step

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

197

DCX-MC360H Optically Isolated Inputs Wiring Examples

Bi-directional
Optical isolator74LS14

+5VDC

DCX-MC360H

Limit+
J3-17: Limit +

J3-18: Limit + Return

+5VDC
Power Supply

+
_

360

This limit circuit wll indicate that a limit is active if the switch is closed

Limit + switch
(normally open)

Bi-directional
Optical isolator74LS14

+5VDC

DCX-MC360H

Limit+

Limit + switch
(normally closed)

J3-17: Limit +

J3-18: Limit - Return

+5VDC
Power Supply

+
_

360

This limit circuit wll indicate that a limit is active if:
1) The switch is open
2) Any component in the circuit fails (power supply,
 bi-directional opto isolator, broken wire, etc...

This is not the default configuration of the DCX, issue the
MC_LIMIT_INVERT parameter of the MCSetLimits() function.

Bi-directional
Optical isolator74LS14

+5VDC

DCX-MC360H

Limit+

Limit + switch
(normally open)

J3-17: Limit +

J3-18: Limit + Return

+5VDC
Power Supply

360

This limit circuit wll indicate that a limit is active if the switch is closed

Connectors, Jumpers, and Schematics

Precision MicroControl

198

DCX-MC360H Open Collector Driver Wiring Examples

DCX-MC360H Stepper Driver

4.7K
+5VDC

SN75453B
Drive En.

J3 - 1

Drivev En

4N29
Optical isolator

VCC

Pulse

4N29
Optical isolator

VCC

Direction

4N29
Optical isolator

VCC

4.7K
+5VDC

SN75453B
Pulse

4.7K
+5VDC

SN75453B
Dir.

J3 - 5 Drive Enable

J3 - 1 Pulse

J3 - 3 Direction

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

199

DCX-MC362 Dual Axis Stepper Motor Control Module
SIGNAL DESCRIPTIONS:

Pulse and Direction Outputs
connection point: Axis 1 Direction/CW – J3 pin 12
 Axis 1 Pulse/CCW – J3 pin 11

Axis 2 Direction/CW – J3 pin 15
Axis 2 Pulse/CCW – J3 pin 16

signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation: In the control of a stepper motor, the two primary control signals are Pulse and
Direction (or CW Pulse and CCW Pulse). These signals are connected to the external stepper motor
driver that supplies current to the motor windings. In order for the stepper module to move the motor
one step, a pulse is generated on one of these signals.

Both of these signals are driven by high current open collector drivers and are suitable for direct
connection to optically isolated inputs commonly found on stepper motor drivers. Because of the
characteristics of open collector drivers, no voltages will be present on these output signals unless
pull-up resistors are connected to them.

Pulse: The motor driver should advance the motor by one increment for each pulse. The motor may
advance a full step, a half step, or a micro step. This is determined by the mode of the stepper motor
driver. The Pulse signal is normally high, and is pulled low at the beginning of a step. It stays low for
one half the step period (50% duty cycle), and then goes back high. When it is time for the next step,
the signal will be pulled low again.

Direction: This signal indicates the direction the motor will move. When the stepper is incrementing
the current position (moving positive) this signal will remain high (pulled up). When the stepper is
decrementing the current position (moving negative) this signal will be pulled low.

The function MCSetModuleOutputMode() is used to change the operation of these signals to CW
and CCW Pulse. In this mode, pulses will be generated on the CW Pulse output when the current
position is increasing, and on the CCW Pulse output when the current position is decreasing.

Drive Enable Output
connection point: Axis 1 - J3 pin 9
 Axis21 - J3 pin 17
signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation: This output will be pulled low when an axis is enabled (MCEnableAxis()). It will remain
low until: the axis is disabled or an error condition exists (limits tripped).

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them.

Connectors, Jumpers, and Schematics

Precision MicroControl

200

Limit Positive and Limit Negative Inputs
connection point: Axis 1 Limit Positive – J3 pin 3
 Axis 1 Limit Negative – J3 pin 5

Axis 2 Limit Positive – J3 pin 23
 Axis 2 Limit Negative – J3 pin 21
signal type: Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes: Axis 1 Limit + Supply/Return - J3 pin 4
 Axis 1 Limit - Supply/Return - J3 pin 6
 Axis 2 Limit + Supply/Return - J3 pin 24
 Axis 2 Limit - Supply/Return - J3 pin 22
explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it
reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving
in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of
the direction it is moving if either limit switch is activated. There are three modes of stopping
(decelerate to a stop, stop immediately, turn off the axis) that can be configured by the MCSetLimits(
). The limit switch inputs can be enabled and disabled by MCSetLimits(). See the description of
Motion Limits in the Motion Control chapter.

The input device is a bi-directional optical isolator. The allowable voltage range for this signal is 2.5
VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external resistor (12 volt
I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Home Input
connection point: Axis 1 - J3 - pin 1
 Axis 2 - J3 - pin 25
signal type: Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes: Axis 1 Supply/Return - J3 pin 2
 Axis 2 Supply/Return - J3 pin 26
explanation: This input is used to set the zero position of a stepper motor. It is typically connected to
a sensor/switch that is activated at a fixed position in the motor’s range of motion. The input device is
a bi-directional optical isolator. The allowable voltage range for this signal is 2.5 VDC to 7.5 VDC. For
I/O systems operating at higher voltage levels add an external resistor (12 volt I/O = 1.1K, 5%, 1/4W.
24 volt I/O = 4.3K, 5%, 1/4W).

Drive Fault Input
connection point: Axis 1 - J3 - pin 7
 Axis 2 - J3 - pin 19
signal type: Bi-directional optical isolator, 10ma min. 2.5V – 7.5V range
notes: Axis 1 Supply/Return - J3 pin 8
 Axis 2 Supply/Return - J3 pin 19
explanation: This module input is designed to be connected to the Fault or Error output signal of a
stepper driver. The state of this signal will appear as a status bit in the servo's status word. The
EnableAmpFault member of the MCMotion structure will enable the module to shut off the axis if the
Drive Fault input is active. No further motion will occur until the fault signal is deactivated and the axis
has been enabled. The input device is a bi-directional optical isolator. The allowable voltage range for
this signal is 2.5 VDC to 7.5 VDC. For I/O systems operating at higher voltage levels add an external
resistor (12 volt I/O = 1.1K, 5%, 1/4W. 24 volt I/O = 4.3K, 5%, 1/4W).

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

201

Full/Half Current Output
connection point: Axis 1 - J3 - pin 13
 Axis 2 - J3 - pin 14
signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: external pull-up required
explanation: This signal is used if the stepper driver has a digital input for current control. The default
condition of this signal is to be inactive (pulled high). Setting the MC_CURRENT_FULL parameter of
the MCMotion structure will cause the signal to be pulled low.

This signal is driven by a high current open collector driver and is suitable for direct connection to
optically isolated inputs commonly found on a servo amplifier. Because of the characteristics of open
collector drivers, no voltages will be present on these output signals unless pull-up resistors are
connected to them.

Connectors, Jumpers, and Schematics

Precision MicroControl

202

DCX-MC362-H High Density connector signal map

Module #1 Module #2 Module #3 Module #4 Module #5 Module #6 Module #7 Module #8 J3 Pin # Description
 J1 – 1 J2 – 1 J3 - 19 J4 - 19 J3 – 1 J4 – 1 J1 – 19 J2 - 19 1 Axis 1 Home: input (optically isolated)
 J1 – 35 J2 - 35 J3 – 53 J4 – 53 J3 – 35 J4 – 35 J1 – 53 J2 – 53 2 Axis 1 Home opto isolator supply/return
 J1 – 2 J2 – 2 J3 – 20 J4 – 20 J3 – 2 J4 – 2 J1 – 20 J2 – 20 3 Axis 1 Limit Positive: input (optically isolated)
 J1 – 36 J2 - 36 J3 – 54 J4 – 54 J3 – 36 J4 – 36 J1 – 54 J2 – 54 4 Axis 1 Limit Positive opto isolator supply/return
 J1 – 3 J2 – 3 J3 - 21 J4 - 21 J3 – 3 J4 – 3 J1 – 21 J2 - 21 5 Axis 1 Limit Negative: input (optically isolated)
 J1 – 37 J2 - 37 J3 – 55 J4 – 55 J3 – 37 J4 – 37 J1 – 55 J2 – 55 6 Axis 1 Limit Negative opto isolator supply/return
 J1 – 4 J2 – 4 J3 – 22 J4 – 22 J3 – 4 J4 – 4 J1 – 22 J2 – 22 7 Axis 1 Drive Fault: input (optically isolated)
 J1 – 38 J2 - 38 J3 – 56 J4 – 56 J3 – 38 J4 – 38 J1 – 56 J2 – 56 8 Axis 1 Drive Fault opto isolator supply/return
 J1 – 5 J2 – 5 J3 – 23 J4 – 23 J3 – 5 J4 – 5 J1 – 23 J2 – 23 9 Axis 1 Driver Enable: output (open collector)
 J1 – 39 J2 - 39 J3 – 57 J4 – 57 J3 – 39 J4 – 39 J1 – 57 J2 – 57 10 Ground
 J1 – 6 J2 – 6 J3 – 24 J4 – 24 J3 – 6 J4 – 6 J1 – 24 J2 – 24 Ground
 J1 – 40 J2 - 40 J3 – 58 J4 – 58 J3 – 40 J4 – 40 J1 – 58 J2 – 58 11 Axis 1 Pulse or CCW Pulse: output
 J1 – 7 J2 – 7 J3 – 25 J4 – 25 J3 – 7 J4 – 7 J1 – 25 J2 – 25 12 Axis 1 Direction or CW Pulse: output
 J1 – 41 J2 - 41 J3 – 59 J4 – 59 J3 – 41 J4 – 41 J1 – 59 J2 – 59 Ground
 J1 – 8 J2 – 8 J3 – 26 J4 – 26 J3 – 8 J4 – 8 J1 – 26 J2 – 26 Ground
 J1 – 42 J2 - 42 J3 – 60 J4 – 60 J3 – 42 J4 – 42 J1 – 60 J2 – 60 13 Axis 1 Full/Half Current: output
 J1 – 9 J2 – 9 J3 – 27 J4 – 27 J3 – 9 J4 – 9 J1 – 27 J2 – 27 14 Axis 2 Full/Half Current: output
 J1 – 43 J2 - 43 J3 – 61 J4 – 61 J3 – 43 J4 – 43 J1 – 61 J2 – 61 Ground
 J1 – 10 J2 - 10 J3 – 28 J4 – 28 J3 – 10 J4 – 10 J1 – 28 J2 – 28 Ground
 J1 – 44 J2 - 44 J3 – 62 J4 – 62 J3 – 44 J4 – 44 J1 – 62 J2 – 62 15 Axis 2 Direction or CW Pulse: output
 J1 – 11 J2 - 11 J3 - 29 J4 - 29 J3 – 11 J4 – 11 J1 – 29 J2 - 29 16 Axis 2 Pulse or CCW Pulse: output
 J1 – 45 J2 - 45 J3 – 63 J4 – 63 J3 – 45 J4 – 45 J1 – 63 J2 – 63 Ground
 J1 – 12 J2 - 12 J3 – 30 J4 – 30 J3 – 12 J4 – 12 J1 – 30 J2 – 30 17 Axis 2 Driver Enable: output
 J1 – 46 J2 - 46 J3 – 64 J4 – 64 J3 – 46 J4 – 46 J1 – 64 J2 – 64 18 Ground
 J1 – 13 J2 - 13 J3 – 31 J4 – 31 J3 – 13 J4 – 13 J1 – 31 J2 – 31 19 Axis 2 Drive Fault: input (optically isolated)
 J1 – 47 J2 - 47 J3 – 65 J4 – 65 J3 – 47 J4 – 47 J1 – 65 J2 – 65 20 Axis 2 Drive Fault opto isolator supply/return
 J1 – 14 J2 - 14 J3 – 32 J4 – 32 J3 – 14 J4 – 14 J1 – 32 J2 – 32 21 Axis 2 Limit Negative: input (optically isolated)
 J1 – 48 J2 - 48 J3 – 66 J4 – 66 J3 – 48 J4 – 48 J1 – 66 J2 – 66 22 Axis 2 Limit Negative opto isolator supply/return
 J1 – 15 J2 - 15 J3 – 33 J4 – 33 J3 – 15 J4 – 15 J1 – 33 J2 – 33 23 Axis 2 Limit Positive: input (optically isolated)
 J1 – 49 J2 - 49 J3 – 67 J4 – 67 J3 – 49 J4 – 49 J1 – 67 J2 – 67 24 Axis 2 Limit Positive opto isolator supply/return
 J1 – 16 J2 - 16 J3 – 34 J4 – 34 J3 – 16 J4 – 16 J1 – 34 J2 – 34 25 Axis 2 Home: input (optically isolated)
 J1 – 50 J2 - 50 J3 – 68 J4 – 68 J3 – 50 J4 – 50 J1 – 68 J2 – 68 26 Axis 2 Home opto isolator supply/return
 J1 – 17 J2 – 17 J3 – 17 J4 – 17 Ground
 J1 – 51 J2 - 51 J3 – 51 J4 – 51 Ground
 J1 – 18 J2 – 18 J3 – 18 J4 – 18 Ground
 J1 – 52 J3 – 52 J3 – 52 J4 – 52 Ground

For a more complete signal description please refer to the previous five pages
Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Man

DCX-MC362 Module Layout

ual 203

DCX-MC362

Connectors, Jumpers, and Schematics

Precision MicroControl

204

DCX-MC362H Axis I/O Interface Schematic

J3 - 11

4.7K

+5VDC

SN75453B
Axis 1 Pulse

Axis 1 Pulse

J3 - 12

4.7K

+5VDC

SN75453B
Axis 1 Dir

Axis 1 Dir

J3 - 9

4.7K

+5VDC

SN75453B
Axis 1 DrvEn

Axis 1 Drive Enable

J3 - 13

4.7K

+5VDC

SN75453B
Axis 1 FullCur

Axis 1 FullCur

J3 - 16

4.7K

+5VDC

SN75453B
Axis 2 Pulse

Axis 2 Pulse

J3 - 15

4.7K

+5VDC

SN75453B
Axis 2 Dir

Axis 2 Dir

J3 - 17

4.7K

+5VDC

SN75453B
Axis 2 DrvEn

Axis 2 Drive Enable

J3 - 14

4.7K

+5VDC

SN75453B
Axis 2 FullCur

Axis 2 FullCur

74LS14

+5VDC

Ax1 Home

4.7K 360 Ax1 Home

Ax1 Home Ret

J3 - 1
Motorola MOC256

J3 - 2
74LS14

+5VDC

Ax2 Home

4.7K 360 Ax2 Home

Ax2 Home Ret

J3 - 25
Motorola MOC256

J3 - 26

74LS14

+5VDC

Ax1 Limit+

4.7K 360 Ax1 Lim+

Ax1 Lim+ Ret

J3 - 3
Motorola MOC256

J3 - 4
74LS14

+5VDC

Ax2 Limit+

4.7K 360 Ax2 Lim+

Ax2 Lim+ Ret

J3 - 25
Motorola MOC256

J3 - 26

74LS14

+5VDC

Ax1 Limit-

4.7K 360 Ax1 Lim-

Ax1 Lim- Ret

J3 - 5
Motorola MOC256

J3 - 6
74LS14

+5VDC

Ax2 Limit-

4.7K 360 Ax2 Lim-

Ax2 Lim- Ret

J3 - 21
Motorola MOC256

J3 - 22

74LS14

+5VDC

Ax1 DrvFlt

4.7K 4.7K Ax1 Drv Flt

Ax1 DrvFlt Ret

J3 - 7
Motorola MOC256

J3 - 8
74LS14

+5VDC

Ax2 DrvFlt

4.7K 4.7K Ax2 Drv Flt

Ax2 Drv Flt Ret

J3 - 19
Motorola MOC256

J3 - 20

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

205

DCX-MC362H Optically Isolated Inputs Wiring Examples

Bi-directional
Optical isolator74LS14

+5VDC

DCX-MC362H

Ax1 Lim+
J3-3: Axis 1 Limit +

J3-4: Axis Limit + Return

+5VDC
Power Supply

+
_

360

This limit circuit wll indicate that a limit is active if the switch is closed

Limit + switch
(normally open)

Bi-directional
Optical isolator74LS14

+5VDC

DCX-MC362H

Ax1 Lim+

Limit + switch
(normally closed)

J3-3: Axis 1 Limit +

J3-4: Axis 1 Limit + Return

+5VDC
Power Supply

+
_

360

This limit circuit wll indicate that a limit is active if:
1) The switch is open
2) Any component in the circuit fails (power supply,
 bi-directional opto isolator, broken wire, etc...

This is not the default configuration of the DCX, issue the
MC_LIMIT_INVERT parameter of the MCSetLimits() function.

Bi-directional
Optical isolator74LS14

+5VDC

DCX-MC362H

Ax1 Lim+

Limit + switch
(normally open)

J3-3: Axis 1 Limit +

J3-4: Axis 1 Limit + Return

+5VDC
Power Supply

360

This limit circuit wll indicate that a limit is active if the switch is closed

Connectors, Jumpers, and Schematics

Precision MicroControl

206

DCX-MC362H Open Collector Driver Wiring Examples

DCX-MC362H Stepper Driver

4.7K
+5VDC

SN75453B
Ax1 Drive En.

J3 - 10

Drivev En

4N29
Optical isolator

VCC

Pulse

4N29
Optical isolator

VCC

Direction

4N29
Optical isolator

VCC

4.7K
+5VDC

SN75453B
Ax1 Pulse

4.7K
+5VDC

SN75453B
Ax1 Dir.

J3 - 9 Axis 1 Drive Enable

J3 - 11 Axis 1 Pulse

J3 - 12 Axis 1Direction

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

207

DCX-MC400 Digital I/O Module
DCX-MC400 Electrical Specifications
Parameter Min. Max Unit
Digital Input – High voltage 2.0 5.3 V
Digital Input – Low voltage -0.3 0.8 V
Digital Output – High voltage 2.4 V (current source 0.25ma)
Digital Output – Low voltage 0.4 V (current source 2.0ma)
Input leakage +/- 10.0 uA

Connectors, Jumpers, and Schematics

Precision MicroControl

208

DCX-MC400-H High Density connector signal map

Module #1 Module #2 Module #3 Module #4 Module #5 Module #6 Module #7 Module #8 J3 Pin # Description
 J1 – 1 J2 – 1 J3 - 19 J4 - 19 J3 – 1 J4 – 1 J1 – 19 J2 - 19 1 Ground
 J1 – 35 J2 - 35 J3 – 53 J4 – 53 J3 – 35 J4 – 35 J1 – 53 J2 – 53 2 Digital I/O channel #1
 J1 – 2 J2 – 2 J3 – 20 J4 – 20 J3 – 2 J4 – 2 J1 – 20 J2 – 20 3 Ground
 J1 – 36 J2 - 36 J3 – 54 J4 – 54 J3 – 36 J4 – 36 J1 – 54 J2 – 54 4 Digital I/O channel #2
 J1 – 3 J2 – 3 J3 - 21 J4 - 21 J3 – 3 J4 – 3 J1 – 21 J2 - 21 5 Ground
 J1 – 37 J2 - 37 J3 – 55 J4 – 55 J3 – 37 J4 – 37 J1 – 55 J2 – 55 6 Digital I/O channel #3
 J1 – 4 J2 – 4 J3 – 22 J4 – 22 J3 – 4 J4 – 4 J1 – 22 J2 – 22 7 Ground
 J1 – 38 J2 - 38 J3 – 56 J4 – 56 J3 – 38 J4 – 38 J1 – 56 J2 – 56 8 Digital I/O channel #4
 J1 – 5 J2 – 5 J3 – 23 J4 – 23 J3 – 5 J4 – 5 J1 – 23 J2 – 23 9 Ground
 J1 – 39 J2 - 39 J3 – 57 J4 – 57 J3 – 39 J4 – 39 J1 – 57 J2 – 57 10 Digital I/O channel #5
 J1 – 6 J2 – 6 J3 – 24 J4 – 24 J3 – 6 J4 – 6 J1 – 24 J2 – 24 Ground
 J1 – 40 J2 - 40 J3 – 58 J4 – 58 J3 – 40 J4 – 40 J1 – 58 J2 – 58 11 Digital I/O channel #6
 J1 – 7 J2 – 7 J3 – 25 J4 – 25 J3 – 7 J4 – 7 J1 – 25 J2 – 25 12 Digital I/O channel #7
 J1 – 41 J2 - 41 J3 – 59 J4 – 59 J3 – 41 J4 – 41 J1 – 59 J2 – 59 Ground
 J1 – 8 J2 – 8 J3 – 26 J4 – 26 J3 – 8 J4 – 8 J1 – 26 J2 – 26 Ground
 J1 – 42 J2 - 42 J3 – 60 J4 – 60 J3 – 42 J4 – 42 J1 – 60 J2 – 60 13 Digital I/O channel #8
 J1 – 9 J2 – 9 J3 – 27 J4 – 27 J3 – 9 J4 – 9 J1 – 27 J2 – 27 14 Digital I/O channel #9
 J1 – 43 J2 - 43 J3 – 61 J4 – 61 J3 – 43 J4 – 43 J1 – 61 J2 – 61 Ground
 J1 – 10 J2 - 10 J3 – 28 J4 – 28 J3 – 10 J4 – 10 J1 – 28 J2 – 28 Ground
 J1 – 44 J2 - 44 J3 – 62 J4 – 62 J3 – 44 J4 – 44 J1 – 62 J2 – 62 15 Digital I/O channel #10
 J1 – 11 J2 - 11 J3 - 29 J4 - 29 J3 – 11 J4 – 11 J1 – 29 J2 - 29 16 Digital I/O channel #11
 J1 – 45 J2 - 45 J3 – 63 J4 – 63 J3 – 45 J4 – 45 J1 – 63 J2 – 63 Ground
 J1 – 12 J2 - 12 J3 – 30 J4 – 30 J3 – 12 J4 – 12 J1 – 30 J2 – 30 17 Ground
 J1 – 46 J2 - 46 J3 – 64 J4 – 64 J3 – 46 J4 – 46 J1 – 64 J2 – 64 18 Digital I/O channel #12
 J1 – 13 J2 - 13 J3 – 31 J4 – 31 J3 – 13 J4 – 13 J1 – 31 J2 – 31 19 Ground
 J1 – 47 J2 - 47 J3 – 65 J4 – 65 J3 – 47 J4 – 47 J1 – 65 J2 – 65 20 Digital I/O channel #13
 J1 – 14 J2 - 14 J3 – 32 J4 – 32 J3 – 14 J4 – 14 J1 – 32 J2 – 32 21 Ground
 J1 – 48 J2 - 48 J3 – 66 J4 – 66 J3 – 48 J4 – 48 J1 – 66 J2 – 66 22 Digital I/O channel #14
 J1 – 15 J2 - 15 J3 – 33 J4 – 33 J3 – 15 J4 – 15 J1 – 33 J2 – 33 23 Ground
 J1 – 49 J2 - 49 J3 – 67 J4 – 67 J3 – 49 J4 – 49 J1 – 67 J2 – 67 24 Digital I/O channel #15
 J1 – 16 J2 - 16 J3 – 34 J4 – 34 J3 – 16 J4 – 16 J1 – 34 J2 – 34 25 Ground
 J1 – 50 J2 - 50 J3 – 68 J4 – 68 J3 – 50 J4 – 50 J1 – 68 J2 – 68 26 Digital I/O channel #16
 J1 – 17 J2 – 17 J3 – 17 J4 – 17 Ground
 J1 – 51 J2 - 51 J3 – 51 J4 – 51 Ground
 J1 – 18 J2 – 18 J3 – 18 J4 – 18 Ground
 J1 – 52 J3 – 52 J3 – 52 J4 – 52 Ground

For a more complete signal description please refer to the previous five pages
Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

209

DCX-MC400-R connector pin-out
Pin # Description
1 Digital I/O channel #1
2 Digital I/O channel #2
3 Digital I/O channel #3
4 Digital I/O channel #4
5 Digital I/O channel #5
6 Digital I/O channel #6
7 Digital I/O channel #7
8 Digital I/O channel #8
9 Digital I/O channel #9
10 Digital I/O channel #10
11 Digital I/O channel #11
12 Digital I/O channel #12
13 Digital I/O channel #13
14 Digital I/O channel #14
15 Digital I/O channel #15
16 Digital I/O channel #16
17 Reserved
18 Reserved
19 Reserved
20 +5 VDC
21 Ground
22 Reserved
23 Reserved
24 Reserved
25 Reserved
26 Ground

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

Connectors, Jumpers, and Schematics

Precision MicroControl

210

DCX-MC400 Module layout

1

226

25 1

226

25

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

211

DCX-MC500/510/520 Analog I/O Module

Connectors, Jumpers, and Schematics

Precision MicroControl

212

DCX-MC500-H/510-H/520-H High Density connector signal map

Module #1 Module #2 Module #3 Module #4 Module #5 Module #6 Module #7 Module #8 J3 Pin # Description
 J1 – 1 J2 – 1 J3 - 19 J4 - 19 J3 – 1 J4 – 1 J1 – 19 J2 - 19 1 Ground
 J1 – 35 J2 - 35 J3 – 53 J4 – 53 J3 – 35 J4 – 35 J1 – 53 J2 – 53 2 Channel 1 Output (-10 to +10 volts)
 J1 – 2 J2 – 2 J3 – 20 J4 – 20 J3 – 2 J4 – 2 J1 – 20 J2 – 20 3 Ground
 J1 – 36 J2 - 36 J3 – 54 J4 – 54 J3 – 36 J4 – 36 J1 – 54 J2 – 54 4 Channel 2 Output (-10 to +10 volts)
 J1 – 3 J2 – 3 J3 - 21 J4 - 21 J3 – 3 J4 – 3 J1 – 21 J2 - 21 5 Ground
 J1 – 37 J2 - 37 J3 – 55 J4 – 55 J3 – 37 J4 – 37 J1 – 55 J2 – 55 6 Channel 3 Output (-10 to +10 volts)
 J1 – 4 J2 – 4 J3 – 22 J4 – 22 J3 – 4 J4 – 4 J1 – 22 J2 – 22 7 Ground
 J1 – 38 J2 - 38 J3 – 56 J4 – 56 J3 – 38 J4 – 38 J1 – 56 J2 – 56 8 Channel 4 Output (-10 to +10 volts)
 J1 – 5 J2 – 5 J3 – 23 J4 – 23 J3 – 5 J4 – 5 J1 – 23 J2 – 23 9 Ground
 J1 – 39 J2 - 39 J3 – 57 J4 – 57 J3 – 39 J4 – 39 J1 – 57 J2 – 57 10 External A/D reference input (see jumper JP1)
 J1 – 6 J2 – 6 J3 – 24 J4 – 24 J3 – 6 J4 – 6 J1 – 24 J2 – 24 Ground
 J1 – 40 J2 - 40 J3 – 58 J4 – 58 J3 – 40 J4 – 40 J1 – 58 J2 – 58 11 Channel 1 Output (0 to +5 volts)
 J1 – 7 J2 – 7 J3 – 25 J4 – 25 J3 – 7 J4 – 7 J1 – 25 J2 – 25 12 Channel 2 Output (0 to +5 volts)
 J1 – 41 J2 - 41 J3 – 59 J4 – 59 J3 – 41 J4 – 41 J1 – 59 J2 – 59 Ground
 J1 – 8 J2 – 8 J3 – 26 J4 – 26 J3 – 8 J4 – 8 J1 – 26 J2 – 26 Ground
 J1 – 42 J2 - 42 J3 – 60 J4 – 60 J3 – 42 J4 – 42 J1 – 60 J2 – 60 13 Channel 3 Output (0 to +5 volts)
 J1 – 9 J2 – 9 J3 – 27 J4 – 27 J3 – 9 J4 – 9 J1 – 27 J2 – 27 14 Channel 4 Output (0 to +5 volts)
 J1 – 43 J2 - 43 J3 – 61 J4 – 61 J3 – 43 J4 – 43 J1 – 61 J2 – 61 Ground
 J1 – 10 J2 - 10 J3 – 28 J4 – 28 J3 – 10 J4 – 10 J1 – 28 J2 – 28 Ground
 J1 – 44 J2 - 44 J3 – 62 J4 – 62 J3 – 44 J4 – 44 J1 – 62 J2 – 62 15 +12 VDC
 J1 – 11 J2 - 11 J3 - 29 J4 - 29 J3 – 11 J4 – 11 J1 – 29 J2 - 29 16 -12 VDC
 J1 – 45 J2 - 45 J3 – 63 J4 – 63 J3 – 45 J4 – 45 J1 – 63 J2 – 63 Ground
 J1 – 12 J2 - 12 J3 – 30 J4 – 30 J3 – 12 J4 – 12 J1 – 30 J2 – 30 17 No connect
 J1 – 46 J2 - 46 J3 – 64 J4 – 64 J3 – 46 J4 – 46 J1 – 64 J2 – 64 18 No connect
 J1 – 13 J2 - 13 J3 – 31 J4 – 31 J3 – 13 J4 – 13 J1 – 31 J2 – 31 19 Ground
 J1 – 47 J2 - 47 J3 – 65 J4 – 65 J3 – 47 J4 – 47 J1 – 65 J2 – 65 20 Channel 1 Input (0 to +5 volts)
 J1 – 14 J2 - 14 J3 – 32 J4 – 32 J3 – 14 J4 – 14 J1 – 32 J2 – 32 21 Ground
 J1 – 48 J2 - 48 J3 – 66 J4 – 66 J3 – 48 J4 – 48 J1 – 66 J2 – 66 22 Channel 2 Input (0 to +5 volts)
 J1 – 15 J2 - 15 J3 – 33 J4 – 33 J3 – 15 J4 – 15 J1 – 33 J2 – 33 23 Ground
 J1 – 49 J2 - 49 J3 – 67 J4 – 67 J3 – 49 J4 – 49 J1 – 67 J2 – 67 24 Channel 3 Input (0 to +5 volts)
 J1 – 16 J2 - 16 J3 – 34 J4 – 34 J3 – 16 J4 – 16 J1 – 34 J2 – 34 25 Ground
 J1 – 50 J2 - 50 J3 – 68 J4 – 68 J3 – 50 J4 – 50 J1 – 68 J2 – 68 26 Channel 4 Input (0 to +5 volts)
 J1 – 17 J2 – 17 J3 – 17 J4 – 17 Ground
 J1 – 51 J2 - 51 J3 – 51 J4 – 51 Ground
 J1 – 18 J2 – 18 J3 – 18 J4 – 18 Ground
 J1 – 52 J3 – 52 J3 – 52 J4 – 52 Ground

For a more complete signal description please refer to the previous five pages
Mating cable connector components: Amp: 787801-1 (offset connector), 788362-1 (backshell, offset)

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

213

DCX-MC5X0-R connector pin-out
Pin # Description
1 Channel 1 Input (0 to +5 volts)
2 Channel 1 Output (-10 to +10 volts)
3 Channel 2 Input (0 to +5 volts)
4 Channel 2 Output (-10 to +10 volts)
5 Channel 3 Input (0 to +5 volts)
6 Channel 3 Output (-10 to +10 volts)
7 Channel 4 Input (0 to +5 volts)
8 Channel 4 Output (-10 to +10 volts)
9 Reserved
10 Channel 1 Output (0 to +5 volts)
11 Reserved
12 Channel 2 Output (0 to +5 volts)
13 Reserved
14 Channel 3 Output (0 to +5 volts)
15 Reserved
16 Channel 4 Output (0 to +5 volts)
17 Analog Ground
18 External A/D reference input (see jumper JP1)
19 +12 VDC
20 -12 VDC
21 No connect
22 No connect
23 +5 VDC
24 +5 VDC
25 Digital Ground
26 Digital Ground

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

Connectors, Jumpers, and Schematics

Precision MicroControl

214

DCX-MC500/510/520 Module Configuration Jumpers - configuration in bold
type denotes default factory shipping configuration

JP1 – A/D reference select (external reference or on board +5 VDC reference)
Pins Description
1 to 2 Use external reference (supplied by user on J3 pin 18)
2 to 3 Use the on board +5 VDC reference

DCX-MC500 Module layout

JP1

1

226

25

1
POT1

POT2

POT3

POT4
POT5
POT6

POT7

POT8

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

215

 DCX-BF022 Relay Rack Interface

J1 connector pin-out - The signals are arranged to interface the DCX-MC400 directly to an OPTO
22 relay rack.
Pin # Description
1 Digital I/O channel #1
2 Digital I/O channel #2
3 Digital I/O channel #3
4 Digital I/O channel #4
5 Digital I/O channel #5
6 Digital I/O channel #6
7 Digital I/O channel #7
8 Digital I/O channel #8
9 Digital I/O channel #9
10 Digital I/O channel #10
11 Digital I/O channel #11
12 Digital I/O channel #12
13 Digital I/O channel #13
14 Digital I/O channel #14
15 Digital I/O channel #15
16 Digital I/O channel #16
17 No connect
18 No connect
19 No connect
20 +5 VDC
21 Ground
22 No connect
23 No connect
24 No connect
25 No connect
26 Ground

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

Connectors, Jumpers, and Schematics

Precision MicroControl

216

J2 connector pin-out - The signals are arranged to interface the DCX-PCI300 General Purpose I/O
(connector J3) directly to an OPTO 22 relay rack.
Pin # Description
1 +5 VDC
2 No connect
3 Digital I/O channel #16
4 No connect
5 Digital I/O channel #15
6 Digital I/O channel #14
7 Digital I/O channel #13
8 Digital I/O channel #12
9 Digital I/O channel #11
10 Digital I/O channel #10
11 Digital I/O channel #9
12 Digital I/O channel #8
13 Digital I/O channel #7
14 Digital I/O channel #6
15 Digital I/O channel #5
16 Digital I/O channel #4
17 Digital I/O channel #3
18 Digital I/O channel #2
19 Digital I/O channel #1
20 No connect
21 No connect
22 No connect
23 No connect
24 Ground
25 No connect
26 Ground

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

217

DCX-BF022 Configuration Jumpers - configuration in bold type denotes
default factory shipping configuration

JP1 – JP16 Configure Digital channel as Input or Output
Pins Description
1 to 2 Configure channel as Output
2 to 3 Configure channel as an Input

JP17 – Select Relay Rack supply source
Pins Description
1 to 2 DCX provides +5 VDC Relay Rack supply
2 to 3 Relay Rack has separate +5 VDC supply

DCX-BF022 Interface layout

0.35"2.50"0.25" 0.0"

0.0"
0.10"

2.50"

0.75"

J1 TO DCX-MC400

J2 TO DCX-PC100

JP1
JP2
JP3
JP4
JP5
JP6
JP7
JP8
JP9

JP10
JP11
JP12
JP13
JP14
JP15
JP16

JP17

0.60"

2.90"

0.25"

0.25"

0.0"

Connectors, Jumpers, and Schematics

Precision MicroControl

218

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

219

DCX-BF3XX-H High Density Breakout Assembly
The DCX-BF3XX-H provides easy to use terminal strip contacts for –H DCX modules (MC300-H,
MC320-H, MC360-H, MC400-H, MC500-H).

DCX-BF3XX-H
REV. A
PMC CORP.

TS1
TO DCX-PCI300-H

TS2

 1
18

 2
19

 3
20

 4
21

 5
22

 6
23

 7
24

 8
25

 9
26

10
27

11
28

12
29

13
30

14
31

15
32

16
33

17
34

 1
18

 2
19

 3
20

 4
21

 5
22

 6
23

 7
24

 8
25

 9
26

10
27

11
28

12
29

13
30

14
31

15
32

16
33

17
34

DCX modules can be installed into any one of eight module locations on the DCX-PCI300-H
motherboard. The axis I/O signals travel through the inner layers of the DCX-PCI300-H to the high
density connectors (J1, J2, J3, and J4).The module, receptacle, and connector locations of a DCX-
PCI300-H are shown in the following graphic:

3

QED

#1#3#5#7

#8 #6 #4 #2

Axis I/O receptacles - J22, J24, J26, J28

Axis I/O receptacles - J23, J25, J27, J29

Connectors
J1 & J3

Connectors
J2 & J4

The diagram below details how the DCX-PCI300-H module locations 1 – 8 (receptacles J22 – J29)
map into the high density connectors J1 – J4.

VHDCI connectors as viewed from the back of the computer
(component side down)

J1 - Module locations 1 & 7J2 - Module locations 2 & 8

J3 - Module locations 5 & 3J4 - Module locations 6 & 4

Connectors, Jumpers, and Schematics

Precision MicroControl

220

Each DCX-BF3XX-H breakout assembly provides contact points for two module locations. The
following table details how DCX-PCI300-H motherboard module locations are associated with a DCX-
BF3XX-H terminal strip (TS1 or TS2)

DCX-PCI300-H
Module location

High Density
connector #

Interconnect cable

1 J1 P1
7 J1 P1
5 J3 P3
3 J3 P3
6 J4 P4
4 J4 P4
2 J2 P2
8 J2 P2

The following diagram details the typical interconnections for a four axis system, three servo’s (DCX-
MC300-H servo modules in locations 1, 2, & 7) and one stepper (DCX-MC360-H stepper module in
location 8). The modules could be installed sequentially into locations #1 - #4, but the system would
then require four cables and four DCX-BF3XX-H breakouts instead of two.

Servo
Amplifier

Servo Motor

Encoder

Axis #2

Limit &
Home

sensors

Stepper
Driver

Stepper Motor

Axis #4

Limit &
Home

sensors

Servo
Amplifier

Servo Motor

Encoder

Axis #3

Limit &
Home

sensors

Servo
Amplifier

Servo Motor

Encoder

Axis #1

Limit &
Home

sensors

DCX-BF3XX-H

TS1 TS2

DCX-BF3XX-H

TS1 TS2

P1 cable

P2 cable

3

QE
D

#1#3#5#7

#8 #6 #4 #2

Axis #1Axis #3

Axis #2
Axis #4

Breakout #1

Breakout #2

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

221

DCX-BF3XX-H signals pinout (when using single axis or I/O modules)
The following table details the pinouts –H DCX modules.

BF3XX-H
TS1 or
TS2

MC300-H MC320-H MC360-H MC400-H MC500-H

1 Command return Ground Step / CCW Pulse Ground Ground
18 Command output Phase U Command Ground Digital I/O #1 Output 1 (-10 to

+10)
2 Com./Dir. output Ground Dir. / CW Pulse Ground Ground
19 Com./Dir. return Phase V Command Ground Digital I/O #2 Output 2 (-10 to

+10)
3 Amp. Enable output Amp. Enable output Driver En. output Ground Ground
20 Amp Enable return Amp. Enable return Ground Digital I/O #3 Output 3 (-10 to

+10)
4 Amp. Fault input Amp. Fault: input Drive Fault: input Ground Ground
21 Amp Fault sup./ret. Amp. Fault return Drive Fault return Digital I/O #4 Output 4 (-10 to

+10)
5 Coarse Home input Coarse Home input Home: input Ground Ground
22 Coarse Home ret. Coarse Home ret. Home return Digital I/O #5 External reference
6 Ground Ground Ground Ground Ground
23 Reserved Reserved Reserved Digital I/O #6 Output 1 (0 to +5)
7 Reserved Pos. Com. output Null Position: input Digital I/O #7 Output 2 (-10 to

+10)
24 Ground Ground Ground Ground Ground
8 Ground Ground Ground Ground Ground
25 Aux. Enc. A+ Hall A+/Aux Enc A+ Compare / Full/Half

Step: output
Digital I/O #8 Output 3 (0 to +5)

9 Aux. Enc. B Hall B+/Aux Enc B+ Full/Half Current:
output

Digital I/O #9 Output 4 (-10 to
+10)

26 Ground Ground Ground Ground Ground
10 Ground Ground Ground Ground Ground
27 Pos. Capture + /

Aux. Enc. Index+
Hall C+/ Pos Cap + Aux. En Crs Home Digital I/O #10 +12 VDC

11 Encoder Power Encoder Power Aux. Enc. Power Digital I/O #11 -12 VDC
28 Ground Ground Ground Ground Ground
12 Limit + input Limit + input Limit + input Ground
29 Limit + sup./return Limit + sup./return Limit + sup/return Digital I/O #12
13 Limit Negative input Limit Negative input Limit - input Ground Ground
30 Limit - supply/return Limit - supply/return Limit – sup/return Digital I/O #13 Input 1 (0 to +5)
14 Prim. Enc. A+ Prim. Enc. A+ Aux. Enc. A+ Ground Ground
31 Prim. Enc. A- Prim. Enc. A- Aux. Enc. A- Digital I/O #14 Input 2 (0 to +5
15 Prim. Enc. B+ Prim. Enc. B+ Aux. Enc. B+ Ground Ground
32 Prim. Enc. B- Prim. Enc. B- Aux. Enc. B- Digital I/O #15 Input 3 (0 to +5)
16 Prim. Enc. Index + Prim. Enc. Index + Pos. Cap. + /

Aux. Enc. Index +
Ground Ground

33 Prim. Enc. Index - Prim. Enc. Index - Pos. Cap. - /
Aux. Enc. Index-

Digital I/O #16 Input 4 (0 to +5)

17 Ground Ground Ground Ground Ground
34 Ground Ground Ground Ground Ground

Connectors, Jumpers, and Schematics

Example: DCX-BF3XX-H connections for a four axes system (single axis modules)
Here is an example of the typical connections for a four axes system (3 servo’s and one stepper). A
larger (more detailed) view of the interconnect drawing can be found earlier in this section.

Servo
Amplifier

Servo Motor

Encoder

Axis #2

Limit &
Home

sensors

Stepper
Driver

Stepper Motor

Axis #4

Limit &
Home

sensors

Servo
Amplifier

Servo Motor

Encoder

Axis #3

Limit &
Home

sensors

Servo
Amplifier

Servo Motor

Encoder

Axis #1

Limit &
Home

sensors

DCX-BF3XX-H

TS1 TS2

DCX-BF3XX-H

TS1 TS2

P1 cable

P2 cable

3

QE
D

#1#3#5#7

#8 #6 #4 #2

Axis #1Axis #3

Axis #2
Axis #4

Breakout #1

Breakout #2

BF3XX-H #1 – Contacts
for axis #1 (a MC300-H

installed in module
location #1)

TS1 Signal
1 Axis 1 – Analog ret
18 Axis 1 – Command
2 Axis 1 – Comp. / Dir
19 Axis 1 – Com/Dir ret
3 Axis 1 – Amp En
20 Axis 1 – Amp En. ret
4 Axis 1 – Amp Fault
21 Axis 1 – Amp Flt ret
5 Axis 1 – Coarse Hm
22 Axis 1 – Crs Hm ret
6 Ground
23
7
24 Ground
8 Ground
25
9
26 Ground
10 Ground
27 Axis 1 – Pos Cap
11 Axis 1 – Enc Pwr
28 Ground
12 Axis 1 – Limit +
29 Axis 1 – Limit + ret
13 Axis 1 – Limit -
30 Axis 1 – Limit – ret
14 Axis 1 – Encoder A+
31 Axis 1 – Encoder A+
15 Axis 1 – Encoder B+
32 Axis 1 – Encoder B-
16 Axis 1 – Index +
33 Axis 1 – Index -
17 Ground
34 Ground

222
BF3XX-H #1 – Contacts
for axis #3 (a MC300-H

installed in module
location #7)

TS2 Signal
1 Axis 3 – Analog ret
18 Axis 3 – Command
2 Axis 3 – Comp. / Dir
19 Axis 3 – Com/Dir ret
3 Axis 3 – Amp En
20 Axis 3 – Amp En. ret
4 Axis 3 – Amp Fault
21 Axis 3 – Amp Flt ret
5 Axis 3 – Coarse Hm
22 Axis 3 – Crs Hm ret
6 Ground
23
7
24 Ground
8 Ground
25
9
26 Ground
10 Ground
27 Axis 3 – Pos Cap
11 Axis 3 – Enc Pwr
28 Ground
12 Axis 3 – Limit +
29 Axis 3 – Limit + ret
13 Axis 3 – Limit -
30 Axis 3 – Limit – ret
14 Axis 3 – Encoder A+
31 Axis 3 – Encoder A+
15 Axis 3 – Encoder B+
32 Axis 3 – Encoder B-
16 Axis 3 – Index +
33 Axis 3 – Index -
17 Ground
34 Ground

BF3XX-H #2 – Contacts
for axis #2 (a MC300-H

installed in module
location #2)

TS1 Signal
1 Axis 2 – Analog ret
18 Axis 2 – Command
2 Axis 2 – Comp. / Dir
19 Axis 2 – Com/Dir ret
3 Axis 2 – Amp En
20 Axis 2 – Amp En. ret
4 Axis 2 – Amp Fault
21 Axis 2 – Amp Flt ret
5 Axis 2 – Coarse Hm
22 Axis 2 – Crs Hm ret
6 Ground
23
7
24 Ground
8 Ground
25
9
26 Ground
10 Ground
27 Axis 2 – Pos Cap
11 Axis 2 – Enc Pwr
28 Ground
12 Axis 2 – Limit +
29 Axis 2 – Limit + ret
13 Axis 2 – Limit -
30 Axis 2 – Limit – ret
14 Axis 2 – Encoder A+
31 Axis 2 – Encoder A+
15 Axis 2 – Encoder B+
32 Axis 2 – Encoder B-
16 Axis 2 – Index +
33 Axis 2 – Index -
17 Ground
34 Ground
P

BF3XX-H #2 – Contacts
for axis #4 (a MC360-H

installed in module
location #8)

TS2 Signal
1 Axis 4 – Step
18 Axis 4 – Ground
2 Axis 4 – Direction
19 Axis 4 – Ground
3 Axis 4 – Drive En
20 Axis 4 – Ground
4 Axis 4 – Drive Fault
21 Axis 4 – Ground
5 Axis 4 – Home
22 Axis 4 – Home ret
6 Ground
23
7
24 Ground
8 Ground
25
9 Axis 4 – Full/Half cur
26 Ground
10 Ground
27
11
28 Ground
12 Axis 4 – Limit +
29 Axis 4 – Limit + ret
13 Axis 4 – Limit -
30 Axis 4 – Limit – ret
14
31
15
32
16
33
17 Ground
34 Ground

recision MicroControl

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

223

DCX-BF3XX-H signals pinout (when using dual axis modules)
The following table details the pinouts of –H Dual Axis DCX modules.

BF3XX-H
TS1 or
TS2

MC302-H MC362-H

1 Axis 1 Encoder A+ Axis 1 Home
18 Axis 1 Encoder A- Axis 1 Home sup/return
2 Axis 1 Encoder B+ Axis 1 Limit +
19 Axis 1 Encoder B- Axis 1 Limit + sup/return
3 Axis 1 Encoder Index + Axis 1 Limit -
20 Axis 1 Encoder Index - Axis 1 Limit - sup/return
4 Axis 1 Coarse Home Axis 1 Drive Fault
21 Axis 1 Encoder Power Axis 1 Fault sup/return
5 Axis 1 Limit + Axis 1 Drive Enable
22 Axis 1 inputs sup./return Ground
6 Ground Ground
23 Axis 1 Limit - Axis 1 Pulse / CCW
7 Axis 1 Amp. Enable Axis 1 Dir. / CW
24 Ground Ground
8 Ground Ground
25 Axis 1 Analog Command Axis 1 Full Current
9 Axis 2 Analog Command Axis 2 Full Current
26 Ground Ground
10 Ground Ground
27 Axis 2 Amp. Enable Axis 2 Dir. / CW
11 Axis 2 Limit - Axis 2 Pulse / CCW
28 Ground Ground
12 Axis 2 Limit + Axis 2 Drive Enable
29 Axis 2 inputs sup./return Ground
13 Axis 2 Coarse Home Axis 2 Drive Fault
30 Axis 2 Encoder Power Axis 2 Fault sup/return
14 Axis 2 Encoder A+ Axis 2 Limit -
31 Axis 2 Encoder A- Axis 2 Limit - sup/return
15 Axis 2 Encoder B+ Axis 2 Limit +
32 Axis 2 Encoder B- Axis 2 Limit + sup/return
16 Axis 2 Encoder Index + Axis 2 Home
33 Axis 2 Encoder Index - Axis 2 Home sup/return
17 Ground Ground
34 Ground Ground

Connectors, Jumpers, and Schematics

Example: DCX-BF3XX-H connections for a four axes system (dual axis modules)
Here is an example of the typical connections for a four axes system (2 servo’s and 2 steppers) using
dual axis modules. The DCX-MC302 (dual axis servo) is installed in module location #1 and the DCX-
MC362 (dual axis stepper) is installed in module location #7.

Servo
Amplifier

Servo Motor

Encoder

Axis #2

Limit &
Home

sensors

Stepper
Driver

Stepper Motor

Axis #4

Limit &
Home

sensors

Servo
Amplifier

Servo Motor

Encoder

Axis #3

Limit &
Home

sensors

Servo
Amplifier

Servo Motor

Encoder

Axis #1

Limit &
Home

sensors

P1 cable

3

QE
D

#1#3#5#7

#8 #6 #4 #2

Axes 1 & 2
(servo's)

Axes 3 & 4
(steppers)

BF3XXH
Breakout

DCX-BF3XX-H

TS1 TS2

T
1
1
2
1
3
2
4
2
5
2
6
2
7
2
8
2

T
9
2
1
2
1
2
1
2
1
3
1
3
1
3
1
3
1

B

T
1
18
2
19
3
20
4
21
5
22
6
23
7
24
8

B

T
9
26
10
27
11
28
12
29
13
30
14
31
15
32
16
33
17

Axis #1 (module #1)

BF3XX-H TS1 contacts
1-8 & 18–25.

S1 Signal
 Axis 1 Encoder A+
8 Axis 1 Encoder A-
 Axis 1 Encoder B+
9 Axis 1 Encoder B-
 Axis 1 Index +
0 Axis 1 Index -
 Axis 1 Coarse Home
1 Axis 1 Encoder Pwr
 Axis 1 Limit +
2 Axis 1 inputs return
 Ground
3 Axis 1 Limit -
 Axis 1 Amp. Enable
4 Ground
 Ground
5 Axis 1 Command

224

3 34
Axis #2 (module #1)
BF3XX-H TS1 contacts

9-17 & 26-34.

S2 Signal
 Axis 2 Command
6 Ground
0 Ground
7 Axis 2 Amp. Enable
1 Axis 2 Limit -
8 Ground
2 Axis 2 Limit +
9 Axis 2 inputs return
3 Axis 2 Coarse Home
0 Axis 2 Encoder Pwr
4 Axis 2 Encoder A+
1 Axis 2 Encoder A-
5 Axis 2 Encoder B+
2 Axis 2 Encoder B-
6 Axis 2 Index +
3 Axis 2 Index -
7 Ground
4 Ground
Axis #3 (module 2)
F3XX-H TS2 contacts

1-8 & 18-25.

S1 Signal
Axis 3 Encoder A+

 Axis 3 Encoder A-
Axis 3 Encoder B+

 Axis 3 Encoder B-
Axis 3 Index +

 Axis 3 Index -
Axis 3 Coarse Home

 Axis 3 Encoder Pwr
Axis 3 Limit +

 Axis 3 inputs return
Ground

 Axis 3 Limit -
Axis 3 Amp. Enable

 Ground
Ground
Axis 3 Command
Pre
Axis #4 (module 2)
F3XX-H TS2 contacts

9-17 & 26-34.

S2 Signal
Axis 2 Full Current

 Ground
 Ground
 Axis 2 Dir. / CW
 Axis 2 Pulse / CCW
 Ground
 Axis 2 Drive Enable
 Ground
 Axis 2 Drive Fault
 Axis 2 Fault return
 Axis 2 Limit -
 Axis 2 Limit - return
 Axis 2 Limit +
 Axis 2 Limit + return
 Axis 2 Home
 Axis 2 Home return
 Ground
 Ground

cision MicroControl

Connectors, Jumpers, and Schematics

DC

DCX-BF300-R Servo Module Breakout Assembly

DCX-BF300
REV. A
PMC CORP.

J1

R
ETU

R
N

LIM
 N

EG
LIM

 PO
S

R
ETU

R
N

C
O

AR
SE

FAU
LT

R
ETU

R
N

D
IR

'N

R
ETU

R
N

EN
ABLE

SH
IELD

SH
IELD

R
ETU

R
N

C
O

M
M

AN
D

SH
LD

G
N

D
P

W
R

Z-Z+B-B+A-A+ SH
LD

G
N

D
-12
+12
+5P

W
R

ZBA

TO MC300

PRIMARY ENCODER AUXILIARY ENCODERTS1

TS2 TS3

DCX-BF300-R to DCX-MC300-R Connections:

Terminal strip TS1
Pin Description
1 Crs Home & Limits return
2 Limit -
3 Limit +
4 Crs Home & Limits return
5 Coarse Home
6 Amp Fault supply/return
7 Amplifier Fault
8 Amp Enable/Dir. return
9 Amplifier Enable
10 Direction
11 Shield
12 Analog Ground
13 Analog Command output
14 Shield
X-PCI300 User’s Manual
Terminal strip TS2
Pin Description
1 Prim. Encoder Phase A+
2 Prim. Encoder Phase A-
3 Prim. Encoder Phase B+
4 Prim. Encoder Phase B-
5 Prim. Encoder Index+
6 Prim. Encoder Index-
7 Encoder Power
8 Ground
9 Shield
Terminal strip TS3
Pin Description
1 Aux. Encoder Phase A+
2 Aux. Encoder Phase B+
3 Aux. Encoder Index Z+
4 Encoder Power
5 +5 VDC
6 +12 VDC
7 -12 VDC
8 Ground
9 Shield
225

Connectors, Jumpers, and Schematics

22

DCX-BF300-R to DCX-MC300 Connections (continued):

Connector J1: From MC300
Pin Description
1 Analog Ground
2 Analog Command output
3 +12 VDC
4 -12 VDC
5 Ground
6 +5 VDC
7 Direction
8 Primary Encoder Index +
9 Coarse Home
10 Amplifier Fault
11 Amplifier Enable
12 Amp Enable/Dir. return
13 Amp Fault supply/return
14 Limit +
15 Limit -
16 Prim. Encoder Phase A+
17 Encoder Power
18 Crs Home & Limits return
19 Prim. Encoder Phase A-
20 Prim. Encoder Phase B-
21 Aux. Encoder Phase A
22 Aux. Encoder Phase B
23 Prim. Encoder Phase B+
24 Aux. Encoder Index+
25 Prim. Encoder Index-
26 Ground

Precision MicroControl 6

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

227

DCX-BF300
D 70.330.A

PRECISION MICROCONTROL CORP.

AGND
Analog Command
+12 VDC
-12 VDC
DCX Ground
+5 VDC
Direction
Encoder 1 Index+
Coarse Home
Amplifier Fault
Amplifier Enable
Amp Enable & Dir Return
Amplifier Fault Return
Limit Positive
Limit Negative
Encoder 1 Phase A+
Encoder Power
Coarse Home & Limits Return
Encoder 1 Phase A-
Encoder 1 Phase B-
Encoder 2 Phase A
Encoder 2 Phase B
Encoder 1 Phase B+
Encoder 2 Index
Encoder 1 Index-
DCX Ground

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

J1
1
2
3
4
5
6
7
8
9
10
11
12
13
14

INPRET
LIMNEG
LIMPOS
INPRET

COARSE
AMPERET

AMPFLT
AMPERET

AMPENA
DIRN

SHIELDS
AGND
ASIG

SHIELD

TS1

1
2
3
4
5
6
7
8
9

Encoder 1 Phase A+
Encoder 1 Phase A-
Encoder 1 Phase B+
Encoder 1 Phase B-
Encoder 1 Index Z+
Encoder 1 Index Z-

Encoder Power

Shield

TS2
1
2
3
4
5
6
7
8
9

Encoder 2 Phase A
Encoder 2 Phase B

Encoder 2 Index
Encoder Power

+5 VDC
+12 VDC
-12 VDC

Shield

TS3

Connectors, Jumpers, and Schematics

22

DCX-BF320-R Servo Module Breakout Assembly

DCX-BF320
REV. A
PMC CORP.

J1

R
ETU

R
N

LIM
 N

EG
LIM

 PO
S

R
ETU

R
N

C
O

AR
SE

FAU
LT

R
ETU

R
N

D
IR

'N

R
ETU

R
N

EN
ABLE

SH
IELD

SH
IELD

R
ETU

R
N

Phase U

SH
LD

G
N

D
P

W
R

Z-Z+B-B+A-A+ SH
LD

G
N

D
Phase W
Phase V
+5P

W
R

H
all #3

H
all #2

H
all #1

TO MC320

PRIMARY ENCODER TS1

TS2 TS3

DCX-BF320-R to DCX-MC320-R Connections:

Terminal strip TS1
Pin Description
1 Crs Home & Limits return
2 Limit -
3 Limit +
4 Crs Home & Limits return
5 Coarse Home
6 Amp Fault supply/return
7 Amplifier Fault
8 Amp Enable/Dir. return
9 Amplifier Enable
10 Phase W
11 Phase V
12 Phase U
13 Analog Ground
14 Shield
8
Terminal strip TS2
Pin Description
1 Prim. Encoder Phase A+
2 Prim. Encoder Phase A-
3 Prim. Encoder Phase B+
4 Prim. Encoder Phase B-
5 Prim. Encoder Index+
6 Prim. Encoder Index-
7 Encoder Power
8 Ground
9 Shield
Terminal strip TS3
Pin Description
1 Hall Sensor A+
2 Hall Sensor B+
3 Hall Sensor C+
4 Encoder Power
5 +5 VDC
6 +12 VDC
7 -12 VDC
8 Ground
9 Shield

Precision MicroControl

Connectors, Jumpers, and Schematics

DC

DCX-BF320-R to DCX-MC320 Connections (continued):

Connector J1: From MC300
Pin Description
1 Analog Ground
2 Phase U
3 Phase V
4 Phase W
5 Ground
6 +5 VDC
7 Compare
8 Primary Encoder Index +
9 Coarse Home
10 Amplifier Fault
11 Amplifier Enable
12 Amp Enable/Dir. return
13 Amp Fault supply/return
14 Limit +
15 Limit -
16 Prim. Encoder Phase A+
17 Encoder Power
18 Crs Home & Limits return
19 Prim. Encoder Phase A-
20 Prim. Encoder Phase B-
21 Hall Sensor A+
22 Hall Sensor B+
23 Prim. Encoder Phase B+
24 Hall Sensor C+
25 Prim. Encoder Index-
26 Ground
X-PCI300 User’s Manual 229

Connectors, Jumpers, and Schematics

Precision MicroControl

230

DCX-BF320
D 70.400.A

PRECISION MICROCONTROL CORP.

AGND
Phase U
Phase V
Phase W
DCX Ground
+5 VDC
Compare
Encoder 1 Index+
Coarse Home
Amplifier Fault
Amplifier Enable
Amp Enable & Dir Return
Amplifier Fault Return
Limit Positive
Limit Negative
Encoder 1 Phase A+
Encoder Power
Coarse Home & Limits Return
Encoder 1 Phase A-
Encoder 1 Phase B-
Hall Sensor A+
Hall Sensor B+
Encoder 1 Phase B+
Hall Sensor C+
Encoder 1 Index-
DCX Ground

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

J1
1
2
3
4
5
6
7
8
9
10
11
12
13
14

INPRET
LIMNEG
LIMPOS
INPRET

COARSE
AMPERET

AMPFLT
AMPERET

AMPENA
Phase W
Phase V
Phase U

AGnd
SHIELD

TS1

1
2
3
4
5
6
7
8
9

Encoder 1 Phase A+
Encoder 1 Phase A-

Encoder 1 Phase B+
Encoder 1 Phase B-
Encoder 1 Index Z+
Encoder 1 Index Z-

Encoder Power

Shield

TS2
1
2
3
4
5
6
7
8
9

Hall Sensor A+
Hall Sensor B+
Hall Sensor C+
Encoder Power

+5 VDC
+12 VDC
-12 VDC

Shield

TS3

Connectors, Jumpers, and Schematics

DC

DCX-BF360-R Stepper Module Breakout Assembly

DCX-BF360
REV. A
PMC CORP.

J1

R
ETU

R
N

LIM
 N

EG
LIM

 PO
S

C
O

AR
SE

R
ETU

R
N

G
R

O
U

N
D

H
O

M
E

1/2 STEP

+5 VD
C

1/2 C
U

R

EN
ABLE

SH
IELD

D
IR

/C
C

W
STEP/C

W

SH
LD

G
N

D
P

W
R

Z-Z+B-B+A-A+ SH
LD

G
N

D
-12
+12
+5N

U
LL

FAU
LT

R
ETU

R
N

TO MC360

AUXILIARY ENCODER TS1

TS2 TS3

DCX-BF360-R to DCX-MC360-R Connections:

Terminal strip TS1
Pin Description
1 Crs Home & Limits return
2 Limit -
3 Limit +
4 Aux Encoder Crs Home
5 Home return
6 Home
7 Ground
8 +5 VDC
9 Full/Half Current
10 Full/Half Step
11 Drive Enable
12 Direction
13 Step
14 Shield
X-PCI300 User’s Manual
Terminal strip TS2
Pin Description
1 Aux. Encoder Phase A+
2 Aux. Encoder Phase A-
3 Aux. Encoder Phase B+
4 Aux. Encoder Phase B-
5 Aux. Encoder Index+
6 Aux. Encoder Index-
7 Encoder Power
8 Ground
9 Shield
Terminal strip TS3
Pin Description
1 FNRET
2 Driver Fault
3 Null
4
5 +5 VDC
6 +12 VDC
7 -12 VDC
8 Ground
9 Shield
231

Connectors, Jumpers, and Schematics

23

DCX-BF300-R to DCX-MC360 Connections (continued):

Connector J1: From MC360
Pin Description
1 Ground
2 +5 VDC
3 Direction
4 Pulse / CCW Pulse
5 FNRET
6 LIMCRSRET
7 Drive Fault
8 Limit Positive
9 Limit Negative
10 Auxiliary Encoder Power
11 Aux. Enc Coarse Home
12 HOMRET
13 Home
14 Full/Half Step
15 Full/Half Current
16 Driver Enable
17 Null Position
18 Aux Encoder Phase A+
19 Aux Encoder Phase A-
20 Aux Encoder Phase B+
21 Aux Encoder Phase B-
22 Auxiliary Encoder Index+
23 Auxiliary Encoder Index-
24 +12 VDC
25 -12 VDC
26 Ground

Precision MicroControl 2

Connectors, Jumpers, and Schematics

DCX-PCI300 User’s Manual

233

DCX-BF360
D 70.340.A

PRECISION MICROCONTROL CORP.

DCX GND
+5 VDC
DIRN
STEP
FNRET
LIMCRSRET
Driver Fault
Limit Positive
Limit Negative
Encoder Power
Encoder Coarse Home
Home Return
Home
Half Step
Full Current
Driver Enable
Null
Encoder 1 Phase A+
Encoder 1 Phase A+
Encoder 1 Phase B+
Encoder 1 Phase B-
Encoder 1 Index+
Encoder 1 Index-

-12 VDC
DCX Ground

+12 VDC

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

J1
1
2
3
4
5
6
7
8
9
10
11
12
13
14

LIMCRSRET
Limit Negative
Limit Positive

Encoder Coarse Home
Home Return

Home
DCX Gnd

+5 VDC
Full Current

Half Step
Driver Enable

DIRN
STEP

SHIELD

TS1

1
2
3
4
5
6
7
8
9

Encoder 1 Phase A+
Encoder 1 Phase A-
Encoder 1 Phase B+
Encoder 1 Phase B-
Encoder 1 Index Z+
Encoder 1 Index Z-

Encoder Power

Shield

TS2
1
2
3
4
5
6
7
8
9

FNRET
Driver Fault

Null

+5 VDC
+12 VDC
-12 VDC

Shield

TS3

Troubleshooting

Precision MicroControl

234

Chapter Contents

• DCX System Troubleshooting

• Communications Troubleshooting

• Troubleshooting – Tuning a Servo Motor

• Troubleshooting - Servo Motion chart #1

• Troubleshooting - Servo Motion chart #2

• Troubleshooting - Servo Motion chart #3

• Troubleshooting – Stepper Motion chart #1

• Troubleshooting – Limits and Home

DCX-PCI300 User’s Manual

235

Troubleshooting

On the following pages you will find troubleshooting flow charts to assist the with diagnosis of motion
control system failures.

The steps described in these flow charts will direct the user to PMC programs (Motion Integrator,
Motor Mover, CWdemo, etc...) and utilities (Servo Tuning, WinControl) that are used to diagnose and
resolve system operation.

Chapter

10

Troubleshooting

Precision MicroControl

236

DCX System Troubleshooting

Are the
Servo motors working

 as expected?

Go to the
Communications

Troubleshooting flow
chart

Is the DCX controller
communicating with the

PC?
No

Go to the Servo
Motor

Troubleshooting flow
charts

Yes

No

Contact PMC technical
support.

General
purpose I/O (digital I/O and/

or analog I/O) working
 as expected?

No

Go to the General
Purpose I/O

Troubleshooting flow
charts

Is the DCX control system
operating as expected?

Yes

No

Go to the
Miscellaneous

operation
Troubleshooting flow

charts

Are the
Stepper motors working

 as expected?

Yes

No

Go to the Stepper
Motor

Troubleshooting flow
charts

Axis I/O (Limits,
Home, Index, Amp Enable,

Amp Fault) working as
expected?

Yes

No

Go to the Limits and
Home

Troubleshooting flow
charts

Yes

Troubleshooting

DCX-PCI300 User’s Manual

237

Communications Troubleshooting

After Windows
has loaded are the 2 Green

LED's (Power & Run) on
and the Yellow LED

(Watchdog) off?

Communication with the
DCX controller is funtional.

If problem persists contact
PMC technical support.

Controller is not responding to
application programs

(MCAPI code 1 or code 7)

Yes

No

Launch the
Motor Mover program

(Start\Programs\Motion Control\
MotionIntegrator\Motor Mover).

Is an error message
returned?

Yes

Yes

Verify installation
of MCAPI rev 3.01 or

higher. Go to Control Panel\
Motion Control\Properties\

Info Tab

Turn off PC
power , remove all DCX

modules from DCX-PCI300.
Turn on 'PC' power. Are the

2 Green LED's on and
 Yellow LED off?

Contact PMC technical
support.

No
Yes

No

Use Motor
 Mover to move the

motors.Does Motor Mover
open and run as

expected?

Yes

No

Yes

Contact PMC technical
support.

The DCX-PCI300 requires
MCAPI rev. 3.01 or higher.

Install MCAPI from
MotionCD or PMC web

site.

No

Troubleshooting

Precision MicroControl

238

Is the
axis within 5% of

 the target?

Yes

Increase the Proportional
gain and/or Integral gain

Does the
motor stop near the

target?

Yes

No

The servo motor moves
 but the basic operation

and/or performance is not
acceptable

No

Increase the Derivative
gainand/or decrease the

proportional gain.
Does the axis oscillate?

No

Derivative sampling period
too short. Increase the

derivative sampling period
and retune the axis

derivative and integral
gains.

If the problem persists contact
PMC technical support.

The axis may have errored out:,
open the Status Panel utility
(\Start\Programs\Motion Control\Motion
Control API\Status Panel). If the Error
and Motor Error LED's are on one
or more of the following may be
true:

1) Velocity is too high
2) Accel / decel too high
2) Proportional gain too low
3) Following error too low

Yes

Do you hear a grinding
noise? Yes

No

Near but not
 at target?

Increase the Integral gain /
Integral limit.

Recommended Integral
Gain Option set to Zero.

Yes

Troubleshooting

DCX-PCI300 User’s Manual

239

Status Panel
Red error LED's

off?

Yes

Resolve the error
condition (limit+/-,

following error,
amp fault, ...)

Is the
motor on?

Yes

No

The servo control system
has failed.

Contact PMC technical
support

A servo motor does not
move when commanded

No

Turn the motor on
MCEnable Axis()No

The encoder may
have failed, refer to
Motion Integrator
encoder checkout

Does
the motor resist

rotation?

Yes

No

Yes

Did
the encoder
checkout?

Tune the
servo using
the Servo

Tuning utility

Is the
motion OK?

Motor moving as commanded.

If problem persists contact
PMC technical support.

Yes

Replace the
encoderNo

Troubleshooting

Precision MicroControl

240

Status
Panel

 error LED's
on?

Yes

The encoder or
wiring has failed,

remove and replace.

Encoder
properly
phased?

Yes

No

A servo motor 'takes off'
 at full velocity when the

axis is enabled

No

The DCX servo module is
decoding noise as valid

encoder counts. Checkout
wiring. A differential

encoder may be required. If
problem persists contact
PMC technical support.

Change encoder
phasing or 'swap' the

encoder inputs
 (A to B, B to A) .

Troubleshooting

DCX-PCI300 User’s Manual

241

Yes

Status
 Panel error
LED's off?

Yes

A commanded move begins
as expected but fails to reach

the commanded target

Tune the
servo using
the Servo

Tuning utility

No

Increase the Integral gain
and/ or Integral limit to 'over

come' system friction.
Increase Integral gain (by 2%

each move) until the axis
reaches the target.

If axis oscillates at the end of
the move reduce the

Proportional gain

The commanded
maximum velocity,

accel, or decel exceeds
the system capability.

Reduce the trajectory
parameters

Friction may
 be present in mechanical

components. Has mechanical
system operation been

optimized?

Clean and
adjust

mechanics
No

Troubleshooting

Precision MicroControl

242

Troubleshooting - Open Loop Stepper Motion chart #1

Status
 Panel error
LED's off?

Yes

Resolve the error
condition (limit+, Limit -)

Is the
motor turned

on?

Yes

No

A stepper motor does not
move when commanded

No

Turn the motor on
MCEnableAxis ()No

Is the stepper
driver enabled? No

The DCX has failed.

Contact PMC technical
support.

Driver Enable is Low
active. Verify wiring/
operation.Connect
voltmeter to Drive

Enable pin, should be
less than 0.7V when axis

turned on

Yes

Using CWDemo:
 zero position, move relative 50

steps. Did the
 motor move

Do the Actual,
 Optimal, and Target position

readouts all display 50?
No

Yes

 Either:
 1) The stepper motor /
 stepper driver has failed

or
 2) The stepper module open
 collector output has failed

Yes

The DCX has failed.

Contact PMC technical
support.

No

Motor moving as
commanded.

If problem persists contact
PMC technical support.

Yes

Troubleshooting

DCX-PCI300 User’s Manual

243

Troubleshooting - Limits and Home

Limit
 input wired

correctly

Connect
voltmeter across

Limit pins of the module J3
connector. Activate Limit

sensor. 5 volts
 (+/- 1 volt)?

Yes

The DCX is recognizing
the state of the Limt

sensor. Make sure that
Limt error checking is

enabled MCSetLimits() .

If problem persists contact
PMC technical support.

Refer to the DCX
User's Manual for
module pinout and
wiring examples

Problem
 with a Limit

input?

Yes

No

With sensor
active, does the Motion
Integrator Test Panel
indicate that the Limit

sensor is active?

Yes

Yes

Home
 input wired

correctly

Connect
voltmeter across

Home pins of module J3
connector. Activate Limit

sensor. 5 volts
 (+/- 1 volt)?

Yes

Refer to the DCX
User's Manual for
module pinout and
wiring examples

No

With sensor
active, does the Motion
Integrator Test Panel

indicate that the Home
sensor is active?

Yes

The DCX is recognizing the Home sensor.
The problem is with the encoder index

(test with Motion Integrator) or with the
homing sequence. Contact PMC technical

support.

Issue move
command toward

home sensor, followed by
Wait for Edge and Stop
(aWE0,aST). Did the

motor stop?

Yes

Yes

Input voltage range
is 5 volts +/- 1 volts.
Min. current for is

10ma.
Contact PMC

technical support.

No

DCX sensor input
circuit has failed.

Contact PMC
technical support

The DCX does not handle
Limits and/or Home
inputs as expected

Input voltage range
is 5 volts +/- 1 volts.
Min. current for is

10ma.
Contact PMC

technical support.

No

DCX sensor input
circuit has failed.

Contact PMC
technical support

No

Contact PMC
technical supportNo

No

No

Controller Error Codes

Precision MicroControl

244

Chapter Contents

• MCAPI Error codes

• MCCL Error codes

DCX-PCI300 User’s Manual

245

Controller Error Codes

Both the MCAPI and the Motion Control Command Language (MCCL) provide error code and
interface status information to the user.

Chapter

11

Controller Error Codes

Precision MicroControl

246

MCAPI Error Codes

MCAPI defined error messages are listed numerically in the table below. Where possible corrective
action is included in the description column. Please note that many MCAPI function descriptions also
include information regarding errors that are specific to that function.

Error Constant Description
0 MCERR_NOERROR No error has occurred
1 MCERR_NO_CONTROLLER No controller assigned at this ID. Use MCSETUP to configure a controller.
2 MCERR_OUT_OF_HANDLES MCAPI driver out of handles. The driver is limited to 32 open handles. Applications

that do not call MCClose() when they exit may leave handles unavailable, forcing
a reboot.

3 MCERR_OPEN_EXCLUSIVE Cannot open - another application has the controller opened for exclusive use
4 MCERR_MODE_UNAVAIL Controller already open in different mode. Some controller types can only be open

in one mode (ASCII or binary) at a time
5 MCERR_UNSUPPORTED_MODE Controller doesn't support this mode for MCOpen() - i.e. ASCII or binary
6 MCERR_INIT_DRIVER Couldn't initialize the device driver
7 MCERR_NOT_PRESENT Controller hardware not present
8 MCERR_ALLOC_MEM Memory allocation error. This is an internal memory allocation problem with the

DLL, contact Technical Support for assistance
9 MCERR_WINDOWSERROR A windows function returned an error - use GetLastError () under WIN32 for details
10 reserved
11 MCERR_NOTSUPPORTED Controller doesn't support this feature
12 MCERR_OBSOLETE Function is obsolete
13 MCERR_AXIS_TYPE Axis type doesn't support this feature
14 MCERR_CONTROLLER Invalid controller handle
15 MCERR_WINDOW Invalid window handle
16 MCERR_AXIS_NUMBER Axis number out of range
17 MCERR_ALL_AXES Cannot use MC_ALL_AXES for this function
18 MCERR_RANGE Parameter was out of range
19 MCERR_CONSTANT Constant value inappropriate
20 MCERR_UNKNOWN_REPLY Unexpected or unknown reply
21 MCERR_NO_REPLY Controller failed to reply
22 MCERR_REPLY_SIZE Reply size incorrect
23 MCERR_REPLY_AXIS Wrong axis for reply
24 MCERR_REPLY_COMMAND Reply is for different command
25 MCERR_TIMEOUT Controller failed to respond
26 MCERR_BLOCK_MODE Block mode error. Caused by calling MCBlockEnd() without first calling

MCBlockBegin() to begin the block
27 MCERR_COMM_PORT Communications port (RS232) driver reported an error
28 MCERR_CANCEL User canceled action (such as when an MCDLG dialog box is dismissed with the

CANCEL button
29 MCERR_NOT_INITIALIZED Feature was not correctly initialized before being enabled or used

Controller Error Codes

DCX-PCI300 User’s Manual

247

MCCL Error Codes
When executing MCCL (Motion Control Command Language) command sequences the command
interpreter will report the following error code when appropriate:
Description Error code
No error 0
Unrecognized command 1
Bad command format 2
I/O error 3
Command string to long 4
Command Parameter Error -1
Command Code Invalid -2
Negative Repeat Count -3
Macro Define Command Not First -4
Macro Number Out of Range -5
Macro Doesn't Exist -6
Command Canceled by User -7
Contour Path Command Not First -8
Contour Path Command Parameter Invalid -9
Contour Path Command Doesn't Specify an AXIS -10
Axis error (over travel error, max. following error exceeded -13
No axis specified -14
Axis not assigned -15
Axis already assigned -16
Axis duplicate assigned -17
Insufficient memory -18
Unrecognized variable name -19
Invalid background task ID -20
Command not supported -21

Many error code reports will not only include the error code but also the offending command. In the
following example the Reset Macro command was issued. This command clears all macro’s from
memory. The next command sequence turns on 3 motors and then calls macro 10. The command
MC10 is a valid command but with no macros in memory error code –6 is displayed.

Printing a PDF Document

Precision MicroControl

248

Chapter Contents

• Introduction to PDF

• Printing a complete PDF document

• Printing selected pages of a PDF document

• Paper

• Binding

• Pricing

• Obtaining a Word 2000 version of this user manual

DCX-PCI300 User’s Manual

249

Printing a PDF Document

Introduction to PDF
PDF stands for Portable Document Format. It is the defacto standard for transporting electronic
documents. PDF files are based on the PostScript language imaging model. This enables sharp,
color-precise printing on almost all printers.

Printing a complete PDF document
It is not recommended that large PDF documents be printed on personal computer printers. The
‘wear and tear’ incurred by these units, coupled with the difficulties of two sided printing, typically
resulting in degraded performance of the printer and a whole lot of wasted paper. PMC recommends
that PDF document be printer by a full service print shop that uses digital (computer controlled) copy
systems with paper collating/sorting capability.

Printing selected pages of a PDF document
While viewing a PDF document with Adobe Reader (or Adobe Acrobat), any page or range of pages
can be printed by a personal computer printer by:

 Selecting the printer icon on the tool bar
 Selecting Print from the Adobe File menu

Paper
The selection of the paper type to be used for printing a PDF document should be based on the target
market for the document. For a user’s manual with extensive graphics that is printed on both sides of
a page the minimum recommended paper type is 24 pound. A heavier paper stock (26 – 30 pound)
will reduce the ‘bleed through’ inherent with printed graphics. Typically the front and back cover pages
are printed on heavy paper stock (50 to 60 pound).

Binding
Unlike the binding of a book or catalog, a user’s manual distributed in as a PDF file will typically use

Chapter

12

Printing a PDF Document

Precision MicroControl

250

‘comb’ or ‘coil’ binding. This service is provided by most full service print shops. Coil binding is
suitable for documents with no more than 100 pieces of paper (24 pound). Comb binding is
acceptable for documents with as many as 300 pieces of paper (24 pound). Most print shops stock a
wide variety of ‘combs’. The print shop can recommend the appropriate ‘comb’ based on the number
of pages.

Pricing
The final cost for printing and binding a PDF document is based on:

• Quantity per print run
• Number of pages
• Paper type

The price range for printing and binding a PDF document similar to this user manual will be $15 to
$30 (printed in Black & White) in quantities of 1 to 10 pieces.

Obtaining a Word 2000 version of this user manual
This user document was written using Microsoft’s Word 2000. Qualified OEM’s, Distributors, and
Value Added Reps (VAR’s) can obtain a copy of this document for

• Editing
• Customization
• Language translation.

Please contact Precision MicroControl to obtain a Word 2000 version of this document.

DCX-PCI300 User’s Manual

251

Glossary

Accuracy - A measure of the difference between the expected position and actual position of a motion
system.

Actuator - Device that creates mechanical motion by converting energy to mechanical energy.

Axis Phasing - An axis is properly phased when a commanded move in the positive direction causes
the encoder decode circuitry of the controller to increment the reported position of the axis.

Back EMF - The voltage generated when a permanent magnet motor is rotated. This voltage is
proportional to motor speed and is present regardless of whether the motor windings are energized or
de-energized.

Closed Loop - A broadly applied term, relating to any system in which the output is measured and
compared to the input. The output is then adjusted to reach the desired condition. In motion control,
the term typically describes a system utilizing a velocity and/or position transducer to generate
correction signals in relation to desired parameters.

Command Set – Defines the operations that can be executed by the motion controller

Commutation - The action of applying currents or voltages to the proper motor phases in order to
produce optimum motor torque.

Critical Damping - A system is critically damped when the response to a step change in desired
velocity or position is achieved in the minimum possible time with little or no overshoot.

DAC - The digital-to-analog converter (DAC) is the electrical interface between the motion controller
and the motor amplifier. It converts the digital voltage value computed by the motion controller into an
analog voltage. The more DAC bits, the finer the analog voltage resolution. DACs are available in
three common sizes: 8, 12, and 16 bit. The bit count partitions the total peak-to-peak output voltage

Chapter

13

Glossary

Precision MicroControl

252

swing into 256, 4096, or 65536 DAC steps, respectively.

Dead Band - A range of input signals for which there is no system response.

Driver - Electronics that convert step and direction inputs to high power currents and voltages to drive
a step motor. The step motor driver is analogous to the servo motor amplifier.

Dual Loop Servo – A servo system that combines a velocity mode amplifier/tachometer with a position
loop controller/encoder. It is recommended that the encoder not be directly coupled to the motor. The
linear scale encoder should be mounted on the external mechanics, as closely coupled as possible to
the ‘end effector’

Duty Cycle - For a repetitive cycle, the ratio of on time to total time:

Efficiency - The ratio of power output to power input.

Encoder - A type of feedback device that converts mechanical motion into electrical signals to indicate
actuator position or velocity.

End Effector – The point of focus of a motion system. The tools with which a motion system will work.
Example: The leading edge of the knife is the end effector of a three axis (XYZ) system designed to
cut patterns from vinyl.

Feed Forward - Defines a specific voltage level output from a motion controller, which in turn
commands a velocity mode amplifier to rotate the motor at a specific velocity.

Following Error - The difference between the calculated desired trajectory position and the actual
position.

Friction - A resistance to motion caused by contacting surfaces. Friction can be constant with varying
speed (Coulomb friction) or proportional to speed (viscous friction).

Holding Torque - Sometimes called static torque, holding torque specifies the maximum external
torque that can be applied to a stopped, energized motor without causing the rotor to rotate
continuously.

Inertia - The measure of an object's resistance to a change in its current velocity. Inertia is a function
of the object's mass and shape.

Kd - K is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant.
The lower case ‘d’ designates derivative gain.

Ki - K is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant.
The lower case ‘i’ designates integral gain.

Kp - K is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant.
The lower case ‘p’ designates proportional gain.

Glossary

DCX-PCI300 User’s Manual

253

Limits - Motion system sensors (hard limits) or user programmable range (soft limits) that alert the
motion controller that the physical end of travel is being approached and that motion should stop.

MCAPI - The Motion Control Application Programming Interface - this is the programming interface
used by Windows programmers to control PMC's family of motion control cards.

MCCL - Motion Control Command Language - this is the command language used to program PMC's
family of motion control cards.

Micro-Stepping - Stepper drive systems have a fixed number of electromechanical detents or steps.
Micro stepping is an electronic technique to break each detent or step into smaller parts. This results
in higher positional resolution and smoother operation.

Open Loop – A control system in which the control output is not referenced or scaled to an external
feedback.

Position Error - see following error.

Position Move - Unlike a velocity move, a position move includes a predefined stopping position. The
trajectory generator will determine when to begin deceleration in order to ensure the actual stopping
point is at the desired target position.

PWM - Pulse Width Modulation is a method of controlling the average current in a motor’s phase
windings by varying the duty cycle of transistor switches.

Repeatability - The degree to which the positioning accuracy for a given move performed repetitively
can be duplicated.

Resonance - A condition resulting from energizing a motor at a frequency at or close to the motor's
natural frequency.

Resolution - The smallest positioning increment that can be achieved.

Resolver - A type of feedback device that converts mechanical position into an electrical signal. A
resolver is a variable transformer that divides the impressed AC signal into sine and cosine output
signals. The amplitude of these signals represents the absolute position of the resolver shaft.

Servo - An automatic system in which the output is constantly compared with the input through some
form of feedback. The error (or difference) between the two quantities can be used to bring about the
desired amount of control.

Servo tuning – the process in which the appropriate gain values for the PID filter are determined

Slew - That portion of a move made at constant, non-zero velocity.

Step Response - An instantaneous command to a new position. Typically used for tuning a closed

Glossary

Precision MicroControl

254

loop system, ramping (velocity, acceleration, and deceleration) is not applied nor calculated for the
move.

Tachometer - A device attached to a moving shaft that generates a voltage signal directly proportional
to rotational speed.

Torque -

Velocity Mode Amplifier – An amplifier that requires a tachometer to provide the feedback used to
close the velocity loop within the amplifier.

Velocity Move - A move where no final stopping position is given to the motion controller. When a start
command is issued the motor will rotate indefinitely until it is commanded to stop.

Glossary

DCX-PCI300 User’s Manual

255

Appendix

Precision MicroControl

256

Appendix Contents

• Power Supply Requirements

• Default Settings

DCX-PCI300 User’s Manual

257

Appendix

Power Supply Requirements
Part Number +5 VDC +12 VDC -12 VDC Unit
DCX-PCI300 0.9 ----- ----- A

DCX-MC300 .4 .01 .01 A

DCX-MC320 .4 .01 .01 A

DCX-MC360 .4 ----- ----- A

DCX-MC400 .25 ----- ----- A

DCX-MC500 .1 * * A

* Current depends on output loading

Appendix

Precision MicroControl

258

Default Settings
Description Setting
Programmed Velocity 10,000
Programmed Acceleration 10,000
Programmed Deceleration 10,000
Minimum Velocity 1,000
Current Velocity 0
Velocity Gain 0
Acceleration Gain 0
Deceleration Gain 0
Velocity Override 1
Torque Limit 10

Proportional Gain .2
Derivative Gain .1
Integral Gain .01
Integration Limit 50

Maximum Following Error 1024
Motion Limits disabled
Low Limit of Movement 0
High Limit of Movement 0

Servo Loop Rate MS
Stepper Pulse Range HS

Position Count 0
Optimal Count 0
Index Count 0
Auxiliary Status 0
Position 0
Target 0
Optimal Position 0
Breakpoint Position 0
Position Dead band 0

User Scale 1
User Zero 0
User Offset 0
User Rate Conversion 1
User Output Constant 1

Sampling Frequency 0
Slave Ratio 1

Index

DCX-PCI300 User’s Manual

259

Index

A

Acceleration
setting ..49, 58

Active level
limit switches..74

Addressing the controller...................................3, 19
Analog I/O

configuring ...144
testing ..144

Analog input
reporting...144

Analog output
calibration ..145
description ...142
max. loading ..143
setting ..145

Arc motion ...61
Contour buffer..63
enable ..64
on the fly changes..68
Vector acceleration ..62
Vector deceleration..62
Vector velocity ...62

At target
commanding ..89
description ...87

Auto Initialize
loading user defined settings...........................108

Auxiliary encoder
dual loop servo ..95
servo ..95

stepper .. 95
testing.. 99
wiring ... 98, 99

Axis number
changing.. 118

Axis settings
restoring user defined settings 109
saving user defined settings............................ 108

B

Backlash compensation
description ... 100
enable.. 100

Band pass filter ... 104
BF022

mounting footprint ... 217
Breakout

ribbon cable... 8
Breakout assemblies 219, 225, 228, 231
Brushless servo

commutation.. 180

C

Calibration
analog module outputs.................................... 145
stepper, on power up .. 30

Capture data
actual position ... 119
DAC output.. 119
following error.. 119

Appendix

Precision MicroControl

260

optimal position..119
Capture position ..115
Changing the axis number118
Closed loop stepper

wiring..53
Closed loop stepper control

described ...52
homing ...80

Commutation
setup ..180

Compare output
described ...116
mode,

toggle..117
mode, one-shot..117
mode, period..117

Connector
DCX-BF022 ...215, 216
DCX-BF300-R..225
DCX-BF320-R..228
DCX-BF360-R..231
DCX-BF3XX-H...219
DCX-MC300-H...166
DCX-MC300-R...167
DCX-MC302-H...175
DCX-MC320-H...183
DCX-MC320-R...184
DCX-MC360-H...193
DCX-MC360-R...194
DCX-MC362-H...202
DCX-MC400-H...208
DCX-MC400-R...209
DCX-MC500-H...212
DCX-MC5X0 ..213
DCX-PCI300 ..160

Contact Precision MicroControl.............................. iii
Contour buffer

description ...63
tell contour count ...63

Cubic spline interpolation68
Current sink/source

digital output ..137, 155

D

DCX command (MCCL)
description ...24
format...24
pausing a command / sequence........................27
repeating..26
single stepping...121
terminating a command / sequence27

DCX module
changing the axis number................................118

DCX system components
DCX-BF300-R..8
DCX-BF320-R..8

DCX-BF360-R ... 8
DCX-MC300.. 6
DCX-MC302.. 7
DCX-MC320 .. 6
DCX-MC360 .. 6
DCX-MC362 .. 7
DCX-MC400 .. 7
DCX-MC5X0.. 7

DCX-BF3XX-H
pinouts... 221, 224

DCX-MC300
features ... 6
schematic, axis I/O.................................. 169, 176
upgrading from DCX-MC200........................... 131
wiring example, open collector drivers............ 171
wiring example, opto isolators......................... 170

DCX-MC302
features ... 7
wiring example .. 224
wiring example, open collector drivers............ 178
wiring example, opto isolators......................... 178

DCX-MC320
features ... 6
schematic, axis I/O.. 185
wiring example, open collector drivers............ 188
wiring example, opto isolators......................... 187

DCX-MC360
features ... 6
schematic, axis I/O.. 196
upgrading from DCX-MC260........................... 132
wiring example, open collector drivers.... 198, 206
wiring example, opto isolators................. 197, 205

DCX-MC362
features ... 7
schematic, axis I/O.. 204
wiring example .. 224

DCX-MC400
features ... 7

DCX-MC500
features ... 7

DCX-PCI300
documentation..ii
resetting... 120
upgrading from DCX-AT200............................ 131

Deceleration
setting.. 49, 58

Default settings ... 258
Derivative gain

description ... 30
sampling period... 38
setting.. 38

Device drivers ... 4
Digital I/O

configuring... 138
description ... 137
output, max current 137, 155
PCI300, pin out.. 160
testing.. 138

Index

DCX-PCI300 User’s Manual

261

turn off..140
turn on..140

Direction
setting ..60

Documentation
DCX-PCI300 motion controller ii

Dual loop servo control
velocity mode amp.......................................45, 95

Dual ported memory
data tables ...257
description ...257

E

Encoder
auxiliary..95
checkout...32
checkout, stepper ..53
descritpion ...30
reverse phased ..56
reversed phased ..38
rollover ...103

Encoder Index
checkout...78
description ...30

Error codes
MCAPI..246
MCCL...247

Error LED's ..159
E-stop

enable ..101
examples..101
hard wired ..101

Example
homing routine...86

F

Fail safe operation
watchdog circuit ...135

Feed forward ...46, 90, 135
acceleration ...48, 91
calculating..46, 91
deceleration ...48, 91
described ...46
setting ..46, 91

Firmware (operating code) update107
Flash Wizard

update firmware ...107
Following error

default setting ..32
demonstrated...49
description ...32
disable..32

Friction...48

effects upon system .. 40
Frictionless servo

using output deadband...................................... 48

G

Gearing
enable.. 71
setting ratio.. 71
terminate ... 71

H

High pass filter .. 104
Home sensor

checkout .. 77
wiring ... 77

Home switch/sensor
voltage range...................163, 172, 181, 190, 200

Homing an axis
closed loop stepper ... 80
encoder index.. 81
home sensor.. 85
limit sensor .. 82, 86
servo.. 77, 80
stepper, open loop .. 84
troubleshooting.. 244

I

IIR filter
disable ... 104
enable.. 104
load coefficients... 104

Inertia
effects upon system .. 38

Integral gain
description ... 30
disable while moving 128
setting.. 40

Integral limit
description ... 42
setting.. 42

J

Jogging
description ... 72

Joystick controlled motion..................................... 72
Jumpering

DCX-BF022... 217
DCX-MC300.. 168
DCX-MC302.. 176
DCX-MC320.. 185

Appendix

Precision MicroControl

262

DCX-MC360 ..195
DCX-PCI300 ..160

L

Learning points..109
LED's

error ...159
Limit switch/sensor

voltage range 164, 173, 182, 190, 200
Limiting the servo command output126
Limits

active level ...74
checkout...73
disable..73
enable ..73
hard (switch / sensor) ..73
homing an axis...82, 86
inverting active level73, 74
normally closed switch.................................73, 74
programmable..73
troubleshooting ..244
wiring..73

Linear interpolation..61
Contour buffer..63
enable ..64, 110
on the fly changes..68
specifying...62
Vector acceleration ..62
Vector deceleration..62
Vector velocity ...62

Linear motor ..29
Low pass filter ...104

M

Macro command
as background task..112
defining ..111
described ...110
memory size ..111
reporting...111
resetting (deleting) ...111
single stepping a program121
volatile..111

Manual positioning ..72
Master / Slave

description ...71
enable ..71
slave ratio ..71
tangential knife control.....................................122
termination ...71
threading..124

MCAPI
Setup..24

MCCL command

IIR filter disable.. 104
IIR filter enable .. 104
IIR filter load coefficients 104

MCCL commands
single stepping a program............................... 121

Minimum PC requirements 4
Module

Analog I/O ... 7
Digital I/O... 7
motion control.. 6

Motion complete
at target ... 87
description ... 87
trajectory complete.. 87

Motion control
backlash compensation................................... 100
Constant velocity move 60
Contour move.. 61
Learning / Teaching points.............................. 109
Master / Slave ... 71
pause motion... 114
Point to point ... 60
required settings.. 58
resume motion... 114
Tangential knife ... 122
theory of operation .. 29
threading ... 124
Torque mode... 126

Motion Control
defined... 11

Motion Integrator
analog I/O.. 144
analog output calibration 145
digital I/O ... 138
encoder checkout.. 32
encoder index checkout 78
home sensor checkout 77
limit sensor checkout 73
troubleshooting.. 235

Motor control output
DCX-MC300.. 29
DCX-MC320.. 29
DCX-MC360.. 30
limiting ... 126

Mounting footprint
BF022.. 217

Moving motors
Motor Mover program.................................. 49, 57
required settings.. 25
Servo motor... 30
Stepper motor.. 51

Multiple moves sequences
servo tuning... 44

Multi-tasking
commands not supported................................ 112
CPU utilization... 113
described... 112
example... 112, 113, 114

Index

DCX-PCI300 User’s Manual

263

global data registers ..113
passing data between......................................113
private data registers113
quantity supported ...113
termination ...114
testing ..112

N

Normally closed limit switch73, 74
Notch filter ...104

O

On the fly changes
arc and linear motion ...68
Constant velocity motion....................................89
Point to point..89
Trapezoidal velocity profile89

Operating systems ..4

P

Parabolic velocity profile
description ...60

Pause motion ..114
Pausing

MCCL command / sequence27
PC requirements

minimums...4
PDF

described ...249
document printing248, 249
viewing a document ...249

Phasing
output/encoder...33, 38

PID digital filter See Tuning the servo
algorithm ..30
'D’ term...30
description ...30
'I' term ..30
'P' term...30
rate selection ...34
restoring settings ...108
theory of operation...30

Pin out
DCX-BF022 ...215, 216
DCX-BF300-R..225
DCX-BF320-R..228
DCX-BF360-R..231
DCX-BF3XX-H...219
DCX-MC300-H...166
DCX-MC300-R...167
DCX-MC302-H...175

DCX-MC320-H .. 183
DCX-MC320-R .. 184
DCX-MC360-H .. 193
DCX-MC360-R .. 194
DCX-MC362-H .. 202
DCX-MC400-H .. 208
DCX-MC400-R .. 209
DCX-MC500-H .. 212
DCX-MC5X0.. 213
DCX-PCI300 gen. purpose I/O........................ 160

Plug and play .. 3, 19
PMC email address... iii
PMC web address... iii
Point to point motion

execution ... 60
Position

Recording .. 119
Position capture

description ... 115
Position compare

description ... 116
fixed increment distances................................ 116
user defined positions 116

Position mode
enable.. 60

Printing a PDF document............................ 248, 249
Programming

tutorial...ii
Programming languages

supported .. 4
Proportional gain

description ... 30
setting.. 37

R

Recording position data 119
Repeating

command or sequence...................................... 26
Report

axis 'at target' .. 89
captured data .. 119
current position of axis 24, 25, 51
status of axis ... 74, 75
trajectory complete.. 88

Reset
relay... 120, 160
the controller.. 120

Restore
controller settings .. 108

Restoring user defined axis settings................... 109
Resume motion... 114
Reverse phased

encoder ... 56
Rollover

encoder ... 103

Appendix

Precision MicroControl

264

S

Sales support ... iii
Saving user defined axis settings........................108
Scaling

defining user units..132
Schematic

MC300, axis I/O169, 176
MC320, axis I/O ...185
MC360, axis I/O ...196
MC362, axis I/O ...204

S-curve velocity profile
description ...60

Servo command output
limiting..126

Servo loop
description ...30

Servo loop rate
selection...34

Servo motor control
homing ...77, 80
theory of operation...29
tuning the servo ...35

Servo systems
tutorial .. ii

Servo tuning
tutorial .. ii

Setup
MCAPI..24

Single stepping a program121
Software

Motion Integrator 73, 138, 144, 235
Motor Mover...49, 57
Servo Tuning utility ..35
Status Panel ..33, 75, 88
WinControl ...121, 247

Specifications
DCX-MC300 ..29, 150
DCX-MC302 ..151
DCX-MC320 ..29, 152
DCX-MC360 ..30, 153
DCX-MC362 ..154
DCX-MC400 ..155, 207
DCX-MC5X0 ..155, 213
DCX-PCI300 ..149

Status LED's..159
Status Panel utility.....................................33, 75, 88
Stepper motor

reverse phased ..56
Stepper motor control

changing the direction of motor51
closed loop...52, 80
homing ...84
open loop ...51
theory of operation...30

T

Tangential knife control
description ... 122
example... 122

Teaching points... 109
Technical support.. iii
Terminating

MCCL command / sequence............................. 27
Testing

analog I/O.. 144
digital I/O ... 138

Threading operations
description ... 124

Trajectory complete
description ... 87

Trajectory generator
demonstrated .. 49
description ... 29
disable ... 37
enable.. 49

Trapezoidal velocity profile
description ... 60

Troubleshooting
encoder checkout.. 32
encoder checkout, stepper................................ 53
general .. 236
home sensor input... 244
limit switches ... 244
no motion by a servo... 15
oscillation by a servo... 15
'PC' bus communication.................................. 237
servo motion.. 239, 241
servo tuning... 238
status LED's .. 159

Tuning the servo
derivative gain ... 38
derivative sampling period 38
description ... 35
high inertia systems .. 38
initial settings... 37
integral gain... 40
intergal limit ... 42
multiple move sequences.................................. 44
proportional gain.. 37
range of slide controls 43
saving settings... 43, 48
Servo tuning utility ... 35
tutorials...ii
Velocity mode amplifier 45

Tutorials
DCX servo tuning ...ii
Installing a motion controllerii
Intro to motoin control programmingii
Intro to PMC ...ii
Servo systems primer ..ii

Index

DCX-PCI300 User’s Manual

265

U

Update
firmware (operating code)................................107

Upgrade
DCX-PCI300 from DCX-AT200131

User units
controller time base ...134
description ...132
machine zero ...134
output constant ..135
part zero...134
setting ..132
trajectory time ..133
user scale ..133

V

Vector acceleration..62
Vector deceleration ...62
Vector velocity ...62
Velocity

disable..37
restoring settings ...108
set too high ..33
setting ..49

Velocity gain ..135
Velocity mode

enable ..60
Velocity mode amplifier

description ...45, 90
tuning ...45

Velocity mode move
execution..60
setting the direction..60
starting ...61

Velocity profiles
Contour mode motion.. 61
Parabolic ... 29, 60
S-curve .. 29, 60
Trapezoidal.. 29, 60

W

Wait
for 'at target'... 89
for trajectory complete....................................... 88

Watchdog circuit
description ... 135

web address
PMC Motion Control .. iii

Wiring
auxiliary encoder ... 98, 99
BF3XX-H breakout 221, 224
closed loop stepper ... 53
encoder, reversed phased 38
E-stop .. 101
home sensor.. 77
limit sensor .. 73
MC300, open collector drivers 171
MC300, opto isolators 170
MC302... 224
MC302, open collector drivers 178
MC302, opto isolators 178
MC320, open collector drivers 188
MC320, opto isolators 187
MC360, open collector drivers 198, 206
MC360, opto isolators 197, 205
MC362... 224
servo axes, dual .. 224
stepper axes, dual... 224

Precision MicroControl Corporation
2075-N Corte del Nogal

Carlsbad, CA 92009-1415 USA

Tel: (760) 930-0101
Fax: (760) 930-0222

www.pmccorp.com

Information: info@pmccorp.com
Technical Support: support@pmccorp.com

	Prologue
	Introduction
	DCX Motion Control Primer
	The Command Set - the Heart of the Motion Controller
	The Modular Architecture of the DCX-PCI300
	Why does a servo need to be tuned?

	PC Communication Interfaces
	High Speed Binary interface
	ASCII MCCL Interface

	DCX Operation Basics
	Introduction
	Low Level DCX Operations

	Motion Control
	Theory of DCX Motion Control
	DCX Servo Basics
	Tuning the Servo
	DCX Stepper Basics
	Closed Loop Steppers
	Moving Motors with Motor Mover
	Defining the Characteristics of a Move
	Velocity Profiles
	Point to Point Motion
	Constant Velocity Motion
	Contour Motion (arcs and lines)
	Electronic Gearing
	Jogging
	Defining Motion Limits
	Homing Axes
	Motion Complete Indicators
	On the Fly changes
	Feed Forward (Velocity, Acceleration, Deceleration)
	Save and Restore Axis Configuration

	Application Solutions
	Auxiliary Encoders
	Backlash Compensation
	Emergency Stop
	Encoder Rollover
	User Defined Filters (Notch, Low Pass, High Pass, and Band Pass)
	Flash Memory Firmware Update
	Initializing and Restoring Controller Configuration
	Learning/Teaching Points
	Building MCCL Macro Sequences
	MCCL Multi-Tasking
	Pause and Resume Motion
	Position Capture
	Position Compare
	Reassigning Axis Numbers
	Record Motion Data
	Resetting the DCX
	Single Stepping MCCL Programs
	Tangential Knife Control
	Threading Operations
	Torque Mode Output Control
	Turning off Integral gain during a move
	Upgrading from a DCX-AT200 motion control system
	Defining User Units
	DCX Watchdog

	General Purpose I/O
	DCX Motherboard Digital I/O
	Configuring the DCX Digital I/O
	Using the DCX Digital I/O
	DCX Module Analog I/O
	Using the Analog I/O
	Calibrating the MC500/MC520 +/- 10V Analog Outputs:

	DCX Specifications
	Motherboard: DCX-PCI300
	DCX-MC300 - +/- 10 Volt Analog Servo Motor Control Module
	DCX-MC302 – Dual +/- 10 Volt Servo Motor Control
	DCX-MC320 - Brushless Servo Commutation Control Module
	DCX-MC360 - Stepper Motor Control Module
	DCX-MC362 – Dual Stepper Motor Control Module
	DCX-MC400 - 16 channel Digital I/O Module
	DCX-MC5X0 - Analog I/O Module

	Connectors, Jumpers, and Schematics
	DCX-PCI300 Motion Control Motherboard
	DCX-MC300 +/- 10V Servo Motor Control Module
	DCX-MC302 Dual Axis +/- 10V Servo Motor Control Module
	DCX-MC320 Brushless Servo Commutation Control Module
	DCX-MC360 Stepper Motor Control Module
	DCX-MC362 Dual Axis Stepper Motor Control Module
	DCX-MC400 Digital I/O Module
	DCX-MC500/510/520 Analog I/O Module
	DCX-BF022 Relay Rack Interface
	DCX-BF3XX-H High Density Breakout Assembly
	DCX-BF300-R Servo Module Breakout Assembly
	DCX-BF320-R Servo Module Breakout Assembly
	DCX-BF360-R Stepper Module Breakout Assembly

	Troubleshooting
	Controller Error Codes
	MCAPI Error Codes
	MCCL Error Codes

	Printing a PDF Document
	Glossary
	Appendix
	Power Supply Requirements
	Default Settings

	Index

