

Motion Control Application
Programming Interface

MCAPI Reference Manual
Revision 3.4

Precision MicroControl Corporation
2075-N Corte del Nogal

Carlsbad, CA 92009-1415 USA

Tel: (760) 930-0101
Fax: (760) 930-0222

www.pmccorp.com

Information: info@pmccorp.com

Technical Support: support@pmc.com

LIMITED WARRANTY

All products manufactured by PRECISION MICROCONTROL CORPORATION are guaranteed to be
free from defects in material and workmanship, for a period of five years from the date of shipment.
Liability is limited to FOB Factory repair, or replacement, of the product. Other products supplied as
part of the system carry the warranty of the manufacturer.

PRECISION MICROCONTROL CORPORATION does not assume any liability for improper use or
installation or consequential damage.

(c)Copyright Precision MicroControl Corporation, 1994-2003. All rights reserved.

Information in this document is subject to change without notice.

IBM and IBM-AT are registered trademarks of International Business Machines Corporation.
Intel and is a registered trademark of Intel Corporation.
Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corporation.
Acrobat and Acrobat Reader are registered trademarks of Adobe Corporation.

Precision MicroControl
2075-N Corte del Nogal
Carlsbad, CA 92009-1415

Phone: (760)930-0101
Fax: (760)930-0222
World Wide Web: www.pmccorp.com
Email:
 Information: info@pmccorp.com
 Technical support: support@pmccorp.com
 Sales: sales@pmccorp.com

Table of Contents

M

P
I

L

F

D

P

 Table of Contents
otion Control Application Programming Interface i

rologue ...5
ntroduction...3

Controller Interface Types ...4
Building Application Programs using Motion Control API..5
C/C++ Programming Introduction..6
Visual Basic Programming Introduction ..8
Delphi Programming Introduction..10
LabVIEW Programming Introduction...12
MCSpy...13
MCAPI Online Help ...14

ow Level Communication..17
Win Control and MCCL Commands ..17

unction Library Introduction ..23
Function Listing Introduction ...23
Motion Control API Function Quick Reference Tables..26
ata Structures...31
MCAXISCONFIG...31
MCCOMMUTATION..34
MCCONTOUR...35
MCFILTEREX..36
MCJOG ...38
MCMOTIONEX..39
MCPARAMEX ...41
MCSCALE ...44
MCSTATUSEX..45
arameter Setup Functions..49
MCConfigureCompare ..49
MCSetAcceleration..51
MCSetAuxEncPos...52
MCSetCommutation ..53
MCSetContourConfig ..54
MCSetDeceleration ...55
MCSetDigitalFilter ...56
MCSetFilterConfigEx...57
MCSetGain..58
MCSetJogConfig ...59
MCSetLimits ..60
MCSetModuleInputMode...62
MCSetModuleOutputMode..63
MCSetMotionConfigEx ..64
MCSetOperatingMode...65
MCSetPosition...67
MCSetProfile ...68
MCSetRegister ..69
MCSetScale ..70
MCSetServoOutputPhase ...71
MCSetTorque ..72
MCSetVectorVelocity ..73

Table of Contents

PMC Motion Control ii

MCSetVelocity...74
Motion Functions ..77

MCAbort ..77
MCArcCenter...79
MCArcEndAngle..80
MCArcRadius ..81
MCCaptureData ..82
MCContourDistance ..83
MCDirection...84
MCEdgeArm..85
MCEnableAxis...86
MCEnableBacklash ...88
MCEnableCapture...89
MCEnableCompare...90
MCEnableDigitalFilter..91
MCEnableEncoderFault ..93
MCEnableGearing...94
MCEnableJog..95
MCEnableSync..96
MCFindAuxEncIdx...98
MCFindEdge ...99
MCFindIndex ...100
MCGoEx..101
MCGoHome ..102
MCIndexArm ...104
MCInterruptOnPosition..105
MCLearnPoint ...106
MCMoveAbsolute ..108
MCMoveRelative ...109
MCMoveToPoint..110
MCReset ...111
MCStop ...112
MCWait..113
MCWaitForEdge..114
MCWaitForIndex ...116
MCWaitForPosition ...117
MCWaitForRelative ...118
MCWaitForStop...119
MCWaitForTarget..120

Reporting Functions..123
MCDecodeStatusEx ..123
MCEnableInterrupt ..124
MCErrorNotify..126
MCGetAccelerationEx ...127
MCGetAuxEncIdxEx..128
MCGetAuxEncPosEx ..129
MCGetAxisConfiguration...131
MCGetBreakpointEx..132
MCGetCaptureData...133
MCGetContourConfig..134
MCGetContouringCount..135
MCGetCount ...136
MCGetDecelerationEx...138

Table of Contents

Motion Control Application Programming Interface iii

MCGetDigitalFilter ...139
MCGetError ...140
MCGetFilterConfigEx ..141
MCGetFollowingError..142
MCGetGain ...143
MCGetIndexEx ..144
MCGetInstalledModules ..146
MCGetJogConfig...147
MCGetLimits..148
MCGetModuleInputMode ..150
MCGetMotionConfigEx..151
MCGetOperatingMode ..152
MCGetOptimalEx ..153
MCGetPositionEx ..155
MCGetProfile...156
MCGetRegister..157
MCGetScale ..158
MCGetServoOutputPhase...160
MCGetStatusEx...161
MCGetTargetEx ..162
MCGetTorque..163
MCGetVectorVelocity ..164
MCGetVelocityActual ..165
MCGetVelocityEx ..166
MCIsAtTarget ..167
MCIsDigitalFilter ..169
MCIsEdgeFound ...170
MCIsIndexFound ...171
MCIsStopped...172
MCTranslateErrorEx..173

I/O Functions ..177
MCConfigureDigitalIO ...177
MCEnableDigitalIO..179
MCGetAnalogEx..180
MCGetDigitalIO ...181
MCGetDigitalIOConfig...183
MCSetAnalogEx ..184
MCWaitForDigitalIO ..185

Macro’s and Multi-Tasking Functions ...189
MCCancelTask..189
MCMacroCall...190
MCRepeat ...191

MCAPI Driver Functions ...195
MCBlockBegin...195
MCBlockEnd..198
MCClose..199
MCGetConfigurationEx ...200
MCGetVersion...201
MCOpen ..202
MCReopen ..204
MCSetTimeoutEx ..205

OEM Low Level Functions..209
pmccmd...209

Table of Contents

PMC Motion Control iv

pmccmdex ...211
pmcgetc...212
pmcgetramex...213
pmcgets...214
pmcputc...215
pmcputramex...216
pmcputs...217
pmcrdy...218
pmcrpy...219
pmcrpyex...220

Common Motion Dialog Functions..223
MCDLG_AboutBox..223
MCDLG_CommandFileExt ..225
MCDLG_ConfigureAxis ...226
MCDLG_ControllerDescEx ...227
MCDLG_ControllerInfo..228
MCDLG_DownloadFile..230
MCDLG_Initialize ..231
MCDLG_ListControllers ..232
MCDLG_ModuleDescEx ...233
MCDLG_RestoreAxis ..234
MCDLG_RestoreDigitalIO ...236
MCDLG_SaveAxis ..237
MCDLG_SaveDigitalIO ...239
MCDLG_Scaling..240
MCDLG_SelectController ..241

Appendix A - MCAPI Error Codes ..245
Appendix B - Constants ..249
Appendix C - Status Word Constants Lookup Table ..261
Appendix D - Motion Dialog Window Classes ..265

MCDLG_LEDCLASS...265
MCDLG_READOUTCLASS ..266

Appendix E - Printing a PDF Document ...269
Index...273

User manual revision history
Revision Date Description

1.0 3/12/2001 Initial release
 5/4/2001 Edited to match MCAPI version 3.01
 8/15/2001 Miscellaneous edits

3.1 11/8/2001 New functions added and format changed
3.2 1/28/2002 Closed-loop stepper functionality fully supported

 2/22/2002 New functions added to support homing
3.3 1/16/2003 Updated to MCAPI 3.3 (added support for MultiFlex PCI 1000 Series)
3.4 6/5/2003 Updated to MCAPI 3.4

Motion Control Application Programming Interface 5

Prologue

This manual has been written as a reference manual. This is not meant to be the only document you
should reference regarding the Motion Control Application Programming Interface (MCAPI). You will
find more application specific information on how to use your motion control card with the MCAPI in
your User's Manual, as well as detailed and commented code examples in the online help.

Also, you will find other valuable information on how to use your motion control card on your
MotionCD. There, you will find the following information:

• Tutorials (PowerPoint presentations)
 An Introduction to PMC Motion Control
 Installing a PMC Motion Controller (Does not Address PCI bus controllers)
 Introduction to Motion Control Programming with the Motion Control API
 Servo Systems Primer
 Servo Tuning

• PMC AppNOTES – detailed descriptions of specific motion control applications

• PMC TechNOTES – one page technical support documents

• PMC Product catalogs and brochures

Motion Control Application Programming Interface 2

Chapter Contents

• Introduction to the Motion Control Application Programming Interface (MCAPI)

• Controller Interface Types

• Building Application Programs using the MCAPI

• C/C++ Programming Introduction

• Visual Basic Programming Introduction

• Delphi Programming Introduction

• LabVIEW programming Introduction

• MCAPI Online Help
 MCAPI Users Guide
 MCAPI online function reference
 MCAPI Common Dialog help
 LabVIEW Motion VI Library Help

Motion Control Application Programming Interface

Introduction

PMC’s motion control cards and modules integrate seamlessly into high performanc
applications. The Motion Control Application Programming Interface (MCAPI) p
for all popular high level languages. Additionally, the board level command languag
Command Language (MCCL), allows the machine designer to execute local ‘macr
independent of the PC host and application program.

PMC’s MCAPI is a group of Windows components that, taken together, provide a co
level, Applications Programming Interface (API) for PMC's motion controllers. The d
interfacing to new controllers, as well as resolving controller specific details, are han
leaving the applications programmer free to concentrate on the application program

3

QED

#1#3#5#7

#8 #6 #4 #2

Motion Control API (function library)

Low-Level Device Driver (DLL)

HighLevel
Languages
 C
 C++
 Visual Basic
 Pascal

Advanced
Development
Environments
 Delphi
 Lab Windows
 Visual C/C++

Visual
Programming
 Visual Basic
 LabVIEW
 BridgeVIEW

Drivers
 OLE Controls
 LabVIEW VI

MCCL
ASCII
Command
Interface

Figure 1:MCAPI and motion control card architectural diagram

Chapter

1

3

e, Windows
rovides support
e, Motion Control
o’ routines

nsistent, high
ifficulties of
dled by the API,
.

Introduction

PMC Motion Control 4

The API has been constructed with a layered approach. As new versions of Windows operating
systems and new PMC motion controllers become available, API support is provided by simply
replacing one or more of these layers. Because the public API (the part the applications programmer
sees) is above these layers, few or no changes to applications programs will be required to support
new version of the MCAPI.

The API itself is implemented in three parts. The low level device driver provides communications with
the motion controller, in a way that is compatible with the Microsoft Windows operating system. The
MCAPI low level driver passes binary MCCL commands to the motion control card. By placing the
operating system specific portions of the API here it will be possible to replace this component in the
future to support new operating systems without breaking application programs, which rely on the
upper layers of the API.

Sitting above that, and communicating with the driver is the API Dynamic Link Library (DLL). The DLL
layer implements the high level motion functions that make up the API. This layer also handles the
differences in operation of the various PMC Motion Controllers, making these differences virtually
transparent to users of the API.

At the highest level are environment specific drivers and support files. These components support
specific features of that particular environment or development system.

Care has been exercised in the construction of the API to ensure it meets with Windows interface
guidelines. Consistency with the Windows guidelines makes the API accessible to any application that
can use standard Windows components - even those that were developed after the Motion Control
API!

Controller Interface Types
Each motion control card supports two onboard interfaces, an ASCII (text) based interface and a
binary interface. The binary interface is used for high speed command operation, and the ASCII
interface is used for interactive text based operation. The high level sample programs (CWDEMO and
VBDEMO) use the binary interface, PMC Win Control uses the ASCII interface.

Application programs must indicate which interface they intend to use when they open a handle for a
particular controller. A controller may have more than one handle open at a time. While multiple binary
interfaces may be open at once, no more than one ASCII interface open at a time (with or without
multiple binary interfaces open) is recommend. The open mode is specified by setting the second
argument of the MCOpen() function to either MC_OPEN_ASCII or MC_OPEN_BINARY.

Introduction

Motion Control Application Programming Interface 5

Building Application Programs using Motion Control API
The Motion Control Application Programming Interface (MCAPI) is designed to allow a programmer to
quickly develop sophisticated application programs using popular development tools. The MCAPI
provides high level function calls for:

• Configuring the controller (servo tuning parameters, velocity and ramping, motion limits, etc.)
• Defining on-board user scaling (encoder/step units, velocity units, dwell time units, user and

part zero)
• Commanding motion (Point to Point, Constant Velocity, Electronic Gearing, Lines and Arcs,

Joystick control)
• Reporting controller data (motor status, position, following error, current settings)
• Monitoring Digital and Analog I/O
• Driver functions (open controller handle, close controller handle, set timeout)

Included with the installation of the MCAPI is the Sources ‘folder’. In this folder are complete program
sample source files for C++, Visual Basic, Delphi.

Introduction

6

C/C++ Programming Introduction
Included with each of the C program samples (CWDemo, Joystick demo, and Win Control) is a read
me file (readme.txt) that describes how to build the sample program. The following text was reprinted
from the readme.txt file for the CWDemo program sample.

Contents
========
- How to build the sample
- LIB file issues
- Contacting technical support

How to build the sample
=======================
To build the samples you will need to create a new project or make file within your C/C++ development tool. Include the
following files in your project:
 CWDemo.c
 CWDemo.def
 CWDemo.rc

For 16-bit development you will also need:
 ..\mcapi.lib
 ..\mcdlg.lib
 ..\ctl3d.lib

For 32-bit development you will also need:
 ..\mcapi32.lib
 ..\mcdlg32.lib

 If your compiler does not define the _WIN32 constant for 32-bit projects you will need to define it at
 the top of the source file (before the header files are included).

LIB File Issues
===============
Library (LIB) files are included with MCAPI for all the DLLs that comprise the user portion of the API (MCAPI.DLL,
MCAPI32.DLL, MCDLG.DLL, and MCDLG32.DLL). These LIB files make it easy to resolve references to functions in the
DLL using static linking (typical of C/C++). Unfortunately, under WIN32 the format of the LIB files varies from compiler
vendor to compiler vendor. If you cannot use the included LIB files with your compiler you will need to add an IMPORTS
section to your projects DEF file. We have included skeleton DEF files for all of the DLLs for which we also include a LIB
file (MCAPI.DEF, MCAPI32.DEF, MCDLG.DEF, and MCDLG32.DEF).

The 16-bit LIB files were built with Microsoft Visual C/C++ Version 1.52, and the 32-bit LIB files Microsoft Visual Studio
Version 5.
PMC Motion Control

Introduction

Motion Control Application Programming Interface 7

Figure 2: C/C++ program sample (CWDemo)

The C/C++ program sample (CWDemo) allow the user to:

• Move an axis (servo or stepper)
• Monitor the actual, target, and optimal positions of an axis
• Monitor axis I/O (Limits +/-, Home, Index, an Amplifier Enable)
• Define or change move parameters (Maximum velocity, acceleration/deceleration)
• Define or change the servo PID parameters

Introduction

8

Visual Basic Programming Introduction
Included with each of the Visual Basic program samples (VBDemo, VBDemo32) is a read me file
(readme.txt) that describes how to build the sample program. The following text was reprinted from
the readme.txt file for the VBDemo32 program sample.

Contents
========

- About the sample
- How to build the sample
- Contacting technical support

About the sample
================
This sample demonstrates a simple user interface to one axis of a motion controller. The user may program moves
and interact with the motion in a number of ways (stop it, abort it, etc.). Sample forms demonstrate how to configure
servo or stepper motor axes. A number of the new MCDialog functions (such as a full-featured, ready-to-run
axis configuration dialog) are also demonstrated.

How to build the sample
=======================
To build the samples you will need to create a new project or use the Visual Basic project file (created with Visual
Basic v6.0) included with the sample. Include the following files if you create your own project:

 About32.frm
 Main32.frm
 Servo32.frm
 Step32.frm
 VBDemo.bas

 ..\mcapi32.bas
 ..\mcdlg32.bas

Set frmMain as the startup object for the project.
PMC Motion Control

Introduction

Motion Control Application Programming Interface 9

Figure 3: Visual Basic program sample (VBDemo)

The Visual Basic program sample (VBDemo) allow the user to:

• Move an axis (servo or stepper)
• Monitor the actual, target, and optimal positions of an axis
• Monitor axis I/O (Limits +/-, Home, Index, an Amplifier Enable)
• Define or change move parameters (Maximum acceleration/deceleration)
• Define or change the servo PID parameters

Introduction

1

Delphi Programming Introduction
Included with each of the Delphi program sample (PasDemo) is a read me file (readme.txt) that
describes how to build the sample program. The following text was reprinted from the readme.txt file
for the PasDemo program sample.

Contents
========

- About the sample
- How to build the sample
- Contacting technical support

About the sample
================
This sample demonstrates a simple user interface to one axis of a motion controller. The user may program moves
and interact with the motion in a number of ways (stop it, abort it, etc.). Sample forms demonstrate how to configure
servo or stepper motor axes. A number of the new MCDialog functions (such as a full-featured, ready-to-run
axis configuration dialog) are also demonstrated.

How to build the sample
=======================
To build the samples you will need to create a new project or use the Delphi project files included with the sample
(Pdemo.dpr for 16-bit, Pdemo32.dpr for 32-bit). Include the following files if you create your
own project:

 About.pas
 Global.pas
 PasDemo.pas
 Servo.pas
 Stepper.pas

For 16-bit projects you will also need:

 ..\mcapi.pas
 ..\mcdlg.pas

For 32-bit projects you will also need:

 ..\mcapi32.pas
 ..\mcdlg32.pas
PMC Motion Control 0

Introduction

Motion Control Application Programming Interface 11

Figure 4: Delphi program sample (PasDemo)

The Delphi program sample (PasDemo) allow the user to:

• Move an axis (servo or stepper)
• Monitor the actual, target, and optimal positions of an axis
• Monitor axis I/O (Limits +/-, Home, Index, an Amplifier Enable)
• Define or change move parameters (Maximum velocity, acceleration/deceleration)
• Define or change the servo PID parameters

Introduction

PMC Motion Control 12

LabVIEW Programming Introduction
PMC’s LabVIEW Virtual Instrument Library includes online help with a Getting Started guide.

Introduction

Motion Control Application Programming Interface 13

MCSpy
MCSpy is a debugging tool for application programs that use PMC's Motion Control API (MCAPI)
programming interface. MCSpy captures commands and replies sent between the application
program and the motion control card. These commands are displayed in Motion Control Command
Language (MCCL), which is the language the MCAPI uses to communicate with PMC's Motion

The MCSpy Trigger Setup dialog
allows the user to terminate the
capturing of commands / replies
data after the trigger event.

Here the command /reply capture
will end 10 commands after a
move relative (MR) command
has been issued to axis #1.

The Trigger Event (1MR1000) is
highlighted in green.

Introduction

14

MCAPI Online Help
Complete and up to date online help for PMC’s Motion Control Application Programming Interface
(MCAPI) at PMC's website www.pmccorp.com. Help documents include; installation and basic usage,
complete function call reference and example code, high level dialog descriptions, and LabVIEW VI
Library reference.

com
MCA
grou
func
Rep
exam
Basi

The online MCAPI Users Guide
describes the basics of PMC’s MCAPI.
This should be the ‘first stop’ for any
questions about the MCAPI.

The online MCAPI Reference provides a
plete listing and description of all
PI functions. Function calls are
ped both alphabetically and by
tional groups (Motion, Setup,
orting, Gearing, etc...). Source code

ples are provided for C++, Visual
c, and Delphi.
PMC Motion Control

http://www.pmccorp.com/

Introduction

Motion Co

ntrol Application Programming Interface
The online MCAPI Common Dialog
Reference describes the high level
MCAPI Dialog functions. These
operations include: Save and Restore
axis configurations (PID and Trajectory),
Windows Class Position and Status
displays, Scaling, and I/O configuration.

The online Motion
Reference provid
assistance and de
available VI’s.
 VI Library
es installation
tailed descriptions of
15

Low Level Communication

PMC Motion Control 16

Chapter Contents

• Win Control and MCCL Commands

Motion Control Application Programming Interface

Low Level Communication

At its lowest level the operation of the motion control card is similar to that of a micr
a predefined instruction set of operations which it can perform. This instruction set,
Control Command Language (MCCL), consists of over 200 operations which includ
conditional (if/then), mathematical, and I/O operations.

The typical PC based application will never call these low level commands directly.
programmer will call high level language MCAPI functions (in C++, Visual Basic, De
which pass the appropriate native, board-level MCCL command(s) through the use
device driver. However, an understanding of how the low level commands work allo
command of the higher level language MCAPI functions.

Win Control and MCCL Commands
The Win Control utility allows the user to communicate with the motion control card
language (MCCL). This utility communicates with the controller via the PCI ASCII in
commands are described in detail in the Motion Control Command Language (M
Manual specific to your controller.

MCCL commands are two character alphanumeric mnemonics built with two key ch
description of the operation (i.e.. "MR" for Move Relative). When the command, follo
return, is received by the motion control card, it will be executed. The following grap
result of executing the VE command. This command causes the motion control card
firmware version and the amount of installed memory.

Chapter

2

17

oprocessor, it has
known as Motion
e motion, setup,

Instead, the
lphi, or LabVIEW)
of the MCAPI
ws better

in its native
terface. All MCCL

CCL) Reference

aracters from the
wed by a carriage
hic shows the
 to report

Low Level Communication

PMC Motion Control 18

All axis related MCCL commands will be preceded by an axis number, identifying to which axis the
operation is intended. The following graphic shows the result of issuing the Tell Position (aTP)
command to axis number one.

Note that each character typed at the keyboard should be echoed to your display. If you enter an
illegal character or an illegal series of valid characters, the motion control card will return a question
mark character, followed by an error code. The MCCL Error Code listing can be found in the Motion
Control Command Language (MCCL) Reference Manual specific to your controller. On receiving
this response, you should re-enter the entire command/command string. If you make a mistake in
typing, the backspace can be used to correct it. The motion control card will not begin to execute a
command until a carriage return is received.

Once you are satisfied that the communication link is correctly conveying your commands and
responses, you are ready to check the motor interface. When the motion control card is powered up
or reset, each motor control module is automatically set to the "motor off" state. In this state, there
should be no drive current to the motors. For servos it is possible for a small offset voltage to be
present. This is usually too small to cause any motion, but some systems have so little friction or such
high amplifier gain, that a few millivolts can cause them to drift in an objectionable manner. If this is

Low Level Communication

Motion Control Application Programming Interface 19

the case, the "null" voltage can be minimized by adjusting the offset adjustment potentiometer on the
respective servo control module.

Before a motor can be successfully commanded to move certain parameters must be set by issuing
commands to the motion control card. These include; PID filter gains, trajectory parameters
(maximum velocity, acceleration, and deceleration), allowable following error, configuring motion limits
(hard and soft).

At this point the user should refer to the Motion Control chapter and the sections that deal with Theory
of Motion Control, Servo Basics and Stepper Basics in the appropriate User’s Manual for the motion
control card you are using. There the you will find more specific information for each type of motor,
including which parameters must be set before a motor should be turned on and how to check the
status of the axis.

Assuming that all of the required motor parameters have been defined, the axis is enabled with the
Motor oN (aMN) command. Parameter ‘a’ of the Motor oN command allows the user to turn on a
specific axis or all axes. To enable all, enter the Motor oN command with parameter ‘a’ = 0. To enable
a single axis issue the Motor oN command where ‘a’ = the axis number to be enabled.

After turning a particular axis on, it should hold steady at one position without moving. The Tell Target
(aTT) and Tell Position (aTP) commands should report the same number. There are several
commands which are used to begin motion, including Move Absolute (MA) and Move Relative (MR).
To move axis 2 by 1000 encoder counts, enter 2MR1000 and a carriage return. If the axis is in the
"Motor oN" state, it should move in the direction defined as positive for that axis. To move back to the
previous position enter 2MR-1000 and a carriage return.

With the any of PMC’s motion controllers, it is possible to group together several commands. This is
not only useful for defining a complex motion which can be repeated by a single keystroke, but is also
useful for synchronizing multiple motions. To group commands together, simply place a comma
between each command, pressing the return key only after the last command.

A repeat cycle can be set up with the following compound command:

2MR1000,WS0.5,MR-1000,WS0.5,RP6 <return>

This command string will cause axis 2 to move from position 1000 to position –1000 7 times. The
RePeat (RP) command at the end causes the previous command to be repeated 6 additional times.
The Wait for Stop (WS) commands are required so that the motion will be completed (trajectory
complete) before the return motion is started. The number 0.5 following the WS command specifies
the number of seconds to wait after the axis has ceased motion to allow some time for the mechanical
components to come to rest and reduce the stresses on them that could occur if the motion were
reversed instantaneously. Notice that the axis number need be specified only once on a given
command line.

A more complex cycle could be set up involving multiple axes. In this case, the axis that a command
acts on is assumed to be the last one specified in the command string. Whenever a new command
string is entered, the axis is assumed to be 0 (all) until one is specified.

Entering the following command:

2MR1000,3MR-500,0WS0.3,2MR1000,3MR500,0WS0.3,RP4 <return>

Low Level Communication

PMC Motion Control 20

will cause axis 2 to move in the positive direction and axis 3 to move in the negative direction. When
both axes have stopped moving, the WS command will cause a 0.3 second delay after which the
remainder of the command line will be executed.

After going through this complex motion 5 times, it can be repeated another 5 times by simply
entering a return character. All command strings are retained by the controller until some character
other than a return is entered. This comes in handy for observing the position display during a move.
If you enter:

1MR1000 <return>
1TP <return>
(return)
(return)
(return)
(return)

The motion control card will respond with a succession of numbers indicating the position of the axis
at that time. Many terminals have an "auto-repeat" feature which allows you to track the position of the
axis by simply holding down the return key.

Another way to monitor the progress of a movement is to use the RePeat command without a value. If
you enter:

1MR10000 <return>
1TP,RP <return>

The position will be displayed continuously. These position reports will continue until stopped by the
operator pressing the Escape key.

While the motion control card is executing commands, it will ignore all alphanumeric keys that are
pressed. The user can abort a currently executing command or string by pressing the escape key. If
the user wishes only to pause the execution of commands, the user should press the space bar. In
order to restart command execution press the space bar again. If after pausing command execution,
the user decides to abort execution, this can be done by pressing the escape key.

Low Level Communication

Motion Control Application Programming Interface 21

Function Library Introduction

PMC Motion Control 22

Chapter Contents

• Function Listing Introduction

• Motion Control API Function Quick Reference Tables

Motion Control Application Programming Interface

Function Library Introduction

The Motion Control Application Programming Interface (MCAPI) implements a pow
level functions and data structures for programming motion control applications. A
has been written for the latest version of the MCAPI software, there are still remna
functions. The older functions will still work with this version, however, we recomm
functions be migrated to when feasible.

The API is backwards compatible, and applications may use the most current vers
for products of varying generations. Care must be taken to note the exceptions of
older products might not be capable of utilizing, as well as older functions may no
controllers. Please observe the compatibility section in each function.

Function Listing Introduction
An example of a function listing is shown below. What follows the example is a br
what should be found in each of the respective headings.

MCEnableAxis

MCEnableAxis() turns the specified axis on or off.

void MCEnableAxis(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 short int state // Boolean flag for on/off s
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen

Chapter

3

23

erful set of high
lthough this manual
nts of deprecated
end that the newer

ion of the MCAPI
 newer features that
t be relevant to new

ief description of

etting of axis

().

Function Library Introduction

PMC Motion Control 24

axis Axis number to turn on or off.
state Flag to indicate if this axis should be turned on or turned off:

Value Description
TRUE Turn on axis.
FALSE Turn off axis.

Returns
This function does not return a value.

Comments
This function does much more than just enable or disable axis. However, as the name implies, the
selected axis(axes) will be turned on or off depending upon the value of state. Note that an axis must
be enabled before any motion will take place. Issuing this command with axis set to MC_ALL_AXES
will enable or disable all axes installed on hCtlr.

i

state will accept any non-zero value as TRUE, and will work correctly
with most programming languages, including those that define TRUE as
a non-zero value other than one (one is the Windows default value for
TRUE).

If axis is off and then turned on, the following events will occur.

• The target and optimal positions are set to the present encoder position.
• The offset from MCFindEdge(), MCFindIndex() or MCIndexArm() is applied.
• The data passed by MCSetScale() are applied.
• MC_STAT_AMP_ENABLE will be set.
• MC_STAT_AMP_FAULT, if present, will be cleared.
• MC_STAT_ERROR, if present, will be cleared.
• MC_STAT_FOLLOWING, if present, will be cleared.
• MC_STAT_MLIM_TRIP, if present, will be cleared.
• MC_STAT_MSOFT_TRIP, if present, will be cleared.
• MC_STAT_PLIM_TRIP, if present, will be cleared.
• MC_STAT_PSOFT_TRIP, if present, will be cleared.

If axis is on and then turned on again, the following events will occur.

• The offset from MCFindEdge(), MCFindIndex() or MCIndexArm() is applied.
• The data passed by MCSetScale() are applied.

!

Calling this function to enable or disable an axis while it is in motion is
not recommended. However, should it be done, axis will cease the
current motion profile, and MC_STAT_AT_TARGET will be set.

Compatibility
There are no compatibility issues with this function.

Function Library Introduction

Motion Control Application Programming Interface 25

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableAxis(hCtlr: HCTRLR; axis: Word; state: SmallInt); stdcall;
VB: Sub MCEnableAxis (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer)
LabVIEW:

MCCL Reference
MF, MN

See Also
MCAbort(), MCStop()

Each function definition begins with a brief introductory description that explains what the function is
used for.

Following the description, a grey box contains the C/C++ function prototype. Here each of the
parameters is listed with its type and a short description for a quick overview.

Parameters then further explains in more detail what each of the parameters means. Here a table, if
applicable, will be included listing the allowable values for the preceding parameter. When values are
listed, they will be given as self documenting constants. A complete listing of the self documenting
constants can be found in Appendix B.

Returns describes what the function will return and explains what those values mean. The self
documenting constants will be referenced when possible.

Comments describes the function in even more detail. Explanation will range from why the function is
used, to how it is used, where it could cause problems and potential alternatives.

Occasionally, the following two boxes can be found in the comments section and contain relevant
information that needs to be emphasized. The first box aids in the understanding of the function. The
second box warns of scenarios that will more than likely cause problems.

i
Information to assist the programmer.

!
Warning to help the programmer avoid potential problems.

Function Library Introduction

PMC Motion Control 26

Compatibility gives information as to which motion control cards or modules will not work with the
function. Generally, only exceptions will be listed, as to provide a more concise listing.

Requirements lists which header files, library, and the MCAPI version that must be used. Obviously,
only the header file which pertains to the development environment must be used. The version of the
MCAPI that is referenced is the earliest version that supports the function, so any version higher that
is used will not cause a problem.

Prototypes lists the function prototypes for Delphi/Pascal, Visual Basic, and LabVIEW. As shown,
each of the parameters are listed with their type. Not all functions will be available in all environments
and will be noted as “Not Supported” when exceptions exist.

MCCL Reference lists the MCCL level commands that comprise the high level function. More
information can be found in the Motion Control Command Language (MCCL) Reference Manual
specific to your controller on how each of these commands works. Not all functions will be comprised
of speaking to the board with MCCL commands, in which cases there will be no equivalent
commands.

See Also lists related functions. Some of these functions may be alternatives to be used, while others
may be the corresponding get function to a set function. Yet there will be other functions that must be
used as in tandem with another function.

Motion Control API Function Quick Reference Tables
The following tables show how functions have been classified categorically. Although several
functions could quite logically be listed in multiple categories, each function will appear in only one
chapter, which is noted by the table’s heading. The organization follows closely to prior manuals and
the online help. The grouping of functions in this manner gives a new user of the MCAPI software a
chance to find similar functions in one place. For a handy quick reference printout, please refer to the
MCAPI Quick Reference Card, which can be found on our website (www.pmccorp.com) under
support and then Motion Control API. The quick reference card lists all of the following functions, as
well as the data structures and the constants, in a convenient, alphabetical listing.

Data Structures
Function Description
MCAXISCONFIG provides basic information about the type and configuration of a single

motor axis
MCCOMMUTATION commutation parameters for an axis
MCCONTOUR contains contouring parameters for an axis
MCFILTEREX contains the PID filter parameters for a closed-loop axis
MCJOG defines jog parameters for an axis
MCMOTIONEX defines basic motion parameters for an axis

MCPARAMEX provides basic information about the type and configuration of a
controller, including the number of axes and modules supported

MCSCALE defines basic scaling parameters for an axis. structure
MCSTATUSEX defines basic status word information for an axis

http://www.pmccorp.com/

Function Library Introduction

Motion Control Application Programming Interface 27

Parameter Setup Functions
Function Description
MCConfigureCompare() configure high-speed position compare
MCSetAcceleration() set Acceleration for an axis
MCSetAuxEncPos() set the position of the auxiliary encoder
MCSetCommutation() configure commutation
MCSetContourConfig() set contour configuration settings
MCSetDeceleration() set deceleration for an axis
MCSetDigitalFilter() configure digital filter
MCSetFilterConfigEx() set the PID filter parameters
MCSetGain() set the proportional gain for a servo axis
MCSetJogConfig() set jogging configuration for axis
MCSetLimits() configure hard and soft limits for an axis
MCSetModuleInputMode() configure stepper module input mode
MCSetModuleOutputMode() define the output type
MCSetMotionConfigEx() set motion parameters (velocity, accel, step rate, dead band, etc...)
MCSetOperatingMode() set the mode of motion (position, velocity, contour, torque)
MCSetPosition() set the current position of an axis
MCSetProfile() select a motion profile (trapezoidal, s-curve, parabolic)
MCSetRegister() set general purpose user register
MCSetScale() set the scaling factors for an axis
MCSetServoOutputPhase() select normal or reverse phasing for a servo axis
MCSetTorque() set output voltage limit for servo
MCSetVectorVelocity() set the vector velocity of a contoured move
MCSetVelocity() set the maximum velocity for a one axis move

Motion Functions
Function Description
MCAbort() abort the current motion for an axis
MCArcCenter() sets the center point of an arc
MCArcEndAngle() defines the ending angle of an arc
MCArcRadius() defines the radius of an arc
MCCaptureData() initiate real time capture of position and servo loop data
MCContourDistance() set the path distance for user defined contour motion
MCDirection() set travel direction for velocity mode move
MCEdgeArm() arm edge input for position capture
MCEnableAxis() turn axis on or off
MCEnableBacklash() enable backlash compensation
MCEnableCapture() enable position capture
MCEnableCompare() enable position compare
MCEnableDigitalFilter() enable digital filter
MCEnableEncoderFault() enable encoder fault detection
MCEnableGearing() enable/disable gearing
MCEnableJog () enable/disable jogging for axis
MCEnableSync() enables cubic spline motion, synchronizes contour motion
MCFindAuxEncIdx() initialize the auxiliary encoder at the location of the index
MCFindEdge() initialize a stepper motor at the location of the home input
MCFindIndex() initialize a servo motor at the location of the encoder index input
MCGoEx() start a velocity mode motion, begin cubic spline motion sequence
MCGoHome() move axis to absolute position 0
MCIndexArm() arms encoder index capture
MCInterruptOnPosition() set breakpoint reached flag of status word
MCLearnPoint() store position in point memory
MCMoveAbsolute() move axis to absolute position
MCMoveRelative() move axis to relative position
MCMoveToPoint() move to position stored in point memory
MCReset() perform a software reset of the controller
MCStop() stop motion
MCWait() wait for a variable time period
MCWaitForEdge() wait for the home input
MCWaitForIndex() wait for the index input to go true.
MCWaitForPosition() wait for axis to reach absolute position
MCWaitForRelative() wait for axis to reach relative position
MCWaitForStop() wait for the calculated trajectory to be complete
MCWaitForTarget() wait for axis to reach target position

Function Library Introduction

PMC Motion Control 28

Reporting Functions
Function Description
MCDecodeStatusEx() axis status word decoding
MCEnableInterrupt() enable/disable PCI host interrupts
MCErrorNotify() enables/disables error messages for application window
MCGetAccelerationEx() get current programmed acceleration for axis
MCGetAuxEncIdxEx() get last observed position of auxiliary encoder index pulse
MCGetAuxEncPosEx() get current position of auxiliary encoder
MCGetAxisConfiguration() get the axis type, location, and capabilities
MCGetBreakpointEx() get the most recent breakpoint position
MCGetCaptureData() retrieve captured axis data (current position, optimal position, error)
MCGetContourConfig() get contour configuration settings
MCGetContouringCount() get current contour count
MCGetCount() get count parameter of various modes
MCGetDecelerationEx() get current programmed deceleration for axis
MCGetDigitalFilter() get digital filter settings
MCGetError() returns the most recent controller error
MCGetFilterConfigEx() get the PID parameters
MCGetFollowingError() get the current programmed following error
MCGetGain() get the current proportional gain setting for an axis
MCGetIndexEx() get the last observed position of the primary encoder index pulse
MCGetInstalledModules() Enumerates the type of DCX modules
MCGetJogConfig() get jogging configuration for axis
MCGetLimits() get current hard and soft limit settings
MCGetModuleInputMode() get the current input mode for a stepper module
MCGetMotionConfigEx() get motion configuration
MCGetOperatingMode() get the current operating mode for a motor module
MCGetOptimalEx() get the current optimal position of an axis
MCGetPositionEx() get the current position of an axis
MCGetProfile() get the current profile type (trapezoidal, s-curve, parabolic)
MCGetRegister() get the contents of a general purpose register
MCGetScale() get the current programmed scaling factors for an axis
MCGetServoOutputPhase() get the output phase (normal or reversed) of a servo
MCGetStatusEx() get the axis status word
MCGetTargetEx() get the current target of an axis
MCGetTorque() get the current torque setting of an axis
MCGetVectorVelocity() get the current programmed vector velocity of an axis
MCGetVelocityActual() get the current actual velocity of an axis
MCGetVelocityEx() get the current programmed velocity of an axis
MCIsAtTarget() is axis at target position?
MCIsDigitalFilter() is digital filter enabled?
MCIsEdgeFound() has edge input gone true?
MCIsIndexFound() has index pulse been found?
MCIsStopped() is axis stopped?
MCTranslateErrorEx() translate numeric error code to text message

I/O Functions
Function Description
MCConfigureDigitalIO() configure digital I/O channels (input, output, high true, low true)
MCEnableDigitalIO() set the state of a digital output channel
MCGetAnalogEx() read analog input channel value
MCGetDigitalIO() get the state of a digital input channel
MCGetDigitalIOConfig() get digital I/O channel configuration
MCSetAnalogEx() set the value of an analog output
MCWaitForDigitalIO() wait for digital I/O channel to reach a specific state

Macro’s and Multi-Tasking Functions
Function Description
MCCancelTask() cancel a background task
MCMacroCall() call a MCCL macro
MCRepeat() inserts a repeat command into a macro or task sequence

Function Library Introduction

Motion Control Application Programming Interface 29

MCAPI Driver Functions
Function Description
MCBlockBegin() begin a compound commands (contour motion, macro’s, multi-tasking)
MCBlockEnd() end a compound commands (contour motion, macro’s, multi-tasking)
MCClose() close a controller (free handle)
MCGetConfigurationEx() obtain PMC controller hardware configuration
MCGetVersion() get the version of the DLL and device driver
MCOpen() open a controller (get handle)
MCReopen() re-opens existing controller handle for a new mode
MCSetTimeoutEx() set a timeout value for controller

OEM Low Level Functions
Function Description
pmccmd() send a binary command
pmccmdex() send a binary command
pmcgetc() get ASCII character from controller
pmcgetramex() read directly from controller memory
pmcgets() get ASCII string from controller
pmcputc() write ASCII character to controller
pmcputramex() write directly to controller memory
pmcputs() write ASCII string to controller
pmcrdy() is the controller ready to accept a binary command
pmcrpy() read binary reply from controller
pmcrpyex() read binary reply from controller

Motion Dialog Functions
Function Description
MCDLG_AboutBox() display a simple About dialog box
MCDLG_CommandFileExt() get the file extension for MCCL command files
MCDLG_ConfigureAxis() display a servo or stepper axis setup dialog
MCDLG_ControllerDescEx() get a descriptive string for a motion controller type
MCDLG_ControllerInfo() get configuration information about a motion controller
MCDLG_DownloadFile() download an ASCII command file to a motion controller
MCDLG_Initialize() must be called before any other MCDLG functions or classes
MCDLG_ListControllers() get the types of motion controllers installed
MCDLG_ModuleDescEx() get a descriptive string for a module
MCDLG_RestoreAxis() restore the settings of an axis to a previously saved state
MCDLG_RestoreDigitalIO() restores the settings of digital I/O channels to previously saved states
MCDLG_SaveAxis() save the settings of an axis to an initialization file for later use
MCDLG_SaveDigitalIO() save the settings of digital I/O channels to an initialization file
MCDLG_Scaling() display a scaling setup dialog and allow changes to scaling parameters.
MCDLG_SelectController() display a list of installed controllers and allow selection of a controller

Data Structures

PMC Motion Control 30

Chapter Contents

• MSAXISCONFIG
• MCCOMMUTATION
• MCCONTOUR
• MCFILTEREX
• MCJOG
• MCMOTIONEX
• MCPARAMEX
• MCSCALE
• MCSTATUSEX

Motion Control Application Programming Interface

Data Structures

The following data structures allow the programmer to pass data to and from the co
and efficient manner. Structures are the only way, short of using MCCL, to set and g
parameters to and from the motion control card. Functions listed in the "see also" s
these data structures. The chapters on Parameter Setup Functions and Reporting
the majority of the functions that require these structures.

MCAXISCONFIG
MCAXISCONFIG structure provides basic information about the type and configura
motor axis.

typedef struct {
 long int cbSize;
 long int ModuleType;
 long int ModuleLocation;
 long int MotorType;
 long int CaptureModes;
 long int CapturePoints;
 long int CaptureAndCompare;
 double HighRate;
 double MediumRate;
 double LowRate;
 double HighStepMin;
 double HighStepMax;
 double MediumStepMin;
 double MediumStepMax;
 double LowStepMin;
 double LowStepMax;
 long int AuxEncoder;

Chapter

4

31

ntroller in a simple
et certain

ection rely on
Functions contain

tion of a single

Data Structures

PMC Motion Control 32

} MCAXISCONFIG;

Members
cbSize Size of the MCAXISCONFIG data structure, in bytes.
ModuleType Array of OEM axis type specifiers, one per axis:

Value Description
MC100 Identifies a DC Servo axis with analog signal

output.
MC110 Identifies a DC Servo axis with motor output.
MC150 Identifies a stepper motor axis.
MC160 Identifies a stepper motor with encoder axis.
MC200 Identifies an Advanced Servo axis with analog

signal output.
MC210 Identifies an Advanced Servo axis with PWM motor

output.
MC260 Identifies an Advanced Stepper axis.
MC300 Identifies a DSP-Based Servo axis with analog

signal output.
MC302 Identifies a DSP-Based Dual Servo axes with dual

analog signal outputs.
MC320 Identifies a DSP-Based Brushless AC Servo axis

with dual analog signal outputs.
MC360 Identifies a DSP-Based Stepper axis.
MC362 Identifies a DSP-Based Dual Stepper axes.
MF300 Identifies this axis as an RS-232 communications

module. This module is not normally used with a
controller installed in a PC adapter slot.

MF310 Identifies this axis as an IEEE-488 (GPIB)
communications module. This module is not
normally used with a controller installed in a PC
adapter slot.

MC400 Identifies this axis as providing additional digital I/O
channels (16).

MC500 Identifies this axis as providing additional analog
channels.

DC2SERVO Identifies the dedicated servo output of a DC2
controller.

DC2STEPPER Identifies the optional stepper output of a DC2
controller.

MotorType Provides a simplified type identifier for the motor type (bit flags):

Value Description
MC_TYPE_SERVO Axis is a servo motor.
MC_TYPE_STEPPER Axis is a stepper motor.

Data Structures

Motion Control Application Programming Interface 33

CaptureModes Supported data capture modes for this axis (bit flags). One or more of the

following values may be OR'ed together:

Value Description
MC_CAPTURE_ACTUAL Axis can capture actual position data.
MC_CAPTURE_ADVANCED Axis supports the Delay and Period settings of

MCCaptureData()
MC_CAPTURE_ERROR Axis can capture error position data.
MC_CAPTURE_OPTIMAL Axis can capture optimal position data.
MCCAPTURE_TORQUE Axis can capture torque data.

CapturePoints Maximum number of data points that may be captured.
CaptureAndCompare High speed position capture and compare:

Value Description
TRUE Feature is supported.
FALSE Feature isn’t supported.

HighRate Servo update period, in seconds, for High Speed mode (valid only for servo

modules).
MediumRate Servo update period, in seconds, for Medium Speed mode (valid only for servo

modules).
LowRate Servo update period, in seconds, for Low Speed mode (valid only for servo

modules).
HighStepMin Minimum step rate for High Speed mode (valid only for stepper modules).
HighStepMax Maximum step rate for High Speed mode (valid only for stepper modules).

MediumStepMin Minimum step rate for Medium Speed mode (valid only for stepper modules).
MediumStepMax Maximum step rate for Medium Speed mode (valid only for stepper modules).
LowStepMin Minimum step rate for Low Speed mode (valid only for stepper modules).
LowStepMax Maximum step rate for Low Speed mode (valid only for stepper modules).
AuxEncoder Auxiliary encoder support (added in rev. 3.4 of MCAPI).

Comments
Unlike the other MCAPI structures, the values in this structure are fixed by the hardware configuration
and may not be changed.

Before you call MCGetAxisConfiguration() you must set the cbSize member to the size of this data
structure. C/C++ programmers may use sizeof() , Visual Basic and Delphi programmers will find
current sizes for these data structures in the appropriate MCAPI.XXX header file.

Visual Basic users please note that the value used for TRUE in the MCAXISCONFIG structure is the
Windows standard of 1, not the Basic value of -1. Direct comparisons, such as:

 If (Param.CanDoScaling = True) Then

will fail. To get correct results use the constant WinTrue, declared in the MCAPI.BAS include file:

Data Structures

PMC Motion Control 34

 If (Param.CanDoScaling = WinTrue) Then

Compatibility
There are no compatibility issues with this data structure.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 3.0 or higher

See Also
MCGetAxisConfiguration()

MCCOMMUTATION
MCCOMMUTATION commutation parameters for an axis.

typedef struct {
 long int cbSize;
 double PhaseA;
 double PhaseB;
 long int Divisor;
 long int PreScale;
 long int Repeat;
} MCCOMMUTATION;

Members
cbSize Size of the MCCOMMUTATION data structure, in bytes.
PhaseA Phase A setting, in degrees.
PhaseB Phase B setting, in degrees.
Divisor Commutation divisor.
PreScale Commutation prescale factor.
Repeat Commutation repeat count.

Comments
Setting Divisor, PreScale, or Repeat to negative one (-1) will cause MCSetCommutation() to skip
setting that value.

Compatibility
The DC2, DCX-PC100, DCX-PCI100, DCX-AT100, DCX-AT200, and MFX-PCI1000 controllers do not
support onboard commutation. The MC300, MC302, MC360, and the MC362 modules do not support
onboard commutation.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 3.2 or higher

See Also
MCSetCommutation()

Data Structures

Motion Control Application Programming Interface 35

MCCONTOUR
MCCONTOUR structure contains contouring parameters for an axis.

typedef struct {
 double VectorAccel;
 double VectorDecel;
 double VectorVelocity;
 double VelocityOverride;
} MCCONTOUR;

Members
VectorAccel Acceleration value for motion along a contour path.
VectorDecel Deceleration value for motion along a contour path.
VectorVelocity Maximum velocity for motion along a contour path.
VelocityOverride Proportional scaling factor for vector velocity, may be changed while axes are in

motion.

Comments
The vector velocity parameter must be set prior to starting a contour path motion and can not be
changed once the motion has begun. To change velocity on the fly, set the velocity override to a value
other than 1.0. This value is used to proportionally scale the velocities.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100
controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 1.0 or higher

See Also
MCGetContourConfig(), MCSetContourConfig()

Data Structures

PMC Motion Control 36

MCFILTEREX
MCFILTEREX structure contains the PID filter parameters for a servo axis, or the closed-loop
parameters for a stepper axis operating in closed-loop mode. Please see the online MCAPI Reference
for the MCFILTER structure.

typedef struct {
 long int cbSize;
 double Gain;
 double IntegralGain;
 double IntegrationLimit;
 long int IntegralOption;
 double DerivativeGain;
 double DerSamplePeriod;
 double FollowingError;
 double VelocityGain;
 double AccelGain;
 double DecelGain;
 double EncoderScaling;
 long UpdateRate;
} MCFILTEREX;

Members
cbSize Size of the MCFILTEREX data structure, in bytes.
Gain Proportional Gain setting of the PID loop.
IntegralGain Gain setting for the integral term of the PID loop.
IntegrationLimit Limit value for the integral term, limits the power the integral gain can use to

reduce error to zero.
IntegralOption Operating mode for the integral term of the PID loop:

Value Description
MC_INT_NORMAL Selects the normal (always on) operation of the

integral term.
MC_INT_FREEZE Freeze the integral term while moving, re-enable

after move is complete.
MC_INT_ZERO Zero and freeze the integral term while moving, re-

enable after move is complete.

DerivativeGain Gain setting for the derivative term of the PID loop.
DerSamplePeriod Time interval, in seconds, between derivative samples.
FollowingError Maximum position error, default units are encoder counts.
VelocityGain Gain setting for the feed-forward gain of the PID loop, volts per encoder count

per second.
AccelGain Feed-forward acceleration gain setting.
DecelGain Feed-forward deceleration gain setting.
EncoderScaling Encoder counts per step scaling factor for closed-loop steppers (ignored for

servos).

Data Structures

Motion Control Application Programming Interface 37

UpdateRate This parameter is used to set the feedback loop rate for servo motors and
closed-loop steppers, or the maximum stepper pulse rate for open-loop stepper
motor axes:

Value Description
MC_RATE_UNKNOWN Returned if MCAPI cannot determine the current

rate.
MC_RATE_LOW Selects the normal (always on) operation of the

integral term.
MC_RATE_MEDIUM Freeze the integral term while moving, re-enable

after move is complete.
MC_RATE_HIGH Zero and freeze the integral term while moving, re-

enable after move is complete.

Comments
The servo tuning utility program offers a convenient, interactive format for determining appropriate
filter settings for your servo/amplifier or closed-loop stepper.

When used with the DCX-PC100 and MC2xx series modules it is not always possible to read the
UpdateRate parameter from the motion controller (requires recent firmware). If the MCAPI cannot
read back this parameter it will return the value MC_RATE_UNKNOWN. If UpdateRate is set to
MC_RATE_UNKNOWN and a call is made to MCSetMotionConfigEx() the controller's UpdateRate
value will not be changed.

Compatibility
VelocityGain is not supported on the DCX-PCI100 controller, MC100, MC110 modules, or closed-
loop steppers. AccelGain is not supported on the DC2, DCX-PC100, or DCX-PCI100 controllers.
DecelGain is not supported on the DC2, DCX-PC100, or DCX-PCI100 controllers. EncoderScaling
is not supported on servos. UpdateRate is not supported on the DC2 or DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 3.2 or higher

See Also
MCGetFilterConfigEx(), MCSetFilterConfigEx()

Data Structures

PMC Motion Control 38

MCJOG
MCJOG structure defines jog parameters for an axis.

typedef struct {
 double Acceleration;
 double MinVelocity;
 double Deadband;
 double Gain;
 double Offset;
} MCJOG;

Members
Acceleration Acceleration rate for use with jogging.
MinVelocity Stepper motor jog minimum velocity (this parameter has no effect for servo

motors).
Deadband Deadband specifies a threshold value about the center position of the joystick

below which motion of the joystick will not effect motor position. This prevents
undesirable drifting of the motor due to mechanical and electrical variations in
the joystick.

Gain Gain value for jogging. This parameter is effectively multiplied by the current
joystick position to produce a velocity. To increase the maximum velocity, set
Gain to a larger value. To reverse the direction of motor travel with respect to
joystick direction Gain may be set to a negative value.

Offset Specifies the center position of the joystick, in volts.

Comments
The jog settings determine the performance of an axis when the jogging inputs are active and jogging
has been enabled.

Compatibility
The DCX-PCI controllers, MFX-PCI1000 controllers, DC2 stepper axes, MC150, and MC160 modules
do not support jogging.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 1.0 or higher

See Also
MCEnableJog(), MCGetJogConfig(), MCSetJogConfig()

Data Structures

Motion Control Application Programming Interface 39

MCMOTIONEX
MCMOTIONEX structure defines basic motion parameters for an axis.

typedef struct {
 int cbSize;
 double Acceleration;
 double Deceleration;
 double Velocity;
 double MinVelocity;
 short int Direction;
 double Torque;
 double Deadband;
 double DeadbandDelay;
 short int StepSize;
 short int Current;
 WORD HardLimitMode;
 WORD SoftLimitMode;
 double SoftLimitLow;
 double SoftLimitHigh;
 short int EnableAmpFault;
} MCMOTIONEX;

Members
cbSize Size of the MCMOTIONEX data structure, in bytes.
Acceleration Acceleration rate for motion.
Deceleration Deceleration rate for motion.
Velocity Velocity for motion.
MinVelocity Stepper motor minimum velocity (this parameter has no effect for servo

motors).
Direction Sets the direction of travel for velocity mode operation. Note that the

interpretation of positive and negative will depend upon your hardware
configuration:

Value Description
MC_DIR_POSITIVE Selects the positive travel direction.
MC_DIR_NEGATIVE Selects the negative travel direction.

Torque Sets the maximum output torque level for servos. When a servo is operated in

torque mode this value represents the continuous output level. The default
output units are volts, but this may be scaled using the Constant member of
the MCSCALE structure.

Deadband Sets the position dead band value.
DeadbandDelay Time limit that an axis must remain within the dead band area to qualify as "in

range". If this value cannot be read back from the controller the Motion Control
API function MCGetMotionConfigEx() will set this value to -1.
MCSetMotionConfigEx() ignores this parameter if the value is equal to -1.

Data Structures

PMC Motion Control 40

StepSize Sets the step size output for stepper motor operation:

Value Description
MC_STEP_FULL Selects full step operation.
MC_STEP_HALF Selects half step operation.

Current Selects full or reduced current operation for stepper motors. Reduced current is

typically used with stepper motors when they are stopped in a single position
for an extended time to reduce motor heating.

Value Description
MC_CURRENT_FULL Selects full current (normal) operation.
MCCURRENT_HALF Selects half current (idle) operation.

HardLimitMode Enables hard (physical) limit switches and selects stopping mode. One or more

of the following values may be OR'ed together:

Value Description
MC_LIMIT_LOW Enables lower limit.
MC_LIMIT_HIGH Enables upper limit.
MC_LIMIT_ABRUPT Selects abrupt stopping mode when a limit is

encountered.
MCLIMIT_SMOOTH Selects smooth stopping mode when a limit is

encountered.
MCLIMIT_INVERT Inverts the polarity of the hardware limit switch

inputs. This value may not be used with soft limits.

SoftLimitMode Enables soft (software) limit switches and selects stopping mode. See the

description of HardLimitMode for details.
SoftLimitLow Sets "position" of low soft limit.
SoftLimitHigh Sets "position" of high soft limit.
EnableAmpFault Controls the amplifier fault input for servo motor axes:

Value Description
TRUE Enables amplifier fault input.
FALSE Disables amplifier fault input.

Comments
All of the basic motion parameters are stored in the MCMOTIONEX structure. Many of these
parameters also have their own Get/Set functions, to permit setting on the fly.

Compatibility
Acceleration is not supported on the DC2 stepper axes. Deceleration is not supported on the DCX-
PCI100 controller, DC2 stepper axes, MC100, MC110, MC150, or MC160 modules. MinVelocity is
not supported on the DCX-PCI100, DCX-PC100, or DC2 controllers. Torque is not supported on the
DCX-PCI100 controller, MC100, or MC110 modules. Deadband is not supported on the DCX-PC100
controller, DC2 stepper axes, MC150, MC160, MC260, MC360, and MC362 modules.
DeadbandDelay is not supported on the DCX-PC100 controller, DC2 stepper axes, MC150, MC160,

Data Structures

Motion Control Application Programming Interface 41

MC260, MC360 or MC362 modules. StepSize is not supported on the DC2 or DCX-PCI100
controllers. Current is not supported on the DC2 or DCX-PCI100 controllers. SoftLimitMode is not
supported on the DC2 or DCX-PC100 controllers. SoftLimitLow is not supported on the DC2 or DCX-
PC100 controllers. SoftLimitHigh is not supported on the DC2 or DCX-PC100 controllers.
EnableAmpFault is not supported on the DC2 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 1.0 or higher

See Also
MCGetMotionConfigEx(), MCSetMotionConfigEx()

MCPARAMEX
MCPARAMEX structure provides basic information about the type and configuration of a controller,
including the number of axes and modules supported.

typedef struct {
 int cbSize;
 int ID;
 int ControllerType;
 int NumberAxes;
 int MaximumAxes;
 int MaximumModules;
 int Precision;
 int DigitalIO
 int AnalogInput;
 int AnalogOutput;
 int PointStorage;
 int CanDoScaling;
 int CanDoContouring;
 int CanChangeProfile;
 int CanChangeRates;
 int SoftLimits;
 int MultiTasking;
 int AmpFault;
 double AnalogInpMin;
 double AnalogInpMax;
 long int AnalogInpRes;
 double AnalogOutMin;
 double AnalogInpMax;
 long int AnalogOutRes;
} MCPARAMEX;

Members
cbSize Size of the MCPARAMEX data structure, in bytes.
ID ID number given this controller during driver setup, permits easy translation of a

controller handle back to an ID.
ControllerType OEM controller type identifier. It can be one of the following values:

Data Structures

PMC Motion Control 42

Value Description
DCXPC100 DCX series PC100 controller.
DCXAT100 DCX series AT100 controller.
DCXAT200 DCX series AT200 controller.
DC2PC100 DC2 series controller.
DC2STN DC2 stand-alone series controller.
DCXAT300 DCX series AT300 controller.
DCXPCI300 DCX series PCI300 controller.
DCXPCI100 DCX series PCI100 controller.

NumberAxes Number of axes this controller is currently configured for.
MaximumAxes Maximum number of axes this controller supports.
MaximumModules Maximum number of modules this controller supports.
Precision Best numerical precision of controller:

Value Description
MC_TYPE_LONG 32 bit integer precision.
MC_TYPE_DOUBLE 64 bit floating point precision.

DigitalIO Contains the number of digital IO channels installed.
AnalogInput The number of installed analog input channels.
AnalogOutput The number of analog output channels.
PointStorage Number of learned points that may be stored using MCLearnPoint()
CanDoScaling Controller support for scaling (see MCSCALE structure) flag:

Value Description
TRUE Scaling is supported.
FALSE Scaling isn’t supported.

CanDoContouring Controller support for contouring (see MCCONTOUR structure) flag:

Value Description
TRUE Contouring is supported.
FALSE Contouring not supported.

CanChangeProfile Controller can change acceleration/deceleration profile::

Value Description
TRUE Profile change is supported.
FALSE Profile change not supported.

CanChangeRates Controller support for selectable rates (see MCFILTEREX structure) flag:

Value Description

Data Structures

Motion Control Application Programming Interface 43

Value Description
TRUE UpdateRate changing is supported.
FALSE UpdateRate changing isn’t supported.

SoftLimits Controller supports soft limits (see MCMOTIONEX structure) flag:

Value Description
TRUE Soft Limits are supported.
FALSE Soft Limits are not supported.

MultiTasking Controller supports multitasking flag:

Value Description
TRUE Multitasking is supported.
FALSE Multitasking is not supported.

AmpFault Controller supports amplifier fault flag:

Value Description
TRUE Amplifier fault input is supported.
FALSE Amplifier fault input is not supported.

AnalogInpMin Motherboard analog inputs minimum voltage (added in MCAPI ver. 3.4)
AnalogInpMax Motherboard analog inputs maximum voltage (added in MCAPI ver. 3.4)
AnalogInpRes Motherboard analog inputs resolution in bits (added in MCAPI ver. 3.4)
AnalogOutMin Motherboard analog outputs minimum voltage (added in MCAPI ver. 3.4)
AnalogOutMax Motherboard analog outputs maximum voltage (added in MCAPI ver. 3.4)
AnalogOutRes Motherboard analog outputs resolution in bits (added in MCAPI ver. 3.4)

Comments
Unlike the other MCAPI structures, the values in this structure are fixed by the hardware configuration
and may not be changed. The axis type information that existed in the old MCPARAM structure may
now be found in the MCAXISCONFIG structure.

Before you call MCGetConfigurationEx() you must set the cbSize member to the size of this data
structure. C/C++ programmers may use sizeof(), Visual Basic and Delphi programmers will find
current sizes for these data structures in the appropriate MCAPI.XXX header file.

Visual Basic users please note that the value used for TRUE in the MCPARAMEX structure is the
Windows standard of 1, not the Basic value of -1. Direct comparisons, such as:

 If (Param.CanDoScaling = True) Then

will fail. To get correct results use the constant WinTrue, declared in the MCAPI.BAS include file:

 If (Param.CanDoScaling = WinTrue) Then

Data Structures

PMC Motion Control 44

Compatibility
There are no compatibility issues with this data structure.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 3.0 or higher

See Also
MCGetConfigurationEx()

MCSCALE
MCSCALE structure defines basic scaling parameters for an axis.

typedef struct {
 double Constant;
 double Offset;
 double Rate;
 double Scale;
 double Zero;
 double Time;
} MCSCALE;

Members
Constant This factor acts as a scale factor for servo analog outputs. By calibrating your

motor/amplifier combination, it is possible to scale the output with Constant so
that torque settings may be specified directly in ft-lbs.

Offset This offset represents an offset from a servo encoder’ index pulse to a zero
position.

Rate This factor acts as a multiplier for motion commands time values. The base
controller time unit is the second, to convert this to minutes set Rate to 60.0, to
convert to milliseconds rate should be set to 0.001.

Scale This scaling factor is applied to motion parameters to convert from encoder
counts to real world units.

Zero Specifies that a soft zero should be located this distance from actual zero. By
moving the soft zero around it is possible to have a series of position
commands repeated at various spots in the range of travel without modifying
the position commands. The actual zero position is not changed by this
command.

Time This is the time factor for controller level wait commands. See the discussion of
the Rate parameter above for more information on setting this value. Note that
a single Time value is maintained per controller (i.e. Time is axis independent).

Comments
The scale factors provide a consistent, easy method of relating motion values to the actual physical
system being controlled.

Data Structures

Motion Control Application Programming Interface 45

Compatibility
The DC2, and the DCX-PC100 do not support any of the aforementioned members. The DCX-PCI100
does not support Offset or Constant.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 1.0 or higher

See Also
MCGetScale(), MCSetScale()

MCSTATUSEX
MCSTATUSEX structure defines basic status word information for an axis.

typedef struct {
 int cbSize;
 DWORD Status;
 DWORD AuxStatus;
 DWORD ProfileStatus;
 DWORD ModeStatus;
} MCSTATUSEX;

Members
cbSize Size of the MCSTATUSEX data structure, in bytes.
Status Controller's primary status word.
AuxStatus Controller's auxiliary status word.
ProfileStatus Controller's profile status word.
ModeStatus Controller's mode status word.

Comments
With the introduction of the MFX-PCI1000 series of motion controller it became necessary to
reorganize the controller status words. The new status word interrupt feature allows the application to
receive an asynchronous notification when any of the bits in the primary status word go true. Thus it
was important that the primary status word of the MFX-PCI1000 contain the critical status information
that an application might want to be notified of. As a result some of the commonly used but non-
critical status bits were moved to other status words. The new functions MCDecodeStatusEx() and
MCGetStatusEx() togeather with the MCSTATUSEX data structure allow the application programs to
operate on all of the status words as though they were a single entry.

Compatibility
Only the MFX-PCI1000 series motion controller supports the AuxStatus, ProfileStatus, and
ModeStatus members.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 3.3 or higher

Data Structures

PMC Motion Control 46

See Also
MCDecodeStatusEx(), MCGetStatusEx()

Data Structures

Motion Control Application Programming Interface 47

Parameter Setup Functions

PMC Motion Control 48

Chapter Contents

• MCConfigureCompare()
• MCSetAcceleration()
• MCSetAuxEncPos()
• MCSetCommutation()
• MCSetContourConfig()
• MCSetDeceleration()
• MCSetDigitalFilter
• MCSetFilterConfigEx
• MCSetGain
• MCSetJogConfig()
• MCSetLimits()
• MCSetModuleInputMode()
• MCSetModuleOutputMode()
• MCSetMotionConfigEx()
• MCSetOperatingMode()
• MCSetPosition()
• MCSetProfile()
• MCSetRegister()
• MCSetScale()
• MCSetServoOutputPhase()
• MCSetTorque()
• MCSetVectorVelocity()
• MCSetVelocity()

Motion Control Application Programming Interface

Parameter Setup Functions

Parameter setup functions allow the program to consistently configure the motion
individual modules to behave in an appropriate manner for a given application. Alt
parameters, PID loop gains, and end of travel limits should be set prior to comman
and other parameters may be changed during a move. However, certain paramete
the card will not alter behavior until MCEnableAxis() is called, which allows the s
implement several queued parameters at once in a logical and safe fashion. For f
development tool like Motion Integrator should be used to determine the proper
that can be passed by the functions in this chapter.

To see examples of how the functions in this chapter are used, please refer to the
Control API Reference.

MCConfigureCompare
MCConfigureCompare() configures an axis for high-speed position compare mo

long int MCConfigureCompare(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* values, // array of compare points
 long int num, // number of points in value
 double inc, // increment between equally
 long int mode, // output signal mode
 double period // output period for one sho
 // (seconds)
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen
axis Axis number to configure.

Chapter

5

49

control card and
hough trajectory
ding motion, these
rs once passed to

pecific axis to then
irst time setup, a
tuning parameters

 online Motion

de operation.

s array
 paced points

t mode

().

Parameter Setup Functions

PMC Motion Control 50

values Array of compare position values.
num Number of compare values.
inc Increment between successive compare positions when in evenly-spaced mode

(see Comments, below).
mode Specifies how the controller is to signal that a compare position has been seen:

Value Description
MC_COMPARE_DISABLE Disables the output.
MC_COMPARE_INVERT Inverts active level of the output – may be OR'ed

together with any of the other settings for mode.
MC_COMPARE_ONESHOT Configures the output for one-shot operation. The

value for period will be used for the period of the
one-shot.

MC_COMPARE_STATIC Configures the output for static mode (see the
controller documentation for details).

MC_COMPARE_TOGGLE Configures the output to toggle between the active
and inactive states each time a compare value is
reached.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
Points for MCConfigureCompare() may be entered in one of two ways. Discrete points, up to the
number allowed by the module (typically 512) may be stored in the array values and passed to the
controller. If the compare points are equally spaced store the beginning point in the first location of
values, set num to one, and set inc to the per point increment. Note that inc is ignored if it is set equal
to or less than zero, or if num is set to a value other than one.

The high-speed compare function signals a valid compare by way of a hardware output signal from
the motor module. Use the mode flag to configure the operation of this hardware output.

Compatibility
The DC2, DCX-PC100, DCX-AT200, and DCX-PCI100 controllers do not support high-speed position
compare.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCConfigureCompare(hCtlr: HCTRLR; axis: Word; values: Array of Double; num: Longint; inc: Double; mode:

LongInt; period: Double): LongInt; stdcall;
VB: Function MCConfigureCompare(ByVal hCtrlr As Integer, ByVal axis As Integer, values As Double, ByVal num As Long,

ByVal inc As Double, ByVal mode As Long, ByVal period As Double) As Long
LabVIEW: Not Supported

Parameter Setup Functions

Motion Control Application Programming Interface 51

MCCL Reference
LC, NC, OC, OP

See Also
MCEnableCompare(), MCGetCount()

MCSetAcceleration
MCSetAcceleration() sets programmed acceleration value for the selected axis to rate, where rate
is specified in the current units for axis.

void MCSetAcceleration(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double rate // new acceleration rate
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change acceleration value of.
rate New acceleration rate.

Returns
This function does not return a value.

Comments
The acceleration value for a particular axis may also be set using the MCSetMotionConfigEx()
function; MCSetAcceleration() provides a short-hand method for setting just the acceleration value.

Compatibility
The DC2 stepper axes do not support ramping.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetAcceleration(hCtlr: HCTRLR; axis: Word; rate: Double); stdcall;
VB: Sub MCSetAcceleration Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal rate As Double)
LabVIEW:

MCCL Reference
SA

Parameter Setup Functions

PMC Motion Control 52

See Also
MCGetAccelerationEx(), MCSetMotionConfigEx()

MCSetAuxEncPos
MCSetAuxEncPos() sets the current position of the auxiliary encoder.

void MCSetAuxEncPos(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // new position
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number of auxiliary encoder to set.
position New encoder position.

Returns
This function does not return a value.

Comments
This command sets the current position of the auxiliary encoder to the value given by the position
argument. A value of MC_ALL_AXES may be specified for axis to set the auxiliary encoders for all
axes installed on a controller.

i

DCX-AT200 firmware version 3.5a or higher, or DCX-PC100 firmware
version 4.9a or higher is required if you wish to set the position of the
auxiliary encoder to a value other than zero. Earlier firmware versions
ignore the value in the Position argument and zero the Auxiliary
Encoder.

Compatibility
The DC2, DCX-PCI100 controllers, MC100, MC110, MC150, and MC320 modules do not support
auxiliary encoders. Closed-loop steppers do not support auxiliary encoder functions, since the
connected encoder is considered a primary encoder.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetAuxEncPos(hCtlr: HCTRLR; axis: Word; position: Double); stdcall;
VB: Sub MCSetAuxEncPos Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double)

Parameter Setup Functions

Motion Control Application Programming Interface 53

LabVIEW:

MCCL Reference
AH

See Also
MCGetAuxEncPosEx()

MCSetCommutation
MCSetCommutation() sets the commutation settings for the MC320 module.

long int MCSetCommutation(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCCOMMUTATION* pCommutation // pointer to commutation structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to which commutation parameters are to be set.
pCommutation Points to an MCCOMMUTATION structure that contains commutation settings

for axis.

Returns
MCSetCommutation() returns the value MCERR_NOERROR if the function completed without
errors. If there was an error, one of the MCERR_xxxx error codes is returned.

Comments
See the section on commutation in your DCX-300 Series User’s Guide for details on how to set use
the commutation features of the MC320 module.

Compatibility
The DC2, DCX-PC100, DCX-PCI100, DCX-AT100, DCX-AT200, and MFX-PCI1000 controllers do not
support onboard commutation. The MC300, MC302, MC360, and the MC362 modules do not support
onboard commutation.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCSetCommutation(hCtlr: HCTRLR; axis: Word; var pCommutation: MCCOMMUTATION): LongInt; stdcall;

Parameter Setup Functions

PMC Motion Control 54

VB: Function MCSetCommutation(ByVal hCtrlr As Integer, ByVal axis As Integer, Commutation As MCCommutation) As
Long

LabVIEW: Not Supported

MCCL Reference
LA, LB, LD, LE, LR

See Also
MCCOMMUTATION structure definition

MCSetContourConfig
MCSetContourConfig() sets contouring configuration for the specified axis.

short int MCConfigureDigitalIO(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCCONTOUR* pContour // address of contouring configuration
 // structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to set contouring configuration for.
pContour Points to an MCCONTOUR structure that contains contouring configuration

information for axis.

Returns
The return value is TRUE if the function is successful. A return value of FALSE indicates the function
did not find the axis specified (hCtlr or axis incorrect).

Comments
Contouring configuration data should be setup prior to executing any contour motion. The field
CanDoContouring in the MCPARAMEX structure will be set to TRUE, if the controller can process
contour configuration data.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100
controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCSetContourConfig(hCtlr: HCTRLR; axis: Word; var pContour: MCCONTOUR): SmallInt; stdcall;
VB: Function MCConfigureDigitalIO(ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal mode As Integer) As Integer

Parameter Setup Functions

Motion Control Application Programming Interface 55

LabVIEW: Not Supported

MCCL Reference
VA, VD, VO, VV

See Also
MCGetContourConfig(), MCCONTOUR structure definition

MCSetDeceleration
MCSetDeceleration() sets programmed deceleration value for the selected axis to rate, where rate is
specified in the current units for axis.

void MCSetDeceleration(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double rate // new deceleration rate
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change acceleration value of.
rate New deceleration rate.

Returns
This function does not return a value.

Comments
The deceleration value for a particular axis may also be set using the MCSetMotionConfigEx()
function; MCSetDeceleration() provides a short-hand method for setting just the deceleration value.
A value of MC_ALL_AXES may be specified for axis to set the deceleration for all axes installed on a
controller.

Compatibility
The DCX-PCI100 controller, MC100, MC110, MC150, and MC160 modules do not support a separate
deceleration value. Instead, the acceleration value will also be used as the deceleration value. The
DC2 stepper axes do not support ramping.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetDeceleration(hCtlr: HCTRLR; axis: Word; rate: Double); stdcall;
VB: Sub MCSetDeceleration(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal rate As Double)

Parameter Setup Functions

PMC Motion Control 56

LabVIEW:

MCCL Reference
DS

See Also
MCGetDecelerationEx() , MCSetMotionConfigEx()

MCSetDigitalFilter
MCSetDigitalFilter() sets the digital filter coefficients for the specified axis.

long int MCSetDigitalFilter(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pCoeff, // array of digital filter coefficients
 long int num // number of coefficients
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number.
pCoeff Array of coefficients, must be num elements long (or longer). If the pointer is

NULL the filter will be zeroed (overwriting any previous settings) but no new
filter values will be stored.

num Number of coefficients to retrieve, cannot be larger than the maximum digital
filter size supported by the controller.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
This sets zero or more of the digital filter coefficients for the specified axis. The number of coefficients
cannot exceed the maximum value supported by the axis, as reported by MCGetCount(). Calling
MCSetDigitalFilter() overwrites any filter values previously downloaded to this axis.

Compatibility
The DC2, DCX-PC100, DCX-AT200, DCX-PCI100, MFX-PCI1000 controllers, MC360, and MC362
modules do not support digital filtering.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Parameter Setup Functions

Motion Control Application Programming Interface 57

Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCSetDigitalFilter(hCtlr: HCTRLR; axis: Word; pCoeff: Array of Double; num: Longint):Longint; stdcall;
VB: Function MCSetDigitalFilter(ByVal hCtrlr As Integer, ByVal axis As Integer, coeff As Double, ByVal num As Integer) As

Long
LabVIEW: Not Supported

MCCL Reference
FL, ZF

See Also
MCEnableDigitalFilter() , MCGetCount(), MCGetDigitalFilter(), MCIsDigitalFilter()

MCSetFilterConfigEx
MCSetFilterConfigEx() configures the PID loop settings for a servo motor or the closed-loop settings
for a stepper motor operating in closed-loop mode. Please see the online MCAPI Reference for the
MCSetFilterConfig() prototype.

long int MCSetFilterConfigEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCFILTEREX* pFilter // pointer to PID filter structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number from which to retrieve PID information.
pFilter Points to a MCFILTEREX structure that contains PID filter configuration

information for axis.

Returns
MCSetFilterConfigEx() returns the value MCERR_NOERROR if the function completed without
errors. If there was an error, one of the MCERR_xxxx error codes is returned.

Comments
The easiest way to change filter settings is to first call MCGetFilterConfigEx() to obtain the current
PID filter settings for axis, modify the values in the MCFILTEREX structure, and write the changed
settings back to axis with MCSetFilterConfigEx().

Closed-loop stepper operation requires firmware version 2.1a or higher on the DCX-PCI300 and
firmware version 2.5a or higher on the DCX-AT300.

Compatibility
VelocityGain is not supported on the DCX-PCI100 controller, MC100, MC110 modules, or closed-
loop steppers. AccelGain is not supported on the DC2, DCX-PC100, or DCX-PCI100 controllers.
DecelGain is not supported on the DC2, DCX-PC100, or DCX-PCI100 controllers.

Parameter Setup Functions

PMC Motion Control 58

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCSetFilterConfigEx(hCtlr: HCTRLR; axis: Word; var pFilter: MCFILTEREX): SmallInt; stdcall;
VB: Function MCSetFilterConfigEx(ByVal hCtrlr As Integer, ByVal axis As Integer, filter As MCFilterEx) As Integer
LabVIEW:

MCCL Reference
AG, DG, FR, IL, SD, SE, SI, VG

See Also
MCGetFilterConfigEx(), MCFILTEREX structure definition

MCSetGain
MCSetGain() sets the proportional gain of a servo's feedback loop.

long int MCSetGain(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double gain // new gain setting
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change gain of.
gain New proportional gain.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
The gain value for a particular axis may also be set using the MCSetMotionConfigEx() function;
MCSetGain() provides a short-hand method for setting just the gain value and for updating gain
settings on the fly when operating in gain mode.

Compatibility
MCSetGain() is not supported for open loop stepper axes.

Parameter Setup Functions

Motion Control Application Programming Interface 59

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCSetGain(hCtlr: HCTRLR; axis: Word; gain: Double): Longint; stdcall;
VB: Function MCSetGain(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal gain As Double) As Long
LabVIEW:

MCCL Reference
SG

See Also
MCGetGain(), MCSetMotionConfigEx()

MCSetJogConfig
MCSetJogConfig() sets jog configuration for the specified axis.

short int MCSetJogConfig(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCJOG* pJog // address of jog configuration structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to configure jog information.
pJog Points to a MCJOG structure that contains jog configuration information for

axis.

Returns
The return value is TRUE if the function is successful. Otherwise it returns FALSE, indicating the
function did not find the axis specified (hCtlr or axis incorrect).

Comments
It is important to set the jog configuration before enabling jogging if you will be using non-default
parameters for the jog configuration.

Compatibility
The DCX-PCI controllers, MFX-PCI1000 controllers, DC2 stepper axes, MC150, and MC160 modules
do not support jogging.

Parameter Setup Functions

PMC Motion Control 60

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCSetJogConfig(hCtlr: HCTRLR; axis: Word; var pJog: MCJOG): SmallInt; stdcall;
VB: Function MCSetJogConfig(ByVal hCtrlr As Integer, ByVal axis As Integer, jog As MCJog) As Integer
LabVIEW: Not Supported

MCCL Reference
JA, JB, JG, JO, JV

See Also
MCEnableJog(), MCGetJogConfig(), MCJOG structure definition

MCSetLimits
MCSetLimits() sets the current hard and soft limit settings for the specified axis.

long int MCSetLimits(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 short int hardMode, // hard limit mode flags
 short int softMode, // soft limit mode flags
 double limitMinus, // soft negative limit value
 double limitPlus // soft positive limit value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to set the limits of .
hardMode Combination of the following limit mode flags for the hard limits:

Value Description
MC_LIMIT_PLUS Enables the positive limit.
MC_LIMIT_MINUS Enables the negative limit.
MC_LIMIT_BOTH Enables both the positive and negative limits.
MC_LIMIT_OFF Sets the limit stopping mode to turn the motor off

when a limit is tripped.
MC_LIMIT_ABRUPT Sets the limit stopping mode to abrupt (target

position is set to current position and PID loop
stops axis as quickly as possible).

MC_LIMIT_SMOOTH Sets the limit stopping mode to smooth (axis
executes pre-programmed deceleration when limit
is tripped).

Parameter Setup Functions

Motion Control Application Programming Interface 61

Value Description
MC_LIMIT_INVERT Inverts the polarity of the hardware limit switch

inputs. This value may not be used with soft limits.

softMode Combination of limit mode flags for the soft limits. See the values for hardMode,

above.
limitMinus Positive limit value for soft limits, if supported by this controller.
limitPlus Negative limit value for soft limits, if supported by this controller.

Returns
MCSetLimits() returns the value MCERR_NOERROR if the function completed without errors. If
there was an error, one of the MCERR_xxxx error codes is returned, and the limit settings will be left
in an undetermined state.

Comments
The limit settings are the same as those that may be set by the MCSetMotionConfigEx() function,
however, this function provides a short-hand method for setting just the limit settings.

To disable limits (hard or soft) set the corresponding limit mode variable (hardMode and softMode) to
zero (0). To disable a particular limit (plus or minus) DO NOT include its corresponding mode flag
(MC_LIMIT_PLUS or MC_LIMIT_MINUS, respectively) in the combination of flags that make up the
hardMode and softMode values.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The DC2 and DCX-PC100 controllers do not support soft limits.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCSetLimits(hCtlr: HCTRLR; axis: Word; hardMode, softMode: SmallInt; limitMinus, limitPlus: Double):

Longint; stdcall;
VB: Function MCSetLimits(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal hardMode As Integer, ByVal SoftMode As

Integer, ByVal limitMinus As Double, ByVal limitPlus As Double) As Long
LabVIEW:

MCCL Reference
HL, LF, LL, LM, LN

Parameter Setup Functions

PMC Motion Control 62

See Also
MCGetMotionConfigEx(), MCGetLimits(), MCSetMotionConfigEx()

MCSetModuleInputMode
MCSetModuleInputMode() sets the current input mode for the specified axis.

long int MCSetModuleInputMode(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double mode // input mode value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number of which to set input mode.
mode Input mode for the specified axis:

Value Description
MC_IM_OPENLOOP Sets stepper motor axis to open-loop mode.
MC_IM_CLOSEDLOOP Sets stepper motor axis to closed-loop mode.

Returns
The return value is MCERR_NOERROR if no errors were detected. If there was an error, one of the
MCERR_xxxx error codes is returned and the variable pointed to by mode is left unchanged.

Comments

i

You will need to issue MCEnableAxis() twice, once FALSE and once
TRUE, after calling this function to assure proper changing of modes.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The DC2, DCX-PC100, DCX-PCI100, DCX-AT100, and DCX-AT200 controllers do not support a
module which is capable of closed-loop stepper operation. The MC362 module is not capable of
closed-loop stepper operation.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Parameter Setup Functions

Motion Control Application Programming Interface 63

Prototypes
Delphi: function MCSetModuleInputMode(hCtlr: HCTRLR; axis, mode: LongInt): LongInt; stdcall;
VB: Function MCSetModuleInputMode(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal mode As Long) As Long
LabVIEW: Not Supported

MCCL Reference
IM

See Also
MCGetModuleInputMode()

MCSetModuleOutputMode
MCSetModuleOutputMode() configures the output of the specified servo or stepper axis.

void MCSetModuleOutputMode(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double mode // output mode selection
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to set output mode of.
mode Output mode, one of the following constants:

Value Description
MC_OM_BIPOLAR Sets servo axis to bipolar operation. (-10V to

+10V)
MC_OM_UNIPOLAR Sets servo axis to unipolar operation. (0V to +10V,

with a separate direction signal)
MC_OM_PULSE_DIR Sets stepper axis to pulse and direction output.
MC_OM_CW_CCW Sets stepper axis to clockwise and counter-

clockwise operation.

Returns
This function does not return a value.

Comments
Note that the function arguments will depend upon the type of axis being addressed - stepper or
servo. Output phase settings are normally made at power up (before motors are energized) and then
left unchanged. Incorrect settings can lead to unpredictable operation.

Compatibility
The DC2, DCX-PC100, DCX-PCI100 controllers, MC100, MC110, MC150, and MC160 modules do
not support changing the output mode.

Parameter Setup Functions

PMC Motion Control 64

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetModuleOutputMode(hCtlr: HCTRLR; axis, mode: Word); stdcall;
VB: Sub MCSetModuleOutputMode(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal mode As Integer)
LabVIEW: Not Supported

MCCL Reference
OM

See Also
MCGetServoOutputPhase()

MCSetMotionConfigEx
MCSetMotionConfigEx() configures an axis for motion.

short int MCSetMotionConfigEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCMOTIONEX* pMotion // address of motion configuration
 // structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to configure.
pMotion Points to a MCMOTIONEX structure that contains motion configuration

information for the specified axis.

Returns
The return value is TRUE if the function is successful. A return value of FALSE indicates the function
could not configure the axis.

Comments
This function provides a way of setting all motion parameters for a given axis with a single function
call using an initialized MCMOTIONEX structure. When you need to setup many of the parameters for
an axis it is easier to call MCGetMotionConfigEx(), update the MCMOTIONEX structure, and write
the changes back using MCSetMotionConfigEx(), rather than use a Get/Set function call for each
parameter.

Note that some less often used parameters will only be accessible from this function and from
MCGetMotionConfigEx() - they do not have individual Get/Set functions.

Parameter Setup Functions

Motion Control Application Programming Interface 65

Compatibility
Acceleration is not supported on the DC2 stepper axes. Deceleration is not supported on the DCX-
PCI100 controller, MC100, MC110, MC150, or MC160 modules. MinVelocity is not supported on the
DCX-PCI100, DCX-PC100, or DC2 controllers. Torque is not supported on the DCX-PCI100
controller, MC100, or MC110 modules. Deadband is not supported on the DCX-PC100 controller,
DC2 stepper axes, MC150, MC160, MC260, MC360, or MC362 modules. DeadbandDelay is not
supported on the DCX-PC100 controller, DC2 stepper axes, MC150, MC160, MC260, MC360 or
MC362 modules. StepSize is not supported on the DC2 or DCX-PCI100 controllers. Current is not
supported on the DC2 or DCX-PCI100 controllers. SoftLimitMode is not supported on the DC2 or
DCX-PC100 controllers. SoftLimitLow is not supported on the DC2 or DCX-PC100 controllers.
SoftLimitHigh is not supported on the DC2 or DCX-PC100 controllers. EnableAmpFault is not
supported on the DC2 controllers. UpdateRate is not supported on the DC2 or DCX-PCI100
controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCSetMotionConfigEx(hCtlr: HCTRLR; axis: Word; var pMotion: MCMOTIONEX): SmallInt; stdcall;
VB: Function MCSetMotionConfigEx(ByVal hCtrlr As Integer, ByVal axis As Integer, motion As MCMotionEx) As Integer
LabVIEW:

MCCL Reference
DB, DI, DT, FC, FF, FN, FR, HC, HS, LM, LS, MS, MV, SA, SD, SF, SG, SH, SI, SQ, SV

See Also
MCGetMotionConfigEx(), MCMOTIONEX structure definition

MCSetOperatingMode
MCSetOperatingMode() sets the controller operating mode for axis.

void MCSetOperatingMode(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 WORD master, // master contouring axis
 WORD mode // new operating mode
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to configure.

Parameter Setup Functions

PMC Motion Control 66

master Contouring master axis (used for contour mode only).
mode New operating mode, can be any of the following:

Value Description
MC_MODE_CONTOUR Selects contouring mode (must also specify

master).
MC_MODE_GAIN Selects gain mode of operation.
MC_MODE_POSITION Selects the position mode of operation (default).
MC_MODE_TORQUE Selects torque mode operation.
MC_MODE_VELOCITY Selects the velocity mode.

Returns
This function does not return a value.

Comments
This function is used to switch between the main operating modes of the controller. All modes except
MC_MODE_CONTOUR are supported by all controllers. Programs can check the field
CanDoContouring of the MCPARAMEX structure for the value TRUE to determine if a controller can
operate in MC_MODE_CONTOUR mode.

!

This function should not be called while axis is in motion.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100
controllers. Gain mode is not supported on stepper axes, MC100, or MC110 modules. Torque mode is
not supported on stepper axes, DCX-PCI100 controller, MC100, or MC110 modules.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetOperatingMode(hCtlr: HCTRLR; axis, master, mode: Word); stdcall;
VB: Sub MCSetOperatingMode(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal master As Integer, ByVal mode As

Integer)
LabVIEW:

MCCL Reference
CM, GM, PM, QM, VM

Parameter Setup Functions

Motion Control Application Programming Interface 67

See Also
Controller hardware manual

MCSetPosition
MCSetPosition() sets the current position for axis to position.

void MCSetPosition(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // new position
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change position of.
position New position value.

Returns
This function does not return a value.

Comments
The current position of axis will be immediately updated to the value of position.

This function may be called with axis set to MC_ALL_AXES set the position of all axes at once. All
axes will be set to the same value of position.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetPosition(hCtlr: HCTRLR; axis: Word; position: Double); stdcall;
VB: Sub MCSetPosition(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double)
LabVIEW:

MCCL Reference
DH

Parameter Setup Functions

PMC Motion Control 68

See Also
MCGetPositionEx()

MCSetProfile
MCSetProfile() sets the velocity profile axis.

void MCSetPosition(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 WORD mode // new profile
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change profile of.
position Constant value specifying profile.

Returns
This function does not return a value.

Comments
Not all controllers can change their acceleration/deceleration profiles. The field CanChangeProfile in
the MCPARAMEX data structure will be set to TRUE is the controller can change profiles.

This function may be called with axis set to MC_ALL_AXES to change the profile for all axes at once.

Compatibility
The DC2, DCX-PC100, and DCX-PCI100 controllers do not support S-curve or Parabolic profiles.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetProfile(hCtlr: HCTRLR; wAxis, wMode: Word); stdcall;
VB: Sub MCSetProfile(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal mode As Integer)
LabVIEW: Notsupported

MCCL Reference
PP, PS, PT

See Also
MCGetConfiguration(), MCPARAMEX

Parameter Setup Functions

Motion Control Application Programming Interface 69

MCSetRegister
MCSetRegister() sets the value of the specified general purpose register.

long int MCSetRegister(
 HCTRLR hCtlr, // controller handle
 long int register, // register number
 void* pValue, // pointer to variable with new register
 // value
 long int type // type of variable pointed to by pValue
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
register Register number to read from (0 to 255).
pValue Pointer to a variable that will has the new value for the register.
type Type of data pointed to by pValue:

Value Description
MC_TYPE_LONG Indicates pValue points to a variable of type long

integer.
MC_TYPE_DOUBLE Indicates pValue points to a variable of type double

precision floating point.
MC_TYPE_FLOAT Indicates pValue points to a variable of type single

precision floating point.

Returns
The return value is MCERR_NOERROR, if no errors were detected. However, if there was an error,
the return value is one of the MCERR_xxxx error codes, and the register value is unpredictable.

Comments
MCSetRegister() and MCGetRegister() allow you to write to and read from, respectively, the
general purpose registers on the motion controller. When running background tasks on a multitasking
controller the only way to communicate with the background tasks is to pass parameters in the
general purpose registers.

You cannot write to the local registers (registers 0 - 9) of a background task. When you need to
communicate with a background task be sure to use one or more of the global registers (10 - 255).

To determine if your controller supports multi-tasking check the MultiTasking field of the
MCPARAMEX structure returned by MCGetConfigurationEx().

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas

Parameter Setup Functions

PMC Motion Control 70

Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCSetRegister(hCtlr: HCTRLR; register: Longint; var pValue: Pointer; type: Longint): Longint; stdcall;
VB: Function MCSetRegister(ByVal hCtrlr As Integer, ByVal register As Long, value As Any, ByVal argtype As Long) As

Long
LabVIEW:

MCCL Reference
AL, AR

See Also
MCGetRegister()

MCSetScale
MCSetScale() sets scaling for the specified axis to the values contained in the MCSCALE structure.

short int MCSetScale(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCSCALE* pScale // updated scaling settings
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change scale of.
pScale Pointer to structure with new scale values.

Returns
This function returns TRUE, if the functions completes successfully. A return value of FALSE indicates
there was an error (hCtlr or axis is invalid).

Comments
Setting scaling factors allows application programs to talk to the controller in real world units, as
opposed to arbitrary "encoder counts". You can determine if a controller can process scaling requests
by testing the CanDoScaling flag in the MCPARAMEX structure for the controller.

This function may be called with axis set to MC_ALL_AXES to set the scaling of all axes at once. All
axes will be set to the same value.

Parameter Setup Functions

Motion Control Application Programming Interface 71

!

When Scale to a value other than one, SoftLimitLow and
SoftLimitHigh should be changed to accommodate the new real world
units.

Compatibility
The DC2 and the DCX-PC100 do not support any scaling members. The DCX-PCI100 does not
support Offset or Constant.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCSetScale(hCtlr: HCTRLR; axis: Word; var pScale: MCSCALE): SmallInt; stdcall;
VB: Function MCSetScale(ByVal hCtrlr As Integer, ByVal axis As Integer, scale As MCScale) As Integer
LabVIEW:

MCCL Reference
UK, UO, UR, US, UT, UZ

See Also
MCGetConfigurationEx(), MCGetScale(), MCPARAMEX structure definition

MCSetServoOutputPhase
MCSetServoOutputPhase() sets the output phasing for the specified servo axis.

void MCSetServoOutputPhase(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 WORD phase // desired phasing
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change servo phase of.
phase Desired phasing, one of the following:

Value Description
MC_PHASE_STD Selects standard or normal phasing. (default)
MC_PHASE_REV Selects reverse phasing.

Parameter Setup Functions

PMC Motion Control 72

Returns
This function does not return a value.

Comments
This function may be called with axis set to MC_ALL_AXES set the phase of all axes at once. All axes
will be set to the same value of phase.

Compatibility
The MC100 and MC110 modules do not support phase reverse.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetServoOutputPhase(hCtlr: HCTRLR; axis, phase: Word); stdcall;
VB: Sub MCSetServoOutputPhase(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal mode As Integer)
LabVIEW:

MCCL Reference
PH

See Also
MCGetServoOutputPhase()

MCSetTorque
MCSetTorque() sets maximum output level for servos.

long int MCSetTorque(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double torque // new torque setting
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change torque of.
torque New torque.

Parameter Setup Functions

Motion Control Application Programming Interface 73

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
The torque value for a particular axis may also be set using the MCSetMotionConfigEx() function;
MCSetTorque() provides a short-hand method for setting just the torque value and for updating
torque settings on the fly when operating in torque mode.

Compatibility
Torque mode is not supported on stepper axes, DCX-PCI100 controller, MC100, or MC110 modules.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCSetTorque(hCtlr: HCTRLR; axis: Word; torque: Double): Longint; stdcall;
VB: Not Supported
LabVIEW:

MCCL Reference
SQ

See Also
MCGetTorque(), MCSetMotionConfigEx()

MCSetVectorVelocity
MCSetVectorVelocity() sets the vector velocity for the specified axis, in whatever units the axis is
configured for.

long int MCSetVectorVelocity(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double velocity // new vector velocity value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to set vector velocity of.
velocity New vector velocity value for the specified axis.

Parameter Setup Functions

PMC Motion Control 74

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
The vector velocity value for a particular axis may also be set using MCSetContourConfig();
MCSetVectorVelocity() provides a short-hand method for setting just the vector velocity value and is
most useful when updating vector velocity settings on the fly.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100
controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCSetVectorVelocity(hCtlr: HCTRLR; axis: Word; velocity: Double): Longint; stdcall;
VB: Function MCSetVectorVelocity(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal velocity As Double) As Long
LabVIEW: Not Supported

MCCL Reference
VV

See Also
MCGetVectorVelocity(), MCSetContourConfig()

MCSetVelocity
MCSetVelocity() sets programmed velocity for the selected axis to rate, where rate is specified in the
current units for axis.

void MCSetVelocity(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double rate // new velocity
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change velocity of.
rate New velocity.

Returns
This function does not return a value.

Parameter Setup Functions

Motion Control Application Programming Interface 75

Comments
The velocity value for a particular axis may also be set using the MCSetMotionConfigEx() function;
MCSetVelocity() provides a short-hand method for setting just the velocity value and for updating
velocity settings on the fly when operating in velocity mode.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetVelocity(hCtlr: HCTRLR; axis: Word; rate: Double); stdcall;
VB: Sub MCSetVelocity Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal rate As Double)
LabVIEW:

MCCL Reference
SV

See Also
MCGetVelocityEx(), MCSetMotionConfigEx()

Motion Functions

76

Chapter Contents

• MC
• MC
• MC
• MC
• MC
• MC
• MC
• MC
• MC
• MC
• MC
• MC
• MC
• MC
• MC
• MC
• MC
• MC
• MC

• MCFindIndex()
• MCGoEx()
• MCGoHome()
• MCIndexArm()
• MCInterruptOnPosition()
• MCLearnPoint()
• MCMoveAbsolute()
• MCMoveRelative()
• MCMoveToPoint()
• MCReset()
• MCStop()
• MCWait()
• MCWaitForEdge()
• MCWaitForIndex()
• MCWaitForPosition()
• MCWaitForRelative()
• MCWaitForStop()
• MCWaitForTarget()
Abort()
ArcCenter()
ArcEndAngle()
ArcRadius()
CaptureData()
ContourDistance()
Direction()
EdgeArm()
EnableAxis()
EnableBacklash()
EnableCapture()
EnableCompare()
EnableDigitalFilter()
EnableEncoderFault
EnableGearing()
enableJog()
EnableSync()
FindAuxEncIdx()
FindEdge()
PMC Motion Control

Motion Control Application Programming Interface

Motion Functions

Motion functions range in use from allowing the program to commence or cease m
control of sequencing to altering operation of axes during motion.

A word of caution must be given regarding the use of board-level sequencing com
though each of these functions includes a warning in this chapter, it should be stre
command containing the word “Wait” or “Find” in the command name is called, the
accept another command nor will it respond to the calling program until the board
it was initially told to do. This can lead to scenarios where the calling program has
control during potentially dangerous or otherwise expensive situations.

To see examples of how the functions in this chapter are used, please refer to the
Control API Reference.

MCAbort
MCAbort() aborts any current motion for the specified axis or axes.

void MCAbort(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen
axis Axis number to abort motion.

Returns
This function does not return a value.

Chapter

6

77

otion to permitting

mands. Even
ssed that once a
 board will not
has completed what
 absolutely no

 online Motion

().

Motion Functions

PMC Motion Control 78

Comments
The selected axis will execute an emergency stop following this command. Issuing this command with
axis set to MC_ALL_AXES will abort motion for all axes installed on the motion controller.

Servo axes will stop abruptly, and the servo control loop will remain energized.

For stepper motors, pulses from the motion controller will be disabled immediately. The state of the
axis (enabled or disabled) following the call to MCAbort() will depend upon the type of controller (see
your controller hardware manual).

i

Following a call to MCAbort(), verify that the axis has stopped using
MCIsStopped() or MCWaitForStop(). Then call MCEnableAxis()
prior to issuing another motion command.

i

Following a call to MCAbort() on the DCX-PC100 controller when in
velocity mode, call MCSetOperatingMode() prior to issuing another
motion command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCAbort(hCtlr: HCTRLR; axis: Word); stdcall;
VB: Sub MCAbort(ByVal hCtrlr As Integer, ByVal axis As Integer)
LabVIEW:

MCCL Reference
AB

See Also
MCEnableAxis(), MCSetOperatingMode(), MCStop(), MCIsStopped(), MCWaitForStop()

Motion Functions

Motion Control Application Programming Interface 79

MCArcCenter
MCArcCenter() specifies the center of an arc for contour path motion.

long int MCArcCenter(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int type, // absolute or relative
 double position // center position
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to specify arc center for.
type Flag to indicate if the center position is specified in absolute units or relative to

the current position.

Value Description
MC_ABSOLUTE Center position is specified in absolute units.
MC_RELATIVE Center position is specified relative to the current

position of axis.

position Absolute or relative arc center position for axis.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
This function sets the center of an arc for contour path motion. Since arc motion is performed by two
axes, this function should be called twice in a contour path block, once for each axis. To determine if a
particular controller can process the MCArcCenter() contouring function, check the
CanDoContouring flag of the MCPARAMEX structure.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100
controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCArcCenter(hCtlr: HCTRLR; axis: Word; type: SmallInt; position: Double): Longint; stdcall;
VB: Function MCArcCenter (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal arctype As Integer, ByVal position As

Double) As Long
LabVIEW: Not Supported

Motion Functions

PMC Motion Control 80

MCCL Reference
CA, CR

See Also
MCArcEndAngle(), MCArcRadius(), MCBlockBegin(), MCSetOperatingMode()

MCArcEndAngle
MCArcEndAngle() specifies the ending angle of an arc for contour path motion.

long int MCArcEndAngle(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int type, // absolute or relative
 double angle // ending angle
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to specify arc ending angle for.
type Flag to indicate if the end angle is specified in absolute units or relative to the

current position.

Value Description
MC_ABSOLUTE Center position is specified in absolute units.
MC_RELATIVE Center position is specified relative to the current

position of axis.

angle Absolute or relative arc ending angle for axis.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
This function sets the ending angle of an arc for contour path motion function should be called twice in
a contour path block, once for each axis. To determine if a particular controller can process the
MCArcCenter() contouring function, check the CanDoContouring flag of the MCPARAMEX
structure.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100
controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas

Motion Functions

Motion Control Application Programming Interface 81

Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MCArcEndAngle(hCtlr: HCTRLR; axis: Word; type: SmallInt; angle: Double): Longint; stdcall;
VB: Function MCArcEndAngle (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal arctype As Integer, ByVal angle As

Double) As Long
LabVIEW: Not Supported

MCCL Reference
EA, ER

See Also
MCArcCenter(), MCArcRadius(), MCBlockBegin(), MCSetOperatingMode()

MCArcRadius
MCArcRadius() specifies the radius of an arc for contour path motion.

long int MCArcRadius(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double radius // arc radius
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to specify arc radius for.
radius Arc radius for axis.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
This function sets the radius of an arc for contour path motion. To determine if a particular controller
can process the MCArcCenter() contouring function, check the CanDoContouring flag of the
MCPARAMEX structure.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100
controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Motion Functions

PMC Motion Control 82

Prototypes
Delphi: function MCArcRadius(hCtlr: HCTRLR; axis: Word; radius: Double): Longint; stdcall;
VB: Function MCArcRadius(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal radius As Double) As Long
LabVIEW: Not Supported

MCCL Reference
RR

See Also
MCArcCenter(), MCArcEndAngle(), MCBlockBegin(), MCSetOperatingMode()

MCCaptureData
MCCaptureData() configures a controller to perform data capture for the specified axis. Captured
data includes actual position vs. time, optimal position vs. time, and following error vs. time.

long int MCCaptureData(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int points, // number of data points to collect
 double period, // time period between data points
 // (seconds)
 double delay // delay prior to data capture (seconds)
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to capture data.
points Number of data points to collect.
period Time period between subsequent data point captures.
delay Delay (dwell) before initial data collection.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
Captured position data is typically used to analyze servo motor performance and PID loop tuning
parameters. PMC's Servo Tuning utility uses this function to analyze servo performance.

MCBlockBegin() may be used with MCCaptureData() to bundle the capture data command with
mode and move commands (see the example below).

Beginning with version 3.0 of the MCAPI users may use the MCGetAxisConfiguration() function to
determine the data capture capabilities of an axis.

Motion Functions

Motion Control Application Programming Interface 83

Compatibility
The DC2 stepper axes, and the MC100, MC110, MC150, MC160 modules when installed on the
DCX-PC100 controller do not support data capture. The DCX-PCI100 controller does not support
torque mode nor do any stepper axes, which prevents the capture of torque values. For the DCX-
AT200 period and delay are supported by MCAPI version 3.4.X or higher.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCCaptureData(hCtlr: HCTRLR; axis: Word; points: Longint; period, delay: Double): Longint; stdcall;
VB: Function MCCaptureData(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal points As Long, ByVal period As

Double, ByVal delay As Double) As Long
LabVIEW: Not Supported

MCCL Reference
PR

See Also
MCGetConfigurationEx(), MCGetCaptureData(), MCBlockBegin()

MCContourDistance
MCContourDistance() sets the distance for user defined contour path motions.

long int MCContourDistance(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double distance // path distance
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number of controlling axis for contour motion.
distance Path distance for user path.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
This function is used to specify the distance, as measured along the path, from the contour path
starting point to the end of the next motion. It is required for user defined contour path motions.

Motion Functions

PMC Motion Control 84

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100
controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCContourDistance(hCtlr: HCTRLR; axis: Word; distance: Double): Longint; stdcall;
VB: Function MCContourDistance(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal distance As Double) As Long
LabVIEW: Not Supported

MCCL Reference
CD

See Also
MCBlockBegin()

MCDirection
MCDirection() sets the direction of motion when operating in velocity mode.

void MCDirection(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double dir // new direction
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to set the direction of.
dir New direction to move in, may be either of the following values:

Value Description
MC_DIR_POSITIVE Selects the positive direction for motion.
MC_DIR_NEGATIVE Selects the negative direction for motion.

Returns
This function does not return a value.

Comments
This command may be used to change the direction of travel when an axis is operating in Velocity
Mode. The actual direction of travel for MC_DIR_POSITIVE and MC_DIR_NEGATIVE will depend
upon your hardware configuration.

Motion Functions

Motion Control Application Programming Interface 85

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCDirection(hCtlr: HCTRLR; axis, dir: Word); stdcall;
VB: Sub MCDirection(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal dir As Integer)
LabVIEW:

MCCL Reference
DI

See Also
MCSetOperatingMode()

MCEdgeArm
MCEdgeArm() arms the edge capture function of an open-loop stepper axis.

long int MCEdgeArm(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // new position for edge
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to search for the home input signal.
position The position where the home input signal is sensed for the axis will be properly

set to position only after a call to MCWaitForEdge() and MCEnableAxis().

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
This function is used to initialize a stepper motor at a given position. The function remains pending
until the home input of the module goes active. At that time you must call MCWaitForEdge() followed
by MCEnableAxis() so that the position where the home signal is sensed will be set to the value of
the position parameter. This function does not cause any motion to be started or stopped.

Motion Functions

PMC Motion Control 86

i

For the position where the home input signal is sensed to be set to the
value of the position parameter, you must call MCWaitForEdge()
followed by MCEnableAxis(). MCIsEdgeFound() should be used to
assure that the home input has latched prior to calling
MCWaitForEdge().

Compatibility
This function is not supported by the DCX-AT200, DCX-PC, or DC2 controllers. When in closed-loop
mode the MFX-PCI1000 and MC360 module do not support this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCEdgeArm(hCtlr: HCTRLR; axis: Word; position: Double): Longint; stdcall;
VB: Function MCEdgeArm(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double) As Long
LabVIEW: Not Supported

MCCL Reference
EL

See Also
MCFindEdge(), MCIsEdgeFound(), MCWaitForEdge()

MCEnableAxis
MCEnableAxis() turns the specified axis on or off.

void MCEnableAxis(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 short int state // Boolean flag for on/off setting of axis
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to turn on or off.
state Flag to indicate if this axis should be turned on or turned off:

Value Description
TRUE Turn on axis.
FALSE Turn off axis.

Motion Functions

Motion Control Application Programming Interface 87

Returns
This function does not return a value.

Comments
This function does much more than just enable or disable axis. However, as the name implies, the
selected axis(axes) will be turned on or off depending upon the value of state. Note that an axis must
be enabled before any motion will take place. Issuing this command with axis set to MC_ALL_AXES
will enable or disable all axes installed on hCtlr.

i

state will accept any non-zero value as TRUE, and will work correctly
with most programming languages, including those that define TRUE as
a non-zero value other than one (one is the Windows default value for
TRUE).

If axis is off and then turned on, the following events will occur.

• The target and optimal positions are set to the present encoder position.
• The offset from MCFindEdge(), MCFindIndex() or MCIndexArm() is applied.
• The data passed by MCSetScale() are applied.
• MC_STAT_AMP_ENABLE will be set.
• MC_STAT_AMP_FAULT, if present, will be cleared.
• MC_STAT_ERROR, if present, will be cleared.
• MC_STAT_FOLLOWING, if present, will be cleared.
• MC_STAT_MLIM_TRIP, if present, will be cleared.
• MC_STAT_MSOFT_TRIP, if present, will be cleared.
• MC_STAT_PLIM_TRIP, if present, will be cleared.
• MC_STAT_PSOFT_TRIP, if present, will be cleared.

If axis is on and then turned on again, the following events will occur.

• The offset from MCFindEdge(), MCFindIndex() or MCIndexArm() is applied.
• The data passed by MCSetScale() are applied.

!

Calling this function to enable or disable an axis while it is in motion is
not recommended. However, should it be done, axis will cease the
current motion profile, and MC_STAT_AT_TARGET will be set.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableAxis(hCtlr: HCTRLR; axis: Word; state: SmallInt); stdcall;
VB: Sub MCEnableAxis (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer)

Motion Functions

PMC Motion Control 88

LabVIEW:

MCCL Reference
MF, MN

See Also
MCAbort(), MCStop()

MCEnableBacklash
MCEnableBacklash() sets the backlash compensation distance and turns backlash compensation
on or off, depending upon the value of state.

long int MCEnableBacklash(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double backlash, // backlash compensation distance
 short int state // enable state
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to control the backlash setting of.
backlash Amount of backlash compensation to apply. This parameter is ignored, if state

is FALSE.
state Specifies whether the channel is to be turned on or turned off.

Value Description
TRUE Turns backlash compensation on.
FALSE Turns backlash compensation off.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
In applications where the mechanical system is not directly connected to the motor, it may be required
that the motor move an extra amount to take up gear backlash. The backlash parameter to this
function sets the amount of this compensation, and should be equal to one half of the amount the axis
must move to take up the backlash when it changes direction.

Motion Functions

Motion Control Application Programming Interface 89

i

state will accept any non-zero value as TRUE, and will work correctly
with most programming languages, including those that define TRUE as
a non-zero value other than one (one is the Windows default value for
TRUE).

Compatibility
Stepper axes, the DC2, DCX-PC, and DCX-PCI100 controllers do not support backlash
compensation.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCEnableBacklash(hCtlr: HCTRLR; axis: Word; backlash: Double; state: SmallInt): Longint; stdcall;
VB: Function MCEnableBacklash(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal backlash As Double, ByVal state

As Integer) As Long
LabVIEW:

MCCL Reference
BD, BF, BN

MCEnableCapture
MCEnableCapture() begins position capture for the specified axis if count is greater than zero, or
stops position capture if count is zero.

long int MCEnableCapture (
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int count // number of points to capture
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to begin or end position capture.
count Set to zero to disable capture mode, or to a number greater than zero to

capture that many positions.

Motion Functions

PMC Motion Control 90

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
This functions enables the high-speed capture of count points (maximum 512) if count is greater than
zero, or disables position capture if count is -1. The count of currently captured data points may be
obtained using MCGetCount(), and captured position values may be retrieved using
MCGetCaptureData().

Compatibility
The DC2 stepper axes, and the MC100, MC110, MC150, MC160 modules when installed on the
DCX-PC100 controller do not support data capture. The DCX-PCI100 controller does not support
torque mode nor do any stepper axes, which prevents the capture of torque values.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCEnableCapture(hCtlr: HCTRLR; axis: Word; count: Longint): Longint; stdcall;
VB: Function MCEnableCapture(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal count As Long) As Long
LabVIEW: Not Supported

MCCL Reference
CB

See Also
MCGetCaptureData(), MCGetCount()

MCEnableCompare
MCEnableCompare() enables or disables high-speed compare mode for the specified axis.

long int MCEnableCompare(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int flag // flag to enable/disable compare state
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to enable high-speed compare.
flag Flag to indicate if this axis should be turned on or turned off:

Value Description

Motion Functions

Motion Control Application Programming Interface 91

Value Description
MC_COMPARE_DISABLE Disable high-speed compare for Axis.
MC_COMPARE_ENABLE Enable high-speed compare for Axis.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
The high-speed compare function for axis is enabled or disabled by this function. High-speed
compare mode must first be initialized by MCConfigureCompare() before compare mode may be
enabled. To determine how many compares have occurred use MCGetCount().

Compatibility
The DC2, DCX-PC100, DCX-AT200, and DCX-PCI100 controllers do not support high-speed position
compare.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCEnableCompare(hCtlr: HCTRLR; axis: Word; flag: Longint): Longint; stdcall;
VB: Function MCEnableCompare(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal flag As Long) As Long
LabVIEW: Not Supported

MCCL Reference
BC

See Also
MCConfigureCompare(), MCGetCount()

MCEnableDigitalFilter
MCEnableDigitalFilter() enables or disables the digital filter capability of advanced motor modules,
such as the MC300.

long int MCEnableDigitalFilter(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int state // Boolean flag enables/disables digital
 // filter
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().

Motion Functions

PMC Motion Control 92

axis Axis number to enable digital filter.
state Flag to indicate if digital filter should be enabled on or disabled:

Value Description
TRUE Enable digital filter for axis.
FALSE Disable digital filter for axis.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
The digital filter function for axis is enabled or disabled by this function. Digital filter coefficients are
loaded using MCSetDigitalFilter() and may be read back from the controller using
MCGetDigitalFilter(). The function MCIsDigitalFilter() will return a flag indicating the current
enabled state of the digital filter, and MCGetCount() may be used to determine the maximum filter
size and the size of the currently loaded filter.

i

state will accept any non-zero value as TRUE, and will work correctly
with most programming languages, including those that define TRUE as
a non-zero value other than one (one is the Windows default value for
TRUE).

Compatibility
The DC2, DCX-PC100, DCX-AT200, DCX-PCI100, MFX-PCI1000 controllers, MC360 and MC362
modules do not support digital filtering.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCEnableDigitalFilter(hCtlr: HCTRLR; axis: Word; state: Longint): Longint; stdcall;
VB: Function MCEnableDigitalFilter(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Long) As Long
LabVIEW: Not Supported

MCCL Reference
NF, YF

See Also
MCGetCount(), MCGetDigitalFilter(), MCIsDigitalFilter(), MCSetDigitalFilter()

Motion Functions

Motion Control Application Programming Interface 93

MCEnableEncoderFault
MCEnableEncoderFault() enables or disables encoder fault detection.

void MCEnableAxis(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int flag // flag to enable/disable fault detection
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Number of axis that is to have featured enabled or disabled.
flag Flags to indicate which encoders to detect faults for (or'ed togeather):

Value Description
MC_ENC_FAULT_PRI enable encoder fault detection for the primary

encoder
MC_ENC_FAULT_AUX enable encoder fault detection for the auxiliary

encoder

Returns
This function returns MCERROR_NOERROR if there were no errors, or one of the MCERR_xxxx
defined error codes if there was a problem.

Comments
Encoder fault detection must be enabled by MCEnableEncoderFault() before the controller will
detect and report an encoder fault.You may enable fault detection separately for the primary and the
auxiliary encoder inputs, you should not enable fault detection for an encoder input that is not
physically connected to an encoder (circuit noise would be interpreted as encoder failures). To disable
call this function with flags set to zero.

Compatibility
Encoder fault detection is only supported on the MultiFlex family of motion controllers..

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.4 or higher

Prototypes
Delphi: procedure MCEnableEncoderFaul(hCtlr: HCTRLR; axis: Word; flag: LongInt); stdcall;
VB: Sub MCEnableEncoderFault(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal flag As Integer)
LabVIEW: Not Supported

Motion Functions

PMC Motion Control 94

MCCL Reference
EE

See Also
MCGetStatusEx()

MCEnableGearing
MCEnableGearing() enables or disables electronic gearing for the specified axis / master pair.

void MCEnableGearing(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 WORD master, // master axis number
 double ratio, // gearing ratio
 short int state // enable state
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to enable or disable gearing.
master Master axis that axis is to follow.
ratio Ratio at which axis is to reproduce master’s motions.
state Specifies whether the gearing is to be enabled on or disabled.

Value Description
TRUE Enables gearing.
FALSE Disables gearing.

Returns
This function does not return a value.

Comments
This function permits you to configure one axis to automatically reproduce the motions of a master
axis. In addition, by using a ratio of other than 1.0, the reproduced motion can be scaled as desired.

DC2 users should express the ratio as a floating point value (i.e. 0.5 for 2:1, 2.0 for 1:2, etc.).
MCEnableGearing() automatically converts this ratio to the 32 bit fixed point fraction the DC2
requires. The DCX-PC100 controller supports only a fixed ration of 1:1, the Ratio parameter is ignored
for this controller.

i

state will accept any non-zero value as TRUE, and will work correctly
with most programming languages, including those that define TRUE as
a non-zero value other than one (one is the Windows default value for
TRUE).

Motion Functions

Motion Control Application Programming Interface 95

Compatibility
The DCX-PCI100 controller, DC2 stepper axes, the MC150, MC160, MC200, and MC260 modules
when placed on the DCX-PC100 controller do not support gearing.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableGearing(hCtlr: HCTRLR; axis, master: Word; ratio: Double; state: SmallInt); stdcall;
VB: Sub MCEnableGearing(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal master As Integer, ByVal ratio As

Double, ByVal state As Integer)
LabVIEW:

MCCL Reference
SM, SS

MCEnableJog
MCEnableJog() function enables or disables jogging for the axis specified by axis.

void MCEnableJog(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 short int state // enable state
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to enable or disable synchronized motion.
state Specifies whether the synchronized motion is to be enabled on or disabled.

Value Description
TRUE Enables synchronized motion.
FALSE Disables synchronized motion.

Returns
This function does not return a value.

Motion Functions

PMC Motion Control 96

Comments
The selected axis should be configured for jogging using the MCSetJogConfig() function before
being enabled by this function.

i

state will accept any non-zero value as TRUE, and will work correctly
with most programming languages, including those that define TRUE as
a non-zero value other than one (one is the Windows default value for
TRUE).

Compatibility
The DCX-PCI controllers, MFX-PCI1000 controllers, DC2 stepper axes, MC150, and MC160 modules
do not support jogging.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableJog(hCtlr: HCTRLR; axis: Word; state: SmallInt); stdcall;
VB: Sub MCEnableJog(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer)
LabVIEW: Not Supported

MCCL Reference
JF, JN

See Also
MCGetJogConfig(), MCSetJogConfig()

MCEnableSync
MCEnableSync() enables or disables synchronized motion for contour path motion for the specified
axis.

void MCEnableSync(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 short int state // enable state
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to enable or disable synchronized motion.
state Specifies whether the synchronized motion is to be enabled on or disabled.

Value Description

Motion Functions

Motion Control Application Programming Interface 97

Value Description
TRUE Enables synchronized motion.
FALSE Disables synchronized motion.

Returns
This function does not return a value.

Comments
This function is issued to the controlling axis of a contour path motion, prior to issuing any contour
path motions, to inhibit any motion until a call to MCGoEx() is made.

i

state will accept any non-zero value as TRUE, and will work correctly
with most programming languages, including those that define TRUE as
a non-zero value other than one (one is the Windows default value for
TRUE).

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100
controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableSync(hCtlr: HCTRLR; axis: Word; state: SmallInt); stdcall;
VB: Sub MCEnableSync(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer)
LabVIEW:

MCCL Reference
NS, SN

See Also
MCGoEx()

Motion Functions

PMC Motion Control 98

MCFindAuxEncIdx
MCFindAuxEncIdx() arms the auxiliary encoder index capture function of an axis.

long int MCFindAuxEncIdx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // reserved for future use
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to search for the index signal.
position This parameter is ignored by current motion controller firmware.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
This function arms the auxiliary encoder index capture function of an axis. The function remains
pending until the auxiliary encoder index input of the module goes active, at which point,
MC_STAT_INP_AUX will be latched. This function does not cause any motion to be started or
stopped.

A homing routine may incorporate this function by using MCDecodeStatusEx() to determine when
MC_STAT_INP_AUX latches. After making sure the axis has stopped, you may determine how far the
current position is from where the auxiliary encoder index occurred. The difference between
MCGetAuxEncPosEx() and MCGetAuxEncIdxEx() should be used as the current position through
a call to MCSetAuxEncPos().

i

At this time, the firmware does not support the position parameter. We
advise you set position to zero, so that future firmware updates will not
break your code.

Compatibility
The DC2, DCX-PCI100 controllers, MC100, MC110, MC150, and MC320 modules do not support
auxiliary encoders. Closed-loop steppers do not support auxiliary encoder functions, since the
connected encoder is considered a primary encoder.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Motion Functions

Motion Control Application Programming Interface 99

Prototypes
Delphi: function MCFindAuxEncIdx(hCtlr: HCTRLR; axis: Word; position: Double): Longint; stdcall;
VB: Function MCFindAuxEncIdx(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double) As Long
LabVIEW: Not Supported

MCCL Reference
AF

See Also
MCBlockBegin(), MCFindIndex(), MCGetAuxEncIdxEx()

MCFindEdge
MCFindEdge() is used to initialize a motor at a given position, relative to the home or coarse home
input.

long int MCFindEdge (
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // new position for edge
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to search for the edge signal.
position The position where the edge signal is sensed for the axis will be set to position

after a call to MCEnableAxis().

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
This function is used to initialize a motor at a given position. The function remains pending until the
home input of the module goes active. This function does not cause any motion to be started or
stopped. See the example code in the online help for details of how to use MCFindEdge().

!

Once this command is issued, the calling program will not be able to
communicate with the board until the home input is seen as high for
axis. We recommend using MCEdgeArm() and MCIsEdgeFound()
instead.

i

Only after an MCEnableAxis() call will the position where the home
input was seen as high for axis be set to the value of the position
parameter.

Motion Functions

PMC Motion Control 100

i

The DC2 controllers, MC100, MC110, and MC260 modules use coarse
home instead of home, but this still translates to MC_STAT_INP_HOME.
In these cases, MCDecodeStatusEx() should be used instead of this
function.

Compatibility
The DC2 stepper axes, MC200 and MC210 when installed on the DCX-AT200, MC300, MC302, and
MC320 modules do not support this command.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCFindEdge(hCtlr: HCTRLR; axis: Word; position: Double): Longint; stdcall;
VB: Function MCFindEdge Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double) As Long
LabVIEW: Not Supported

MCCL Reference
FE

See Also
MCBlockBegin(), MCEdgeArm(), MCFindIndex(), MCIsEdgeFound(), MCWaitForEdge()

MCFindIndex
MCFindIndex() is used to initialize a servo or closed-loop stepper motor at a given position, relative
to the index input.

long int MCFindIndex(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // new position for index
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to search for the index signal.
position The position where the encoder index pulse occurred for the axis will be set to

position after a call to MCEnableAxis().

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Motion Functions

Motion Control Application Programming Interface 101

Comments
This function is used to initialize a servo motor at a given position. The function remains pending until
the index input of the module goes active. This function does not cause any motion to be started or
stopped. See the example code in the online help for details of how to use MCFindIndex().

!

Once this command is issued, the calling program will not be able to
communicate with the board until the axis captures the encoder index.
We recommend instead using and confirming that MCIndexArm() has
captured the index through MCIsIndexFound() before calling
MCWaitForIndex() to avoid this problem.

i

Only after an MCEnableAxis() call will the position where the encoder
index pulse occurred for axis be set to the value of the position
parameter.

Compatibility
Open-loop stepper axes do not support this command, since the connected encoder is considered an
auxiliary encoder.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCFindIndex(hCtlr: HCTRLR; axis: Word; position: Double): Longint; stdcall;
VB: Function MCFindIndex(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double) As Long
LabVIEW: Not Supported

MCCL Reference
FI

See Also
MCBlockBegin(), MCFindAuxEncIdx(), MCFindEdge(), MCIndexArm(), MCWaitForEdge(),
MCWaitForIndex()

MCGoEx
MCGoEx() initiates a motion when operating in velocity mode.

long int MCGoEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double param // optional argument for the GO command
);

Motion Functions

PMC Motion Control 102

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to command.
param Argument to the GO command.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
The axis must be configured for velocity mode operation before issuing a MCGoEx() call. All axes
may be instructed to move by setting the Axis parameter to MC_ALL_AXES.

To enable cubic splining while in contour mode on the DCX-AT200 or DCX-AT300 use MCGoEx()
with the value of param set to 1.0.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCGoEx(hCtlr: HCTRLR; axis: Word; param: Double): Longint; stdcall;
VB: Function MCGoEx(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal param As Double) As Long
LabVIEW:

MCCL Reference
GO

See Also
MCSetOperatingMode(), MCStop()

MCGoHome
MCGoHome() initiates a home motion for the specified axis or all axes.

void MCGoHome(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
);

Motion Functions

Motion Control Application Programming Interface 103

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to command.

Returns
This function does not return a value.

Comments
The home or zero position is used that was last set by calling MCSetPosition(). This command
effectively executes a MCMoveAbsolute() with a target position of 0.0.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCGoHome(hCtlr: HCTRLR; axis: Word); stdcall;
VB: Sub MCGoHome Lib(ByVal hCtrlr As Integer, ByVal axis As Integer)
LabVIEW:

MCCL Reference
GH

See Also
MCMoveAbsolute(), MCSetPosition()

Motion Functions

PMC Motion Control 104

MCIndexArm
MCIndexArm() arms the index capture function of a servo or closed-loop stepper axis.

long int MCIndexArm(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // new position for index
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to search for the index signal.
position The position where the encoder index pulse occurred for the axis will be set to

position after a call to MCEnableAxis().

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
This function is used to initialize a servo motor to a specified position where the encoder index pulse
occurs. The function remains pending until the encoder index input of the module goes active, after
which a call to MCEnableAxis() sets the position where the encoder index pulse occurred to the
value of the position parameter. This function does not cause any motion to be started or stopped.

For stepper axes this function performs in a similar fashion. The difference is that the stepper axis
uses the home input signal in place of the encoder index input signal.

i

Only after an MCEnableAxis() call will the position where the encoder
index pulse occurred for axis be set to the value of the position
parameter.

Compatibility
Open-loop stepper axes do not support this command, since the connected encoder is considered an
auxiliary encoder.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MCIndexArm(hCtlr: HCTRLR; axis: Word; position: Double): Longint; stdcall;
VB: Function MCIndexArm(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double) As Long
LabVIEW: Not Supported

Motion Functions

Motion Control Application Programming Interface 105

MCCL Reference
IA

See Also
MCBlockBegin(), MCFindAuxEncIdx(), MCFindIndex(), MCWaitForIndex()

MCInterruptOnPosition
MCInterruptOnPosition() enables the breakpoint reached flag of the controller status word.

long int MCInterruptOnPosition(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int mode // absolute / relative
 double position // interrupt position
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to specify interrupt for
mode Flag to indicate if the interrupt position is specified in absolute units or relative

to the current position

Value Description
TRUE Turn on axis.
FALSE Turn off axis.

position Absolute or relative interrupt position for axis.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
This function configures an axis to set the breakpoint reached bit in the status word when an absolute
or relative position is reached. By enabling status word interrupts from the controller with the
MCEnableInterrupt() the application program can be interrupted when the specified position is
reached.

Compatibility
Only the MFX-PCI1000 series of motion controllers support status word interrupts.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.3 or higher

Motion Functions

PMC Motion Control 106

Prototypes
Delphi: function MCInterruptOnPosition(hCtlr: HCTRLR; axis: Word; mode: Long int, position: Double): Longint; stdcall;
VB: Function MCInterruptOnPosition(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal mode As Long int, ByVal

position As Double) As Long
LabVIEW: Not Supported

MCCL Reference
IP, IR

See Also
MCEnableInterrupt()

MCLearnPoint
MCLearnPoint() stores the current actual position or target position for the specified axis in point
memory at location specified by index.

long int MCLearnPoint(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 WORD index, // point memory index
 WORD mode // type of position to store
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to store data for.
index Storage location for point data.
mode Determines if the actual position or the target position will be stored:

Value Description
MC_LRN_POSITION Learns the current actual position for the specified

axis.
MC_LRN_TARGET Learns the current target position for the specified

axis.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
The actual position of an axis may be stored as it is moved; or, by disabling the axis, position
commands may be issued to the axis, and the target positions stored, without actually moving the axis
(see online help examples).

Motion Functions

Motion Control Application Programming Interface 107

The number of points that may be stored will vary with the number of motor axes installed and the
type of controller (see the compatibility section, below, for controller dependent limits). The first
storage is location zero (not location 1).

The current position of all axes may be stored by setting the Axis parameter to MC_ALL_AXES.

Compatibility
The number of points that can be stored is dependent on the controller type and in some cases on the
number of installed axes:

Controller 1 2 3 4 5 6 7 8
DCX-PCI300 256 256 256 256 256 256 256 256
MFX-PCI1000 256 256 256 256 256 256 256 256
DCX-PCI100 256 256 256 256 256 256 256 256
DCX-AT300 1536 768 512 384 307 256 n/a n/a
DCX-AT200 1536 768 512 384 307 256 n/a n/a
DCX-PC100 4096 2048 1365 1024 819 682 585 512
DC2-PC100 n/a 2048 n/a n/a n/a n/a n/a n/a
DCX-PCI300 256 256 256 256 256 256 256 256
DCX-PCI100 256 256 256 256 256 256 256 256
DCX-AT300 1536 768 512 384 307 256 n/a n/a
DCX-AT200 1536 768 512 384 307 256 n/a n/a
DCX-PC100 4096 2048 1365 1024 819 682 585 512

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCLearnPoint(hCtlr: HCTRLR; axis: Word; index: Longint; mode: Word): Longint; stdcall;
VB: Function MCLearnPoint Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal index As Long, ByVal mode As

Integer) As Long
LabVIEW: Not Supported

MCCL Reference
LP, LT

See Also
MCMoveToPoint()

Motion Functions

PMC Motion Control 108

MCMoveAbsolute
MCMoveAbsolute() initiates an absolute position move for the specified axis.

void MCMoveAbsolute(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // new absolute position
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to move.
position Absolute position to move to.

Returns
This function does not return a value.

Comments
The axis must be enabled prior to executing a move (an exception to this is when the
MCMoveAbsolute() is used with MCLearnPoint() in target mode).

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCMoveAbsolute(hCtlr: HCTRLR; axis: Word; position: Double); stdcall;
VB: Sub MCMoveAbsolute(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double)
LabVIEW:

MCCL Reference
MA

Motion Functions

Motion Control Application Programming Interface 109

See Also
MCMoveRelative(), MCSetPosition()

MCMoveRelative
MCMoveRelative() initiates a relative position move for the specified axis or all axes.

void MCMoveRelative(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double distance // distance to move from current position
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to move.
distance Amount of distance to move.

Returns
This function does not return a value.

Comments
The axis must be enabled prior to executing a move (an exception to this is when the
MCMoveRelative() is used with MCLearnPoint() in target mode).

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCMoveRelative(hCtlr: HCTRLR; axis: Word; distance: Double); stdcall;
VB: Sub MCMoveRelative(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal distance As Double)
LabVIEW:

Motion Functions

PMC Motion Control 110

MCCL Reference
MR

See Also
MCMoveAbsolute(), MCSetPosition()

MCMoveToPoint
MCMoveToPoint() initiates an absolute move to a stored location for the specified axis or all axes.

long int MCMoveToPoint(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 WORD index // index of point to move to
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to move.
index Index of stored location to move to.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
The motor must be enabled prior to executing a MCMoveToPoint() and the point specified by index
must have been stored by a previous call to MCLearnPoint(). All axes may be instructed to move by
setting the axis parameter to MC_ALL_AXES.

Compatibility
The DC2 stepper axes do not support this command.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCMoveToPoint(hCtlr: HCTRLR; axis: Word; index: Longint): Longint; stdcall;
VB: Function MCMoveToPoint Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal index As Long) As Long
LabVIEW: Not Supported

MCCL Reference
MP

Motion Functions

Motion Control Application Programming Interface 111

See Also
MCLearnPoint()

MCReset
MCReset() performs a complete reset of the axis or controller, leaving the specified axis (or axes) in
the disabled state.

void MCReset(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to reset.

Returns
This function does not return a value.

Comments
Setting the axis parameter to MC_ALL_AXES will cause the specified controller to be reset.

If you have enabled the hardware reset feature of the DCX-AT, or DCX-PC100 controllers MCReset()
will perform a hard reset when axis is equal to MC_ALL_AXES, or a soft reset when Axis specifies a
particular axis. If this feature is off (the default state), MCReset() issues the “RT” command to the
board to perform any reset (this is a "soft" reset). On the DCX-AT200 and DCX-AT300 you must set
jumper JP2 to connect pins 1 and 2 if Hard Reset is enabled, or connect pins 5 and 6 (factory default)
if Hard Reset is disabled. On the DCX-PC100 you must set jumper JP4 to connect pins 1 and 2 if
Hard Reset is enabled, or connect pins 5 and 6 (factory default) if Hard Reset is disabled. See the
Motion Control Panel online help for how to enable the MCAPI Hardware Reset feature.

Compatibility
The DC2 series, DCX-PC100, DCX-AT100, and DCX-AT200 (prior to firmware version 1.2a)
controllers do not support the resetting of individual axes. In these cases when this command is
executed, the axis parameter is ignored and a controller reset is performed.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCReset(hCtlr: HCTRLR; axis: Word); stdcall;
VB: Sub MCReset Lib(ByVal hCtrlr As Integer, ByVal axis As Integer)

Motion Functions

PMC Motion Control 112

LabVIEW:

MCCL Reference
RT

See Also
MCAbort(), MCStop()

MCStop
MCStop() stops the specified axis or axes using the pre-programmed deceleration values.

void MCStop(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to stop.

Returns
This function does not return a value.

Comments
This function initiates a controlled axis stop, as compared with MCAbort() which stops the axis
abruptly.

i

Following a call to MCStop() verify that the axis has stopped using or
MCIsStopped() or MCWaitForStop(). Then call MCEnableAxis()
prior to issuing another motion command.

i

Following a call to MCStop() on the DCX-PC100 controller when in
velocity mode, call MCSetOperatingMode() prior to issuing another
motion command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Motion Functions

Motion Control Application Programming Interface 113

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCStop(hCtlr: HCTRLR; axis: Word); stdcall;
VB: Sub MCStop(ByVal hCtrlr As Integer, ByVal axis As Integer)
LabVIEW:

MCCL Reference
ST

See Also
MCAbort(), MCEnableAxis(), MCIsStopped(), MCSetOperatingMode(), MCWaitForStop()

MCWait
MCWait() waits the specified number of seconds before returning to the caller.

void MCWait(
 HCTRLR hCtlr, // controller handle
 double period // length of delay
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
period Length of delay, in seconds.

Returns
This function does not return a value.

Comments
The delay is specified in seconds, unless MCSetScale() has been called to change the time scale.

!

Once this command is issued, the calling program will not be able to
communicate with the board until period elapses. We recommend
creating your own time based looping structure.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Motion Functions

PMC Motion Control 114

Prototypes
Delphi: procedure MCWait(hCtlr: HCTRLR; period: Double); stdcall;
VB: Sub MCWait(ByVal hCtrlr As Integer, ByVal period As Double)
LabVIEW:

MCCL Reference
WA

See Also
MCWaitForPosition(), MCWaitForRelative(), MCWaitForStop(), MCWaitForTarget()

MCWaitForEdge
MCWaitForEdge() waits for the coarse home input to go to the specified logic level for a servo,
closed-loop stepper, or an MC260 open-loop stepper. When used with an open-loop stepper
(excluding an MC260) this function completes a call to MCEdgeArm(). Note that when used with an
open-loop stepper (excluding an MC260), the parameter state has no effect.

long int MCWaitForEdge(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 short int state // selects logic level to wait for
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to wait for.
state Selects the coarse home logic level to wait for:

Value Description
TRUE Wait for coarse home to go active.
FALSE Wait for coarse home to go inactive.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
This function behaves differently depending on what type of module axis is and whether it is in open-
loop or closed-loop mode. In both cases instruction processing is paused until the home or coarse
home input, respectively, goes to the specified logic state. In open-loop mode, this function is one of
three functions that must be called to set the home input signal transition to a predetermined position.
In closed-loop mode, this function is used to find a home sensor to qualify an index pulse on servo or
closed-loop stepper. However, using this function with a closed-loop system is discouraged.

Motion Functions

Motion Control Application Programming Interface 115

In open-loop mode, exclusively stepper modules (excluding the MC260, see the closed-loop section
for function behavior), this function should be called after MCIsEdgeFound() confirms that the home
input has latched from a previous call to MCEdgeArm(). After this function returns control to the
calling program, a call to MCEnableAxis() will apply position defined in MCEdgeArm() to the
position where the home input first latched.

!

Once this command is issued, the calling program will not be able to
communicate with the board until the home input signal is detected. We
recommend calling MCIsEdgeFound(), to confirm the home input is
active prior to calling this function.

i

Note that when used with an open-loop stepper (excluding an MC260),
the parameter state has no effect. Also, this function is only looking for
an active signal state, not a transition.

When a module used in closed-loop mode or with an MC260, this function is called by itself to return
when the home input state level defined by state is observed. To assure a leading or trailing edge, this
function would have to be called twice with state different in both cases.

!

Once this command is issued, the calling program will not be able to
communicate with the board until state matches the coarse home logic
level. We recommend creating your own looping structure based on
MCDecodeStatusEx() and MC_STAT_INP_HOME instead of using this
function.

i

state will accept any non-zero value as TRUE, and will work correctly
with most programming languages, including those that define TRUE as
a non-zero value other than one (one is the Windows default value for
TRUE).

See the example code in the online help for details of how to use MCWaitForEdge().

Compatibility
The DC2 stepper axes, MC150, and MC160 modules do not support this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCWaitForEdge(hCtlr: HCTRLR; axis: Word; state: SmallInt): Longint; stdcall;
VB: Function MCWaitForEdge(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer) As Long
LabVIEW: Not Supported

Motion Functions

PMC Motion Control 116

MCCL Reference
WE

See Also
MCEdgeArm(), MCFindEdge(), MCFindIndex(), MCIsEdgeFound()

MCWaitForIndex
MCWaitForIndex() waits until the index pulse has been observed on servo or closed-loop stepper
axis.

long int MCWaitForIndex(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to wait for.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
This function is used to initialize a motor to a given position relative to the index pulse. When called
after MCIndexArm(), it provides the exact same functionality as MCFindIndex(). The benefit is that
you may query the controller through MCIsIndexFound() to see that the index has latched. Once the
index has been seen, a call to MCWaitForIndex() will not cause the board to stop communicating
where MCFindIndex() has the potential to cause the controller to stop communicating.

!

Once this command is issued, the calling program will not be able to
communicate with the board until axis captures the encoder index. We
recommend confirming that MCIndexArm() has captured the index by
using MCIsIndexFound() before calling MCWaitForIndex() to avoid
this problem.

i

Only after an MCEnableAxis() call will the position where the encoder
index pulse occurred for axis be set to the value of the position
parameter.

Compatibility
Open-loop stepper axes do not support this command, since the connected encoder is considered an
auxiliary encoder.

Motion Functions

Motion Control Application Programming Interface 117

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MCWaitForIndex(hCtlr: HCTRLR; axis: Word): Longint; stdcall;
VB: Function MCWaitForIndex(ByVal hCtrlr As Integer, ByVal axis As Integer) As Long
LabVIEW: Not Supported

MCCL Reference
WI

See Also
MCFindAuxEncIdx(), MCFindEdge(), MCFindIndex(), MCIndexArm(), MCIsIndexFound()

MCWaitForPosition
MCWaitForPosition() waits for the axis to reach the specified position before allowing the next
command to execute.

void MCWaitForPosition(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // position to wait for
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to wait on to reach specified position.
position Absolute position to wait for.

Returns
This function does not return a value.

Comments
You must start the specified axis moving, and make certain the motion will at least reach the wait
position, in order for this function to return to the calling program.

!

Once this command is issued, the calling program will not be able to
communicate with the board until axis’ encoder reaches position.

Compatibility
The DC2 stepper axes, MC150, and MC160 modules do not support this function.

Motion Functions

PMC Motion Control 118

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCWaitForPosition(hCtlr: HCTRLR; axis: Word; position: Double); stdcall;
VB: Sub MCWaitForPosition(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double)
LabVIEW: Not Supported

MCCL Reference
WP

See Also
MCWait(), MCWaitForRelative(), MCWaitForStop(), MCWaitForTarget()

MCWaitForRelative
MCWaitForRelative() waits for the axis to reach a position that is specified relative to the target
position.

void MCWaitForRelative(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double distance // relative position to wait for
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to wait on for to reach specified position.
distance Position, relative to the current target position, to wait for.

Returns
This function does not return a value.

Comments
You must start the specified axis moving, and make certain the motion will at least reach the wait
position, in order for this function to return to the calling program. The position argument is specified
as a distance from the target position.

!

Once this command is issued, the calling program will not be able to
communicate with the board until axis’ encoder traverses distance.

Compatibility
The DC2 stepper axes, MC150, and MC160 modules do not support this function.

Motion Functions

Motion Control Application Programming Interface 119

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCWaitForRelative(hCtlr: HCTRLR; axis: Word; distance: Double); stdcall;
VB: Sub MCWaitForRelative(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal distance As Double)
LabVIEW: Not Supported

MCCL Reference
WR

See Also
MCWait(), MCWaitForPosition(), MCWaitForStop(), MCWaitForTarget()

MCWaitForStop
MCWaitForStop() waits for the specified axis or all axes to come to a stop. An optional dwell after
the stop may be specified within this command to allow the mechanical system to come to rest.

void MCWaitForStop(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double dwell // dwell time after stop
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number function is waiting for to stop.
dwell Delay time after stop has occurred.

Returns
This function does not return a value.

Comments
MCWaitForStop() is necessary for synchronizing motions, and for making certain that a prior motion
has completed before beginning a new motion.

!

Once this command is issued, the calling program will not be able to
communicate with the board until axis’ encoder comes to rest. We
recommend using MCIsStopped() or MCIsAtTarget() instead.

Compatibility
There are no compatibility issues with this function.

Motion Functions

PMC Motion Control 120

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCWaitForStop(hCtlr: HCTRLR; axis: Word; dwell: Double); stdcall;
VB: Sub MCWaitForStop(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal dwell As Double)
LabVIEW:

MCCL Reference
WS

See Also
MCIsAtTarget(), MCIsStopped(), MCWait(), MCWaitForPosition(), MCWaitForRelative(),
MCWaitForTarget()

MCWaitForTarget
MCWaitForTarget() waits for the specified axis to reach its target position. An optional dwell after the
stop may be specified within this command to allow the mechanical system to come to rest.

void MCWaitForTarget(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double dwell // dwell time after stop
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number function is waiting for to reach the target position.
dwell Delay time after stop has occurred.

Returns
This function does not return a value.

Comments
For a servo axis to be considered "at target" it must remain within the Deadband region for the
DeadbandDelay period. Deadband and DeadbandDelay are specified in the MCMOTIONEX
configuration structure.

Motion Functions

Motion Control Application Programming Interface 121

!

Once this command is issued, the calling program will not be able to
communicate with the board until axis’ encoder settles within the
Deadband region for the DeadbandDelay period. We recommend using
MCDecodeStatusEx() along with MC_STAT_AT_TARGET instead.

Compatibility
The DC2 and DCX-PC100 controllers do not support this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCWaitForTarget(hCtlr: HCTRLR; axis: Word; dwell: Double); stdcall;
VB: Sub MCWaitForTarget(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal dwell As Double)
LabVIEW: Not Supported

MCCL Reference
WT

See Also
MCGetMotionConfigEx(), MCSetMotionConfigEx(), MCWaitForPosition(),
MCWaitForRelative(), MCWaitForStop()

Reporting Functions

122

Chapter Contents

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

• MCGetModuleInputMode()
• MCGetMotionConfigEx()
• MCGetOperatingMode()
• MCGetOptimalEx()
• MCGetPositionEx()
• MCGetProfile()
• MCGetRegister()
• MCGetScale()
• MCGetServoOutputPhase()
• MCGetStatusEx()
• MCGetTargetEx()
• MCGetTorque()
• MCGetVectorVelocity()
• MCGetVelocityActual
• MCGetVelocityEx()
• MCIsAtTargetEx()
• MCIsDigitalFilter()
• MCIsEdgeFound()
• MCIsIndexFound()
• MCIsStopped()
• MCTranslateError()
MCDecodeStatusEx()
MCEnableInterrupt()
MCErrorNotify()
MCGetAcceleration()
MCGetAuxEncIdxEx()
MCGetAuxEncPosEx
MCGetAxis Configuration()
MCGetBreakpointEx()
MCGetCaptureData()
MCGetContourConfig()
MCGetContouringCount()
MCGetCount()
MCGetDecelerationEx()
MCGetDigitalFilter()
MCGetError()
MCGetFilterConfigEx()
MCGetFllowingError()
MCGetGain()
MCGetIndexEx()
MCGetInstalledModules()
MCGetJogConfig()
MCGetLimits()
PMC Motion Control

Chapter

7

Motion Control Application Programming Interface 123

Reporting Functions

Reporting functions allow the calling program to query the board to determine how parameters have
been configured, as well as getting information regarding the position and status of any given axis.
Also included in this category are functions that allow the program to trap and decode errors.

To see examples of how the functions in this chapter are used, please refer to the online Motion
Control API Reference.

MCDecodeStatusEx
MCDecodeStatusEx() permits you to test flags in the controller status word in a way that is
independent of the type of controller being inspected.

long int MCDecodeStatus(
 HCTRLR hCtlr, // controller handle
 DWORD status, // status word data structure
 long int bit // status bit selection flag
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
status Status value returned from a previous call to MCGetStatusEx().
bit Status bit to decode. Over fifty different status bit flags (not all flags are

supported by all controllers) are defined in the Constants section of this help
file. Valid Bit constants begin with "MC_STAT_".

Returns
This function returns TRUE if the selected bit is set. Otherwise, FALSE is returned if the bit is not set
or the bit does not apply to this controller type.

Reporting Functions

PMC Motion Control 124

Comments
Using this function to test the status word returned by MCGetStatusEx() isolates the program from
controller dependent bit ordering of the status word. The sample programs include numerous
examples of the MCDecodeStatusEx() function.

i

To assist with proper constant selection two tables have been provided
with the online help. The Status Word Lookup Table lists the constants
in the same order as the status word bits they represent for each
controller model, and has been included in Appendix C. A second table,
The Status Word Cross Reference, lists the controller models supported
by each constant, and will only be found in the online help.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.3 or higher

Prototypes
Delphi: function MCDecodeStatusEx(hCtlr: HCTRLR; status, bit: Longint): Longint; stdcall;
VB: Function MCDecodeStatusEx(ByVal hCtrlr As Integer, ByVal status As Long, ByVal bit As Long) As Long
LabVIEW:

MCCL Reference
None

See Also
MCGetStatusEx(), online help sample programs

MCEnableInterrupt
MCEnableInterrupt() enables or disables the status word interrupt feature on motion controllers that
support host interrupts. Users may elect to receive notification of interrupts via a message posted to a
window message queue, or through a callback function.

long int MCEnableInterrupt(
 HWND hWnd, // window handle for notification messages
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
 DWORD mask // selects bits to use for interrupt
 MCINTERRUPTPROC lpIntFunc // callback function pointer
);

Reporting Functions

Motion Control Application Programming Interface 125

Parameters
hWnd Window handle to post notification messages to.
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to enable or disable interrupt notifications.
mask Bits set in this variable select the corresponding bits in the main status word of

the controller which will cause an interrupt if set. Setting mask to zero disables
interrupt notification for this axis.

lpIntFunc Pointer to a callback function to be used for interrupt notification, or null to
indicate that a message should be posted to the window function instead.

Returns
This function returns MCERR_NOERROR if there are no errors, or one of the MCERR_xxxx defined
error codes if there was a problem.

Comments
This function permits you to configure an axis to notify your application program when any of the
primary status word bits specified by mask go true.If the callback function agrument specifies a
function the function will be called to notify the application of the status event. If the callback function
agrument is NULL then a message will be posted to the window specified by hWnd.

Use the windows function RegisterWindowsMessage() with the name "MCStatusNotify" to get the
message identifier. The test for this message value in your window procedure. The WPARAM of the
message will include the controller handle in the low word and the Axis number in the high word. The
LPARAM value of this message will contain the status value.

The callback function must have the following signiture:

void CALLBACK MyIntProc(HWND hWnd, HCTRLR hCtlr, WORD waxis, DWORD status);

Where MyIntProc is any name you choose. If a windows handle was specified in the call to
MCEnableInterrupt() that will be the first argument to the callback function, the second agrument will
be the controller handle, the third the axis number, and the forth a status word with bits set (true) for
the bits that have just transitioned from false to true and are selected by the mask.

Only one notification window or callback function may be specified per axis per MCAPI handle at a
time.

Compatibility
Only the MFX-PCI1000 series of motion controllers support the MCEnableInterrupt function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.3 or higher

Prototypes
Delphi: function MCEnableInterrupt(hWnd: HWND; hCtlr: HCTRLR; wAxis: WORD; mask:DWORD; lpIntFunc:

MCInterruptProc): Longint; stdcall;
VB: Declare Function MCEnableInterrupt Lib "mcapi32.dll" (ByVal hWnd As Long, ByVal hCtrlr As Integer, ByVal axis As

Integer, ByVal mask As Long, lpIntFunc As Any)

Reporting Functions

PMC Motion Control 126

MCCL Reference
EI

See Also
MCDecodeStatusEX()), MCGetStatusEx(), online help sample programs

MCErrorNotify
MCErrorNotify() registers with the MCAPI a specific window procedure that is to receive message
based notification of API errors for this controller handle.

void MCErrorNotify(
 HWND hWnd, // error handling window procedure
 HCTRLR hCtlr, // controller handle
 DWORD errorMask // mask to select error category
);

Parameters
hWnd Handle of window procedure to receive error messages.
hCtlr Controller handle, returned by a successful call to MCOpen().
errorMask Selects error categories to be notified about. Any combination of the

MCERRMASK_xxxx constants may be OR’ed together to select errors to be
reported. The constant MCERRMASK_STANDARD includes the most common
error messages.

Returns
This function does not return a value.

Comments
Only one window procedure at a time may receive error messages for a controller handle. If another
window procedure attempts to hook the error messages for a handle that already has an error
handler, it will replace the current error handler. In practice, this is not a problem as applications have
control of the handle. They can decide who to have hook the error notification mechanism.

The error notification message is a pre-agreed upon, inter-application message that goes by the name
"MCErrorNotify". Application programs need to call the Windows function
RegisterWindowMessage() with the message name “MCErrorNotify” to obtain the numeric value if
the message. The error message will have a numeric error code as its wParam, and a pointer to a
null-terminated ASCII string representation of the name of the function that caused the error as its
lParam. The CWDemo sample application includes an example of hooking the error notification loop
and processing error messages.

In the event of a bad controller handle passed to an API function as part of an API call, an error
message will be broadcast to every windows procedure. This is done because with a bad handle
there is no way for the API to identify which window procedure should receive the error. Rather than
quietly tell no one, the API plays it safe and tells everyone.

Reporting Functions

Motion Control Application Programming Interface 127

The standard Windows message queue is small and may be over-run if error messages occur in rapid
succession. During application development, when errors are most likely, you may want to call the
Windows function SetMessageQueue() in your WinMain function to set the application queue to
something larger than the default size of 8 messages.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.2 or higher

Prototypes
Delphi: procedure MCErrorNotify(hWnd: HWnd; hCtlr: HCTRLR; errorMask: Longint); stdcall;
VB: Sub MCErrorNotify(ByVal hWnd As Long, ByVal hCtrlr As Integer, ByVal errorMask As Long)
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCGetError(), MCTranslateErrorEx(), CWDemo sample code

MCGetAccelerationEx
MCGetAccelerationEx() returns the current programmed acceleration value for the given axis, in
whatever units the axis is configured for.

long int MCGetAccelerationEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pAccel // acceleration return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query for acceleration
pAccel Pointer to a double precision floating point variable that will hold the

acceleration for the specified axis.

Returns
The acceleration value is placed in the variable specified by the pointer pAccel and
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the
MCERR_xxxx error codes is returned and the variable pointed to by pAccel is left unchanged.

Reporting Functions

PMC Motion Control 128

Comments
The acceleration value returned by this function is the same as the Acceleration field of the
MCMOTIONEX structure returned by MCGetMotionConfigEx(); MCGetAccelerationEx() provides
a short-hand method for obtaining just the acceleration value.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The DC2 stepper axes do not support ramping.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetAccelerationEx(hCtlr: HCTRLR; axis: Word; var pAccel: Double): Longint; stdcall;
VB: Function MCGetAccelerationEx(ByVal hCtrlr As Integer, ByVal axis As Integer, accel As Double) As Long
LabVIEW:

MCCL Reference
None

See Also
MCSetAcceleration(), MCGetMotionConfigEx()

MCGetAuxEncIdxEx
MCGetAuxEncIdxEx() returns the position where the auxiliary encoder's index pulse was observed.

long int MCGetAuxEncIdxEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pIndex // index position return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pIndex Pointer to a double precision floating point variable that will hold the auxiliary

encoder index position for the specified axis.

Reporting Functions

Motion Control Application Programming Interface 129

Returns
The auxiliary encoder index position is placed in the variable specified by the pointer pIndex and
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the
MCERR_xxxx error codes is returned and the variable pointed to by pIndex is left unchanged.

Comments
The auxiliary encoder's position may be set (to zero) using the MCSetAuxEncPos() function. The
index position reported will be relative to this zero position.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The DC2, DCX-PCI100 controllers, MC100, MC110, MC150, and MC320 modules do not support
auxiliary encoders. Closed-loop steppers do not support auxiliary encoder functions, since the
connected encoder is considered a primary encoder.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetAuxEncIdxEx(hCtlr: HCTRLR; axis: Word; var pIndex: Double): Longint; stdcall;
VB: Function MCGetAuxEncIdxEx(ByVal hCtrlr As Integer, ByVal axis As Integer, index As Double) As Long
LabVIEW: Not Supported

MCCL Reference
AZ

See Also
MCFindAuxEncIdx(), MCGetAuxEncPosEx(), MCSetAuxEncPos()

MCGetAuxEncPosEx
MCGetAuxEncPosEx() returns the current position of the auxiliary encoder.

long int MCGetAuxEncPosEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pPosition // position return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().

Reporting Functions

PMC Motion Control 130

axis Axis number to query.
pPosition Pointer to a double precision floating point variable that will hold the auxiliary

encoder position for the specified axis.

Returns
The auxiliary encoder position is placed in the variable specified by the pointer pPosition and
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the
MCERR_xxxx error codes is returned and the variable pointed to by pPosition is left unchanged.

Comments
The auxiliary encoder's position may be set using the MCSetAuxEncPos() function.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The DC2, DCX-PCI100 controllers, MC100, MC110, MC150, and MC320 modules do not support
auxiliary encoders. Closed-loop steppers do not support auxiliary encoder functions, since the
connected encoder is considered a primary encoder.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetAuxEncPosEx(hCtlr: HCTRLR; axis: Word; var pPosition: Double): Longint; stdcall;
VB: Function MCGetAuxEncPosEx(ByVal hCtrlr As Integer, ByVal axis As Integer, position As Double) As Long
LabVIEW:

MCCL Reference
AT

See Also
MCGetAuxEncIdxEx(), MCSetAuxEncPos ())

Reporting Functions

Motion Control Application Programming Interface 131

MCGetAxisConfiguration
MCGetAxisConfiguration() obtains the configuration for the specified axis. Configuration information
includes the axis type, servo motor update rates, stepper motor step rates, etc.

long int MCGetAxisConfiguration(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCAXISCONFIG* pAxisCfg // address of axis configuration structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pAxisCfg Points to an MCAXISCONFIG structure that receives the configuration

information.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
This function allows the application to query the driver about installed motor axis hardware and
capabilities.

Before you call MCGetAxisConfiguration() you must set the cbSize member to the size of the
MCAXISCONFIG data structure. C/C++ programmers may use sizeof(), Visual Basic and Delphi
programmers will find current sizes for these data structures in the appropriate MCAPI.XXX header
file.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.0 or higher

Prototypes
Delphi: function MCGetAxisConfiguration(hCtlr: HCTRLR; axis: Word; var pAxisCfg: MCAXISCONFIG): Longint; stdcall;
VB: Function MCGetAxisConfiguration(ByVal hCtrlr As Integer, ByVal axis As Integer, axisCfg As MCAxisConfig) As Long
LabVIEW: Not Supported

MCCL Reference
Dual Port RAM

Reporting Functions

PMC Motion Control 132

See Also
MCAXISCONFIG structure definition

MCGetBreakpointEx
MCGetBreakpointEx() returns the current breakpoint position as placed by the
MCWaitForPosition() or MCWaitForRelative() command.

long int MCGetBreakpointEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pBreakpoint // breakpoint position return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pBreakpoint Pointer to a double precision floating point variable that will hold the breakpoint

position for the specified axis.

Returns
The breakpoint position is placed in the variable specified by the pointer pBreakpoint and
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the
MCERR_xxxx error codes is returned and the variable pointed to by pBreakpoint is left unchanged.

Comments

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The DCX-PC100 controller and stepper axes do not support this command.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetBreakpointEx(hCtlr: HCTRLR; axis: Word; var pBreakpoint: Double): Longint; stdcall;
VB: Function MCGetBreakpointEx(ByVal hCtrlr As Integer, ByVal axis As Integer, breakpoint As Double) As Long
LabVIEW:

Reporting Functions

Motion Control Application Programming Interface 133

MCCL Reference
TB

See Also
MCWaitForPosition(), MCWaitForRelative()

MCGetCaptureData
MCGetCaptureData() retrieves data collected following the most recent MCCaptureData() call.

long int MCGetCaptureData(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number to get capture data from
 long int type, // type of capture data to retrieve
 long int start, // index of starting point
 long int points, // number of data points to retrieve
 double* pData // pointer to data array to for data
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
type Specifies the type of data to retrieve:

Value Description
MC_CAPTURE_ACTUAL Retrieves the captured actual position data.
MC_CAPTURE_ERROR Retrieves the following error (difference between

actual and optimal positions).
MC_CAPTURE_OPTIMAL Retrieves the captured optimal position data.
MC_CAPTURE_TORQUE Retrieves the captured torque data.

start Index of the first data point to retrieve. The index is zero based, i.e. the first

data point is 0, not 1.
points Total number of data points to retrieve.
pData Pointer to a double precision floating point variable that will hold the breakpoint

position for the specified axis.

Returns
This function places one or more captured data values in the array specified by the pointer pData, and
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the
MCERR_xxxx error codes is returned and state of the array pointed to by pData is undefined.

Comments
Capture data settings (number of points, delay, etc.) are set with the MCCaptureData() function.

Reporting Functions

PMC Motion Control 134

Beginning with version 3.0 of the MCAPI users may use the MCGetAxisConfiguration() function to
determine the data capture capabilities of an axis.

Compatibility
The DC2 stepper axes, and the MC100, MC110, MC150, MC160 modules when installed on the
DCX-PC100 controller do not support data capture. The DCX-PCI100 controller does not support
torque mode nor do any open loop stepper axes, which prevents the capture of torque values.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetCaptureData(hCtlr: HCTRLR; axis: Word; type, start, points: Longint; var pData: Double): Longint;

stdcall;
VB: Function MCGetCaptureData(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal start, ByVal argtype As Long,

ByVal points As Long, data As Double) As Long
LabVIEW: Not Supported

MCCL Reference
DO, DR, DQ

See Also
MCCaptureData(), MCGetAxisConfiguration()

MCGetContourConfig
MCGetContourConfig() obtains the contouring configuration for the specified axis.

long int MCGetContourConfig(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCCONTOUR* pContour // structure to hold contour data
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pContour Points to an MCCONTOUR structure that receives the configuration information

for Axis.

Returns
The return value is TRUE if the function is successful. A return value of FALSE indicates the function
did not find the Axis specified (hCtlr or axis incorrect).

Comments

Reporting Functions

Motion Control Application Programming Interface 135

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100
controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetContourConfig(hCtlr: HCTRLR; axis: Word; var pContour: MCCONTOUR): SmallInt; stdcall;
VB: Function MCGetContourConfig Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, contour As MCContour) As Integer
LabVIEW: Not Supported

MCCL Reference
Controller RAM Motor Tables

See Also
MCSetContourConfig(), MCCONTOUR structure definition

MCGetContouringCount
MCGetContouringCount() obtains the current contour path motion that an axis is performing.

long int MCGetContouringCount(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.

Returns
The return value is the number of linear or user defined contour path motions that have been
completed.

Comments
This function allows the application to determine in what area of a continuous path motion an axis is at
any given time.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Reporting Functions

PMC Motion Control 136

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100
controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetContouringCount(hCtlr: HCTRLR; axis: Word): Longint; stdcall;
VB: Function MCGetContouringCount(ByVal hCtrlr As Integer, ByVal axis As Integer) As Long
LabVIEW: Not Supported

MCCL Reference
TX

See Also
MCGetContourConfig(), MCSetContourConfig(), MCCONTOUR structure definition

MCGetCount
MCGetCount() retrieves various count values from the specified axis.

long int MCGetCount(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int type, // type of count to retrieve
 long int* pCount // variable to hold count value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
type Specifies the type of data to retrieve:

Value Description
MC_COUNT_CAPTURE Retrieves the number of captured positions in high-

speed capture mode.
MC_COUNT_COMPARE Retrieves the number of successful comparisons in

high-speed compare mode.
MC_COUNT_CONTOUR Retrieves the index of the currently executing

contour move in contouring mode.
MC_COUNT_FILTER Retrieves the number of digital filter coefficients

currently loaded.
MC_COUNT_FILTERMAX Retrieves the maximum number of digital filter

coefficients supported.

Reporting Functions

Motion Control Application Programming Interface 137

pCount Variable to hold requested count value.

Returns
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the
MCERR_xxxx error codes is returned.

Comments
MCGetCount() is a general purpose function for retrieving values related to high-speed capture
mode, high-speed compare mode, contouring mode, and digital filter mode.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The DC2 stepper axes, and the MC100, MC110, MC150, MC160 modules when installed on the
DCX-PC100 controller do not support data capture. The DCX-PCI100 controller does not support
torque mode nor do any stepper axes, which prevents the capture of torque values. The DC2, DCX-
PC100, DCX-AT200, and DCX-PCI100 controllers do not support high-speed position compare. The
MCAPI does not does not support contouring on the DC2, DCX-PC100, and DCX-PCI100 controllers.
The DC2, DCX-PC100, DCX-AT200, DCX-PCI100, MFX-PCI1000 controllers, MC360, and MC362
modules do not support digital filtering.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCGetCount(hCtlr: HCTRLR; axis: Word; type: Longint; var pCount: Longint): Longint; stdcall;
VB: Function MCGetCount(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal argtype As Long, count As Long) As Long
LabVIEW: Not Supported

MCCL Reference
CG, GC, TX

See Also
MCGetContouringCount()

Reporting Functions

PMC Motion Control 138

MCGetDecelerationEx
MCGetDecelerationEx() returns the current programmed deceleration value for the given axis, in
whatever units the axis is configured for.

long int MCGetDecelerationEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pDecel // deceleration return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pDecel Pointer to a double precision floating point variable that will hold the

deceleration for the specified axis.

Returns
The deceleration is placed in the variable specified by the pointer pDecel and MCERR_NOERROR is
returned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned
and the variable pointed to by pDecel is left unchanged.

Comments
The deceleration value is the same as that reported by the MCGetMotionConfigEx() function, these
functions provide a short-hand method for obtaining just the deceleration value.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetDecelerationEx(hCtlr: HCTRLR; axis: Word; var pDecel: Double): Longint; stdcall;
VB: Function MCGetDecelerationEx(ByVal hCtrlr As Integer, ByVal axis As Integer, decel As Double) As Long
LabVIEW:

Reporting Functions

Motion Control Application Programming Interface 139

MCCL Reference
Controller RAM Motor Tables

See Also
MCSetDeceleration(), MCGetMotionConfigEx()

MCGetDigitalFilter
MCGetDigitalFilter() obtains the digital filter coefficients for the specified axis.

long int MCGetDigitalFilter(
 HCTRLR hCtlr // controller handle
 WORD axis, // axis number
 double* pCoeff, // array to hold retrieved coefficients
 long int num, // number of coefficients to retrieve
 long int* pActual // number of valid coefficients retrieved
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pCoeff Array to hold retrieved coefficients, must be num elements long (or longer). If

this pointer is NULL, no coefficients are retrieved.
num Number of coefficients to retrieve, cannot be larger than the maximum digital

filter size supported by the controller.
pActual Points to long integer that will be set equal to the number of valid coefficients

currently loaded for this axis. If this pointer is NULL, no value is returned.

Returns
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the
MCERR_xxxx error codes is returned.

Comments
This function retrieves zero or more of the digital filter coefficients currently loaded in an axis.
Optionally the actual number of loaded coefficients is also returned (this value is also available from
MCGetCount()).

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The DC2, DCX-PC100, DCX-AT200, DCX-PCI100, MFX-PCI1000 controllers, MC360, and MC362
modules do not support digital filtering.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas

Reporting Functions

PMC Motion Control 140

Library: use mcapi32.lib
Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCGetDigitalFilter(hCtlr: HCTRLR; axis: Word; coeff: Array of Double; num: Longint; var pActual: Longint):

Longint; stdcall;
VB: Function MCGetDigitalFilter(ByVal hCtrlr As Integer, ByVal axis As Integer, coeff As Double, ByVal num As Long,

actual As Long) As Long
LabVIEW: Not Supported

MCCL Reference
GF

See Also
MCEnableDigitalFilter(), MCGetCount(), MCIsDigitalFilter(), MCSetDigitalFilter()

MCGetError
MCGetError() returns the most recent error code for hCtlr.

short int MCGetError(
 HCTRLR hCtlr // controller handle
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().

Returns
The return value is a numeric error code (or MCERR_NOERROR if there is no error) for the most
recent error detected for the specified controller.

Comments
The error is cleared (set equal to MCERR_NOERROR) after it has been read. Errors are maintained
on a per-handle basis, such that calls to MCGetError() only return errors that occurred during
function calls that used the same handle.

A more flexible way to detect errors is to use the MCErrorNotify(). This function delivers error
messages directly to the window procedure of your choice.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.2 or higher

Reporting Functions

Motion Control Application Programming Interface 141

Prototypes
Delphi: function MCGetError(hCtlr: HCTRLR): SmallInt; stdcall;
VB: Function MCGetError(ByVal hCtrlr As Integer) As Integer
LabVIEW:

MCCL Reference
None

See Also
MCErrorNotify(), MCTranslateErrorEx()

MCGetFilterConfigEx
MCGetFilterConfigEx() obtains the current PID filter configuration for a servo motor or the closed-
loop configuration for a stepper motor operating in closed-loop mode. Please see the online MCAPI
Reference for the MCGetFilterConfig() prototype.

long int MCGetFilterConfigEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCFILTEREX* pFilter // address of filter configuration
 // structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pFilter Points to an MCFILTEREX structure that receives the PID filter configuration

information for axis.

Returns
MCGetFilterConfigEx() places the PID filter settings in the structure specified by the pointer pFilter.
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the
MCERR_xxxx error codes is returned.

Comments
This function must be used to obtain the current PID filter configuration for a servo motor or the
closed-loop configuration for a stepper motor operating in closed-loop mode.

Closed-loop stepper operation requires firmware version 2.1a or higher on the DCX-PCI300 and
firmware version 2.5a or higher on the DCX-AT300.

i

You may not set the axis parameter to MC_ALL_AXES for this
command..

Reporting Functions

PMC Motion Control 142

Compatibility
VelocityGain is not supported on the DCX-PCI100 controller, MC100, MC110 modules, or closed-
loop steppers. AccelGain is not supported on the DC2, DCX-PC100, and DCX-PCI100 controllers.
DecelGain is not supported on the DC2, DCX-PC100, and DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCGetFilterConfigEx(hCtlr: HCTRLR; axis: Word; var pFilter: MCFILTEREX): SmallInt; stdcall;
VB: Function MCGetFilterConfigEx(ByVal hCtrlr As Integer, ByVal axis As Integer, filter As MCFilterEx) As Integer
LabVIEW:

MCCL Reference
TD, TF, TG, TI, TL, Controller RAM Motor Tables

See Also
MCSetFilterConfigEx(), MCFILTEREX structure definition

MCGetFollowingError
MCGetFollowingError() returns the current following error (difference between the actual and the
optimal positions) for the specified axis.

long int MCGetFollowingError(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pError // following error return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pError Points to a double precision variable that will hold the following error.

Returns
This function places the following error in the variable specified by the pointer pError, and
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the
MCERR_xxxx error codes is returned and the variable pointed to by pError is left unchanged.

Reporting Functions

Motion Control Application Programming Interface 143

Comments

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetFollowingError(hCtlr: HCTRLR; axis: Word; var pError: Double): Longint; stdcall;
VB: Function MCGetFollowingError(ByVal hCtrlr As Integer, ByVal axis As Integer, error As Double) As Long
LabVIEW:

MCCL Reference
TF

See Also
MCGetOptimalEx(), MCGetPositionEx()

MCGetGain
MCGetGain() returns the current gain setting for the specified axis.

long int MCGetGain(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pGain // gain return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pGain Points to a double precision variable that will hold the gain value.

Reporting Functions

PMC Motion Control 144

Returns
MCGetGain() places the gain value in the variable specified by the pointer pGain and
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the
MCERR_xxxx error codes is returned and the variable pointed to by pGain is left unchanged.

Comments
The gain value is the same as that reported by the MCGetMotionConfigEx() function, this function
provide a short-hand method for obtaining just the gain value.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetGain(hCtlr: HCTRLR; axis: Word; var pGain: Double): Longint; stdcall;
VB: Function MCGetGain(ByVal hCtrlr As Integer, ByVal axis As Integer, gain As Double) As Long
LabVIEW:

MCCL Reference
TG

See Also
MCGetMotionConfigEx() , MCSetGain()

MCGetIndexEx
MCGetIndexEx() returns the position where the encoder index pulse was observed for the specified
axis, in whatever units the axis is configured for.

long int MCGetIndexEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pIndex // index position return value
);

Reporting Functions

Motion Control Application Programming Interface 145

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pIndex Pointer to a double precision floating point variable that will hold the index

position for the specified axis.

Returns
The index position is placed in the variable specified by the pointer pIndex and MCERR_NOERROR
is returned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is
returned and the variable pointed to by pIndex is left unchanged.

Comments
Controller resets and the MCSetPosition() function may be change the position reading of the
primary encoder.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The MC100, MC110 modules, and all stepper axes do not support this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetIndexEx(hCtlr: HCTRLR; axis: Word; var pIndex: Double): Longint; stdcall;
VB: Function MCGetIndexEx(ByVal hCtrlr As Integer, ByVal axis As Integer, index As Double) As Long
LabVIEW:

MCCL Reference
TZ

See Also
MCGetAuxEncIdxEx(), MCSetPosition()

Reporting Functions

PMC Motion Control 146

MCGetInstalledModules
MCGetInstalledModules() enumerates the types of modules installed on a motion controller.

long int MCGetInstalledModules(
 HCTRLR hCtlr, // controller handle
 long int* modules, // pointer to an array for controller type
 // IDs
 long int size // size of Modules array
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
modules Pointer to an array of long integers, filled with module types on return.
size Size of modules array (number of integers).

Returns
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the
MCERR_xxxx error codes is returned.

Comments
MCGetInstalledModules() fills the modules array with module type identifiers, where the type of
module installed in position #1 on the controller is stored in Modules[0], the type of module installed in
position #2 on the controller is stored in Modules[1], etc. In order to list all installed controllers the
array must have a size at least equal to the value in the MaximumModules field of the
MCPARAMEX() data structure.

Compatibility
The DC2 and MFX-PCI1000 controllers do not support this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.0 or higher

Prototypes
Delphi: function MCGetInstalledModules(hCtlr: HCTRLR; modules: Array of LongInt; size: LongInt): Longint; stdcall;
VB: Function MCGetInstalledModules(ByVal hCtrlr As Integer, modules As Any, ByVal size As Long) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCGetConfigurationEx()

Reporting Functions

Motion Control Application Programming Interface 147

MCGetJogConfig
MCGetJogConfig() obtains the current jog configuration block for the specified axis.

short int MCGetJogConfig(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCJOG* pJog // address of jog configuration structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number from which to retrieve jog information.
pJog Points to a MCJOG structure that contains jog configuration information for

axis.

Returns
The return value is TRUE if the function is successful. Otherwise it returns FALSE, indicating the
function did not find the axis specified (hCtlr or axis incorrect).

Comments
This function must be used to obtain current jog configuration information for an axis.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The DCX-PCI, MFX-PCI1000 controllers, DC2 stepper axes, MC150, and MC160 modules do not
support jogging.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetJogConfig(hCtlr: HCTRLR; axis: Word; var pJog: MCJOG): SmallInt; stdcall;
VB: Function MCGetJogConfig(ByVal hCtrlr As Integer, ByVal axis As Integer, jog As MCJog) As Integer
LabVIEW: Not Supported

MCCL Reference
Controller RAM Motor Tables

See Also
MCEnableJog(), MCGetJogConfig(), MCJOG structure definition

Reporting Functions

PMC Motion Control 148

MCGetLimits
MCGetLimits() obtains the current hard and soft limit settings for the specified axis.

long int MCGetLimits(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 short int* pHardMode, // hard limit mode flags
 short int* pSoftMode, // soft limit mode flags
 double* pLimitMinus, // soft low limit value
 double* pLimitPlus // soft high limit value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pHardMode Combination of limit mode flags for the hard limits. See description of

pSoftMode for details.
pSoftMode Combination of the following limit mode flags for the soft limits:

Value Description
MC_LIMIT_PLUS Enables the positive limit.
MC_LIMIT_MINUS Enables the negative limit.
MC_LIMIT_BOTH Enables both the positive and negative limits.
MC_LIMIT_OFF Limit stopping mode is set to turn the motor off

when a limit is tripped.
MC_LIMIT_ABRUPT Limit stopping mode is set to abrupt (target position

is set to current position and PID loop stops axis as
quickly as possible).

MC_LIMIT_SMOOTH Limit stopping mode is set to smooth (axis
executes pre-programmed deceleration when limit
is tripped).

MC_LIMIT_INVERT Inverts the polarity of the hardware limit switch
inputs. This value may not be used with soft limits.

pLimitMinus Pointer to a variable where the negative limit value for soft limits, if supported

by this controller, will be stored.
pLimitPlus Pointer to a variable where the positive limit value for soft limits, if supported by

this controller, will be stored.

Returns
MCGetLimits() returns the value MCERR_NOERROR if the function completed without errors. If
there was an error, one of the MCERR_xxxx error codes is returned, and the variables pointed to by
the function pointers will be left in an undetermined state.

Reporting Functions

Motion Control Application Programming Interface 149

Comments
The limit settings are the same as those reported by the MCGetMotionConfigEx() function, this
function provide a short-hand method for obtaining just the limit settings.

Beginning with Version 2.23 of the Motion Control API you may pass a NULL pointer for pHardMode,
pSoftMode, pLimitMinus, or pLimitPlus. This permits a program to easily ignore values it is not
interested in. A program that needs to check the Hard Limit settings might set all the pointers for Soft
Limit values to NULL to ignore those values, as opposed to having to create dummy variables to hold
the values that will never be used. Because this feature is new in Version 2.23, only applications that
do not require backward compatibility with an earlier MCAPI version should take advantage of it.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The DC2 and DCX-PC100 controllers do not support soft limits.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetLimits(hCtlr: HCTRLR; axis: Word; var pHardMode, pSoftMode: SmallInt; var pLimitMinus, pLimitPlus:

Double): Longint; stdcall;
VB: Function MCGetLimits(ByVal hCtrlr As Integer, ByVal axis As Integer, hardMode As Integer, softMode As Integer,

limitMinus As Double, limitPlus As Double) As Long
LabVIEW:

MCCL Reference
Controller RAM Motor Tables

See Also
MCGetMotionConfigEx(), MCSetLimits(), MCSetMotionConfigEx()

Reporting Functions

PMC Motion Control 150

MCGetModuleInputMode
MCGetModuleInputMode() returns the current input mode for the specified axis.

long int MCGetModuleInputMode(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int* mode // input mode value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
mode Pointer to a long integer variable that will hold the input mode for the specified

axis:

Value Description
MC_IM_OPENLOOP Stepper motor axis is in open-loop mode.
MC_IM_CLOSEDLOOP Stepper motor axis is in closed-loop mode.

Returns
The return value is MCERR_NOERROR if no errors were detected. If there was an error, one of the
MCERR_xxxx error codes is returned and the variable pointed to by mode is left unchanged.

Comments

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The DC2, DCX-PC100, DCX-PCI100, DCX-AT100, and DCX-AT200 controllers do not support a
module which is capable of closed-loop stepper operation. The MC362 module is not capable of
closed-loop stepper operation.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCGetModuleInputMode(hCtlr: HCTRLR; axis: Word; var mode: LongInt): Longint; stdcall;
VB: Function MCGetModuleInputMode(ByVal hCtrlr As Integer, ByVal axis As Integer, mode As Long) As Long
LabVIEW: Not Supported

Reporting Functions

Motion Control Application Programming Interface 151

MCCL Reference
IM

See Also
MCSetModuleInputMode()

MCGetMotionConfigEx
MCGetMotionConfigEx() obtains the current motion configuration block for the specified axis.

short int MCGetMotionConfigEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCMOTIONEX* pMotion // address of motion configuration
 // structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pMotion Points to an MCMOTIONEX structure that receives motion configuration

information for axis.

Returns
The return value is TRUE if the function is successful. A return value of FALSE indicates the function
did not find the axis specified (hCtlr or axis incorrect).

Comments
This function provides a way of initializing a MCMOTIONEX structure with the current motion
parameters for the given axis. When you need to setup many of the parameters for an axis it is easier
to call MCGetMotionConfigEx(), update the MCMOTIONEX structure, and write the changes back
using MCSetMotionConfigEx(), rather than use a Get/Set function call for each parameter.

Note that some less often used parameters will only be accessible from this function and from
MCSetMotionConfigEx() - they do not have individual Get/Set functions.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
Acceleration is not supported on the DC2 stepper axes. Deceleration is not supported on the DCX-
PCI100 controller, MC100, MC110, MC150, or MC160 modules. MinVelocity is not supported on the
DCX-PCI100, DCX-PC100, or DC2 controllers. Torque is not supported on the DCX-PCI100
controller, MC100, or MC110 modules. Deadband is not supported on the DCX-PC100 controller,
DC2 stepper axes, MC150, MC160, MC260, MC360 or MC362 modules. DeadbandDelay is not
supported on the DCX-PC100 controller, DC2 stepper axes, MC150, MC160, MC260, MC360 or
MC362 modules. StepSize is not supported on the DC2 or DCX-PCI100 controllers. Current is not

Reporting Functions

PMC Motion Control 152

supported on the DC2 or DCX-PCI100 controllers. SoftLimitMode is not supported on the DC2 or
DCX-PC100 controllers. SoftLimitLow is not supported on the DC2 or DCX-PC100 controllers.
SoftLimitHigh is not supported on the DC2 or DCX-PC100 controllers. EnableAmpFault is not
supported on the DC2 controllers. UpdateRate is not supported on the DC2 or DCX-PCI100
controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetMotionConfigEx(hCtlr: HCTRLR; axis: Word; var pMotion: MCMOTIONEX): SmallInt; stdcall;
VB: Function MCGetMotionConfigEx(ByVal hCtrlr As Integer, ByVal axis As Integer, motion As MCMotionEx) As Integer
LabVIEW: Not Supported

MCCL Reference
TG, Controller RAM Motor Tables

See Also
MCSetMotionConfigEx(), MCMOTIONEX structure definition

MCGetOperatingMode
MCGetOperatingMode() returns the current operating mode for the specified axis.

long int MCGetOperatingMode(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int* mode // operating mode value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
mode Pointer to a long integer variable that will hold the operating mode for the

specified axis:

Value Description
MC_MODE_CONTOUR Contouring mode operation.
MC_MODE_GAIN Gain mode operation.
MC_MODE_POSITION Position mode operation.
MC_MODE_TORQUE Torque mode operation.
MC_MODE_UNKNOWN Unable to determine current mode of operation.
MC_MODE_VELOCITY Velocity mode operation.

Reporting Functions

Motion Control Application Programming Interface 153

Returns
The return value is MCERR_NOERROR if no errors were detected. If there was an error, one of the
MCERR_xxxx error codes is returned and the variable pointed to by mode is left unchanged.

Comments

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCGetOperatingMode(hCtlr: HCTRLR; axis: Word; var mode: LongInt): Longint; stdcall;
VB: Function MCGetOperatingMode(ByVal hCtrlr As Integer, ByVal axis As Integer, mode As Long) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCSetOperatingMode()

MCGetOptimalEx
MCGetOptimalEx() returns the current optimal position from the trajectory generator for the specified
axis, in whatever units the axis is configured for.

long int MCGetOptimalEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pOptimal // optimal return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pOptimal Pointer to a double precision floating point variable that will hold the optimal

position for the specified axis.

Reporting Functions

PMC Motion Control 154

Returns
The optimal position is placed in the variable specified by the pointer pOptimal and a zero is returned,
if there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the
variable pointed to by pOptimal is left unchanged.

Comments
The trajectory generator generates an optimal position based upon an ideal (i.e. error free) motor. The
PID loop then compares the actual position to the optimal position to calculate a correction to the
actual trajectory. The maximum difference allowed between the optimal and actual positions is set
with the FollowingError member of an MCFILTEREX structure.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The DC2 stepper axes do not support this command.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetOptimalEx(hCtlr: HCTRLR; axis: Word; var pOptimal: Double): Longint; stdcall;
VB: Function MCGetOptimalEx(ByVal hCtrlr As Integer, ByVal axis As Integer, optimal As Double) As Long
LabVIEW:

MCCL Reference
TO

See Also
MCGetFilterConfigEx(), MCSetFilterConfigEx(), MCSetPosition()

Reporting Functions

Motion Control Application Programming Interface 155

MCGetPositionEx
MCGetPositionEx() returns the current position for the specified axis, in whatever units the axis is
configured for.

void MCGetPositionEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pPosition // position return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pPosition Pointer to a double precision floating point variable that will hold the position for

the specified axis.

Returns
The position value is placed in the variable specified by the pointer pPosition and a zero is returned, if
there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the
variable pointed to by pPosition is left unchanged.

Comments

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetPositionEx(hCtlr: HCTRLR; axis: Word; var pPosition: Double): Longint; stdcall;
VB: Function MCGetPositionEx(ByVal hCtrlr As Integer, ByVal axis As Integer, position As Double) As Long
LabVIEW:

Reporting Functions

PMC Motion Control 156

MCCL Reference
TP

See Also
MCSetPosition(), MCSetScale()

MCGetProfile
MCGetProfile() returns the current acceleration / deceleration profile for the specified axis.

long int MCGetProfile(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 WORD* pProfile // profile return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pProfile Pointer to a WORD variable that will hold the profile for the specified axis:

Value Description
MC_PROF_PARABOLIC Indicates that a parabolic acceleration /

deceleration profile has been selected.
MC_PROF_SCURVE Indicates that an S-curve acceleration /

deceleration profile has been selected.
MC_PROF_TRAPEZOID Indicates that a trapezoidal acceleration /

deceleration profile has been selected.
MC_PROF_UNKNOWN This value is returned when MCGetProfile()

cannot determine the current profile setting.

Returns
The return value is MCERR_NOERROR, if no errors were detected. If there was an error, the return
value is one of the MCERR_xxxx error codes is returned and the variable pointed to by pProfile is left
unchanged.

Comments
To determine if the controller supports user configurable acceleration profiles check the
CanChangeProfile field of the MCPARAMEX structure returned by MCGetConfigurationEx().

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
There are no compatibility issues with this function.

Reporting Functions

Motion Control Application Programming Interface 157

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetProfile(hCtlr: HCTRLR; axis: Word; var pProfile: Word): Longint; stdcall;
VB: Function MCGetProfile(ByVal hCtrlr As Integer, ByVal axis As Integer, profile As Integer) As Long
LabVIEW: Not Supported

MCCL Reference
Controller RAM Motor Tables

See Also
MCSetProfile(), MCPARAMEX structure definition

MCGetRegister
MCGetRegister() returns the value of the specified general purpose register.

long int MCGetRegister(
 HCTRLR hCtlr, // controller handle
 long int register, // register number
 void* pValue // pointer to variable to hold register
 // value
 long int type // type of variable pointed to by pValue
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
register Register number to read from (0 to 255).
pValue Pointer to a variable that will hold the register contents.
type Type of data pointed to by pValue:

Value Description
MC_TYPE_LONG Indicates pValue points to a variable of type long

integer.
MC_TYPE_DOUBLE Indicates pValue points to a variable of type double

precision floating point.
MC_TYPE_FLOAT Indicates pValue points to a variable of type single

precision floating point.

Returns
The return value is MCERR_NOERROR, if no errors were detected. If there was an error, the return
value is one of the MCERR_xxxx error codes is returned and the variable pointed to by pValue is left
unchanged.

Reporting Functions

PMC Motion Control 158

Comments
MCGetRegister() and MCSetRegister() allow you to read from and write to, respectively, the
general purpose registers on the motion controller. When running background tasks on a multitasking
controller the only way to communicate with the background tasks is to pass parameters in the
general purpose registers.

You cannot read from the local registers (registers 0 - 9) of a background task. When you need to
communicate with a background task be sure to use one or more of the global registers (10 - 255).

To determine if your controller supports multi-tasking check the MultiTasking field of the
MCPARAMEX structure returned by MCGetConfigurationEx().

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCGetRegister(hCtlr: HCTRLR; register: Longint; var pValue: Pointer; type: Longint): Longint; stdcall;
VB: Function MCGetRegister(ByVal hCtrlr As Integer, ByVal register As Long, value As Any, ByVal argtype As Long) As

Long
LabVIEW:

MCCL Reference
TR

See Also
MCSetRegister()

MCGetScale
MCGetScale() obtains the current scaling factors for the specified axis.

void MCGetScale(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCSCALE* pScale // address of scale factors structure
);

Reporting Functions

Motion Control Application Programming Interface 159

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pScale Pointer to a MCSCALE structure that will hold scaling information for axis.

Returns
The return value is TRUE if the function is successful. A return value of FALSE indicates the function
did not find the axis specified (hCtlr or axis incorrect).

Comments
Scaling allows the application to communicate with the controller in real world units such as inches,
meters, and radians; as opposed to low level (i.e. un-scaled) values such as raw encoder counts, etc.

In order to see if a controller supports scaling, an application can test the Boolean flag CanDoScaling
in the MCPARAMEX structure returned by MCGetConfigurationEx().

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The DC2 and DCX-PC controllers do not support scaling.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetScale(hCtlr: HCTRLR; axis: Word; var pScale: MCSCALE): SmallInt; stdcall;
VB: Function MCGetScale(ByVal hCtrlr As Integer, ByVal axis As Integer, scale As MCScale) As Integer
LabVIEW:

MCCL Reference
Controller RAM Motor Tables

See Also
MCGetConfigurationEx(), MCSetScale(), MCSCALE structure definition

Reporting Functions

PMC Motion Control 160

MCGetServoOutputPhase
MCGetServoOutputPhase() returns the current servo output phasing for the specified axis.

long int MCGetServoOutputPhase(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 WORD* pPhase // phase return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query for phase setting.
pPhase Pointer to a WORD variable that will hold the phase setting for the specified

axis:

Value Description
MC_PHASE_STD Indicates that the axis is configured for standard

phasing.
MC_PHASE_REV Indicates that the axis is configured for reverse

phasing.

Returns
The return value is MCERR_NOERROR if no errors were detected. If there was an error, the return
value is one of the MCERR_xxxx error codes is returned, and the variable pointed to by pPhase is left
unchanged.

Comments

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The MC100 and MC110 modules do not support phase reverse.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetServoOutputPhase(hCtlr: HCTRLR; axis: Word; var pPhase: Word): Longint; stdcall;
VB: Function MCGetServoOutputPhase(ByVal hCtrlr As Integer, ByVal axis As Integer, phase As Integer) As Long
LabVIEW: Not Supported

Reporting Functions

Motion Control Application Programming Interface 161

MCCL Reference
None

See Also
MCSetServoOutputPhase()

MCGetStatusEx
MCGetStatusEx() returns the controller dependent status word for the specified axis.

long int MCGetStatus(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
 MCSTATUSEX* status // status words data structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
status Pointer to an MCSTATUSEX data structure that will hold the retrieved status

words.

Returns
The return value is the 32-bit status word for the selected axis.

Comments
Please refer to the hardware manual for your controller for specific information about meaning and
location of the flags located within the status word. As an alternative, the MCAPI function
MCDecodeStatusEx() provides a controller-independent way to process the flags in the status word.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetStatusEx(hCtlr: HCTRLR; axis: Word): Longint; stdcall;
VB: Function MCGetStatusEx(ByVal hCtrlr As Integer, ByVal axis As Integer) As Long

Reporting Functions

PMC Motion Control 162

LabVIEW:

MCCL Reference
TS

See Also
MCDecodeStatusEx(), Controller hardware reference manual

MCGetTargetEx
MCGetTargetEx() returns the move target position, as set by the most recent MCMoveAbsolute()
or MCMoveRelative() function call, for the specified axis.

void MCGetTargetEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pTarget // target position return
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pTarget Pointer to a double precision floating point variable that will hold the target

position for the specified axis.

Returns
The target position value is placed in the variable specified by the pointer pTarget and
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the
MCERR_xxxx error codes is returned, and the variable pointed to by pTarget is left unchanged.

Comments
The API move functions MCMoveAbsolute() and MCMoveRelative() update the target position for
an axis. The controller will then generate an optimal trajectory to the target position, and the PID loop
will seek to minimize the error (difference between actual and optimal trajectories).

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
There are no compatibility issues with this function.

Reporting Functions

Motion Control Application Programming Interface 163

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetTargetEx(hCtlr: HCTRLR; axis: Word; var pTarget: Double): Longint; stdcall;
VB: Function MCGetTargetEx(ByVal hCtrlr As Integer, ByVal axis As Integer, target As Double) As Long
LabVIEW:

MCCL Reference
TT

See Also
MCMoveAbsolute(), MCMoveRelative()

MCGetTorque
MCGetTorque() returns the current torque setting for the specified axis.

long int MCGetTorque(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pTorque // torque return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pTorque Points to a double precision variable that will hold the torque.

Returns
MCGetTorque() places the torque setting in the variable specified by the pointer pTorque and a zero
is returned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is
returned, and the variable pointed to by pTorque is left unchanged.

Comments

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Reporting Functions

PMC Motion Control 164

Compatibility
Torque mode is not supported on stepper axes, DCX-PCI100 controller, MC100, or MC110 modules.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetTorque(hCtlr: HCTRLR; axis: Word; var pTorque: Double): Longint; stdcall;
VB: Function MCGetTorque(ByVal hCtrlr As Integer, ByVal axis As Integer, torque As Double) As Long
LabVIEW:

MCCL Reference
TQ

See Also
MCGetMotionConfigEx(), MCSetMotionConfigEx(), MCSetTorque(), MCMOTIONEX structure
definition

MCGetVectorVelocity
MCGetVectorVelocity() returns the current programmed velocity for the specified axis, in whatever
units the axis is configured for.

long int MCGetVectorVelocity(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pVelocity // vector velocity return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pVelocity Pointer to a double precision floating point variable that will hold the vector

velocity value for the specified axis.

Returns
The position value is placed in the variable specified by the pointer pVelocity and
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the
MCERR_xxxx error codes is returned, and the variable pointed to by pVelocity is left unchanged.

Reporting Functions

Motion Control Application Programming Interface 165

Comments
The vector velocity value for a particular axis may also be obtained using MCGetContourConfig().
MCGetVectorVelocity() provides a short-hand method for getting just the vector velocity value and is
most useful when updating vector velocity settings on the fly.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100
controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCGetVectorVelocity(hCtlr: HCTRLR; axis: Word; var pVelocity: Double): Longint; stdcall;
VB: Function MCGetVectorVelocity(ByVal hCtrlr As Integer, ByVal axis As Integer, velocity As Double) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCGetContourConfig(), MCSetVectorVelocity()

MCGetVelocityActual
MCGetVelocityActual() returns the current actual velocity for the specified axis, in whatever units
the axis is configured for.

long int MCGetVelocityEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pVelocity // velocity return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pVelocity Pointer to a double precision floating point variable that will hold the velocity

value for the specified axis.

Reporting Functions

PMC Motion Control 166

Returns
The velocity value is placed in the variable specified by the pointer pVelocity, and
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the
MCERR_xxxx error codes is returned, and the variable pointed to by pVelocity is left unchanged.

Comments
The actual velocity value for an axis is reported by most PMC controllers as the number of encoder
counts during the most recent servo update period. See your motion controller's User's Manual for
details.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.4 or higher

Prototypes
Delphi: function MCGetVelocityActual(hCtlr: HCTRLR; axis: Word; var pVelocity: Double): Longint; stdcall;
VB: Function MCGetVelocityActual(ByVal hCtrlr As Integer, ByVal axis As Integer, velocity As Double) As Long
LabVIEW: Not Supported

MCCL Reference
TV

See Also
MCSetVelocity(), MCSetMotionConfigEx()

MCGetVelocityEx
MCGetVelocityEx() returns the current programmed velocity for the specified axis, in whatever units
the axis is configured for.

long int MCGetVelocityEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pVelocity // velocity return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.

Reporting Functions

Motion Control Application Programming Interface 167

pVelocity Pointer to a double precision floating point variable that will hold the velocity
value for the specified axis.

Returns
The position value is placed in the variable specified by the pointer pVelocity, and
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the
MCERR_xxxx error codes is returned, and the variable pointed to by pVelocity is left unchanged.

Comments
The programmed velocity value for a particular axis may also be obtained using the
MCGetMotionConfigEx() function. MCGetVelocityEx() provides a short-hand method for getting
just the velocity value and is most useful when updating velocity settings on the fly in velocity mode.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetVelocityEx(hCtlr: HCTRLR; axis: Word; var pVelocity: Double): Longint; stdcall;
VB: Function MCGetVelocityEx(ByVal hCtrlr As Integer, ByVal axis As Integer, velocity As Double) As Long
LabVIEW:

MCCL Reference
Controller RAM Motor Tables

See Also
MCSetVelocity(), MCSetMotionConfigEx()

MCIsAtTarget
MCIsAtTarget() waits for the "At Target" condition to go true for the specified axis. Use it to
determine when motion has completed for an axis.

Reporting Functions

PMC Motion Control 168

long int MCIsAtTarget(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double timeout // timeout, in seconds
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to wait for the "At Target" condition.
timeout Time to wait, in seconds, for the At Target condition to go true.

Returns
This function returns TRUE, if the axis is "At Target." A return value of FALSE indicates the specified
axis is not "At Target" by the end of timeout. If MC_ALL_AXES is specified for Axis, TRUE will be
returned only if all axes are "At Target."

Comments
This function waits for up to timeout seconds for the At Target status of the axis to be TRUE. It returns
as soon as the status goes TRUE or when timeout expires. Set timeout to zero to check the At Target
status only once and return immediately (i.e. no wait is performed).

Compatibility
The DC2, DCX-PC, and DCX-PCI100 do not support the At Target status bit and should use
MCIsStopped() instead.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MCIsAtTarget(hCtlr: HCTRLR; axis: Word; timeout: Double): Longint; stdcall;
VB: Function MCIsAtTarget(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal timeout As Double) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCIsStopped()

Reporting Functions

Motion Control Application Programming Interface 169

MCIsDigitalFilter
MCIsDigitalFilter() is used to determine the enabled state of the digital filter mode.

long int MCIsDigitalFilter(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.

Returns
This function returns TRUE if the digital filter for the specified axis is enabled, or it returns FALSE if
the digital filter is disabled.

Comments
This function is used to determine the enabled state of the digital filter mode supported by advanced
motion control modules, such as the MC300.

i

You may not set the axis parameter to MC_ALL_AXES for this
command.

Compatibility
The DC2, DCX-PC100, DCX-AT200, DCX-PCI100, MFX-PCI1000 controllers, MC360 and MC362
modules do not support digital filtering.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCIsDigitalFilter(hCtlr: HCTRLR; axis: Word): Longint; stdcall;
VB: Function MCIsDigitalFilter(ByVal hCtrlr As Integer, ByVal axis As Integer) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCEnableDigitalFilter(), MCGetCount(), MCGetDigitalFilter(), MCSetDigitalFilter()

Reporting Functions

PMC Motion Control 170

MCIsEdgeFound
MCIsEdgeFound() waits for the "Edge Found" condition to go true for the specified axis. Use it to
determine when an open-loop stepper motor homing sequence has detected the edge sensor.

long int MCIsEdgeFound(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
 double timeout // timeout, in seconds
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to wait for the "Edge Found" condition.
timeout Time to wait, in seconds, for the “Edge Found” condition to go true.

Returns
This function returns TRUE if the stepper axis has detected the edge input or FALSE if the axis has
not detected the edge input by the end of timeout.

Comments
This function waits for up to timeout seconds for the Edge Found status of a stepper motor axis to go
TRUE. It returns as soon as the status goes TRUE or when timeout expires. Set timeout to zero to
check the edge found status only once and return immediately (i.e. no wait is performed). This
function uses MCDecodeStatusEx() internally to test the MC_STAT_EDGE_FOUND status bit.

Compatibility
The DC2, DCX-PC100, and DCX-AT200 controllers do not support this function. Stepper modules
when run in closed-loop mode do not support this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCIsEdgeFound(hCtlr: HCTRLR; axis: Word; timeout: Double): Longint; stdcall;
VB: Function MCIsEdgeFound(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal timeout As Double) As Long
LabVIEW: Not Supported

MCCL Reference
TS

See Also
MCDecodeStatusEx(), MCEdgeArm(), MCWaitForEdge()

Reporting Functions

Motion Control Application Programming Interface 171

MCIsIndexFound
MCIsIndexFound() waits for the "Index Found" condition to go true for the specified axis. Use it to
determine when a servo or closed-loop stepper motor homing sequence has detected the encoder
index.

long int MCIsIndexFound(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
 double timeout // timeout, in seconds
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to wait for the "Index Found" condition.
timeout Time to wait, in seconds, for the “Index Found” condition to go true.

Returns
This function returns TRUE if the servo axis has detected the encoder index or FALSE if the axis has
not detected the encoder index by the end of timeout.

Comments
This function waits for up to timeout seconds for the Index Found status of a servo motor axis to go
TRUE. It returns as soon as the status goes TRUE or when timeout expires. Set timeout to zero to
check the encoder index status only once and return immediately (i.e. no wait is performed). This
function uses MCDecodeStatusEx() internally to test the MC_STAT_INDEX_FOUND status bit.

Compatibility
The DC2, DCX-PC100, and DCX-AT200 controllers do not support this function. Stepper modules
when run in open-loop mode with an auxiliary encoder do not support primary encoder functions such
as this.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCIsIndexFound(hCtlr: HCTRLR; axis: Word; timeout: Double): Longint; stdcall;
VB: Function MCIsIndexFound(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal timeout As Double) As Long
LabVIEW: Not Supported

MCCL Reference
TS

See Also
MCDecodeStatusEx(), MCIndexArm(), MCWaitForIndex()

Reporting Functions

PMC Motion Control 172

MCIsStopped
MCIsStopped() waits for the "Trajectory Complete" condition to go true for the specified axis. Use it
to determine when motion has completed for an axis.

long int MCIsStopped(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double timeout // timeout, in seconds
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to wait for the "Trajectory Complete" condition.
timeout Time to wait, in seconds, for the Trajectory Complete condition to go true.

Returns
This function returns TRUE if the axis is "Trajectory Complete." A return value of FALSE indicates the
specified axis is not "Trajectory Complete" by the end of timeout. If MC_ALL_AXES is specified for
Axis, TRUE will be returned only if all axes are "Trajectory Complete."

Comments
This function waits for up to timeout seconds for the Trajectory Complete status of the axis to be
TRUE. It returns as soon as the status goes TRUE or when timeout expires. Set timeout to zero to
check the Trajectory Complete status only once and return immediately (i.e. no wait is performed).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MCIsStopped(hCtlr: HCTRLR; axis: Word; timeout: Double): Longint; stdcall;
VB: Function MCIsStopped(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal timeout As Double) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCIsAtTarget()

Reporting Functions

Motion Control Application Programming Interface 173

MCTranslateErrorEx
MCTranslateErrorEx() translates numeric error codes into ASCII text messages.

long int MCTranslateErrorEx(
 short int error, // error code to translate
 char* buffer, // character buffer for message
 long int length // length of Buffer, in bytes
);

Parameters
error Numeric error code to translate.
buffer String buffer to hold ASCII error message.
length Length of string buffer (in bytes).

Returns
This function returns a pointer to the ASCII error message corresponding to Error. If Error does not
correspond to a valid error message, a NULL pointer is returned. It will work with errors returned from
MCGetError() and MCErrorNotify() error messages.

Comments
Beginning with version 2.1 of the MCAPI this function is included as a native MCAPI function
(previously it was contained in a separate module). Incorporating MCTranslateErrorEx() into the
MCAPI DLL will facilitate future updates, but has required changes from how It previously worked.
The string buffer and buffer length have been added to the argument list. These changes make it
possible to call MCTranslateErrorEx() from a much wider range of programming languages.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCTranslateErrorEx(error: SmallInt; buffer: PChar; length: Longint): Longint; stdcall;
VB: Function MCTranslateErrorEx(ByVal error As Integer, ByVal buffer As String, ByVal length As Long) As Long
LabVIEW:

MCCL Reference
None

See Also
MCErrorNotify(), MCGetError()

Reporting Functions

PMC Motion Control 174

Reporting Functions

Motion Control Application Programming Interface 175

I/O Functions

PMC Motion Control 176

Chapter Contents

• MCConfigureDigitalI/O()
• MCEnableDigitalI/O()
• MCGetAnalogEx()
• MCGetDigitalIO()
• MCGetDigitalIOConfig()
• MCSetAnalogEx()
• MCWaitForDigitalIO()

Motion Control Application Programming Interface

I/O Functions

Digital I/O functions allow configuration of high or low “true” states, reading of inpu
based on input, and setting outputs. Analog I/O functions control the input and out
through A/D and D/A ports installed on the controller.

A word of caution must be given regarding the use of board-level sequencing com
though a warning is included with MCWaitForDigitalIO(), it should be stressed th
command is called, the board will not accept another command nor will it respond
program until the board has completed what it was initially told to do. This can lea
where the calling program has absolutely no control during potentially dangerous
expensive situations.

To see examples of how the functions in this chapter are used, please refer to the
Control API Reference.

MCConfigureDigitalIO
MCConfigureDigitalIO() configures a specific digital I/O channel for input or outp
low true logic.

short int MCConfigureDigitalIO(
 HCTRLR hCtlr, // controller handle
 WORD channel, // channel number
 WORD mode // configuration flags
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen
channel Digital channel number to configure.

Chapter

8

177

ts, sequencing
put of analog values

mands. Even
at once this
 to the calling
d to scenarios
or otherwise

 online Motion

ut and for high or

().

I/O Functions

PMC Motion Control 178

mode Specifies how the channel is to be configured. This parameter may be any one
of the digital I/O flags listed below. An input/output flag and a logic level flag
may be OR'ed together.

Value Description
MC_DIO_INPUT Configures the channel for input.
MC_DIO_OUTPUT Configures the channel for output.
MC_DIO_LOW Configures the channel for negative logic level.
MC_DIO_HIGH Configures the channel for positive logic level.
MC_DIO_LATCH Configures the (input) channel for latched

operation.

Returns
The return value is TRUE if the function is successful. A return value of FALSE indicates
MCConfigureDigitalIO() was unable to configure the channel as requested.

Comments
Each digital I/O channel may be configured for input or for output. The logic level maps the logical
"on" and "off" states of the channel to the physical input and output voltages for that channel. If the
channel is set to MC_DIO_LOW (negative logic) the "on" state of a channel will represent a low
voltage (<0.4VDC) and "off" a high voltage (>2.4VDC). When set to MC_DIO_HIGH (positive logic)
the "on" state of a channel will represent a high voltage (>2.4VDC) and "off" a low voltage (<.0.4VDC).

On the DC2-STN controller, beginning with firmware release 1.2a, it is possible to configure an input
channel to "latch" input events (see the controller manual for details of signal hold time, etc.).
Configure an input channel using the MC_DIO_LATCH constant to enable latching or clear the
latched state. Configure an input channel using the MC_DIO_INPUT constant to disable latching.

The DCX-PCI motherboard has 16 general I/O, consisting of 8 fixed inputs and 8 fixed outputs. Since
these digital I/O are fixed, they may not be configured for input or output. A program may verify the
functionality (input or output) of a channel by using MCGetDigitalIOConfig() to check the current
configuration.

i

Under the MCAPI, the DC2-STN controller's input channels are
numbered 1 - 8, and the output channels are numbered 9 - 16 (the
MCAPI requires that each channel have a unique channel number).

Compatibility
MC_DIO_INPUT and MC_DIO_OUTPUTare not supported by MFX-PCI1000.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCConfigureDigitalIO(hCtlr: HCTRLR; channel, mode: Word): SmallInt;
VB: Function MCConfigureDigitalIO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal mode As Integer) As Integer

I/O Functions

Motion Control Application Programming Interface 179

LabVIEW:

MCCL Reference
CH, CI, CL, CT

See Also
MCEnableDigitalIO(), MCGetDigitalIO(), MCGetDigitalIOConfig()

MCEnableDigitalIO
MCEnableDigitalIO() turns the specified digital I/O channel on or off.

void MCEnableDigitalIO(
 HCTRLR hCtlr, // controller handle
 WORD channel, // channel number
 short int state // enable state
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Digital channel number to enable.
state Specifies whether the channel is to be turned on or turned off.

Value Description
TRUE Turns the channel on.
FALSE Turns the channel off.

Returns
This function does not return a value.

Comments
The I/O channel selected by hCtlr and channel must have previously been configured for output using
the MCConfigureDigitalIO() command. Note that depending upon how a channel has been
configured "on" (and conversely "off") may represent either a high or a low voltage level.

i

state will accept any non-zero value as TRUE, and will work correctly
with most programming languages, including those that define TRUE as
a non-zero value other than one (one is the Windows default value for
TRUE).

I/O Functions

PMC Motion Control 180

i

Under the MCAPI, the DC2-STN controller's input channels are
numbered 1 - 8, and the output channels are numbered 9 - 16 (the
MCAPI requires that each channel have a unique channel number).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableDigitalIO(hCtlr: HCTRLR; channel: Word; state: SmallInt); stdcall;
VB: Sub MCEnableDigitalIO(ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)
LabVIEW:

MCCL Reference
CF, CN

See Also
MCConfigureDigitalIO(), MCEnableDigitalIO(), MCGetDigitalIOConfig(), MCPARAMEX structure
definition

MCGetAnalogEx
MCGetAnalog() reads the current input state of the specified input Channel.

WORD MCGetAnalog(
 HCTRLR hCtlr, // controller handle
 WORD channel // channel number
 DWORD value // channel number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Analog channel number to read from.
value Pointer to a variable that will contain the analog reading when

MCGetAnalogEX() returns.

Returns
This function returns the current A/D reading for channel.

I/O Functions

Motion Control Application Programming Interface 181

Comments
PMC motion controllers typically include four undedicated analog input channels. On older controllers
these inputs are 8-bit, the newer Multiflex series of controllers is typically configured with 14-bit inputs.
By default these channels are assigned channel numbers 1 to 4.

Additional analog input/output channels supplied by MC500 modules will occupy sequential channel
numbers beginning with channel 5. The fields AnalogInput and AnalogOutput in the MCPARAMEX
structure contain the number of input and output channels the controller is configured for.

MCGetAnalogEx() should be used for new designs.

Compatibility
There are no compatibility issues with this function, however, please note that the DCX-PCI
controllers have no built-in analog inputs and for the MFX-PCI1000 analog inputs are an option.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher (3.4 or higher for MCGetAnalogEX())

Prototypes
Delphi: function MCGetAnalogEx(hCtlr: HCTRLR; channel: Word): Word; stdcall;
VB: Function MCGetAnalogEx(ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer
LabVIEW:

MCCL Reference
TA

See Also
MCSetAnalog(), MCPARAMEX structure definition

MCGetDigitalIO
MCGetDigitalIO() returns the current state of the specified digital I/O channel.

short int MCGetDigitalIO(
 HCTRLR hCtlr, // controller handle
 WORD channel // channel number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Digital channel number to get state of.

I/O Functions

PMC Motion Control 182

Returns
The return value is TRUE if the channel is "on." A return value of FALSE indicates the channel is "off".

Comments
This function will read the current state of both input and output digital I/O channels. Note that this
function simply reports if the channel is "on" or "off"; depending upon how a channel has been
configured "on" (and conversely "off") may represent either a high or a low voltage level.

The field DigitalIO in the MCPARAMEX structure contains the total number of digital I/O channels the
controller is configured for.

i

Under the MCAPI, the DC2-STN controller's input channels are
numbered 1 - 8, and the output channels are numbered 9 - 16 (the
MCAPI requires that each channel have a unique channel number).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetDigitalIO(hCtlr: HCTRLR; channel: Word): SmallInt; stdcall;
VB: Function MCGetDigitalIO(ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer
LabVIEW:

MCCL Reference
TC

See Also
MCEnableDigitalIO(), MCGetDigitalIO(), MCGetDigitalIOConfig()

I/O Functions

Motion Control Application Programming Interface 183

MCGetDigitalIOConfig
MCGetDigitalIOConfig() returns the current configuration (in / out / high / low) of the specified digital
I/O channel.

short int MCGetDigitalIO(
 HCTRLR hCtlr, // controller handle
 WORD channel, // channel number
 WORD* pMode // variable to hold the channel settings
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Digital channel number to get configuration of.
pMode Pointer to a variable to hold the current configuration settings of the specified

channel. This variable will contain one or more of the following flags on return:

Value Description
MC_DIO_INPUT Channel configured for input.
MC_DIO_OUTPUT Channel configured for output.
MC_DIO_LOW Channel configured for low true logic level.
MC_DIO_HIGH Channel configured for high true logic level.
MC_DIO_LATCH Input channel configured for latched operation.
MC_DIO_FIXED Channel is a fixed input or output and cannot be

changed using MCConfigureDigitalIO().
MC_DIO_LATCHABLE Input channel is capable of latched operation.
MC_DIO_STEPPER Input channel has been dedicated to driving a

stepper motor (DC2-PC or DC2-STN).

Returns
The current configuration of the specified digital I/O channel is placed in the variable specified by the
pointer pMode, and MCERR_NOERROR is returned if there were no errors. If there was an error, one
of the MCERR_xxxx error codes is returned, and the variable pointed to by pMode is left unchanged.

Comments
The configuration of the specified channel is returned as one or more of the MC_DIO_xxx constants
OR'ed together. This value is identical to the value you would create to configure the channel using
MCConfigureDigitalIO(), with the exception of the MC_DIO_FIXED, MC_DIO_LATCHABLE, and
MC_DIO_STEPPER which are read-only (i.e. MCGetDigitalIOConfig() only) parameters.

Currently none of the motion controllers supported by the MCAPI allow you to read back the
configuration of the digital I/O. To implement MCGetDigitalIOConfig() the MCAPI "remembers" any
changes made to the digital I/O using MCConfigureDigitalIO(). When the MCAPI DLL is loaded into
memory (at application run time), it assumes the default state power-on state for all the installed
digital I/O. Therefore, this function is most useful within a single application, after you have explicitly
configured each I/O channel.

I/O Functions

PMC Motion Control 184

The field DigitalIO in the MCPARAMEX structure contains the total number of digital I/O channels the
controller is configured for.

i

Under the MCAPI, the DC2-STN controller's input channels are
numbered 1 - 8, and the output channels are numbered 9 - 16 (the
MCAPI requires that each channel have a unique channel number).

Compatibility
MC_DIO_INPUT and MC_DIO_OUTPUTare not supported by MFX-PCI1000.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCGetDigitalIOConfig(hCtlr: HCTRLR; channel: Word; var pMode: Word): LongInt; stdcall;
VB: Function MCGetDigitalIOConfig(ByVal hCtrlr As Integer, ByVal channel As Integer, mode As Integer) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCConfigureDigitalIO(), MCEnableDigitalIO(), MCPARAMEX structure definition

MCSetAnalogEx
MCSetAnalogEx() sets the voltage level of the specified general purpose analog output Channel.

void MCSetAnalog(
 HCTRLR hCtlr, // controller handle
 WORD channel, // channel number
 DWORD value // new output value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Analog output channel number to set
value New output value.

Returns
MCSetAnalogEx() returns the value MCERR_NOERROR if the function completed without errors. If
there was an error one of the MCERR_xxxx error codes is returned.

I/O Functions

Motion Control Application Programming Interface 185

Comments
Analog output ports on MC500 and MC520 Analog Modules accept values in the range of 0 to 4095
counts (12 bits). This range of values corresponds to an output voltage of 0 to 5V or -10 to +10V,
depending upon how the output is configured (see your controller's hardware manual). Each digital bit
corresponds to a voltage level as follows:

Output Used Volts per Count
0 to 5V 0.0012V
-10 to +10V 0.0049V

Compatibility
Analog output channels are not supported by the DC2-PC100 dedicated 2 axis controllers or the
MultiFlex family of controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 3.4 or higher

Prototypes
Delphi: procedure MCSetAnalogEx(hCtlr: HCTRLR; channel, value: DWord); stdcall;
VB: Sub MCSetAnalogEx(ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal value As Integer)
LabVIEW: Not Supported

MCCL Reference
OA

See Also
MCGetAnalogEx()

MCWaitForDigitalIO
MCWaitForDigitalIO() waits for the specified digital I/O channel to go on or off, depending upon the
value of state.

void MCWaitForDigitalIO(
 HCTRLR hCtlr, // controller handle
 WORD channel, // digital I/O channel to watch
 short int state // state of channel to watch for
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Digital channel number to wait for.
state Selects state of channel to wait for:

Value Description

I/O Functions

PMC Motion Control 186

TRUE Wait for channel to go "on.”
FALSE Wait for channel to go "off.”

Returns
This function does not return a value.

Comments
Digital channels 1 to 16 are built into each controller. Additional digital channels, beginning with
channel 17, may be added in blocks of 16 channels using MC400 Digital I/O Modules. The field
DigitalIO in the MCPARAMEX structure contains the total number of digital channels installed on the
controller.

!

Once this command is issued, the calling program will not be able to
communicate with the board until the digital I/O is equal to state. We
recommend creating your own looping structure based on
MCGetDigitalIO() instead.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCWaitForDigitalIO(hCtlr: HCTRLR; channel: Word; state: SmallInt); stdcall;
VB: Sub MCWaitForDigitalIO(ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)
LabVIEW:

MCCL Reference
WF, WN

See Also
MCConfigureDigitalIO(), MCEnableDigitalIO(), MCGetDigitalIO(), MCPARAMEX structure
definition

I/O Functions

Motion Control Application Programming Interface 187

Macro's and Multi-Tasking Functions

PMC Motion Control 188

Chapter Contents

• MCCancelTask()
• MCMacroCall()
• MCRepeat()

Motion Control Application Programming Interface

Macro’s and Multi-Tasking Functions

Macro and multi-tasking functions provide access to the motion controllers on-boa
as well as the multitasking features of advanced controllers.

To see examples of how the functions in this chapter are used, please refer to the
Control API Reference.

MCCancelTask
MCCancelTask() cancels an executing task on a multi-tasking controller. The tas
previously started with an MCBlockBegin() / MCBlockEnd() pair.

long int MCCancelTask(
 HCTRLR hCtlr, // controller handle
 long int taskID // ID of task to cancel
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen
taskID Task ID value for the task to be stopped. This value was ret

MCBlockEnd() function when the task was generated.

Returns
This function returns MCERR_NOERROR if there were no errors. One of the MCE
error codes will be returned if there was a problem.

Comments
MCCancelTask() is the only way to stop tasks that are not programmed to stop t
infinite loop tasks).

Chapter

9

189

rd macro capability,

 online Motion

k should have been

().
urned by the

RR_xxxx defined

hemselves (i.e.

Macro's and Multi-Taksing Functions

PMC Motion Control 190

See the description of MCBlockBegin() for more information and reference the online help for
examples.

Compatibility
The DC2 and DCX-PC100 controllers do not support background tasks.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCCancelTask(hCtlr: HCTRLR; taskID: Longint): Longint; stdcall;
VB: Function MCCancelTask(ByVal hCtrlr As Integer, ByVal taskID As Long) As Long
LabVIEW: Not Supported

MCCL Reference
ET

See Also
MCBlockBegin(), MCCancelTask()

MCMacroCall
MCMacroCall() causes a previously loaded macro to be executed.

void MCMacroCall(
 HCTRLR hCtlr, // controller handle
 WORD macro // macro number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
macro Macro number to execute.

Returns
This function does not return a value.

Comments
Macros are normally downloaded using the pmcputs() ASCII interface command, using the Motion
Control Command Language (MCCL); or by converting the MCAPI functions to a macro with the
MCBlockBegin() / MCBlockEnd() functions. These controller level macros are often the only
efficient way to implement hardware specific sequences, such as special homing routines, initializing
encoder positions, etc.

Compatibility
There are no compatibility issues with this function.

Macro's and Multi-Tasking Functions

Motion Control Application Programming Interface 191

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCMacroCall(hCtlr: HCTRLR; macro: Word); stdcall;
VB: Sub MCMacroCall(ByVal hCtrlr As Integer, ByVal macro As Integer)
LabVIEW:

MCCL Reference
MC

See Also
MCBlockBegin(), MCBlockEnd(), pmcputs(), Controller hardware manual

MCRepeat
MCRepeat() inserts a repeat command into a block command - task, compound command, or macro.

long int MCRepeat(
 HCTRLR hCtlr, // controller handle
 long int count // repeat count
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
count Repeat count. Commands that precede the MCRepeat() in the block command

will be repeated count more times (for a total execution of count + 1).

Returns
MCRepeat() returns the value MCERR_NOERROR if the function completed without errors. If there
was an error, one of the MCERR_xxxx error codes is returned.

Comments
This function may only be used within an MCBlockBegin() / MCBlockEnd() command pair.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Macro's and Multi-Taksing Functions

PMC Motion Control 192

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCRepeat(hCtlr: HCTRLR; count: Longint): Longint; stdcall;
VB: Function MCRepeat(ByVal hCtrlr As Integer, ByVal count As Long) As Long
LabVIEW: Not Supported

MCCL Reference
RP

See Also
MCBlockBegin(), MCBlockEnd()

Macro's and Multi-Tasking Functions

Motion Control Application Programming Interface 193

MCAPI Driver Functions

PMC Motion Control 194

Chapter Contents

• MCBloackBegin()
• MCBlockEnd()
• MCClose()
• MCGetConfigurationEx()
• MCGetVersion()
• MCOpen()
• MCReopen()
• MCSetTimeoutEx()

Motion Control Application Programming Interface

MCAPI Driver Functions

Driver functions handle driver related housekeeping, and as such do not directly aff

To see examples of how the functions in this chapter are used, please refer to the o
Control API Reference.

MCBlockBegin
MCBlockBegin() initiates a block command sequence. All commands up to the su
MCBlockEnd() will be included in the block. Block commands include compound c
definition commands, contour path motions, and tasks on multitasking controllers.

long int MCBlockBegin(
 HCTRLR hCtlr, // controller handle
 long int mode, // block mode type
 long int num // macro / task number / cont
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen(
mode Type of block command to begin:

Value Description
MC_BLOCK_COMPOUND Specifies that this block is a comp
MC_BLOCK_TASK Specifies this block as an individu

multitasking controllers. num sho
desired task number.

MC_BLOCK_MACRO Specifies this block as a macro d
should be set to the desired macr
macro.
Chapter

10

195

ect the controller.

nline Motion

bsequent
ommands, macro

rolling axis

).

ound command.
al task on

uld be set to the

efinition. num
o number for this

MCAPI Driver Functions

PMC Motion Control 196

Value Description
MC_BLOCK_RESETM Resets macro memory. Setting num to zero resets

all macros (and works with all controllers), num
may also be set to 1 or 2 on the DCX AT200 to
selectively delete ram or flash based macros.

MC_BLOCK_CANCEL Cancels a block command without sending any
commands to the controller.

MC_BLOCK_CONTR_USER Specifies that this block is a user defined contour
path motion. num should be set to the controlling
axis number.

MC_BLOCK_CONTR_LIN Specifies that this block is a linear contour path
motion. num should be set to the controlling axis
number.

MC_BLOCK_CONTR_CW Specifies that this block is a clockwise arc contour
path motion. num should be set to the controlling
axis number.

MC_BLOCK_CONTR_CCW Specifies that this block is a counter clockwise arc
contour path motion. num should be set to the
controlling axis number.

num Specifies the macro number for macro blocks, the task number for task blocks,

the controlling axis for contour blocks, or the macro types for macro reset.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
The MCBlockBegin() and MCBlockEnd() commands are used to bracket other API commands in
order to affect how those commands are executed. While the high level MCAPI is function based (as
are most Windows APIs), PMC's motion control cards are command based. They are capable of
accepting single commands or blocks of commands, depending upon the complexity of the motion. To
provide the same block functionality to the MCAPI the MCBlockBegin() and MCBlockEnd()
functions where created. These functions may be used to bracket one or more MCAPI function calls
to create function blocks.

One use is to create a compound command block - where multiple commands are sent to the
controller as a single block. This is useful for data capture sequences, homing sequences, or
anywhere you want to synchronize a complex group of commands.

For multi-tasking controllers, the block commands can be used to group individual commands as
separate tasks. Multi-tasking permits multiple user programs to run in parallel on PMC's advanced
motion control cards. Multi-tasking also permits you to run command sequences that would normally
lock-up the controller's command interpreter in the background, thus leaving the command interpreter
unaffected.

A third use of the block commands is to store the bracketed command sequence as a macro. Macros
may be replayed at any time using the MCMacroCall() function. Please note that API commands that
read data from a controller, such as any of the MCGet… functions, should not be included in macros.
Macro memory may be reset (cleared) by calling MCBlockBegin() with Mode set to

MCAPI Driver Functions

Motion Control Application Programming Interface 197

MC_BLOCK_RESETM. If your controller allows you to reset selected blocks of macros you may
specify this by setting num to 1 for RAM-based macros or 2 for Flash memory macros.

All calls to MCBlockBegin(), except those with a mode of MC_BLOCK_RESETM or
MC_BLOCK_CANCEL require a corresponding call to MCBlockEnd(). Calls to MCBlockBegin()
may not be nested, except that MCBlockBegin() calls with an Mode of MC_BLOCK_CANCEL may
be included within other MCBlockBegin() blocks (this call terminates the outer MCBlockBegin(), so
no MCBlockEnd() is needed in this case).

Beginning with version 2.0 of the MCAPI, blocks are also used for multi-axis contouring. Contouring
requires first that the selected axes be placed in contouring mode and a controlling axis specified.
This is done with the MCSetOperatingMode() function. Then blocks of contour path moves are
issued. Under the MCAPI, these contour path blocks are specified by bracketing MCArcCenter(),
MCGoHome(), MCMoveAbsolute(), MCMoveRelative(), or MCSetVectorVelocity() with block
commands that are one of the MC_BLOCK_CONTR_xxx types.

Block commands may be canceled prior to issuing an MCBlockEnd() by calling MCBlockBegin()
with Mode set to MC_BLOCK_CANCEL.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100
controllers. The DC2 and DCX-PC100 controllers do not support background tasks.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCBlockBegin(hCtlr: HCTRLR; mode, num: Longint): Longint; stdcall;
VB: Function MCBlockBegin(ByVal hCtrlr As Integer, ByVal mode As Long, ByVal num As Long) As Long
LabVIEW: Not Supported

MCCL Reference
CP, GT, MD, RM

See Also
MCBlockEnd(), MCCancelTask(), MCMacroCall(), MCRepeat()

MCAPI Driver Functions

PMC Motion Control 198

MCBlockEnd
MCBlockEnd() ends a block command and transmits the compound command, task, macro, or
contour path to the controller.

long int MCBlockEnd(
 HCTRLR hCtlr, // controller handle
 long int* pTaskID // task ID for MC_BLOCK_TASK blocks
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
pTaskID Pointer to variable to hold the Task ID value for MC_BLOCK_TASK blocks, this

parameter is ignored and may be set to NULL for MC_BLOCK_COMPOUND or
MC_BLOCK_MACRO blocks. Setting this parameter to NULL for
MC_BLOCK_TASK will cause the function to not return the Task ID for this
task.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
The MCBlockBegin() and MCBlockEnd() commands are used to bracket other API commands in
order to affect how those commands are executed.

See the description of MCBlockBegin() for more information.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100
controllers. The DC2 and DCX-PC100 controllers do not support background tasks.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCBlockEnd(hCtlr: HCTRLR; var pTaskID: LongInt): Longint; stdcall;
VB: Function MCBlockEnd(ByVal hCtrlr As Integer, taskID As Long) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCBlockBegin(), MCCancelTask()

MCAPI Driver Functions

Motion Control Application Programming Interface 199

MCClose
MCClose() closes the specified motion controller handle, and is typically called at the end of a
program.

short int MCClose(
 HCTRLR hCtlr // controller handle
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
Following a call to MCClose(), no further calls should be made to the Motion Control API functions
with this handle (the exception being MCOpen(), which may be called to open or reopen the API at
any time).

By calling MCClose() you notify Windows that you are done with the controller and device driver.
When the last user has closed the driver Windows is then free to unload the driver from memory.
Failure to call close leaves the handle open, reducing the number of available controller handles for
other applications.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCClose(hCtlr: HCTRLR): SmallInt; stdcall;
VB: Function MCClose(ByVal hCtrlr As Integer) As Integer
LabVIEW:

MCCL Reference
None

See Also
MCOpen()

MCAPI Driver Functions

PMC Motion Control 200

MCGetConfigurationEx
MCGetConfigurationEx() obtains the configuration for the specified controller. Configuration
information includes the controller type, number and type of installed motor modules, and if the
controller supports scaling, contouring, etc.

long int MCGetConfigurationEx(
 HCTRLR hCtlr, // controller handle
 MCPARAMEX* pParam // address of extended configuration
 // structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
pParam Points to an MCPARAMEX structure that receives the configuration information

for hCtlr.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
This function allows the application to query the driver about installed controller hardware and
capabilities. Included are the number and type of axes, digital and analog IO channels, scaling, and
contouring.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 3.0 or higher

Prototypes
Delphi: function MCGetConfigurationEx(hCtlr: HCTRLR; var pParam: MCPARAMEX): LongInt; stdcall;
VB: Function MCGetConfigurationEx(ByVal hCtrlr As Integer, param As MCParamEx) As Long
LabVIEW: Not Supported

MCCL Reference
Dual Port RAM

See Also
MCPARAMEX structure definition

MCAPI Driver Functions

Motion Control Application Programming Interface 201

MCGetVersion
MCGetVersion() returns version information about the MCAPI.DLL and, optionally, about the device
driver in use for a particular controller.

DWORD MCGetVersion(
 HCTRLR hCtlr // controller handle
);

Parameters
hCtlr Controller handle, selects which motion controller to obtain device driver

version info from. May be NULL (if NULL MCGetVersion() version number info
is returned for the MCAPI DLL only).

Returns
The return version number for the MCAPI DLL and, if hCtlr is not NULL, the version number for the
device driver in use for the controller. If hCtlr is NULL, device driver version info will be zero.

Comments
The DLL version number is contained in the low order word of the return value. The major version
number is stored as the low order byte of this word, while the release number is multiplied by 10,
added to the revision number, and stored as the high order byte.

If the controller handle is not NULL, the version information for the device driver that is associated
with this controller will be placed in the high order word of the return value, using the same format as
was used for the DLL version information.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.2 or higher

Prototypes
Delphi: function MCGetVersion(hCtlr: HCTRLR): Longint; stdcall;
VB: Function MCGetVersion(ByVal hCtrlr As Integer) As Long
LabVIEW: Not Supported

MCCL Reference
None

MCAPI Driver Functions

PMC Motion Control 202

MCOpen
MCOpen() returns a handle to a particular controller for use with subsequent API calls.

HCTRLR MCOpen(
 short int id, // controller ID
 WORD mode, // open mode - ASCII / binary
 char* pName // not used
);

Parameters
id Controller ID, selects the controller to open.
mode I/O mode to open controller in:

Value Description
MC_OPEN_ASCII Open controller for ASCII (character) I/O.
MC_OPEN_BINARY Open the binary command interface of the

controller.
MC_OPEN_EXCLUSIVE May be OR'ed with MC_OPEN_ASCII or

MC_OPEN_BINARY to request exclusive access
to the controller.

pName Should be set to NULL for the present

Returns
This function returns handle to the specified controller for use in subsequent API calls. The handle will
be greater than zero if the open call succeeds or less than zero if there is an error. Standard error
codes (see the file MCERR.H) will be multiplied by -1 to make their values negative and returned in
place of a handle, if there is an error:

Value Description
MCERR_ALLOC_MEM Unable to allocate memory for handle.
MCERR_CONSTANT The constant value supplied for mode is invalid.
MCERR_INIT_DRIVER Unable to initialize device driver.
MCERR_MODE_UNAVAIL The requested mode (ASCII or binary) is

unavailable. Typically due to the fact that
another process has an open handle to the
controller in the opposite mode.

MCERR_NO_CONTROLLER No controller is installed at this ID, run
MCSETUP.

MCERR_NOT_PRESENT The specified controller hardware is missing or
not responding.

MCERR_OPEN_EXCLUSIVE Unable to open controller for exclusive use -
another process must already have an open
handle to this controller.

MCAPI Driver Functions

Motion Control Application Programming Interface 203

MCERR_OUT_OF_HANDLES The driver is out of handles, try closing unused
handles first.

MCERR_RANGE Specified id is out of range.
MCERR_UNSUPPORTED_MODE The requested open mode (ASCII or binary) is

not supported for this controller.

i

Please note that the error codes in the table above, when an error has
occurred, will returned as a negative value.

Comments
Always save the handle returned by MCOpen() and use that value in subsequent calls to the API.
MCOpen() must be called before any other API calls are attempted. If a call is made to any other API
function with a bad handle, a handle error message (MCERR_CONTROLLER) will be broadcast to all
windows. Everyone is notified in the case of a bad handle because the MCAPI normally uses the
handle to route error messages, and obviously can't do this if the handle is invalid.

If it is necessary that no one else gains access to a controller while you are using it, you may combine
the open mode with MC_OPEN_EXCLUSIVE:

 if ((hCtlr = MCOpen(7, MC_OPEN_ASCII | MC_OPEN_EXCLUSIVE, NULL)) > 0)
 {
 // got an exclusive handle
 }

will only return a valid handle if no other process has an open handle to this controller already, and
will prevent any one else from opening the controller while the exclusive handle is open.

The name argument in the MCOpen() function call is for future enhancements to the API and should
be set to NULL for the present.

If you are using an DCX-AT or DCX-PCI configured for multi-interface, you may open binary and
ASCII handles simultaneously. Exclusive handles are interface based, not controller based, in this
case (i.e. you may have one exclusive ASCII handle and one exclusive binary handle open at the
same time).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCOpen(id: SmallInt; mode: Word; pName: PChar): HCTRLR; stdcall;
VB: Function MCOpen(ByVal id As Integer, ByVal mode As Integer, ByVal name As String) As Integer

MCAPI Driver Functions

PMC Motion Control 204

LabVIEW:

MCCL Reference
None

See Also
MCClose(), MCErrorNotify()

MCReopen
MCReopen() may be used to change the mode of an existing handle.

long int MCReopen(
 HCTRLR hCtlr, // controller handle
 WORD mode // new mode
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
mode New mode flags:

Value Description
MC_OPEN_ASCII Open controller for ASCII (character) I/O.
MC_OPEN_BINARY Open the binary command interface of the

controller.
MC_OPEN_EXCLUSIVE May be combined with MC_OPEN_ASCII or

MC_OPEN_BINARY using the binary or operator '|'
to request exclusive access.

Returns
MCReopen() returns the value MCERR_NOERROR, if the function completed without errors. If there
was an error, one of the MCERR_xxxx error codes is returned.

Comments
The most likely cause for failure is that another open handle exists for the same controller.
MCReopen() cannot change a controller’s open mode if there are multiple handles, as there is no
way to notify the owners of those other handles that a mode switch has occurred. If you plan on using
this function in an application, it is suggested that you open the controller in exclusive mode to prevent
any additional handles from being opened.

If you are using a DCX-PCI or DCX-AT in multi-interface mode, the above restrictions do not apply.

Compatibility
There are no compatibility issues with this function.

MCAPI Driver Functions

Motion Control Application Programming Interface 205

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCReopen(hCtlr: HCTRLR; mode: Word): Longint; stdcall;
VB: Function MCReopen(ByVal hCtrlr As Integer, ByVal mode As Integer) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCClose(), MCOpen()

MCSetTimeoutEx
MCSetTimeoutEx() sets the timeout period for I/O to a particular controller.

long int MCSetTimeoutEx(
 HCTRLR hCtlr, // controller handle
 double timeout, // new timeout value
 double* pOldTimeout // old timeout value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
timeout New timeout period, in seconds.
pOldTimeout Pointer to a double precision floating point variable that will hold the old timeout

setting for the specified axis. If the pointer is NULL, no value is returned.

Returns
If there were no errors, the previous timeout setting is placed in the variable specified by the pointer
pOldTimeout, and MCERR_NOERROR is returned. If there was an error, one of the MCERR_xxxx
error codes is returned, and the variable pointed to by pOldTimeout is left unchanged. If the pointer
pOldTimeout is NULL, the old timeout value is not returned.

Comments
The timeout period is the maximum amount of time, in seconds, that the MCAPI device driver will wait
to send a command and/or receive a reply. The default setting for timeout for all controllers is zero
seconds. A timeout setting of zero will cause the controller to wait forever (i.e. no timeout) for I/O to
complete.

Note that a timeout value that is acceptable for most functions may fail (i.e. timeout) if the controller is
asked to perform a lengthy operation (a long wait, a reset, etc.). One option in these cases is to
change the timeout value for the duration of the long operation, then change the timeout value back.

MCAPI Driver Functions

PMC Motion Control 206

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCSetTimeoutEx(hCtlr: HCTRLR; timeout: Double; var pOldTimeout: Double): Longint; stdcall;
VB: Function MCSetTimeoutEx(ByVal hCtrlr As Integer, ByVal timeout As Double, oldTimeout As Double) As Long
LabVIEW: Not Supported

MCCL Reference
None

MCAPI Driver Functions

Motion Control Application Programming Interface 207

OEM Low Level Functions

PMC Motion Control 208

Chapter Contents

• pmccmd()
• pmccmdex()
• pmcgetc()
• pmcgetramex()
• pmcgets()
• pmcputc()
• pmcputramex()
• pmcputs()
• pmcrdy()
• pmcrpy()
• pmcrpyex()

Motion Control Application Programming Interface

OEM Low Level Functions

The OEM low level commands provide direct access to controller functionality. Th
group are not part of the formal Motion Control API.

These functions have been implemented in a way that is consistent with DOS mo
controllers. This consistency is designed to simplify the task of porting existing DO
Windows.

To see examples of how the functions in this chapter are used, please refer to the
Control API Reference.

pmccmd
pmccmd() downloads a formatted binary command buffer directly to the PMC co
Programmers should use the more advanced pmccmdex() instead of this functio

long int pmccmd(
 HCTRLR hCtlr, // controller handle
 short int bytes, // length of buffer
 void* pBuffer // pointer to command buffer
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen
bytes Length of buffer, in bytes.
pBuffer Pointer to command buffer.

Returns
The return value from this function is the actual number of bytes downloaded. Bec
of the binary interface, the return value will be equal to the buffer size (value of the

Chapter

11

209

e functions in this

de libraries for these
S applications to

 online Motion

ntroller.
n when possible.

().

ause of the nature
 bytes argument),

OEM Low Level Functions

PMC Motion Control 210

indicating the command buffer was successfully downloaded, or zero, indicating a problem
communicating with the controller.

Comments
The binary interface is described in detail in the hardware manual that accompanied your controller.
The user of this function is responsible for correctly formatting the buffer - no checking is performed
by the function. To send binary commands to the motion controller the hCtlr handle must have opened
in binary mode.

This function may be used within an MCBlockBegin() / MCBlockEnd() pair to create Macros,
Compound commands, or Tasks.

This command function may also be used in ASCII mode; in this case the command buffer should
contain a correctly formatted ASCII command (including the terminating carriage return "\r").

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h and mccl.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmccmd(hCtlr: HCTRLR; bytes: SmallInt; pBuffer: PChar): SmallInt; stdcall;
VB: Function pmccmd(ByVal hCtrlr As Integer, ByVal bytes As Integer, ByVal buffer As String) As Integer
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmcrdy(), pmcrpy()

OEM Low Level Functions

Motion Control Application Programming Interface 211

pmccmdex
pmccmdex() downloads a formatted binary command buffer directly to the PMC controller.

long int pmccmdex(
 HCTRLR hCtlr, // controller handle
 WORD axis, // Axis number for this command
 WORD cmd, // MCCL command
 void* pArgument, // pointer to command argument
 long int type // type of argument
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for this command.
cmd MCCL command to execute - see MCCL.H and the User's Manual for your

motion controller.
pArgument Pointer to a variable that has the argument for this command.
type Type of data pointed to by pArgument:

Value Description
MC_TYPE_LONG Indicates pArgument points to a variable of type

long integer.
MC_TYPE_DOUBLE Indicates pArgument points to a variable of type

double precision floating point.
MC_TYPE_FLOAT Indicates pArgument points to a variable of type

single precision floating point.
MC_TYPE_REG Indicates pArgument points to a variable of the

format of a 32 bit integer with register number.
MC_TYPE_NONE Indicates pArgument points to a variable of type

which is NULL.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
The binary interface is described in detail in the hardware manual that accompanied your controller.
To send binary commands to the motion controller the hCtlr handle must have opened in binary
mode.

This function may be used within an MCBlockBegin() / MCBlockEnd() pair to create Macros,
Compound commands, or Tasks.

Compatibility
There are no compatibility issues with this function.

OEM Low Level Functions

PMC Motion Control 212

Requirements
Header: include mcapi.h and mccl.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Prototypes
Delphi: function pmccmdex(hCtlr: HCTRLR; axis: Word; cmd: Word; var pArgument: Pointer; type: Longint): Longint; stdcall;
VB: Function pmccmdex(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal cmd As Integer, argument As Any, ByVal

argtype As Long) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmcrdy(), pmcrpyex()

pmcgetc
pmcgetc() reads a single character from the controller ASCII interface.

short int pmcgetc(
 HCTRLR hCtlr // controller handle
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().

Returns
The return value from this function is number of bytes actually read from the controller (1 or 0).

Comments
This function will return immediately if there is no character available. Use the string get command,
pmcgets(), if you want to wait for a character, or place pmcgetc() in a loop.

i

You must open the controller in ASCII mode (MC_OPEN_ASCII) in order
to use this command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

OEM Low Level Functions

Motion Control Application Programming Interface 213

Prototypes
Delphi: function pmcgetc(hCtlr: HCTRLR): SmallInt; stdcall;
VB: Function pmcgetc(ByVal hCtrlr As Integer) As Integer
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmcgetc(), pmcputc(), pmcputs()

pmcgetramex
pmcgetramex() reads bytes from controller memory beginning at location offset.

short int pmcgetram(
 HCTRLR hCtlr, // controller handle
 WORD offset, // memory offset to read from
 void* pBuffer, // buffer to hold ram value
 DWORD size // number of bytes of memory to read
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
offset Starting memory location, relative to the beginning of controller dual ported ram,

to read from.
pBuffer Buffer to hold read in controller memory, must be at least bytes long.
size Number of bytes of memory to read.

Returns
The return value will be MCERR_NOERROR if there were no errors, or one of the MCERR_xxxx
defined error codes if there was a problem.

Comments
No range checking is performed on Offset or Bytes - it is the caller's responsibility to supply valid
values for these arguments. Consult the controller hardware manual for details on the controller
memory map. The extended version of this function supports 32-bit offsets and buffer sizes to better
support PMC's newest motion controllers.

These functions use the mccl read commands to access data from the controllers viewpoint. The
original version of pmcgetram, pmcgetram(), applied an internal offset to the caller's offset parameter
to make addresses seem more natural (e.g. 1000 hex was added to adresses on ISA-bus controllers
so that the addresses matched the dual port ram as seen from the PC). pmcgetramex() does not
apply any offset.

!

Do not use this command within an MCBlockBegin() / MCBlockEnd()
block.

OEM Low Level Functions

PMC Motion Control 214

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 3.4 or higher

Prototypes
Delphi: procedure pmcgetramex(hCtlr: HCTRLR; offset: Word; pBuffer: PChar; bytes: SmallInt); stdcall;
VB: Sub pmcgetramex(ByVal hCtrlr As Integer, ByVal offset As Integer, ByVal buffer As String, ByVal bytes As Integer)
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmcputramex()

pmcgets
pmcgets() reads a null-terminated ASCII string of up to bytes characters from the controller ASCII
interface.

short int pmcgets(
 HCTRLR hCtlr, // controller handle
 void* pBuffer, // pointer to buffer
 short int bytes // length of buffer
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
pBuffer Pointer to reply buffer.
bytes Length of buffer, in bytes.

Returns
The return value from this function is number of bytes actually read from the controller.

Comments
This function will wait for a reply for as long as the controller is busy processing command. A zero will
be returned when the controller is idle and there are no reply characters. However, a non-zero timeout
value will force the function to return the number of characters it has received prior to the timeout.

i

You must open the controller in ASCII mode (MC_OPEN_ASCII) in order
to use this command.

OEM Low Level Functions

Motion Control Application Programming Interface 215

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmcgets(hCtlr: HCTRLR; pBuffer: PChar; bytes: SmallInt): SmallInt; stdcall;
VB: Function pmcgets(ByVal hCtrlr As Integer, ByVal buffer As String, ByVal bytes As Integer) As Integer
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCSetTimeoutEx(), pmcgetc(), pmcputc(), pmcputs()

pmcputc
pmcputc() writes a single character to the controller ASCII interface.

short int pmcputc(
 HCTRLR hCtlr, // controller handle
 short int char // output char
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
char Character to output.

Returns
This function returns a one if the character is successfully written or a zero if it is unable to write to the
controller.

Comments
Remember to terminate all command strings with a carriage return "\r" in order for the command to be
executed. This command does not wait for the controller - if it is unable to write the character it returns
immediately with a return value of zero.

i

You must open the controller in ASCII mode (MC_OPEN_ASCII) in order
to use this command.

OEM Low Level Functions

PMC Motion Control 216

!

Do not use this command within an MCBlockBegin() / MCBlockEnd()
block. This function attempts to write immediately to the motion
controller.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmcputc(hCtlr: HCTRLR; char: SmallInt): SmallInt; stdcall;
VB: Function pmcputc(ByVal hCtrlr As Integer, ByVal char As Integer) As Integer
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmcgetc(), pmcgets(), pmcputs()

pmcputramex
pmcputramex() writes bytes directly into the controller's memory beginning at location offset.

void pmcputram(
 HCTRLR hCtlr, // controller handle
 WORD offset, // memory offset to write to
 void* pBuffer, // buffer to hold ram value
 DWORD size // number of bytes of memory to write
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
offset Starting memory location, relative to the beginning of controller dual ported ram,

to write to.
pBuffer Buffer of data to write into controller memory.
size Number of bytes of memory to write.

Returns
The return value will be MCERR_NOERROR if there were no errors, or one of the MCERR_xxxx
defined error codes if there was a problem.

Comments

OEM Low Level Functions

Motion Control Application Programming Interface 217

!

No range checking is performed on offset or bytes. It is the caller’s
responsibility to supply valid values for these arguments. Writing directly
to dual ported ram can cause unpredictable results. USE THIS
FUNCTION WITH EXTREME CAUTION!

This function uses the mccl write commands to access data from the controllers viewpoint. The
original version of pmcputram, pmcputram(), applied an internal offset to the caller's offset
parameter to make addresses seem more natural (e.g. 1000 hex was added to adresses on ISA-bus
controllers so that the addresses matched the dual port ram as seen from the PC). pmcputramex()
does not apply any offset.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 3.4 or higher

Prototypes
Delphi: procedure pmcputramex(hCtlr: HCTRLR; offset: Word; pBuffer: PChar; bytes: SmallInt); stdcall;
VB: Sub pmcputramex(ByVal hCtrlr As Integer, ByVal offset As Integer, ByVal buffer As String, ByVal bytes As Integer)
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmcgetramex()

pmcputs
pmcputs() writes a NULL terminated command string to the controller ASCII interface.

short int pmcputs(
 HCTRLR hCtlr, // controller handle
 char* pBuffer // output string
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
pBuffer Output string.

Returns
This function returns the number of characters actually written to the controller. This number may be
less than the length of the string if the controller becomes busy and stops accepting characters.

OEM Low Level Functions

PMC Motion Control 218

Comments
Remember to terminate all command strings with a carriage return "\r" in order for the command to be
executed. This function consumes any reply characters from the controller while it is writing (this may
change in future implementations).

i

You must open the controller in ASCII mode (MC_OPEN_ASCII) in order
to use this command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmcputs(hCtlr: HCTRLR; pBuffer: PChar): SmallInt; stdcall;
VB: Function pmcputs(ByVal hCtrlr As Integer, ByVal buffer As String) As Integer
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmcgetc(), pmcgets(), pmcputs()

pmcrdy
pmcrdy() checks the specified controller to see if it is ready to accept a binary command buffer.

short int pmcrdy(
 HCTRLR hCtlr // controller handle
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().

Returns
The return value from this function is TRUE (+1) if the controller is ready to accept commands. The
controller will return FALSE if it is busy. For the AT200 controller, a value of -1 is returned if the
controller is ready to accept data in file download mode.

OEM Low Level Functions

Motion Control Application Programming Interface 219

Comments
Basic language users are cautioned that Visual Basic defines TRUE as -1, while Windows defines
TRUE to be +1 (the API uses the Windows value for TRUE and returns a +1 if the controller is ready).
Therefore, code such as:

 if pmcrdy(hCtlr) = True then

will not work as expected in Visual Basic.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmcrdy(hCtlr: HCTRLR): SmallInt; stdcall;
VB: Function pmcrdy(ByVal hCtrlr As Integer) As Integer
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmccmd(), pmcrpy()

pmcrpy
pmcrpy() reads a binary reply of up to bytes bytes from the controller. Programmers should use the
more advanced pmcrpyex() instead of this function when possible.

long int pmcrpy(
 HCTRLR hCtlr, // controller handle
 short int bytes, // length of buffer
 void* pBuffer // pointer to buffer
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
bytes Length of buffer, in bytes.
pBuffer Pointer to reply buffer.

Returns
The return value from this function is the actual number of bytes read. This value may be less than the
argument bytes, but will never exceed bytes. If the controller has no reply ready, the return value will
be zero.

OEM Low Level Functions

PMC Motion Control 220

Comments
This function waits for a reply for as long as the controller is busy - it returns with a return value of
zero if no reply is (or will be) available.

i

You must open the controller in ASCII mode (MC_OPEN_ASCII) in order
to use this command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h and mccl.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmcrpy(hCtlr: HCTRLR; bytes: SmallInt; pBuffer: PChar): SmallInt; stdcall;
VB: Function pmcrpy(ByVal hCtrlr As Integer, ByVal bytes As Integer, ByVal buffer As String) As Integer
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmccmd(), pmcrdy(), pmcrpyex()

pmcrpyex
pmcrpyex() reads a binary reply of up to bytes bytes from the controller.

long int pmcrpyex(
 HCTRLR hCtlr, // controller handle
 void* pReply, // pointer to command reply
 long int type // type of argument
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
pReply Pointer to a variable to hold the reply value.
type Type of data pointed to by pReply:

Value Description
MC_TYPE_LONG Indicates pReply points to a variable of type long

integer.

OEM Low Level Functions

Motion Control Application Programming Interface 221

MC_TYPE_DOUBLE Indicates pReply points to a variable of type double
precision floating point.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was a problem.

Comments
The binary interface is described in detail in the hardware manual that accompanied your controller.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h and mccl.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Prototypes
Delphi: function pmcrpyex(hCtlr: HCTRLR; var pReply: Pointer; type: Longint): Longint; stdcall;
VB: Function pmcrpyex(ByVal hCtrlr As Integer, reply As Any, ByVal argtype As Long) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmccmdex(), pmcrdy(), pmcrpy()

Common Motion Dialog Functions

PMC Motion Control 222

Chapter Contents

• MCDLG_AboutBox()
• MCDLG_CommandFileExt()
• MCDLG_ConfigureAxis()
• MCDLG_ControllerDescEx()
• MCDLG_ControllerInfo()
• MCDLG_DownloadFile()
• MCDLG_Initialize()
• MCDLG_ListControllers()
• MCDLG_ModuleDescEx()
• MCDLG_RestoreAxis()
• MCDLG_RestoreDigitalIO()
• MCDLG_SaveAxis()
• MCDLG_SaveDigitalIO()
• MCDLG_Scaling()
• MCDLG_SelectController()

Motion Control Application Programming Interface

Common Motion Dialog Functions

The Common Motion Dialog library includes easy-to-use high-level functions for th
configuration of your motion controller. By combining these functions in a single lib
easy for programmers to include the Common Motion Dialog functionality in their a
programs. Functions are provided for the configuration of servo and stepper axes
controller selection, file download, and save/restore of motor settings.

To see examples of how the functions in this chapter are used, please refer to the
Control API Reference.

MCDLG_AboutBox
MCDLG_AboutBox() displays a simple About dialog box that includes version in
both the application and the Motion Control API.

long int MCDLG_AboutBox(
 HWND hWnd, // handle to parent window
 LPCSTR title, // title string for the dial
 long int bitmapID // bitmap ID for the dialog
);

Parameters
hWnd Handle to parent window of About Box. This handle is used

MCDLG_AboutBox() to retrieve VERSIONINFO strings fro
title An optional title string for the About dialog box. If this pointe

to a zero length string the default title of “About” is used.
bitmapID An optional Bitmap resource identifier. If greater than zero,

will be displayed in the About dialog box. If zero, MCDLG_A
display the default bitmap. Bitmaps should be no larger than
(height) pixels, 16 colors.

Chapter

12

223

e control and
rary we've made it
pplication

, scaling setup,

 online Motion

formation about

og box
box

 by
m the application.
r is NULL or points

the specified bitmap
boutBox() will
 240 (width) by 80

Common Motion Dialog Functions

PMC Motion Control 224

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was an error creating the dialog box.

Comments
Version information is obtained by retrieving VERSIONINFO values from the executable module. The
specific strings queried for are “CompanyName”, “FileDescription”, “FileVersion”, and
“LegalCopyright”. It is a good idea to include a VERSIONINFO resource in any application as it
permits Windows to accurately determine the version of any executable file or DLL. Applications and
DLLs supplied with the Motion Control API include a VERSIONINFO resource.

The dialog box displays a default logo bitmap above the version information. By specifying a valid
bitmap resource ID for the bitmapID parameter you may change the bitmap displayed. If this
parameter is greater than zero the new bitmap will replace the default in the About dialog box.
Bitmaps should be no larger than 240 (width) by 80 (height) pixels, 16 colors.

If a NULL pointer or a pointer to a zero length string is passed as the title argument the default title will
be used. Acceptance of a pointer to a zero length string was included to support programming
languages that have difficulty with NULL pointers (e.g. Visual Basic). To eliminate the title pass a
pointer to a string with a single space (i.e. " ").

Note that MCDLG_AboutBox() uses the HWND argument passed to it to identify the executable file
from which to read the VERSIONINFO information. In some development environments, such as
Visual Basic, window handles are owned by a DLL supplied by the author of the development system,
not the user's EXE file. In these situations, MCDLG_AboutBox() is unable to correctly perform its
VERSIONINFO query and should not be used.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_AboutBox(hWnd: HWnd; title: PChar; bitmapID: Longint): Longint; stdcall;
VB: Function MCDLG_AboutBox(ByVal hWnd As Long, ByVal title As String, ByVal bitmapID As Long) As Long
LabVIEW: Not Supported

Common Motion Dialog Functions

Motion Control Application Programming Interface 225

MCDLG_CommandFileExt
MCDLG_CommandFileExt() returns the file extension for MCCL command files for a particular
motion controller type.

long int MCDLG_CommandFileExt(
 long int type, // controller type identifier
 long int flags, // flags
 LPCSTR buffer, // buffer for file extension string
 long int length // length of string buffer, in bytes
);

Parameters
type Motion Controller type, must be equal to one of the predefined motion controller

types (see MCAPI.H).
flags Reserved for future use (set to zero).
buffer Pointer to a string buffer that will hold the file extension (should be _MAX_FILE

long).
length Size of buffer, in bytes.

Returns
This function returns a pointer to the file extension string for the specified motion controller type. It
returns NULL if type does not specify a valid controller type.

Comments
The Motion Control API registers a separate file extension for each controller type. The MCAPI tools,
such as Win Control, use these file extensions when they open MCCL command files. You can use
this function to get the registered file extension for any controller type.

See the MCAPI sample program Win Control for an example.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 3.0 or higher

Prototypes
Delphi: function MCDLG_CommandFileExt(type: LongInt; flags: LongInt; buffer: PChar; length: Longint): PChar; stdcall;
VB: Function MCDLG_CommandFileExt(ByVal argtype As Long, ByVal flags As Long, ByVal buffer As String, ByVal length

As Long) As String
LabVIEW: Not Supported

Common Motion Dialog Functions

PMC Motion Control 226

MCDLG_ConfigureAxis
MCDLG_ConfigureAxis() displays a servo or stepper axis setup dialog that permits user
configuration of the axis.

long int MCDLG_ConfigureAxis(
 HWND hWnd, // handle to parent window
 HCTRLR hCtlr, // handle to a motion controller
 WORD axis, // axis number to configure
 long int flags, // configuration flags
 LPCSTR title // optional axis title for the dialog box
);

Parameters
hWnd Handle to parent window. May be NULL.
hCtlr Motion Controller handle, returned by a successful call to MCOpen().
axis Axis number of axis to be configured.
flags Flags to control the operation (multiple flags may be OR'ed together):

Value Description
MCDLG_CHECKACTIVE Checks if an axis is moving before the new settings

are written to the controller and skips if the axis is
moving. Combine with MCDLG_PROMPT to
prompt user whether or not to proceed.

MCDLG_PROMPT Combine with MCDLG_CHECKACTIVE to prompt
user whether or not to proceed if a motor is moving
and the user has dismissed the dialog box with
OK.

title An optional title string for the axis. If this pointer is NULL or points to a zero

length string the default title, which includes the axis number and a description
of the axis type is used.

Returns
This function returns MCERR_NOERROR if the user pressed OK button to dismiss the dialog box. It
returns MCERR_CANCEL if the user pressed the CANCEL button to dismiss the dialog box. It returns
one of the other MCERR_xxxx error codes if there was an error creating the dialog box.

Comments
This function provides comprehensive, ready-to-use setup dialogs for stepper and servo motor axis
types. The motion controller is queried for the current axis settings to initialize this dialog box. Any
changes the user makes are sent to the motion controller if the user dismisses the dialog by pressing
the OK button.

Changing the parameters of an axis while it is moving may result in erratic behavior (such as when
you choose to include the motor position in the changed parameters). The flag
MCDLG_CHECKACTIVE forces this function to check the axis to see if it is active before it proceeds.
By default MCDLG_CHECKACTIVE will skip the changing of an active axis, but if you also include the

Common Motion Dialog Functions

Motion Control Application Programming Interface 227

flag MCDLG_PROMPT the user will be prompted for how to proceed. The programming samples are
all built with MCDLG_CHECKACTIVE and MCDLG_PROMPT set.

If a NULL pointer or a pointer to a zero length string is passed as the title argument, the default title
will be used. Acceptance of a pointer to a zero length string was included to support programming
languages that have difficulty with NULL pointers (e.g. Visual Basic). To eliminate the title pass a
pointer to a string with a single space (i.e. " ").

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_ConfigureAxis(hWnd: HWnd; hCtlr: HCTRLR; axis: Word; flags: Longint; title: PChar): Longint;

stdcall;
VB: Function MCDLG_ConfigureAxis(ByVal hWnd As Long, ByVal hCtlr As Integer, ByVal axis As Integer, ByVal flags As

Long, ByVal title As String) As Long
LabVIEW:

MCDLG_ControllerDescEx
MCDLG_ControllerDescEx() returns a descriptive string for the specified motion controller type.

LPCSTR MCDLG_ControllerDescEx(
 long int type, // controller type identifier
 long int flags, // flags
 LPSTR buffer, // buffer for descriptive string
 long int length // size of buffer, in bytes
);

Parameters
type Motion Controller type, must be equal to one of the predefined motion controller

types (see MCAPI.H).
flags Flags to control the operation:

Value Description
MCDLG_NAMEONLY Resulting string will contain only the name portion

(no description).

Common Motion Dialog Functions

PMC Motion Control 228

MCDLG_DESCONLY Resulting string will contain only the name portion
(no name).

buffer Pointer to a string buffer that will hold the descriptive string.
length Size of buffer, in bytes.

Returns
This function returns a pointer to the descriptive string buffer for the specified motion controller type,
or it returns NULL if type does not specify a valid controller type.

Comments
This extended version of MCDLG_ControllerDesc() includes by default the controller name and a
description of the controller in the output string. Use the flags parameter to control the information
included in the string.

You may use this function to provide a descriptive string for a motion controller by passing the
function the ControllerType member of an MCPARAMEX structure following a call to
MCGetConfigurationEx(). As an example, the MCDLG function MCDLG_ControllerInfo() uses this
function to produce its Controller Information dialog.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 3.0 or higher

Prototypes
Delphi: function MCDLG_ControllerDescEx(type: LongInt; flags: LongInt; buffer: PChar; length: Longint): PChar; stdcall;
VB: Function MCDLG_ControllerDescEx(ByVal argtype As Long, ByVal flags As Long, ByVal buffer As String, ByVal length

As Long) As String
LabVIEW: Not Supported

MCDLG_ControllerInfo
MCDLG_ControllerInfo() displays configuration information about the specified motion controller.

long int MCDLG_ControllerInfo(
 HWND hWnd, // handle to parent window
 HCTRLR hCtlr, // handle to a motion controller
 long int flags, // configuration flags
 LPCSTR title // title for the dialog box
);

Parameters
hWnd Handle to parent window. May be NULL.

Common Motion Dialog Functions

Motion Control Application Programming Interface 229

hCtlr Motion Controller handle, returned by a successful call to MCOpen().
flags Currently no flags are defined for MCDLG_ControllerInfo(), and this argument

should be set to zero.
title An optional title string for the dialog box. If this pointer is NULL or points to a

zero length string, a default title is used.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the
MCERR_xxxx defined error codes if there was an error creating the dialog box.

Comments
This function displays a read only dialog providing information on the current motion controller
configuration and capabilities (this information is typically used by programs to control execution for
example can the controller multi-task? Is contouring supported?).

If a NULL pointer or a pointer to a zero length string is passed as the title argument the default title will
be used. Acceptance of a pointer to a zero length string was included to support programming
languages that have difficulty with NULL pointers (e.g. Visual Basic). To eliminate the title pass a
pointer to a string with a single space (i.e. " ").

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_ControllerInfo(hWnd: HWnd; hCtlr: HCTRLR; flags: Longint; title: PChar): Longint; stdcall;
VB: Function MCDLG_ControllerInfo(ByVal hWnd As Long, ByVal hCtlr As Integer, ByVal flags As Long, ByVal title As

String) As Long
LabVIEW:

Common Motion Dialog Functions

PMC Motion Control 230

MCDLG_DownloadFile
MCDLG_DownloadFile() downloads an ASCII command file to the specified motion controller.

long int MCDLG_DownloadFile(
 HWND hWnd, // handle of window to echo download to
 HCTRLR hCtlr, // handle of motion controller
 long int flags, // configuration flags
 LPCSTR fileName // path/filename of file to download
);

Parameters
hWnd Handle of window to echo downloaded characters to. May be NULL.
hCtlr Motion Controller handle, returned by a successful call to MCOpen().
flags Currently no flags are defined for MCDLG_ConfigureAxis(), and this field

should be left blank.
fileName Path / filename of file to download.

Returns
This function returns MCERR_NOERROR if the file was successfully downloaded, or it returns one of
the other MCERR_xxxx error codes if there was an error downloading the file.

Comments
MCDLG_DownloadFile() opens the specified file and downloads the contents to the specified
controller. If a valid (non-NULL) window handle is given for hWnd, downloaded characters (and
replies from the controller) are sent to the window via WM_CHAR messages. This feature allows you
to use MCDLG_DownloadFile() with a terminal interface application, such as Win Control, that
displays the file while it is being downloaded.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_DownloadFile(hWnd: HWnd; hCtlr: HCTRLR; flags: Longint; fileName: PChar): Longint; stdcall;
VB: Function MCDLG_DownloadFile(ByVal hWnd As Long, ByVal hCtlr As Integer, ByVal flags As Long, ByVal fileName

As String) As Long
LabVIEW:

Common Motion Dialog Functions

Motion Control Application Programming Interface 231

MCDLG_Initialize
MCDLG_Initialize() must be called before any other MCDLG functions are called or any of the
MCDLG window classes are used.

long int MCDLG_Initialize(
 void
);

Returns
This function returns MCERR_NOERROR if the MCDLG library was successfully initialized, or it
returns one of the other MCERR_xxxx error codes if there was an error initializing the library.

Comments
Calling MCDLG_Initialize() ensures that internal MCDLG data structures are correctly initialized and
that MCDLG window classes are registered.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_Initialize: Longint; stdcall;
VB: Function MCDLG_Initialize() As Long
LabVIEW:

Common Motion Dialog Functions

PMC Motion Control 232

MCDLG_ListControllers
MCDLG_ListControllers() enumerates the types of motion controllers installed.

long int MCDLG_ListControllers(
 short int idArray[], // pointer to an array for controller type
 // IDs
 short int size // size of idArray[]
);

Parameters
idArray Pointer to an array of short integers, filled with controller types on return.
size Size of idArray[] (number of integers).

Returns
The return value is the number of installed controllers found.

Comments
MCDLG_ListControllers() fills idArray[] with controller type identifiers, where the type of the
controller configured at ID 0 is stored in idArray[0], the type of the controller configured at ID 1 is
stored in idArray[1], etc. In order to list all installed controllers the array must have a size of at least
MC_MAX_ID + 1 (the constant MC_MAX_ID is defined in the MCAPI header files).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_ListControllers(idArray: Array of SmallInt; size: SmallInt): Longint; stdcall;
VB: Function MCDLG_ListControllers Lib "mcdlg32.dll" (idArray As Any, ByVal size As Integer) As Long
LabVIEW: Not Supported

Common Motion Dialog Functions

Motion Control Application Programming Interface 233

MCDLG_ModuleDescEx
MCDLG_ModuleDescEx() returns a descriptive string for the specified module/axis type.

LPCSTR MCDLG_ModuleDescEx(
 long int type, // axis type identifier
 long int flags, // flags
 LPSTR buffer, // buffer for descriptive string
 long int length // size of buffer, in bytes
);

Parameters
type Module type, must be equal to one of the predefined module types (see

MCAPI.H).
flags Flags to control the operation:

Value Description
MCDLG_NAMEONLY Resulting string will contain only the name portion

(no description).
MCDLG_DESCONLY Resulting string will contain only the description

portion (no name).

buffer Pointer to a string buffer that will hold the descriptive string.
length Size of buffer, in bytes.

Returns
This function returns pointer to the descriptive string buffer for the specified axis type, or it returns
NULL if type does not specify a valid axis type.

Comments
This extended version of MCDLG_ModuleDesc() includes by default the module name and a
description of the module in the output string. Use the flags parameter to control the information
included in the string.

You may use this function to provide a descriptive string for an axis by passing the function the
ModuleType member of an MCAXISCONFIG structure following a call to
MCGetAxisConfiguration(). As an example, the MCDLG function MCDLG_ConfigureAxis() uses
this function to produce its default axis description string.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 3.0 or higher

Common Motion Dialog Functions

PMC Motion Control 234

Prototypes
Delphi: function MCDLG_ModuleDescEx(type: LongInt; flags: LongInt; buffer: PChar; length: Longint): PChar; stdcall;
VB: Function MCDLG_ModuleDescEx(ByVal argtype As Long, ByVal flags As Long, ByVal buffer As String, ByVal length

As Long) As String
LabVIEW: Not Supported

MCDLG_RestoreAxis
MCDLG_RestoreAxis() restores the settings of the given axis to a previously saved state.

long int MCDLG_RestoreAxis(
 HCTRLR hCtlr, // handle to a motion controller
 WORD axis, // axis number to configure
 long int flags, // configuration flags
 LPCSTR privateIniFile // optional INI file to read from
);

Parameters
hCtlr Motion Controller handle, returned by a successful call to MCOpen().
axis Axis number of axis to be restored.
flags Flags to control the restore operation (multiple flags may be OR'ed together):

Value Description
MCDLG_CHECKACTIVE Checks if an axis is moving before the settings are

restored and skips if the axis is moving. Combine
with MCDLG_PROMPT to prompt user whether or
not to proceed.

MCDLG_NOMOTION Do not restore MCMOTIONEX structure settings.
MCDLG_NOFILTER Do not restore MCFILTEREX structure settings.
MCDLG_NOPHASE Do not restore phase setting.
MCDLG_NOPOSITION Do not restore axis position.
MCDLG_PROMPT If the stored data doesn't match the type of the axis

being restored to a Message Box will be displayed.
Also affects the behavior of
MCDLG_CHECKACTIVE (see above).

privateIniFile Name, optionally with path and drive, of the INI file in which to save the axis

settings. If NULL MCDLG_RestoreAxis() will use MCAPI.INI.

Returns
This function returns MCERR_NOERROR if there were no problems, or it returns one of the other
MCERR_xxxx error codes if there was an error. The most common reason for a return value of
FALSE is supplying an invalid or non-existent filename for privateIniFile.

Common Motion Dialog Functions

Motion Control Application Programming Interface 235

Comments
MCDLG_SaveAxis() encodes the motion controller type and module type into signature that is saved
with the axis settings. MCDLG_RestoreAxis() checks for a valid signature before restoring the axis
settings. If you make changes to your hardware configuration (i.e. change module types or controller
type) MCDLG_RestoreAxis() will refuse to restore those settings.

You may specify the constant MC_ALL_AXES for the axis parameter in order to restore the
parameters for all axes installed on a motion controller with a single call to this function.

Restoring the parameters to an axis while it is moving may result in erratic behavior (such as when
you choose to include the motor position in the restored parameters). The flag
MCDLG_CHECKACTIVE forces this function to check each restored axis to see if it is active before it
proceeds. By default MCDLG_CHECKACTIVE will skip the restore of an active axis, but if you also
include the flag MCDLG_PROMPT the user will be prompted for how to proceed. The programming
samples are all built with MCDLG_CHECKACTIVE and MCDLG_PROMPT set.

Note that this function writes a lot of information to the motion controller for each axis saved, and
should be used sparingly over slow interfaces such as the RS232.

If a NULL pointer or a pointer to a zero length string is passed as the privateIniFile argument the
default file (MCAPI.INI) will be used. Most applications should use the default file so that configuration
data may be easily shared among applications. Acceptance of a pointer to a zero length string was
included to support programming languages that have difficulty with NULL pointers (e.g. Visual Basic).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_RestoreAxis(hCtlr: HCTRLR; axis: Word; flags: Longint; privateIniFile: PChar): Longint; stdcall;
VB: Function MCDLG_RestoreAxis(ByVal hCtlr As Integer, ByVal axis As Integer, ByVal flags As Long, ByVal privateIniFile

As String) As Long
LabVIEW:

See Also
MCDLG_SaveAxis()

Common Motion Dialog Functions

PMC Motion Control 236

MCDLG_RestoreDigitalIO
MCDLG_RestoreDigitalIO() restores the settings of the all the digital I/O channels between
startChannel and endChannel (inclusive) to their previously saved states.

long int MCDLG_RestoreDigitalIO(
 HCTRLR hCtlr, // handle to a motion controller
 WORD startChannel, // starting channel number to restore
 WORD endChannel, // ending channel number to restore
 LPCSTR privateIniFile // optional INI file to read from
);

Parameters
hCtlr Motion Controller handle, returned by a successful call to MCOpen().
startChannel Number of the first digital I/O channel axis to be restored. If set to zero the first

available channel on the controller will be used.
endChannel Number of the last digital I/O channel axis to be restored. If set to zero the last

available channel on the controller will be used.
privateIniFile Name, optionally with path and drive, of the INI file in which to save the axis

settings. If NULL MCDLG_RestoreDigitalIO() will use MCAPI.INI.

Returns
This function returns MCERR_NOERROR if the settings were restored correctly, or it returns
MCERR_RANGE if either StartChannel or EndChannel is out of range.

Comments
By setting startChannel and endChannel both to zero this function will automatically restore all the
digital I/O channels on a motion controller.

If a NULL pointer or a pointer to a zero length string is passed as the privateIniFile argument, the
default file (MCAPI.INI) will be used. Most applications should use the default file so that configuration
data may be easily shared among applications. Acceptance of a pointer to a zero length string was
included to support programming languages that have difficulty with NULL pointers (e.g. Visual Basic).

i

Under the MCAPI, the DC2-STN controller's input channels are
numbered 1 - 8, and the output channels are numbered 9 - 16 (the
MCAPI requires that each channel have a unique channel number).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Common Motion Dialog Functions

Motion Control Application Programming Interface 237

Prototypes
Delphi: function MCDLG_RestoreDigitalIO(hCtlr: HCTRLR; startChannel: Word; endChannel: Word; privateIniFile: PChar

):Longint; stdcall;
VB: Function MCDLG_RestoreDigitalIO(ByVal hCtlr As Integer, ByVal startChannel As Integer, ByVal endChannel As

Integer, ByVal privateIniFile As String) As Long
LabVIEW:

See Also
MCDLG_SaveDigitalIO()

MCDLG_SaveAxis
MCDLG_SaveAxis() saves the settings of the given axis to an initialization file for later use.

long int MCDLG_SaveAxis(
 HCTRLR hCtlr, // handle to a motion controller
 WORD axis, // axis number to configure
 long int flags, // configuration flags
 LPCSTR privateIniFile // optional INI file to write to
);

Parameters
hCtlr Motion Controller handle, returned by a successful call to MCOpen().
axis Axis number of axis to be restored.
flags Flags to control the restore operation (multiple flags may be OR'ed together):

Value Description
MCDLG_NOMOTION Do not restore MCMOTIONEX structure settings.
MCDLG_NOFILTER Do not restore MCFILTEREX structure settings.
MCDLG_NOPHASE Do not restore phase setting.
MCDLG_NOPOSITION Do not restore axis position.

privateIniFile Name, optionally with path and drive, of the INI file in which to save the axis

settings. If NULL MCDLG_RestoreAxis() will use MCAPI.INI.

Returns
This function returns MCERR_NOERROR if there were no problems, or it returns one of the other
MCERR_xxxx error codes if there was an error. The most common reason for a return value of
FALSE is supplying an invalid or non-existent filename for privateIniFile.

Common Motion Dialog Functions

PMC Motion Control 238

Comments
MCDLG_SaveAxis() encodes the motion controller type and module type into signature that is saved
with the axis settings. MCDLG_RestoreAxis() checks for a valid signature before restoring the axis
settings. If you make changes to your hardware configuration (i.e. change module types or controller
type) MCDLG_RestoreAxis() will refuse to restore those settings.

You may specify the constant MC_ALL_AXES for the axis parameter in order to save the parameters
for all axes installed on a motion controller with a single call to this function. Setting axis to -1 will
cause MCDLG_SaveAxis() to delete all of the stored axis information for this controller.

Note that this function reads a lot of information from the motion controller for each axis saved, and
should be used sparingly over slow interfaces such as the RS232.

If a NULL pointer or a pointer to a zero length string is passed as the privateIniFile argument the
default file (MCAPI.INI) will be used. Most applications should use the default file so that configuration
data may be easily shared among applications. Acceptance of a pointer to a zero length string was
included to support programming languages that have difficulty with NULL pointers (e.g. Visual Basic).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_SaveAxis(hCtlr: HCTRLR; axis: Word; flags: Longint; privateIniFile: PChar): Longint; stdcall;
VB: Function MCDLG_SaveAxis(ByVal hCtlr As Integer, ByVal axis As Integer, ByVal flags As Long, ByVal privateIniFile

As String) As Long
LabVIEW:

Common Motion Dialog Functions

Motion Control Application Programming Interface 239

MCDLG_SaveDigitalIO
MCDLG_SaveDigitalIO() saves the settings of the all the digital I/O channels between startChannel
and endChannel (inclusive) to an INI file.

long int MCDLG_SaveDigitalIO(
 HCTRLR hCtlr, // handle to a motion controller
 WORD startChannel, // starting channel number to save
 WORD endChannel, // ending channel number to save
 LPCSTR privateIniFile // optional INI file to write to
);

Parameters
hCtlr Motion Controller handle, returned by a successful call to MCOpen().
startChannel Number of the first digital I/O channel axis to be restored. If set to zero the first

available channel on the controller will be used.
endChannel Number of the last digital I/O channel axis to be restored. If set to zero, the last

available channel on the controller will be used.
privateIniFile Name, optionally with path and drive, of the INI file in which to save the axis

settings. If NULL MCDLG_SaveDigitalIO() will use MCAPI.INI.

Returns
MCERR_NOERROR if the settings were saved correctly or MCERR_RANGE if either startChannel or
endChannel is out of range.

Comments
By setting startChannel and endChannel both to zero this function will automatically save all the digital
I/O channels on a motion controller.

If a NULL pointer or a pointer to a zero length string is passed as the privateIniFile argument the
default file (MCAPI.INI) will be used. Most applications should use the default file so that configuration
data may be easily shared among applications. Acceptance of a pointer to a zero length string was
included to support programming languages that have difficulty with NULL pointers (e.g. Visual Basic).

i

Under the MCAPI, the DC2-STN controller's input channels are
numbered 1 - 8, and the output channels are numbered 9 - 16 (the
MCAPI requires that each channel have a unique channel number).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Common Motion Dialog Functions

PMC Motion Control 240

Prototypes
Delphi: function MCDLG_SaveDigitalIO(hCtlr: HCTRLR; startChannel: Word; endChannel: Word; privateIniFile: PChar

):Longint; stdcall;
VB: Function MCDLG_SaveDigitalIO(ByVal hCtlr As Integer, ByVal startChannel As Integer, ByVal endChannel As Integer,

ByVal privateIniFile As String) As Long
LabVIEW:

MCDLG_Scaling
MCDLG_Scaling() displays a scaling setup dialog and, if the motion controller supports scaling,
allows the user to change the scaling parameters.

long int MCDLG_Scaling(
 HWND hWnd, // handle to parent window
 HCTRLR hCtlr, // handle to a motion controller
 WORD axis, // axis number to configure
 long int flags, // configuration flags
 LPCSTR title // optional title for the dialog box
);

Parameters
hWnd Handle to parent window. May be NULL.
hCtlr Motion Controller handle, returned by a successful call to MCOpen().
axis Axis number of axis to be scaled.
flags Flags to control scaling:

Value Description
MCDLG_PROMPT If user clicks OK to dismiss dialog display a

message warning that scaling changes will take
effect following the next motor on command.

title An optional title string for the About dialog box. If this pointer is NULL or points

to a zero length string the default title of “About” is used.

Returns
This function returns MCERR_NOERROR if the user pressed OK button to dismiss the dialog box. It
returns MCERR_CANCEL if the user pressed the CANCEL button to dismiss the dialog box, or it
returns one of the other MCERR_xxxx error codes if there was an error creating the dialog box.

Comments
For controllers that don't support scaling the Motion Control API will fill in the MCSCALE data
structure with default values (zero for offsets, one for factors). MCDLG_Scaling() will display these

Common Motion Dialog Functions

Motion Control Application Programming Interface 241

defaults as read-only. For advanced controllers such as the DCX-AT and the DCX-PCI
MCDLG_Scaling() will display the current scale factors and allow the user to change them.

If a NULL pointer or a pointer to a zero length string is passed as the title argument the default title will
be used. Acceptance of a pointer to a zero length string was included to support programming
languages that have difficulty with NULL pointers (e.g. Visual Basic). To eliminate the title pass a
pointer to a string with a single space (i.e. " ").

NOTE: Scaling changes will take effect following the next motor on command (MCEnableAxis())
after MCDLG_Scaling() completes.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_Scaling(hWnd: HWnd; hCtlr: HCTRLR; axis: Word; flags: Longint; title: PChar): Longint; stdcall;
VB: Function MCDLG_Scaling(ByVal hWnd As Long, ByVal hCtlr As Integer, ByVal axis As Integer, ByVal flags As Long,

ByVal title As String) As Long
LabVIEW:

MCDLG_SelectController
MCDLG_SelectController() displays a list of installed controllers and allows the user to select a
controller from the list.

long int MCDLG_SelectController(
 HWND hWnd, // handle to parent window
 short int currentID, // ID of currently selected controller
 long int flags, // configuration flags
 LPCSTR title // optional title for the dialog box
);

Parameters
hWnd Handle to parent window. May be NULL.
currentID ID of the motion controller currently in use. In the selection list, this controller

will be highlighted. Set to -1 to ignore.
flags Currently no flags are defined for MCDLG_ConfigureAxis(), and this field

should be left blank.

Common Motion Dialog Functions

PMC Motion Control 242

title An optional title string for the dialog box. If this pointer is NULL or points to a
zero length string the default title is used.

Returns
This function returns a controller ID if the user selected a controller and pressed the OK button to
dismiss the dialog, or it returns a -1 if the user pressed the CANCEL button to dismiss the dialog. A
value of -1 is also returned if there are no motion controllers currently configured.

Comments
This function displays a list of installed controllers and allows the user to select one from the list. If a
valid ID is given for currentID that controller will be highlighted in the list as the default selection (set
currentID to -1 prevent a default selection). If no motion controllers have been configured for use with
the Motion Control Applet in the Motion Control Panel, a message is displayed indicating that no
controllers are configured and -1 is returned to the calling program.

If a NULL pointer or a pointer to a zero length string is passed as the title argument the default title will
be used. Acceptance of a pointer to a zero length string was included to support programming
languages that have difficulty with NULL pointers (e.g. Visual Basic). To eliminate the title pass a
pointer to a string with a single space (i.e. " ").

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_SelectController(hWnd: HWnd; currentID: SmallInt; flags: Longint; title: PChar): SmallInt; stdcall;
VB: Function MCDLG_SelectController(ByVal hWnd As Long, ByVal currentID As Integer, ByVal flags As Long, ByVal title

As String) As Integer
LabVIEW:

Common Motion Dialog Functions

Motion Control Application Programming Interface 243

Appendix A - MCAPI Error Codes

PMC Motion Control 244

Motion Control Application Programming Interface

Appendix A - MCAPI Error Codes

The MCAPI defined error messages are listed numerically in the following table.
corrective action is included in the description column. Please note that many M
descriptions also include information regarding errors that are specific to that fun
Appendix

A

245

 Where possible
CAPI function
ction.

Appendix A - MCAPI Error Codes

PMC Motion Control 246

Error Constant Description

0 MCERR_NOERROR No error has occurred.
1 MCERR_NO_CONTROLLER No controller assigned at this ID. Use MCSETUP

to configure a controller.
2 MCERR_OUT_OF_HANDLES MCAPI driver out of handles. The driver is limited

to 32 open handles. Applications that do not call
MCClose() when they exit may leave handles
unavailable, forcing a reboot.

3 MCERR_OPEN_EXCLUSIVE Cannot open - another application has the
controller opened for exclusive use.

4 MCERR_MODE_UNAVAIL Controller already open in different mode. Some
controller types can only be open in one mode
(ASCII or binary) at a time.

5 MCERR_UNSUPPORTED_MODE Controller doesn't support this mode for
MCOpen() - i.e. ASCII or binary.

6 MCERR_INIT_DRIVER Couldn't initialize the device driver.
7 MCERR_NOT_PRESENT Controller hardware not present.
8 MCERR_ALLOC_MEM Memory allocation error. This is an internal

memory allocation problem with the DLL, contact
Technical Support for assistance.

9 MCERR_WINDOWSERROR A windows function returned an error - use
GetLastError() under WIN32 for details

10 - reserved
11 MCERR_NOTSUPPORTED Controller doesn't support this feature.
12 MCERR_OBSOLETE Function is obsolete.
13 MCERR_CONTROLLER Invalid controller handle.
14 MCERR_WINDOW Invalid window handle.
15 MCERR_AXIS_NUMBER Axis number out of range.
16 MCERR_AXIS_TYPE Axis type doesn't support this feature.
17 MCERR_ALL_AXES Cannot use MC_ALL_AXES for this function.
18 MCERR_RANGE Parameter was out of range.
19 MCERR_CONSTANT Constant value inappropriate.
20 MCERR_UNKNOWN_REPLY Unexpected or unknown reply.
21 MCERR_NO_REPLY Controller failed to reply.
22 MCERR_REPLY_SIZE Reply size incorrect.
23 MCERR_REPLY_AXIS Wrong axis for reply.
24 MCERR_REPLY_COMMAND Reply is for different command.
25 MCERR_TIMEOUT Controller failed to respond.
26 MCERR_BLOCK_MODE Block mode error. Caused by calling

MCBlockEnd() without first calling
MCBlockBegin() to begin the block.

27 MCERR_COMM_PORT Communications port (RS232) driver reported an
error.

Appendix A - MCAPI Error Codes

Motion Control Application Programming Interface 247

Error Constant Description
28 MCERR_CANCEL User canceled action (such as when an MCDLG

dialog box is dismissed with the CANCEL button.
29 MCERR_NOT_INITIALIZED Feature was not correctly initialized before being

enable or used.

Appendix B - Constants

PMC Motion Control 248

Motion Control Application Programming Interface

Appendix B - Constants

The symbolic constants described in this section provide a safe, descriptive way
MCAPI features. The actual numeric value of these constants may change in fut
API, however the constant names will remain fixed. Use of these symbolic value
that future changes to the API won't break existing code. The constant values al
more readable code. To find the actual value of any given constant, please refer
Control API Reference or the MCAPI.H header file.
Appendix

B

249

 of accessing the
ure versions of the
s will help to insure
so help to produce
 to the online Motion

Appendix B - Constants

PMC Motion Control 250

Constant Description
DC2PC100 Value for the ControllerType member of an MCPARAMEX

structure, it indicates that a DC2 PC100 controller is installed.
DC2SERVO Identifies an axis as one of the dedicated servo axes on a

DC2PC100 controller.
DC2STEPPER Identifies an axis as one of the optional stepper axes on a

DC2PC100 controller.
DC2STN Value for the ControllerType member of an MCPARAMEX

structure, it indicates that a DC2 STN controller is installed.
DCXPC100 Value for the ControllerType member of an MCPARAMEX

structure, it indicates that a DCX series PC100 controller is
installed.

DCXAT100 Value for the ControllerType member of an MCPARAMEX
structure, it indicates that a DCX series AT100 controller is
installed.

DCXAT200 Value for the ControllerType member of an MCPARAMEX
structure, it indicates that a DCX series AT200 controller is
installed.

DCXAT300 Value for the ControllerType member of an MCPARAMEX
structure, it indicates that a DCX series AT300 controller is
installed.

DCXPCI100 Value for the ControllerType member of an MCPARAMEX
structure, it indicates that a DCX series PC100 controller is
installed.

DCXPCI300 Value for the ControllerType member of an MCPARAMEX
structure, it indicates that a DCX series PCI300 controller is
installed.

MC_ABSOLUTE Specifies that a position is in absolute units.
MC_ALL_AXES When used in place of an axis number this constant implies

that the command be performed on all installed axes. This
option is not generally permitted on get type commands, i.e.
to get the current position for all installed axes you should
issue an individual MCGetPositionEx() call for each axis.

MC_BLOCK_CANCEL Argument to MCBlockBegin() function canceling any
commands queued (but not yet executed) as a result of a
previous call to MCBlockBegin().

MC_BLOCK_COMPOUND Argument to MCBlockBegin() function specifying this block
as a compound command block. Commands will not be
executed until the MCBlockEnd() command is issued.

MC_BLOCK_CONTR_CCW Argument to MCBlockBegin() function specifying this block
as a contour path counter-clockwise arc (valid only for
controllers that support contouring).

MC_BLOCK_CONTR_CW Argument to MCBlockBegin() function specifying this block
as a contour path clockwise arc (valid only for controllers that
support contouring).

Appendix B - Constants

Motion Control Application Programming Interface 251

Constant Description
MC_BLOCK_CONTR_LIN Argument to MCBlockBegin() function specifying this block

as a contour path linear motion (valid only for controllers that
support contouring).

MC_BLOCK_CONTR_USER Argument to MCBlockBegin() function specifying this block
as a contour path user defined motion (valid only for
controllers that support contouring).

MC_BLOCK_MACRO Argument to MCBlockBegin() function specifying this block
as a macro command. All commands up to the
MCBlockEnd() will be included in the macro.

MC_BLOCK_RESETM Argument to MCBlockBegin() function that will cause macro
storage to be cleared.

MC_BLOCK_TASK Argument to MCBlockBegin() function specifying this block
as separate task (valid only for controllers that support multi-
tasking).

MC_CAPTURE_ACTUAL Used to select the actual position data from the data capture
functions.

MC_CAPTURE_ADVANCED capture flag for CaptureModes member of MCAXISCONFIG
MC_CAPTURE_ERROR Used to select the following error data from the data capture

functions.
MC_CAPTURE_OPTIMAL Used to select the optimal position data from the data capture

functions.
MC_CAPTURE_TORQUE Used to select the torque data from the data capture

functions.
MC_COMPARE_DISABLE Disable position compare mode, also used to disable

compare output on position match.
MC_COMPARE_ENABLE Enable position compare mode.
MC_COMPARE_STATIC Set compare output on position match.
MC_COMPARE_TOGGLE Toggle compare output on position match.
MC_COMPARE_INVERT Set compare output on position match.
MC_COMPARE_ONESHOT Set compare output on position match.
MC_COUNT_CAPTURE Return the current captured position count.
MC_COUNT_COMPARE Return the current compare position count.
MC_COUNT_CONTOUR Return the current contour position count.
MC_COUNT_FILTER Return the current digital filter coefficient count.
MC_COUNT_FILTERMAX Return the maximum digital filter size supported.
MC_CURRENT_FULL Restores a stepper motor current to full power. Commonly

used to restore full power, prior to driving, following a reduced
current setting while a stepper motor was idle. This constant
is used to set the value of the Current member of a
MCMOTIONEX structure.

MC_CURRENT_HALF Reduces stepper motor current to half power. Commonly
used to reduce heating when a stepper motor is not driving.
This constant is used to set the value of the Current member
of a MCMOTIONEX structure.

Appendix B - Constants

PMC Motion Control 252

Constant Description
MC_DATA_ACTUAL see MC_CAPTURE_ACTUAL.
MC_DATA_ERROR see MC_CAPTURE_ERROR.
MC_DATA_OPTIMAL see MC_CAPTURE_OPTIMAL.
MC_DIO_FIXED Indicates that a digital I/O channel's I/O state (i.e. input or

output) is fixed, and may not be changed with
MCConfigureDigitalIO().

MC_DIO_HIGH Configures a digital I/O channel for high true logic level when
used as an argument to MCConfigureDigitalIO().

MC_DIO_INPUT Configures a digital I/O channel for input when used as an
argument to MCConfigureDigitalIO().

MC_DIO_LATCH Configures a digital input channel for input latching when
used as an argument to MCConfigureDigitalIO().

MC_DIO_LATCHABLE Indicates that a digital I/O channel may be configured for
latched input using MCConfigureDigitalIO().

MC_DIO_LOW Configures a digital I/O channel for low true logic level when
used as an argument to MCConfigureDigitalIO().

MC_DIO_OUTPUT Configures a digital I/O channel for output when used as an
argument to MCConfigureDigitalIO().

MC_DIO_STEPPER Indicates that a digital I/O channel is configured for driving a
stepper motor on a DC2-PC or DC2-STN controller

MC_DIR_NEGATIVE When operating in velocity mode this constant may be used
as argument to MCDirection() to select the negative travel
direction. The physical relationship of MC_DIR_NEGATIVE to
the actual direction of travel (or rotation) will depend upon
your mechanical setup.

MC_DIR_POSITIVE When operating in velocity mode this constant may be used
as argument to MCDirection() to select the positive travel
direction. The physical relationship of MC_DIR_POSITIVE to
the actual direction of travel (or rotation) will depend upon
your mechanical setup.

MC_ENC_FAULT_AUX Enable encoder fault detection for the auxiliary encoder
MC_ENC_FAULT_PRI Enable encoder fault detection for the primary encoder
MC_IM_CLOSEDLOOP Selects the normal (open loop) input mode for MC360

Stepper Modules.
MC_IM_OPENLOOP Selects the closed-loop input mode for MC360 Stepper

Modules.
MC_INT_FREEZE Selects the wait until move complete mode for the integral

term option.
MC_INT_NORMAL Selects the normal (always active) mode for the integral term

option.
MC_INT_ZERO Selects the zero and wait until move complete mode for the

integral term option.
MC_LIMIT_ABRUPT Selects abrupt stop mode when a limit is tripped.
MC_LIMIT_BOTH Enables both the positive and negative limits.
MC_LIMIT_INVERT Inverts limit logic mode for hard limits.

Appendix B - Constants

Motion Control Application Programming Interface 253

Constant Description
MC_LIMIT_MINUS Enables the negative limit for hard and soft limits.
MC_LIMIT_OFF Selects axis off mode when a limit is tripped.
MC_LIMIT_PLUS Enables the positive limit for hard and soft limits.
MC_LIMIT_SMOOTH Selects smooth stop mode when a limit is tripped.
MC_LRN_POSITION When used as an argument to the MCLearnPoint() function,

this mode will cause the actual position of the axis to be
stored in point memory.

MC_LRN_TARGET When used as an argument to the MCLearnPoint() function,
this mode will cause the current target position of the axis to
be stored in point memory.

MC_MAX_ID Specifies the maximum allowable value for the ID parameter
to the MCOpen() call, where 0 <= ID <= MC_MAX_ID.

MC_MODE_CONTOUR Selects the contouring mode of operation for an axis when
used as an argument to MCSetOperatingMode().

MC_MODE_GAIN Selects the gain mode of operation for an axis when used as
an argument to MCSetOperatingMode().

MC_MODE_POSITION Selects the position mode of operation for an axis when used
as an argument to MCSetOperatingMode().

MC_MODE_TORQUE Selects the torque mode of operation for an axis when used
as an argument to MCSetOperatingMode().

MC_MODE_UNKNOWN Return value from MCGetOperatingMode() when it is unable
to determine the current operating mode.

MC_MODE_VELOCITY Selects the velocity mode of operation for an axis when used
as an argument to MCSetOperatingMode().

MC_OM_BIPOLAR Selects the bipolar output mode for MC200 Advanced Servo
Modules.

MC_OM_CW_CCW Selects the clockwise - counterclockwise output mode for
MC260 Advanced Stepper Modules.

MC_OM_PULSE_DIR Selects the pulse and direction output mode for MC260
Advanced Stepper Modules.

MC_OM_UNIPOLAR Selects the unipolar output mode for MC200 Advanced Servo
Modules.

MC_OPEN_ASCII When used as an argument to the MCOpen() function it
specifies that a controller is to be open for ASCII (character)
based communication.

MC_OPEN_BINARY When used as an argument to the MCOpen() function it
specifies that a controller is to be open for binary
communication.

MC_OPEN_EXCLUSIVE This constant may be combined with either MC_OPEN_ASCII
or MC_OPEN_BINARY for calls to MCOpen() to prevent
other applications from gaining access to the controller while
it is open with an exclusive handle.

MC_PHASE_REV Selects reverse phasing for the servo module output when
used as an argument to MCSetServoOutputPhase().

Appendix B - Constants

PMC Motion Control 254

Constant Description
MC_PHASE_STD Selects standard phasing for the servo module output when

used as an argument to MCSetServoOutputPhase().
MC_PROF_PARABOLIC This constant may be used as the value of the mode

argument to the MCSetProfile() API function. It selects the
parabolic profile for acceleration and deceleration.

MC_PROF_SCURVE This constant may be used as the value of the mode
argument to the MCSetProfile() API function. It selects the
S-Curve profile for acceleration and deceleration.

MC_PROF_TRAPEZOID This constant may be used as the value of the mode
argument to the MCSetProfile() API function. It selects the
trapezoidal profile for acceleration and deceleration.

MC_PROF_UNKNOWN This constant is returned by the MCGetProfile() API function
if it is unable to determine the present profile setting. The
most likely cause is older firmware, contact PMC for
information on firmware updates.

MC_RATE_HIGH This constant is used as an argument to the UpdateRate
member of an MCFILTEREX structure. For servo motors and
closed-loop steppers, setting UpdateRate to this value sets
the maximum feedback loop update rate. When used for an
open-loop stepper motor, it sets the maximum pulse rate
range. Please refer to your User Manual for product specific
information.

MC_RATE_LOW This constant is used as an argument to the UpdateRate
member of an MCFILTEREX structure. For servo motors and
closed-loop steppers, setting UpdateRate to this value sets
the low feedback loop update rate. When used for an open-
loop stepper motor, it sets the low pulse rate range. Please
refer to your User Manual for product specific information.

MC_RATE_MEDIUM This constant is used as an argument to the UpdateRate
member of an MCFILTEREX structure. For servo motors and
closed-loop steppers, setting UpdateRate to this value sets
the middle feedback loop update rate. When used for an
open-loop stepper motor, it sets the middle pulse rate range.
Please refer to your User Manual for product specific
information.

MC_RATE_UNKNOWN Returned if MCAPI cannot determine the current rate.
MC_RELATIVE Specifies that a position supplied is relative to the current axis

position.
MC_STAT_ACCEL Selects the Accelerating status bit (DC2 PC100 only).
MC_STAT_AMP_ENABLE Selects the Amp Fault Enabled status bit (DCX controllers

only).
MC_STAT_AMP_FAULT Selects the Amp Fault status bit (DCX controllers only).
MC_STAT_AT_TARGET Selects the At Target status bit (DC2 PC100 controllers only).
MC_STAT_AUX_ENC_FAULT Selects the Auxiliary Encoder Fault status bit (MFX-PCI1000

controllers only).
MC_STAT_AUX_IDX_FND Selects the Auxiliary Encoder Looking for Index status bit

(MFX-PCI1000 controllers only).

Appendix B - Constants

Motion Control Application Programming Interface 255

Constant Description
MC_STAT_BREAKPOINT Selects the Breakpoint status bit.
MC_STAT_BUSY Selects the Busy status bit (DCX controllers only). When set

indicates that dual port memory is being refreshed.
MC_STAT_CAPTURE Selects the Position Capture status bit (DC2 PC100

controllers only).
MC_STAT_DIR Selects the Direction status bit.
MC_STAT_EDGE_FOUND Selects the Edge Found status bit (DCX PCI controllers only).
MC_STAT_ERROR Selects the Motor Error status bit.
MC_STAT_FOLLOWING Selects the Following Error status bit (DCX controllers only).
MC_STAT_FULL_STEP Selects the Full Step status bit (DCX controllers only).
MC_STAT_HALF_STEP Selects the Half Step status bit (DCX controllers only).
MC_STAT_HOMED Selects the Motor Homed status bit.
MC_STAT_INDEX_FOUND Selects the Index Found status bit (DCX PCI controllers only).
MC_STAT_INP_AMP Selects the Amp Fault Input status bit (DCX controllers only).
MC_STAT_INP_AUX Selects the Auxiliary Encoder Index Input status bit

(DCX AT200, DCX AT300, DCX PCI controllers only).
MC_STAT_INP_HOME Selects the Home Input status bit (DCX controllers only).
MC_STAT_INP_INDEX Selects the Index Input status bit (DCX controllers only).
MC_STAT_INP_MJOG Selects the Minus Jog Input status bit (DCX PC100 /

DCX AT100 controllers only).
MC_STAT_INP_MLIM Selects the Minus Limit Input status bit (DCX controllers only).
MC_STAT_INP_PJOG Selects the Plus Jog Input status bit (DCX PC100 /

DCX AT100 controllers only).
MC_STAT_INP_PLIM Selects the Plus Limit Input status bit (DCX controllers only).
MC_STAT_INP_USER1 Selects the User #1 Input status bit (DCX AT200, DCX AT300

controllers only).
MC_STAT_INP_USER2 Selects the User #2 Input status bit (DCX AT200, DCX AT300

controllers only).
MC_STAT_JOG_ENAB Selects the Jogging Enabled status bit (DCX AT200,

DCX AT300 controllers only).
MC_STAT_JOGGING Selects the Motor Jogging status bit (DCX PC100 /

DCX AT100 controllers only).
MC_STAT_LMT_ABORT Selects the Abort Limit Mode status bit (DC2 PC100

controllers only).
MC_STAT_LMT_STOP Selects the Stop Limit Mode status bit (DC2 PC100

controllers only).
MC_STAT_LOOK_AUX_IDX Selects the Looking for Auxiliary Encoder Index status bit

(MFX-PCI1000 controllers only).
MC_STAT_LOOK_EDGE Selects the Looking for Edge status bit.
MC_STAT_LOOK_INDEX Selects the Looking for Index status bit.
MC_STAT_MJOG_ENAB Selects the Minus Jog Enable status bit (DCX PC100 /

DCX AT100 controllers only).

Appendix B - Constants

PMC Motion Control 256

Constant Description
MC_STAT_MJOG_ON Selects the Minus Jog On status bit (DCX PC100 /

DCX AT100 controllers only).
MC_STAT_MLIM_ENAB Selects the Minus Hard Limit Enable status bit.
MC_STAT_MLIM_TRIP Selects the Minus Hard Limit Tripped status bit.
MC_STAT_MODE_ARC Selects the Arc Mode status bit (DC2 PC100 controllers only).
MC_STAT_MODE_CNTR Selects the Contouring Mode status bit (DC2 PC100

controllers only).
MC_STAT_MODE_LIN Selects the Linear Mode status bit (DC2 PC100 controllers

only).
MC_STAT_MODE_POS Selects the Position Mode status bit (DC2 PC100 controllers

only).
MC_STAT_MODE_SLAVE Selects the Slave Mode status bit (DC2 PC100 controllers

only).
MC_STAT_MODE_TRQE Selects the Torque Mode status bit (DC2 PC100 controllers

only).
MC_STAT_MODE_VEL Selects the Velocity Mode status bit.
MC_STAT_MSOFT_ENAB Selects the Minus Soft Limit Enable status bit (DCX AT200,

DCX AT300, DCX PCI controllers only).
MC_STAT_MSOFT_TRIP Selects the Minus Soft Limit Tripped status bit (DCX AT200,

DCX AT300, DCX PCI controllers only).
MC_STAT_MTR_ENABLE Selects the Motor On status bit.
MC_STAT_NULL Selects the NULL Stepper Position status bit (DCX PCI300

controllers only).
MC_STAT_PHASE Selects the Phase Reversed status bit.
MC_STAT_PJOG_ENAB Selects the Plus Jog Enable status bit (DCX PC100 /

DCX AT100 controllers only).
MC_STAT_PJOG_ON Selects the Plus Jog On status bit (DCX PC100 / DCX AT100

controllers only).
MC_STAT_PLIM_ENAB Selects the Plus Hard Limit Enable status bit.
MC_STAT_PLIM_TRIP Selects the Plus Hard Limit Tripped status bit.
MC_STAT_POS_CAPT Selects the Position Captured status bit (DCX PCI300

controllers only).
MC_STAT_PRI_ENC_FAULT Selects the Primary Encoder Fault status bit (MFX-PCI1000

controllers only).
MC_STAT_PROG_DIR Selects the Programmed Direction status bit (DC2 PC100

controllers only).
MC_STAT_PSOFT_ENAB Selects the Plus Soft Limit Enable status bit (DCX AT200,

DCX AT300, DCX PCI controllers only).
MC_STAT_PSOFT_TRIP Selects the Plus Soft Limit Tripped status bit (DCX AT200,

DCX AT300, DCX PCI controllers only).
MC_STAT_RECORD Selects the Position status bit (DC2 PC100 controllers only).
MC_STAT_STOPPING Selects the Stopping status bit (DC2 PC100 controllers only).

Appendix B - Constants

Motion Control Application Programming Interface 257

Constant Description
MC_STAT_SYNC Selects the Synchronize status bit (DC2 PC100 controllers

only).
MC_STAT_TRAJ Selects the Trajectory Complete status bit.
MC_STEP_FULL Selects stepper motor full step operation.
MC_STEP_HALF Selects stepper motor half step operation.
MC_TYPE_DOUBLE Used with register get/set functions to select a double

precision floating point data type.
MC_TYPE_FLOAT Used with pmccmdex() and register get/set functions to

select a single precision floating point data type.
MC_TYPE_LONG Used with register get/set functions to select a long integer

(32-bit) data type.
MC_TYPE_NONE Used with pmccmdex() to specify no argument.
MC_TYPE_REG Used with pmccmdex() to select a register based argument.
MC_TYPE_SERVO Indicates the axis is a servo motor – used with the

MCAXISCONFIG structure.
MC_TYPE_STEPPER Indicates the axis is a stepper motor – used with the

MCAXISCONFIG structure.
MC_TYPE_STRING Used with pmccmdex() and register get/set functions to

select a string data type.
MC100 Identifies a DC Servo axis with analog signal output.
MC110 Identifies a DC Servo axis with motor output.
MC150 Identifies a stepper motor axis.
MC160 Identifies a stepper motor with encoder axis.
MC200 Identifies an Advanced Servo axis with analog signal output.
MC210 Identifies an Advanced Servo axis with PWM motor output.
MC260 Identifies an Advanced Stepper axis.
MC300 Identifies a DSP-Based Servo axis with analog signal output.
MC302 Identifies a DSP-Based Dual Servo axes with dual analog

signal outputs.
MC320 Identifies a DSP-Based Brushless-AC Servo axis with analog

signal output.
MC360 Identifies a DSP-Based Stepper axis.
MC362 Identifies a DSP-Based Dual Stepper axes.
MC400 Identifies this axis as providing additional digital I/O channels

(16).
MC500 Identifies this axis as providing additional analog channels.
MCERR_ALL_AXES Error code indicating you may not use the constant

MC_ALL_AXES with this function.
MCERR_ALLOC_MEM There was a memory allocation error during a call to

MCOpen(). Try closing other Windows programs to free
memory.

MCERR_AXIS_NUMBER Error code indicating that the specified axis number is out of
range.

Appendix B - Constants

PMC Motion Control 258

Constant Description
MCERR_AXIS_TYPE Error code indicating that the function does not apply to the

axis specified.
MCERR_COMM_PORT Error code indicating and invalid constant value was given as

the argument to a function.
MCERR_CONSTANT Error code indicating and invalid constant value was given as

the argument to a function.
MCERR_CONTROLLER Error code indicating the controller handle is invalid.
MCERR_INIT_DRIVER MCOpen() was unable to initialize the device driver for this

controller.
MCERR_MODE_UNAVAIL The requested open mode for MCOpen() was unavailable.

This can occur when a non-multitasking controller is already
open in a mode that is different from the requested mode.

MCERR_NO_CONTROLLER Returned by MCOpen() when no controller has been
configured for this ID number.

MCERR_NO_REPLY Error code indicating a controller failed to reply.
MCERR_NOERROR Error code return value indicating that no errors have

occurred.
MCERR_NOT_FOUND Restore operation could not find data.
MCERR_NOT_INITIALIZED An attempt was made to use a controller feature before that

feature had been initialized.
MCERR_NOT_PRESENT The controller hardware was not found during a call to

MCOpen(). Check the MCAPI settings with the setup
program.

MCERR_NOTSUPPORTED Error code indicating function is not supported by this
controller. The MCAPI will handle this condition by ignoring
requests to set this parameter and by returning a fixed default
value for the parameter. You may, therefore, safely ignore this
error.

MCERR_OBSOLETE Error code indicating function is obsolete. See manual for
updated function.

MCERR_OPEN_EXCLUSIVE Returned by MCOpen() when it is unable to satisfy a request
for an exclusive handle. You cannot obtain an exclusive
handle to a controller if there are other open handles for the
controller at the time of your request.

MCERR_OUT_OF_HANDLES Returned by MCOpen() when the device driver has no more
free handles it can assign to this request.

MCERR_RANGE Error code indicating a parameter was out of range.
MCERR_REPLY_AXIS Error code indicating the wrong axis number replied to a

function.
MCERR_REPLY_COMMAND Error code indicating the controller reply does not match the

command.
MCERR_REPLY_SIZE Error code indicating the length of a reply was incorrect (too

many or too few bytes).
MCERR_TIMEOUT A timeout occurred while attempting to send a command or

read a reply from the controller.

Appendix B - Constants

Motion Control Application Programming Interface 259

Constant Description
MCERR_UNKNOWN_REPLY Error code indicating an unknown or unexpected reply was

received from a controller.
MCERR_UNSUPPORTED_MODE Return value from MCOpen() when the requested mode is

not supported for this controller/interface combination.
MCERR_WINDOW Error code indicating a window handle is invalid.
MCERRMASK_AXIS Error mask value for MCErrorNotify() to enable error

messages for out of range axis numbers and invalid usage of
MC_ALL_AXES.

MCERRMASK_HANDLE Error mask value for MCErrorNotify() to enable error
messages for invalid controller or window handles.

MCERRMASK_IO Error mask value for MCErrorNotify() to enable error
messages for controller communication errors.

MCERRMASK_PARAMETER Error mask value for MCErrorNotify() to enable error
messages for invalid or out of range parameters to MCAPI
functions.

MCERRMASK_STANDARD Collection of most common error mask values for
MCErrorNotify() (includes all errors except
MCERRMASK_UNSUPPORTED) .

MCERRMASK_UNSUPPORTED Error mask value for MCErrorNotify() that enables error
notification when a function is called that is not supported by
the controller.

MF300 Identifies this axis as an RS-232 communications module.
This module is not normally used with a controller installed in
a PC adapter slot.

MF310 Identifies this axis as an IEEE-488 (GPIB) communications
module. This module is not normally used with a controller
installed in a PC adapter slot.

NO_CONTROLLER One setting for the ControllerType member of an
MCPARAMEX structure, it indicates that no controller is
installed at this ID.

NO_MODULE Identifies this axis as having no module installed.
NONE One setting for the ControllerType member of a

MCPARAMEX structure, it indicates that no controller is
installed at this ID. This is an old constant - it is recommended
that you use NO_CONTROLLER instead of NONE.

Appendix C - Staus Word Constants Lookup Table

PMC Motion Control 260

Motion Control Application Programming Interface

Appendix C - Status Word Constants Lookup

This table is provided for cross-platform comparisons of MCDecodeStatusEx()
you are using the MC_STAT_TRAJ status bit on a DC2-PC100 controller and pl
more powerful DCX-PCI300 controller. Locate the constant in the leftmost colum
row to the DCX-PCI300 column and you will see that the MC_STAT_TRAJ cons
for the DCX-PCI300.

You will also notice that the bit positions for MC_STAT_TRAJ on the DC2-PC10
PCI300 are different. If you had hard-coded this bit in your application, you woul
your program to accommodate a different controller. By using MCDecodeStatus
appropriate constants, no changes are required!

The numbers in the table represent the status word bit position for the specific c
indicates the constant is not supported for a particular controller.
Table

Appendix

C
261

 constants. Suppose
an to migrate to the
n, read across the
tant is also supported

0 and the DCX-
d be forced to change
Ex() and the

ontroller. A dash

Appendix C - Staus Word Constants Lookup Table

PMC Motion Control 262

Bit DC2-PC

DC2-STN
DCX-PC100
DCX-AT100

DCX-AT200
DCX-AT300

DCX-PCI100
DCX-PCI300

MFX-PCI1000

0 MC_STAT_MTR_ENABLE MC_STAT_BUSY MC_STAT_BUSY MC_STAT_BUSY MC_STAT_ERROR

1 MC_STAT_ERROR MC_STAT_MTR_ENABLE MC_STAT_MTR_ENABLE MC_STAT_MTR_ENABLE MC_STAT_MTR_ENABLE
2 MC_STAT_CAPTURE MC_STAT_MODE_VEL MC_STAT_AT_TARGET MC_STAT_AT_TARGET MC_STAT_AT_TARGET
3 MC_STAT_BREAKPOINT MC_STAT_TRAJ MC_STAT_TRAJ MC_STAT_TRAJ MC_STAT_TRAJ
4 MC_STAT_TRAJ MC_STAT_DIR MC_STAT_DIR MC_STAT_DIR MC_STAT_DIR
5 MC_STAT_STOPPING MC_STAT_PHASE MC_STAT_JOG_ENAB - NONE - MC_STAT_POS_CAPT
6 - NONE- MC_STAT_HOMED MC_STAT_HOMED MC_STAT_HOMED MC_STAT_BREAKPOINT

7 MC_STAT_DIR MC_STAT_ERROR MC_STAT_ERROR MC_STAT_ERROR - NONE -

8 MC_STAT_AT_TARGET MC_STAT_LOOK_INDEX MC_STAT_LOOK_INDEX MC_STAT_LOOK_INDEX MC_STAT_FOLLOWING

9 MC_STAT_PHASE MC_STAT_LOOK_EDGE MC_STAT_LOOK_EDGE MC_STAT_LOOK_EDGE MC_STAT_AMP_FAULT
10 MC_STAT_LOOK_INDEX MC_STAT_FULL_STEP - NONE- MC_STAT_INDEX_FOUND MC_STAT_PLIM_TRIP
11 MC_STAT_LOOK_EDGE MC_STAT_HALF_STEP - NONE - MC_STAT_POS_CAPT MC_STAT_MLIM_TRIP
12 MC_STAT_HOMED MC_STAT_BREAKPOINT MC_STAT_BREAKPOINT MC_STAT_BREAKPOINT MC_STAT_PSOFT_TRIP
13 MC_STAT_INP_HOME MC_STAT_JOGGING MC_STAT_FOLLOWING MC_STAT_FOLLOWING MC_STAT_MSOFT_TRIP
14 MC_STAT_RECORD MC_STAT_AMP_ENABLE MC_STAT_AMP_ENABLE MC_STAT_AMP_ENABLE MC_STAT_PRI_ENC_FAULT

15 MC_STAT_SYNC MC_STAT_AMP_FAULT MC_STAT_AMP_FAULT MC_STAT_AMP_FAULT MC_STAT_AUX_ENC_FAULT

16 MC_STAT_ACCEL MC_STAT_PLIM_ENAB MC_STAT_PLIM_ENAB MC_STAT_PLIM_ENAB - NONE -
17 MC_STAT_MODE_POS MC_STAT_PLIM_TRIP MC_STAT_PLIM_TRIP MC_STAT_PLIM_TRIP MC_STAT_LOOK_INDEX
18 MC_STAT_MODE_VEL MC_STAT_MLIM_ENAB MC_STAT_MLIM_ENAB MC_STAT_MLIM_ENAB MC_STAT_INDEX_FOUND
19 MC_STAT_MODE_TRQE MC_STAT_MLIM_TRIP MC_STAT_MLIM_TRIP MC_STAT_MLIM_TRIP MC_STAT_LOOK_AUX_IDX
20 MC_STAT_MODE_ARC MC_STAT_PJOG_ENAB MC_STAT_PSOFT_ENAB MC_STAT_PSOFT_ENAB MC_STAT_AUX_IDX_FND
21 MC_STAT_MODE_CNTR MC_STAT_PJOG_ON MC_STAT_PSOFT_TRIP MC_STAT_PSOFT_TRIP MC_STAT_HOMED
22 MC_STAT_MODE_SLAVE MC_STAT_MJOG_ENAB MC_STAT_MSOFT_ENAB MC_STAT_MSOFT_ENAB - NONE -

23 MC_STAT_MODE_LIN MC_STAT_MJOG_ON MC_STAT_MSOFT_TRIP MC_STAT_MSOFT_TRIP - NONE -

24 MC_STAT_LMT_ABORT MC_STAT_INP_INDEX MC_STAT_INP_INDEX MC_STAT_INP_INDEX MC_STAT_INP_INDEX
25 MC_STAT_LMT_STOP MC_STAT_INP_HOME MC_STAT_INP_HOME MC_STAT_INP_HOME MC_STAT_INP_HOME
26 MC_STAT_MLIM_TRIP MC_STAT_INP_AMP MC_STAT_INP_AMP MC_STAT_INP_AMP MC_STAT_INP_AUX
27 MC_STAT_MLIM_ENAB - NONE - MC_STAT_INP_AUX MC_STAT_INP_AUX MC_STAT_INP_AMP
28 MC_STAT_INP_MLIM MC_STAT_INP_PLIM MC_STAT_INP_PLIM MC_STAT_INP_PLIM MC_STAT_INP_PLIM
29 MC_STAT_PLIM_TRIP MC_STAT_INP_MLIM MC_STAT_INP_MLIM MC_STAT_INP_MLIM MC_STAT_INP_MLIM
30 MC_STAT_PLIM_ENAB MC_STAT_INP_PJOG MC_STAT_INP_USER1 MC_STAT_INP_NULL - NONE -

31 MC_STAT_INP_PLIM MC_STAT_INP_MJOG MC_STAT_INP_USER2 - NONE - - NONE -

Appendix C - Staus Word Constants Lookup Table

Motion Control Application Programming Interface 263

Appendix D - Motion Dialog Windows Class

PMC Motion Control 264

Motion Control Application Programming Interface

Appendix D - Motion Dialog Window Classes

The motion dialog window classes supplement the motion dialog functions to pro
simple and effective tools to build attractive graphical user interfaces.

MCDLG_LEDCLASS
#include "mcdlg.h"

Creates a window with a small graphical LED and text label to the right o
class is based on the checkbox style windows BUTTON class. To chang

send it a BM_SETCHECK message with a WPARAM of BST_CHECKED for the
green), BST_UNCHECKED for the off color (default dark gray), or BST_INDETE
error color (default red).

LED CLASS Styles

The LED class responds to the standard window styles (WS_xxx) and button sty
applicable to checkbox windows. Use BS_LEFTTEXT to locate the text to the le

LED CLASS Messages

LEDM_GETCHECKCOLOR

Returns the current color of the "Checked" (on) state for the LED as a COLORR

 wParam = (WPARAM) 0; // unused, must be 0
 lParam = (LPARAM) 0; // unused, must be 0

LEDM_GETUNCHECKCOLOR

Returns the current color of the "Unchecked" (off) state for the LED as a COLOR

Appendix

D
265

vide the programmer

f it. The LED window
e the color of the LED
 on color (default
RMINATE for the

les (BS_xxx)
ft of the LED graphic.

EF.

REF.

Appendix D - Motion Dialog Windows Class

PMC Motion Control 266

 wParam = (WPARAM) 0; // unused, must be 0
 lParam = (LPARAM) 0; // unused, must be 0

LEDM_GETINDETRMCOLOR

Returns the current color of the "Indeterminate" state for the LED as a COLORREF.

 wParam = (WPARAM) 0; // unused, must be 0
 lParam = (LPARAM) 0; // unused, must be 0

LEDM_SETCHECKCOLOR

Sets the color of the "Checked" (on) state for the LED. By default this color is bright green -
RGB(0, 255, 0).

 wParam = (WPARAM) 0; // TRUE to force an immediate redraw
 lParam = (LPARAM) rgbColor; // COLORREF color value

LEDM_SETUNCHECKCOLOR

Sets the color of the "Unchecked" (off) state for the LED.

 wParam = (WPARAM) 0; // TRUE to force an immediate redraw
 lParam = (LPARAM) rgbColor; // COLORREF color value

LEDM_SETINDETRMCOLOR

Sets the color of the "Indeterminate" state for the LED. By default this color is bright red -
RGB(255, 0, 0).

 wParam = (WPARAM) 0; // TRUE to force an immediate redraw
 lParam = (LPARAM) rgbColor; // COLORREF color value

MCDLG_READOUTCLASS

#include "mcdlg.h"

Creates a single line "readout" window, similar to a text box. By default the text is
green on a black background, and the window font is scaled to the window size to

make it easy to create large readouts. The READOUT window class is based on the Windows
STATIC class. To change the displayed text of the READOUT the standard WM_SETTEXT message
may be sent to the window.

READOUT CLASS Styles

Appendix D - Motion Dialog Windows Class

Motion Control Application Programming Interface 267

The READOUT class responds to the standard window styles (WS_xxx) and static styles (SS_xxx)
applicable to static windows. Use RDTS_LEFT, RDTS_CENTER, or RDTS_RIGHT to set the
justification of the text within the window.

When you declare a READOUT in a dialog box template using the CONTROL statement the dialog
box manager will set the READOUT font to the default dialog box font. This can lead to undesirable
behavior (i.e. the wrong size font). The READOUT class normally responds to the WM_SETFONT
message (which is what the dialog box manager sends to mess things up), however if you specify the
RDTS_DIALOGBOX style when creating the READOUT window it will ignore WM_SETFONT
messages. See the CWDEMO sample program for an example.

READOUT CLASS Messages

RDTM_GETTEXTCOLOR

Returns the current color of the readout text (default green) as a COLORREF.

 wParam = (WPARAM) 0; // unused, must be 0
 lParam = (LPARAM) 0; // unused, must be 0

RDTM_GETBKCOLOR

Returns the current color of the readout background (default black) as a COLORREF.

 wParam = (WPARAM) 0; // unused, must be 0
 lParam = (LPARAM) 0; // unused, must be 0

RDTM_SETTEXTCOLOR

Sets the color of the readout text.

 wParam = (WPARAM) 0; // TRUE to force an immediate redraw
 lParam = (LPARAM) rgbColor; // COLORREF color value

RDTM_SETBKCOLOR

Sets the color of the readout background.

 wParam = (WPARAM) 0; // TRUE to force an immediate redraw
 lParam = (LPARAM) rgbColor; // COLORREF color value

Appendix E - Printing a PDF Document

PMC Motion Control 268

Motion Control Application Programming Interface

Appendix E - Printing a PDF Document

Introduction to PDF
PDF stands for Portable Document Format. It is the de facto standard for transp
documents. PDF files are based on the PostScript language imaging model. Thi
color-precise printing on almost all printers.

Printing a complete PDF document
It is not recommended that large PDF documents be printed on personal comp
‘wear and tear’ incurred by these units, coupled with the difficulties of two sided
resulting in degraded performance of the printer and a whole lot of wasted pape
that PDF document be printer by a full service print shop that uses digital (comp
systems with paper collating/sorting capability.

Printing selected pages of a PDF document
While viewing a PDF document with Adobe Reader (or Adobe Acrobat), any pag
can be printed by a personal computer printer by:

 Selecting the printer icon on the tool bar
 Selecting Print from the Adobe File menu

Paper
The selection of the paper type to be used for printing a PDF document should b
market for the document. For a user’s manual with extensive graphics that is pri
a page the minimum recommended paper type is 24 pound. A heavier paper sto
will reduce the ‘bleed through’ inherent with printed graphics. Typically the front
are printed on heavy paper stock (50 to 60 pound).

Binding
Unlike the binding of a book or catalog, a user’s manual distributed in as a PDF
‘comb’ or ‘coil’ binding. This service is provided by most full service print shops.
Appendix

E

269

orting electronic
s enables sharp,

uter printers. The
printing, typically
r. PMC recommends
uter controlled) copy

e or range of pages

e based on the target
nted on both sides of
ck (26 – 30 pound)
and back cover pages

file will typically use
Coil binding is

Appendix E - Printing a PDF Document

PMC Motion Control 270

suitable for documents with no more than 100 pieces of paper (24 pound). Comb binding is
acceptable for documents with as many as 300 pieces of paper (24 pound). Most print shops stock a
wide variety of ‘combs’. The print shop can recommend the appropriate ‘comb’ based on the number
of pages.

Pricing
The final cost for printing and binding a PDF document is based on:

• Quantity per print run
• Number of pages
• Paper type

The price range for printing and binding a PDF document similar to this user manual will be $15 to
$30 (printed in Black & White) in quantities of 1 to 10 pieces.

Obtaining a Word 2000 version of this user manual
This user document was written using Microsoft’s Word 2000. Qualified OEM’s, Distributors, and
Value Added Reps (VAR’s) can obtain a copy of this document for

• Editing
• Customization
• Language translation.

Please contact Precision MicroControl to obtain a Word 2000 version of this document.

Appendix E - Printing a PDF Document

Motion Control Application Programming Interface 271

Index

PMC Motion Control 272

dex

Motion Control Application Programming Interface

Index

A

AB... 78
AC... 32
Acceleration35, 38, 39, 40, 65, 128, 151
AccelGain 36, 37, 57, 142
AF ... 99
AG .. 58
AH... 53
AL ... 70
AmpFault ... 41, 43
AnalogInput... 41, 42
AnalogOutput.. 41, 42
API .. 3
AR... 70
ASCII Interface ... 4
AT ... 130
AuxStatus .. 45
AZ ... 129

B

BC... 91
BD... 89
BF ... 89
Binary Interface... 4
BN... 89

C

C/C++
Program Sample
Programming

CA..
CanChangeProfile
CanChangeRates
CanDoContouring....41, 42, 5
CanDoScaling33, 34, 41
CaptureAndCompare
CaptureModes........................
CapturePoints
CB..
cbSize ...31, 32, 33, 34, 36, 39
CD ...
CF..
CG ...
CH ...
CI ...
CL ..
CM ...
CN ...
Constant
ControllerType4
CP..
CR ...
CT..
Current........................39, 40,
CWDemo

In

Index
273

........................7

........................6

......................80

........41, 42, 156

................41, 42
4, 66, 79, 80, 81
, 42, 43, 70, 159
................31, 33
................31, 33
................31, 33
......................90
, 41, 43, 45, 131
......................84
....................180
....................137
....................179
....................179
....................179
......................66
....................180
................39, 44
1, 228, 250, 259
....................197
......................80
....................179
41, 65, 151, 251
........................7

Index

PMC Motion Control 274

D

DB... 65
DC2PC100.. 42, 250
DC2SERVO.. 32, 250
DC2STEPPER...................................... 32, 250
DC2STN ... 42, 250
DCXAT100.. 42, 250
DCXAT200.. 42, 250
DCXAT300.. 42, 250
DCXPC100 ... 42, 250
DCXPCI100 .. 42, 250
DCXPCI300 .. 42, 250
Deadband38, 39, 40, 65, 120, 121, 151
DeadbandDelay........39, 40, 65, 120, 121, 151
Debug application programs......................... 13
Deceleration 35, 39, 40, 65, 151
DecelGain 36, 37, 57, 142
Delphi

Program Sample 11
Programming... 10

DerivativeGain... 36
DerSamplePeriod.. 36
DG .. 58
DH .. 67
DI .. 65, 85
DigitalIO 41, 42, 43, 184, 186
Direction .. 39
Divisor ... 34
DLL ... 4
DO .. 134
DQ .. 134
DR .. 134
DS... 56
DT... 65

E

EA... 81
EE... 94
EI 126
EL ... 86
EM .. 41
EnableAmpFault 39, 40, 41, 65, 152
EncoderScaling..................................... 36, 37
ER... 81
ET ... 190
Example Code .. 14

F

FC... 65

FE ..100
FF ..65
FI 101
FL ..57
FN..65
FollowingError36, 154
FR..58, 65

G

Gain...36, 38
GC ...137
GF..140
GH ...103
GM...66
GO ...101, 102
GT..197

H

HardLimitMode39, 40
HC ...65
Help

AppNOTES ..5
Example Code ...14
MCAPI.HLP..14
MCDLG.HLP ..14
MCGUIDE.HLP ..14
MCLV.HLP ...15
Online...14
TechNOTES...5
Tutorials ...5

HighRate ...31, 33
HighStepMax ..31, 33
HighStepMin...31, 33
HL ..61
Host interrupts45, 125
HS..65

I

IA 105
ID ...41
IL 58
IM...63, 151
IntegralGain..36
IntegralOption ..36
IntegrationLimit ...36
Interface

ASCII..4
Binary...4

Interrupts ...45, 125

Index

Motion Control Application Programming Interface 275

IP 106
IR .. 106

J

JA ... 60
JB ... 60
JF.. 96
JG ... 60
JN ... 96
JO ... 60
JV ... 60

L

LA ... 54
LabVIEW

Programming... 12
LB ... 54
LC ... 51
LD ... 54
LE ... 54
LF ... 61
LL.. 61
LM... 61, 65
LN ... 61
LowRate... 31, 33
LowStepMax.. 31, 33
LowStepMin... 31, 33
LP ... 107
LR ... 54
LS ... 65
LT ... 107

M

MA .. 19, 108
MaximumAxes....................................... 41, 42
MaximumModules......................... 41, 42, 146
MC .. 191
MC_ABSOLUTE............................. 79, 80, 250
MC_ALL_AXES ..24, 52, 55, 61, 62, 67, 68, 70,

72, 78, 87, 102, 103, 107, 108, 109, 110,
111, 128, 129, 130, 132, 135, 137, 138, 139,
141, 143, 144, 145, 147, 149, 150, 151, 153,
154, 155, 156, 159, 160, 161, 162, 163, 165,
166, 167, 168, 169, 172, 235, 238, 246, 250,
257, 259

MC_BLOCK_CANCEL 196, 197, 250
MC_BLOCK_COMPOUND......... 195, 198, 250
MC_BLOCK_CONTR_CCW............... 196, 250
MC_BLOCK_CONTR_CW 196, 250

MC_BLOCK_CONTR_LIN196, 251
MC_BLOCK_CONTR_USER196, 251
MC_BLOCK_MACRO195, 198, 251
MC_BLOCK_RESETM................196, 197, 251
MC_BLOCK_TASK195, 198, 251
MC_CAPTURE_ACTUAL......33, 133, 251, 252
MC_CAPTURE_ADVANCED......................251
MC_CAPTURE_ERROR.......33, 133, 251, 252
MC_CAPTURE_OPTIMAL33, 133, 251, 252
MC_CAPTURE_TORQUE33, 133, 251
MC_COMPARE_DISABLE....................91, 251
MC_COMPARE_ENABLE.....................91, 251
MC_COMPARE_INVERT............................251
MC_COMPARE_ONESHOT251
MC_COMPARE_STATIC251
MC_COMPARE_TOGGLE..........................251
MC_COUNT_CAPTURE136, 251
MC_COUNT_COMPARE136, 251
MC_COUNT_CONTOUR136, 251
MC_COUNT_FILTER..........................136, 251
MC_COUNT_FILTERMAX136, 251
MC_CURRENT_FULL...........................40, 251
MC_CURRENT_HALF40, 251
MC_DATA_ACTUAL252
MC_DATA_ERROR252
MC_DATA_OPTIMAL..................................252
MC_DIO_FIXED183, 252
MC_DIO_HIGH............................178, 183, 252
MC_DIO_INPUT..................178, 183, 184, 252
MC_DIO_LATCH.........................178, 183, 252
MC_DIO_LATCHABLE........................183, 252
MC_DIO_LOW178, 183, 252
MC_DIO_OUTPUT..............178, 183, 184, 252
MC_DIO_STEPPER............................183, 252
MC_DIR_NEGATIVE.......................39, 84, 252
MC_DIR_POSITIVE39, 84, 252
MC_ENC_FAULT_AUX.........................93, 252
MC_ENC_FAULT_PRI93, 252
MC_IM_CLOSEDLOOP62, 150, 252
MC_IM_OPENLOOP.....................62, 150, 252
MC_INT_FREEZE36, 252
MC_INT_NORMAL................................36, 252
MC_INT_ZERO36, 252
MC_LIMIT_ABRUPT40, 60, 148, 252
MC_LIMIT_BOTH..........................60, 148, 252
MC_LIMIT_HIGH...40
MC_LIMIT_INVERT.................40, 61, 148, 252
MC_LIMIT_LOW..40
MC_LIMIT_MINUS60, 148, 253
MC_LIMIT_OFF.............................60, 148, 253
MC_LIMIT_PLUS60, 148, 253
MC_LIMIT_SMOOTH40, 60, 148, 253
MC_LRN_POSITION...........................106, 253

Index

PMC Motion Control 276

MC_LRN_TARGET 106, 253
MC_MAX_ID....................................... 232, 253
MC_MODE_CONTOUR 66, 152, 253
MC_MODE_GAIN......................... 66, 152, 253
MC_MODE_POSITION 66, 152, 253
MC_MODE_TORQUE.................. 66, 152, 253
MC_MODE_UNKNOWN 152, 253
MC_MODE_VELOCITY................ 66, 152, 253
MC_OM_BIPOLAR............................... 63, 253
MC_OM_CW_CCW.............................. 63, 253
MC_OM_PULSE_DIR 63, 253
MC_OM_UNIPOLAR............................ 63, 253
MC_OPEN_ASCII...4, 202, 203, 204, 212, 214,

215, 218, 220, 253
MC_OPEN_BINARY............... 4, 202, 204, 253
MC_OPEN_EXCLUSIVE.... 202, 203, 204, 253
MC_PHASE_REV......................... 71, 160, 253
MC_PHASE_STD......................... 71, 160, 254
MC_PROF_PARABOLIC.................... 156, 254
MC_PROF_SCURVE 156, 254
MC_PROF_TRAPEZOID.................... 156, 254
MC_PROF_UNKNOWN 156, 254
MC_RATE_HIGH.................................. 37, 254
MC_RATE_LOW 37, 254
MC_RATE_MEDIUM............................ 37, 254
MC_RATE_UNKNOWN........................ 37, 254
MC_RELATIVE............................... 79, 80, 254
MC_STAT_ACCEL............................. 254, 262
MC_STAT_AMP_ENABLE................. 254, 262
MC_STAT_AMP_FAULT.................... 254, 262
MC_STAT_AT_TARGET............ 121, 254, 262
MC_STAT_BREAKPOINT.................. 255, 262
MC_STAT_BUSY 255, 262
MC_STAT_CAPTURE........................ 255, 262
MC_STAT_DIR................................... 255, 262
MC_STAT_EDGE_FOUND................ 170, 255
MC_STAT_ERROR............................ 255, 262
MC_STAT_FOLLOWING 255, 262
MC_STAT_FULL_STEP..................... 255, 262
MC_STAT_HALF_STEP 255, 262
MC_STAT_HOMED............................ 255, 262
MC_STAT_INDEX_FOUND 171, 255, 262
MC_STAT_INP_AMP 255, 262
MC_STAT_INP_AUX.................... 98, 255, 262
MC_STAT_INP_HOME 100, 115, 255, 262
MC_STAT_INP_INDEX...................... 255, 262
MC_STAT_INP_MJOG....................... 255, 262
MC_STAT_INP_MLIM........................ 255, 262
MC_STAT_INP_NULL................................ 262
MC_STAT_INP_PJOG 255, 262
MC_STAT_INP_PLIM......................... 255, 262
MC_STAT_INP_USER1..................... 255, 262
MC_STAT_INP_USER2..................... 255, 262

MC_STAT_JOG_ENAB.......................255, 262
MC_STAT_JOGGING255, 262
MC_STAT_LMT_ABORT255, 262
MC_STAT_LMT_STOP.......................255, 262
MC_STAT_LOOK_EDGE....................255, 262
MC_STAT_LOOK_INDEX...................255, 262
MC_STAT_MJOG_ENAB....................255, 262
MC_STAT_MJOG_ON256, 262
MC_STAT_MLIM_ENAB256, 262
MC_STAT_MLIM_TRIP.......................256, 262
MC_STAT_MODE_ARC256, 262
MC_STAT_MODE_CNTR256, 262
MC_STAT_MODE_LIN256, 262
MC_STAT_MODE_POS256, 262
MC_STAT_MODE_SLAVE256, 262
MC_STAT_MODE_TRQE256, 262
MC_STAT_MODE_VEL256, 262
MC_STAT_MSOFT_ENAB256, 262
MC_STAT_MSOFT_TRIP256, 262
MC_STAT_MTR_ENABLE..................256, 262
MC_STAT_NULL...256
MC_STAT_PHASE..............................256, 262
MC_STAT_PJOG_ENAB256, 262
MC_STAT_PJOG_ON.........................256, 262
MC_STAT_PLIM_ENAB......................256, 262
MC_STAT_PLIM_TRIP256, 262
MC_STAT_POS_CAPT.......................256, 262
MC_STAT_PROG_DIR256
MC_STAT_PSOFT_ENAB256, 262
MC_STAT_PSOFT_TRIP....................256, 262
MC_STAT_RECORD256, 262
MC_STAT_STOPPING256, 262
MC_STAT_SYNC................................257, 262
MC_STAT_TRAJ.................................257, 262
MC_STEP_FULL...................................40, 257
MC_STEP_HALF40, 257
MC_TYPE_DOUBLE......42, 69, 157, 211, 221,

257
MC_TYPE_FLOAT211, 257
MC_TYPE_LONG ...42, 69, 157, 211, 220, 257
MC_TYPE_NONE211, 257
MC_TYPE_REG..................................211, 257
MC_TYPE_SERVO32, 257
MC_TYPE_STEPPER...........................32, 257
MC_TYPE_STRING257
MC100 ...32, 257
MC110 ...32, 257
MC150 ...32, 257
MC160 ...32, 257
MC200 ...32, 253, 257
MC210 ...32, 257
MC260 ...32, 253, 257
MC300 ...32, 257

Index

Motion Control Application Programming Interface 277

MC302 .. 32, 257
MC320 .. 32, 257
MC360 .. 32, 257
MC362 .. 32, 257
MC400 .. 32, 186, 257
MC500 .. 32, 185, 257
MC520 .. 185
MCAbort()25, 27, 77, 78, 88, 112, 113
MCAPI .. 3

Architecture... 3
MCAPI DLL................................. 173, 183, 201
MCAPI Quick Reference Card...................... 26
MCArcCenter() 27, 79, 80, 81, 82, 197
MCArcEndAngle() 27, 80, 82
MCArcRadius()............................... 27, 80, 81
MCAXISCONFIG26, 31, 32, 43, 131, 132, 233,

251, 257
MCBlockBegin()29, 80, 81, 82, 83, 84, 99,

100, 101, 105, 189, 190, 191, 192, 195, 196,
197, 198, 210, 211, 213, 216, 246, 250, 251

MCBlockEnd()29, 189, 190, 191, 192, 195,
196, 197, 198, 210, 211, 213, 216, 246, 250,
251

MCCancelTask()......... 28, 189, 190, 197, 199
MCCaptureData() 27, 82, 133, 134
MCCL.. 3, 17

Error Code... 18
Format... 18

MCCL.H.. 211
MCClose() 29, 199, 204, 205, 246
MCCOMMUTATION......................... 26, 34, 54
MCConfigDigitalIO()................................. 183
MCConfigureCompare() 27, 49, 50, 91
MCConfigureDigitalIO() 28, 177, 178, 179,

180, 183, 184, 186, 252
MCCONTOUR26, 35, 42, 54, 55, 134, 135,

136
MCContourDistance().......................... 27, 83
MCDecodeStatusEx() ... 28, 46, 98, 100, 115,

121, 123, 124, 161, 162, 170, 171, 261
MCDirection() 27, 84, 252
MCDLG_AboutBox() 29, 223, 224
MCDLG_CHECKACTIVE ... 226, 227, 234, 235
MCDLG_CommandFileExt().............. 29, 225
MCDLG_ConfigureAxis().. 29, 226, 230, 233,

241
MCDLG_ControllerDesc() 228
MCDLG_ControllerDescEx() 29, 227
MCDLG_ControllerInfo() 29, 228, 229
MCDLG_DESCONLY......................... 228, 233
MCDLG_DownloadFile().................... 29, 230
MCDLG_Initialize() 29, 231
MCDLG_ListControllers().................. 29, 232

MCDLG_ModuleDesc()233
MCDLG_ModuleDescEx()29, 233
MCDLG_NAMEONLY227, 233
MCDLG_NOFILTER............................234, 237
MCDLG_NOMOTION..........................234, 237
MCDLG_NOPOSITION234, 237
MCDLG_PROMPT226, 227, 234, 235, 240
MCDLG_RestoreAxis()29, 234, 235, 237,

238
MCDLG_RestoreDigitalIO()29, 236
MCDLG_SaveAxis()29, 235, 237, 238
MCDLG_SaveDigitalIO()29, 237, 239
MCDLG_Scaling()29, 240, 241
MCDLG_SelectController()29, 241
MCEdgeArm().27, 85, 99, 100, 114, 115, 116,

170
MCEnableAxis()23, 27, 49, 62, 78, 85, 86,

99, 100, 101, 104, 112, 113, 115, 116, 241
MCEnableBacklash()27, 88
MCEnableCapture()27, 89
MCEnableCompare()27, 51, 90
MCEnableDigitalFilter() ..27, 57, 91, 140, 169
MCEnableDigitalIO() ..28, 179, 180, 182, 184,

186
MCEnableEncoderFault()27, 93
MCEnableGearing()27, 94
MCEnableInterrupt()105, 106, 124
MCEnableInterruptEx()...............................28
MCEnableJog()27, 38, 60, 95, 147
MCEnableSync()27, 96
MCERR_ALL_AXES246, 257
MCERR_ALLOC_MEM202, 246, 257
MCERR_AXIS_NUMBER....................246, 257
MCERR_AXIS_TYPE..........................246, 258
MCERR_CANCEL.......................................247
MCERR_COMM_PORT246, 258
MCERR_CONSTANT..................202, 246, 258
MCERR_CONTROLLER.............203, 246, 258
MCERR_INIT_DRIVER202, 246, 258
MCERR_MODE_UNAVAIL202, 246, 258
MCERR_NO_CONTROLLER202, 246, 258
MCERR_NO_REPLY246, 258
MCERR_NOERROR 50, 56, 58, 61, 69, 73, 74,

79, 80, 81, 82, 83, 85, 88, 90, 91, 92, 98, 99,
100, 102, 104, 105, 106, 110, 114, 116, 127,
129, 130, 131, 132, 133, 137, 138, 139, 140,
142, 144, 145, 146, 148, 156, 157, 160, 162,
164, 166, 167, 183, 189, 191, 196, 198, 199,
200, 204, 205, 211, 221, 224, 229, 230, 231,
234, 236, 237, 246, 258

MCERR_NOT_FOUND258
MCERR_NOT_INITIALIZED247, 258
MCERR_NOT_PRESENT...........202, 246, 258

Index

PMC Motion Control 278

MCERR_NOTSUPPORTED............... 246, 258
MCERR_OBSOLETE 246, 258
MCERR_OPEN_EXCLUSIVE 202, 246, 258
MCERR_OUT_OF_HANDLES... 203, 246, 258
MCERR_RANGE........................ 203, 246, 258
MCERR_REPLY_AXIS....................... 246, 258
MCERR_REPLY_COMMAND............ 246, 258
MCERR_REPLY_SIZE....................... 246, 258
MCERR_TIMEOUT 246, 258
MCERR_UNKNOWN_REPLY............ 246, 259
MCERR_UNSUPPORTED_MODE ... 203, 246,

259
MCERR_WINDOW............................. 246, 259
MCERRMASK_AXIS 259
MCERRMASK_HANDLE............................ 259
MCERRMASK_IO....................................... 259
MCERRMASK_PARAMETER.................... 259
MCERRMASK_STANDARD............... 126, 259
MCERRMASK_UNSUPPORTED............... 259
MCErrorNotify()..28, 126, 140, 141, 173, 204,

259
MCFILTEREX.......26, 36, 42, 57, 58, 141, 142,

154, 234, 237, 254
MCFindAuxEncIdx().... 27, 98, 101, 105, 117,

129
MCFindEdge()24, 27, 86, 87, 99, 101, 116,

117
MCFindIndex()..24, 27, 87, 99, 100, 101, 105,

116, 117
MCGetAccelerationEx()....... 28, 52, 127, 128
MCGetAnalog()................................... 28, 185
MCGetAnalogEX().................................... 180
MCGetAuxEncIdxEx().. 28, 98, 128, 130, 145
MCGetAuxEncPosEx() 28, 53, 98, 129
MCGetAxisConfiguration()..... 28, 33, 34, 82,

131, 134, 233
MCGetBreakpointEx()........................ 28, 132
MCGetCaptureData() 28, 83, 90, 133
MCGetConfiguration() 68
MCGetConfigurationEx().. 29, 43, 44, 69, 71,

83, 146, 156, 158, 159, 200, 228
MCGetContourConfig() 28, 35, 55, 134, 136,

165
MCGetContouringCount() 28, 135, 138
MCGetCount() 28, 51, 56, 57, 90, 91, 92, 136,

137, 139, 140, 169
MCGetDecelerationEx()............... 28, 56, 138
MCGetDigitalFilter() 28, 57, 92, 139, 169
MCGetDigitalIO() 28, 179, 181, 182, 186
MCGetDigitalIOConfig()..... 28, 179, 180, 183
MCGetError() 28, 127, 140, 173
MCGetFilterConfig()................................. 141

MCGetFilterConfigEx()28, 37, 57, 58, 141,
154

MCGetFollowingError()28, 142
MCGetGain()..........................28, 59, 143, 144
MCGetIndexEx()28, 144
MCGetInstalledModules()28, 146
MCGetJogConfig()28, 38, 60, 96, 147
MCGetLimits()28, 62, 148
MCGetModuleInputMode()28, 63, 150
MCGetMotionConfigEx() ...28, 39, 41, 62, 64,

65, 121, 128, 138, 139, 144, 149, 151, 164,
167

MCGetOperatingMode()28, 152
MCGetOptimalEx()28, 143, 153
MCGetPositionEx()28, 68, 143, 155, 250
MCGetProfile()28, 156, 254
MCGetRegister()28, 69, 70, 157, 158
MCGetScale()28, 45, 71, 158
MCGetServoOutputPhase() ...28, 64, 72, 160
MCGetStatus()...94
MCGetStatusEx() ..28, 46, 123, 124, 126, 161
MCGetTargetEx()28, 162
MCGetTorque()28, 73, 163
MCGetVectorVelocity().........28, 74, 164, 165
MCGetVelocityActual()28, 165
MCGetVelocityEx()28, 75, 166, 167
MCGetVersion()29, 201
MCGoEx()27, 97, 101, 102
MCGoHome()...............................27, 102, 197
MCIndexArm() 24, 27, 87, 101, 104, 116, 117,

171
MCInterruptOnPosition()..........................105
MCIsAtTarget()28, 119, 120, 167, 172
MCIsDigitalFilter()28, 57, 92, 140, 169
MCIsEdgeFound() ...28, 86, 99, 100, 115, 170
MCIsIndexFound()28, 101, 116, 117, 171
MCIsStopped()28, 78, 112, 113, 119, 120,

168, 172
MCJOG26, 38, 59, 147
MCLearnPoint()27, 42, 106, 108, 109, 110,

111, 253
MCMacroCall()28, 190, 196, 197
MCMOTIONEX26, 39, 40, 43, 64, 65, 120,

128, 151, 152, 164, 234, 237, 251
MCMoveAbsolute()27, 103, 108, 110, 162,

163, 197
MCMoveRelative().......27, 109, 162, 163, 197
MCMoveToPoint()27, 107, 110
MCOpen()4, 23, 29, 49, 51, 52, 53, 54, 55, 56,

57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70,
71, 72, 73, 74, 77, 79, 80, 81, 82, 83, 84, 85,
86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99,
100, 102, 103, 104, 105, 106, 108, 109, 110,

Index

Motion Control Application Programming Interface 279

111, 112, 113, 114, 116, 117, 118, 119, 120,
123, 125, 126, 127, 128, 129, 131, 132, 133,
134, 135, 136, 138, 139, 140, 141, 142, 143,
145, 146, 147, 148, 150, 151, 152, 153, 155,
156, 157, 159, 160, 161, 162, 163, 164, 165,
166, 168, 169, 170, 171, 172, 177, 179, 180,
181, 183, 184, 185, 189, 190, 191, 195, 198,
199, 200, 202, 203, 204, 205, 209, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 229,
230, 234, 236, 237, 239, 240, 246, 253, 257,
258, 259

MCPARAM ... 43
MCPARAMEX26, 33, 41, 43, 54, 66, 68, 69,

70, 71, 79, 80, 81, 146, 156, 157, 158, 159,
180, 181, 182, 184, 186, 200, 228, 250, 259

MCReopen().. 29, 204
MCRepeat()................................. 28, 191, 197
MCReset() ... 27, 111
MCSCALE26, 39, 42, 44, 70, 158, 159
MCSetAcceleration().................... 27, 51, 128
MCSetAnalog() 28, 181
MCSetAnalogEx()..................................... 184
MCSetAuxEncPos() 27, 52, 98, 129, 130
MCSetCommutation() 27, 34, 53
MCSetContourConfig()... 27, 35, 54, 74, 135,

136
MCSetDeceleration().................... 27, 55, 139
MCSetDigitalFilter() 27, 56, 92, 140, 169
MCSetFilterConfig() 57
MCSetFilterConfigEx()... 27, 37, 57, 142, 154
MCSetGain() 27, 58, 144
MCSetJogConfig() 27, 38, 59, 96
MCSetLimits()......................... 27, 60, 61, 149
MCSetModuleInputMode() 27, 62, 151
MCSetModuleOutputMode() 27, 63
MCSetMotionConfigEx()... 27, 37, 39, 41, 51,

52, 55, 56, 58, 59, 61, 62, 64, 73, 75, 121,
149, 151, 152, 164, 166, 167

MCSetOperatingMode().... 27, 65, 78, 80, 81,
82, 85, 102, 112, 113, 197, 253

MCSetPosition() ...27, 67, 103, 109, 110, 145,
146, 154, 156

MCSetProfile() 27, 68, 157, 254
MCSetRegister()........................... 27, 69, 158
MCSetScale()......24, 27, 45, 70, 87, 113, 156,

159
MCSetServoOutputPhase() 27, 71, 161, 253,

254
MCSetTimeoutEx()..................... 29, 205, 215
MCSetTorque() 27, 72, 73, 164
MCSetVectorVelocity() .. 27, 73, 74, 165, 197
MCSetVelocity() 27, 74, 75, 166, 167
MCSpy

debug application programs.......................13
MCSTATUSEX ..26, 45
MCStop()....................25, 27, 78, 88, 102, 112
MCTranslateErrorEx()28, 127, 173
MCWait()27, 113, 118, 119, 120
MCWaitForDigitalIO()28, 177, 185
MCWaitForEdge() ..27, 85, 86, 100, 101, 114,

115, 170
MCWaitForIndex()27, 101, 105, 116, 171
MCWaitForPosition() .27, 114, 117, 119, 120,

121, 132, 133
MCWaitForRelative() .27, 114, 118, 120, 121,

132, 133
MCWaitForStop() .27, 78, 112, 114, 118, 119,

121
MCWaitForTarget()27, 118, 119, 120
MD ...197
MediumRate ...31, 33
MediumStepMax31, 33
MediumStepMin31, 33
MF ...25, 88
MF300 ...32, 259
MF310 ...32, 259
MinVelocity.........................38, 39, 40, 65, 151
MN ...19, 25, 88
ModeStatus ..45
ModuleLocation ...31
ModuleType....................................31, 32, 233
Motion Integrator ...49
MotorType ..31, 32
MP ...110
MR ...19, 110
MS ...65
MultiTasking.............................41, 43, 69, 158
MV ...65

N

NC ...51
NF..92
NO_CONTROLLER.....................................259
NO_MODULE..259
NONE ..259
NS..97
NumberAxes ..41, 42

O

OA ...185
OC ...51
Offset ..38, 44
OM...64

Index

PMC Motion Control 280

OP .. 51

P

PasDemo.. 11
PC... 32
PDF

described... 269
document printing.................................... 269
viewing a document 269

PH... 72
PhaseA .. 34
PhaseB .. 34
PM .. 66
pmccmd()............................ 29, 209, 219, 220
pmccmdex()................ 29, 209, 211, 221, 257
pmcgetc().............29, 212, 213, 215, 216, 218
pmcgetramex() 29, 213, 217
pmcgets().................... 29, 212, 214, 216, 218
pmcputc() 29, 213, 215
pmcputramex()........................... 29, 214, 216
pmcputs() ...29, 190, 191, 213, 215, 216, 217,

218
pmcrdy()29, 210, 212, 218, 220, 221
pmcrpy() 29, 210, 219, 221
pmcrpyex() 29, 212, 219, 220
PointStorage ... 41, 42
PP... 68
PR... 83
Precision.. 41, 42
PreScale .. 34
Printing a PDF document............................ 269
ProfileStatus.. 45
Program Sample

C/C++.. 7
Delphi .. 11
Visual Basic... 9

Programming
C/C++.. 6
Delphi .. 10
LabVIEW... 12
MCCL.. 17
Visual Basic... 8
Win Control ... 17

PS... 68
PT ... 68

Q

QM.. 66

R

Rate ...44
RegisterWindowMessage()126
Repeat...34
RM ...197
RP..19, 20, 192
RR ...82
RT..111, 112

S

SA..51, 65
Scale ...44, 71
SD..58, 65
SE..58
SetMessageQueue()127
SF ..65
SG ...59, 65
SH..65
SI 58, 65
sizeof() ...33, 43, 131
SM ...95
SN..97
SoftLimitHigh39, 40, 41, 65, 71, 152
SoftLimitLow39, 40, 41, 65, 71, 152
SoftLimitMode....................39, 40, 41, 65, 152
SoftLimits ...41, 43
Source Files...5
SQ ...65, 73
SS..95
ST ..113
Status..45, 180
StepSize..............................39, 40, 41, 65, 151
SV..65, 75

T

TA ..181
TB ..133
TC..182
TD..142
TF ..142, 143
TG..142, 144, 152
TI 142
Time ..36, 44
TL ..142
TO..154
Torque39, 40, 65, 151
TP ..18, 156
TQ..164
TR..158

Index

Motion Control Application Programming Interface 281

Troubleshooting application programs
MCSpy .. 13

TS ... 162, 170, 171
TT ... 163
Tutorials

Installing a Motion Controller....................... 5
Intro to Motion Control programming 5
Intro to PMC.. 5
Servo Systems.. 5
Servo Systems Primer 5
Servo Tuning... 5

TV ... 166
TX ... 136, 137
TZ ... 145

U

UK... 71
UO .. 71
UpdateRate...................... 36, 37, 65, 152, 254
UR .. 71
US... 71
UT... 71
UZ... 71

V

VA... 55
VBDemo ... 9
VD... 55
VE... 17
VectorAccel ... 35
VectorDecel ... 35
VectorVelocity... 35

Velocity ...39
VelocityGain36, 37, 57, 142
VelocityOverride ..35
VG ...58
Visual Basic

Program Sample ..9
Programming ...8

VM ...66
VO ...55
VV..55, 74

W

WA...114
WE...116
WF ...186
WI ..117
Win Control ..17
WinMain() ..127
WN...186
WP...118
WR...119
WS...19, 20, 120
WT ...121

Y

YF ..92

Z

Zero ...44
ZF ..57

Precision MicroControl Corporation
2075-N Corte del Nogal

Carlsbad, CA 92009-1415 USA

Tel: (760) 930-0101
Fax: (760) 930-0222

www.pmccorp.com

Information: info@pmccorp.com
Technical Support: support@pmccorp.com

	Prologue
	Introduction
	Controller Interface Types
	Building Application Programs using Motion Control API
	C/C++ Programming Introduction
	Visual Basic Programming Introduction
	Delphi Programming Introduction
	LabVIEW Programming Introduction
	MCSpy
	MCAPI Online Help

	Low Level Communication
	Win Control and MCCL Commands

	Function Library Introduction
	Function Listing Introduction
	Motion Control API Function Quick Reference Tables

	Data Structures
	MCAXISCONFIG
	MCCOMMUTATION
	MCCONTOUR
	MCFILTEREX
	MCJOG
	MCMOTIONEX
	MCPARAMEX
	MCSCALE
	MCSTATUSEX

	Parameter Setup Functions
	MCConfigureCompare
	MCSetAcceleration
	MCSetAuxEncPos
	MCSetCommutation
	MCSetContourConfig
	MCSetDeceleration
	MCSetDigitalFilter
	MCSetFilterConfigEx
	MCSetGain
	MCSetJogConfig
	MCSetLimits
	MCSetModuleInputMode
	MCSetModuleOutputMode
	MCSetMotionConfigEx
	MCSetOperatingMode
	MCSetPosition
	MCSetProfile
	MCSetRegister
	MCSetScale
	MCSetServoOutputPhase
	MCSetTorque
	MCSetVectorVelocity
	MCSetVelocity

	Motion Functions
	MCAbort
	MCArcCenter
	MCArcEndAngle
	MCArcRadius
	MCCaptureData
	MCContourDistance
	MCDirection
	MCEdgeArm
	MCEnableAxis
	MCEnableBacklash
	MCEnableCapture
	MCEnableCompare
	MCEnableDigitalFilter
	MCEnableEncoderFault
	MCEnableGearing
	MCEnableJog
	MCEnableSync
	MCFindAuxEncIdx
	MCFindEdge
	MCFindIndex
	MCGoEx
	MCGoHome
	MCIndexArm
	MCInterruptOnPosition
	MCLearnPoint
	MCMoveAbsolute
	MCMoveRelative
	MCMoveToPoint
	MCReset
	MCStop
	MCWait
	MCWaitForEdge
	MCWaitForIndex
	MCWaitForPosition
	MCWaitForRelative
	MCWaitForStop
	MCWaitForTarget

	Reporting Functions
	MCDecodeStatusEx
	MCEnableInterrupt
	MCErrorNotify
	MCGetAccelerationEx
	MCGetAuxEncIdxEx
	MCGetAuxEncPosEx
	MCGetAxisConfiguration
	MCGetBreakpointEx
	MCGetCaptureData
	MCGetContourConfig
	MCGetContouringCount
	MCGetCount
	MCGetDecelerationEx
	MCGetDigitalFilter
	MCGetError
	MCGetFilterConfigEx
	MCGetFollowingError
	MCGetGain
	MCGetIndexEx
	MCGetInstalledModules
	MCGetJogConfig
	MCGetLimits
	MCGetModuleInputMode
	MCGetMotionConfigEx
	MCGetOperatingMode
	MCGetOptimalEx
	MCGetPositionEx
	MCGetProfile
	MCGetRegister
	MCGetScale
	MCGetServoOutputPhase
	MCGetStatusEx
	MCGetTargetEx
	MCGetTorque
	MCGetVectorVelocity
	MCGetVelocityActual
	MCGetVelocityEx
	MCIsAtTarget
	MCIsDigitalFilter
	MCIsEdgeFound
	MCIsIndexFound
	MCIsStopped
	MCTranslateErrorEx

	I/O Functions
	MCConfigureDigitalIO
	MCEnableDigitalIO
	MCGetAnalogEx
	MCGetDigitalIO
	MCGetDigitalIOConfig
	MCSetAnalogEx
	MCWaitForDigitalIO

	Macro’s and Multi-Tasking Functions
	MCCancelTask
	MCMacroCall
	MCRepeat

	MCAPI Driver Functions
	MCBlockBegin
	MCBlockEnd
	MCClose
	MCGetConfigurationEx
	MCGetVersion
	MCOpen
	MCReopen
	MCSetTimeoutEx

	OEM Low Level Functions
	pmccmd
	pmccmdex
	pmcgetc
	pmcgetramex
	pmcgets
	pmcputc
	pmcputramex
	pmcputs
	pmcrdy
	pmcrpy
	pmcrpyex

	Common Motion Dialog Functions
	MCDLG_AboutBox
	MCDLG_CommandFileExt
	MCDLG_ConfigureAxis
	MCDLG_ControllerDescEx
	MCDLG_ControllerInfo
	MCDLG_DownloadFile
	MCDLG_Initialize
	MCDLG_ListControllers
	MCDLG_ModuleDescEx
	MCDLG_RestoreAxis
	MCDLG_RestoreDigitalIO
	MCDLG_SaveAxis
	MCDLG_SaveDigitalIO
	MCDLG_Scaling
	MCDLG_SelectController

	Appendix A - MCAPI Error Codes
	Appendix B - Constants
	Appendix C - Status Word Constants Lookup Table
	Appendix D - Motion Dialog Window Classes
	MCDLG_LEDCLASS
	MCDLG_READOUTCLASS

	Appendix E - Printing a PDF Document
	Index

