
G-CODE INTERPRETER FOR MULTIFLEX MOTION CONTROLLERS

REFERENCE MANUAL

VERSION 0.3a

PMC
 Precision MicroControl Corp.

Precision MicroControl Corporation
2075-N Corte del Nogal

Carlsbad, CA 92009-1415

Tel: 760-930-0101
Fax: 760-930-0222

Sales: pmcinfo@pmccorp.com
Technical Support: motion@pmccorp.com

LIMITED WARRANTY

All products manufactured by PRECISION MICROCONTROL CORPORATION are guaranteed
to be free from defects in material and workmanship, for a period of five years after date of
shipment. Liability is limited to FOB Factory repair, or replacement, of the product. Other products
supplied as part of the system carry the warranty of the manufacturer.

PRECISION MICROCONTROL CORPORATION does not assume any liability for improper use
or installation or consequential damage.

(c)Copyright Precision MicroControl Corporation, 2005.
All rights reserved.

Information in this document is subject to change without notice.

Fanuc is a register trademark of Fanuc USA Corporation.

i

TABLE OF CONTENTS

CHAPTER.SECTION TITLE PAGE

1.0 Introduction . 1
1.1 Installation . 2

2.0 G-code Interpreter Operation . 3

3.0 G-code Interpreter Commands . 5
3.1 Run Commands . 5
3.2 Control Commands . 5
3.3 Reporting Commands . 6
3.4 File Loading Commands . 7

4.0 Part Programs . 8
4.1 Main Program and Subprograms . 10
4.2 Macros . 11
4.3 Variables . 13
4.4 Arithmetic Expressions . 15
4.5 Canned Cycles . 17
4.6 Control Commands . 19
4.7 Chopping Function . 20

APPENDIX TITLE

A Part Program Format
B Configuration Commands
C Work Coordinate Initialization File
D Tool Data Initialization File

DOCUMENT REVISION HISTORY:

REV DATE CHANGES

0.1a 3/28/05 Initial Release
0.2a 3/30/05 Added “Control Blocks” section, additional system variables
0.3a 8/2/05 Added Grinder machine type, added A, B, and C auxiliary axes

ii

1

1.0 Introduction

The Multiflex Motion Controllers are capable of commanding 4 servos and/or 4 stepper motors.
These controllers have microprocessors and firmware that provides sophisticated motion functions.
Included in Multiflex firmware versions 4.0 and later, is the capability of storing and executing
motion programs written in G-Codes. This is the industry standard machine tool language used to
program machine tools running under Computer Numerical Control (CNC). It is also referred to as
the EIA-274 specification.

This document provides information necessary to configure and operate the G-code Interpreter on
the Multiflex Motion Controller and serves as a reference for writing motion programs using G-
codes.

2

1.1 Installation

All Multiflex Motion Controller firmware revisions starting with 4.0 include the G-code interpreter
feature. To verify what revision of firmware is running on the Mutiflex, start the “Win Control”
program that is installed on the PC with the Motion Control API software. This program issues a
“VE” command to the controller on start up. The Multiflex responds by displaying information about
the controller and the firware currently running on it.

Example:
ve
MFX-PCI1440-3-A Motion Controller
Hardware: 16384K Private RAM, 512K Flash Memory
System Firmware Ver. PM1 Rev. 4.0a
Copyright (c) 2002-2005 Precision MicroControl Corporation
All rights reserved.

If the firmware revision number reported is below 4.0, the Multiflex firmware needs to be updated.
Visit the support pages on the PMC website at http://www.pmccorp.com to download the latest
firmware files and update tool.

http://www.pmccorp.com

3

2.0 G-code Interpreter Operation

There are 2 methods of running part programs on a Multiflex motion controller that has the G-code
Interpreter feature. In the first method, Motion Control Command Language (MCCL) commands are
issued to the controller that enable it to accept configuration commands or part programs over the
ASCII command interface, and execute them as they are received. In the second method,
configuration commands and part programs are stored in files on the Multiflex, and then commands
are issued to the controller to cause it to process the data in the files. These two methods can be used
interchangeably for configuration of the controller and execution of part programs.

To define the machine setup, the user can issue the Run Configuration Enable (RCE) command and
then send Configuration commands to the controller. The supported configuration commands are
listed in an appendix of this manual. The controller will interpret the commands as they are received
and initialize internal configuration variables. After sending all the configuration commands, the
End-Of-File ASCII character (1A hex) is sent to cause the controller to return to normal MCCL
command processing. If the configuration commands are stored in a text file on the host computer,
the Win Control program can be used to send them to the Multiflex. To do this start the Win Control
program and issue the ”RCE” command and then use the “Open...” option in the Win Control File
menu to locate and load the file containing the configuration commands.

As an alternative method to defining the machine setup, the configuration commands can be stored
in a file on the Multiflex. This can be done with the Win Control program using the “LO” command.
The parameter to the LO command is the file number use to store the configuration file. The Run
Configuration File (RCF) command can then be issued to the controller to cause it to process the file
and initialize the internal variables. The parameter to the RCF command is the file number that the
configuration commands have been stored in.

Two types of initialization files are used for setting up work coordinates and tool data on the
Multiflex. These files can be sent to the controller and processed immediately, or stored on the
Multiflex and processed with file commands. The Work Coordinate Initialization File contains
offsets for work coordinate systems that can be used during part program execution. The Run Work
Coordinate Enable (RWE) and Run Work Coordinate File (RWF) commands are used to load this
data. The Tool Data Initialization File defines the geometry of tools and is used for tool offsets and
compensation while running part programs. The Run Tool Data Enable (RTE) and Run Tool Data
File (RTF) commands are used to load this data on the Multiflex. Appendices of this manual
describe the required format of the Work Coordinate and Tool Data Initialization Files.

After the G-code interpreter setup is completed, the user can issue the Run Part Program Enable
(RUE) command and send the part program to the controller in ‘real time’. In this method, the
controller will accept the part program from the command interface and execute it immediately (after
filling internal queues). This requires that the host computer be programmed to download the part
program to the controller as fast as it will accept it. After sending the entire part program, the End-
Of-File ASCII character (1A hex) is sent to cause the controller to return to normal MCCL command

4

processing. If the part program is stored in a text file on the host computer, the Win Control program
can be used to send it to the Mutiflex. To do this start the Win Control program and issue the ”RUE”
command and then use the “Open...” option in the Win Control File menu to locate and load the part
program file.

Alternatively, the user has the option of loading a part program into the Multiflex controller’s file
system and issuing the Run Part Program File (RUF) command with the file number as the command
parameter. This method has the advantage of freeing the host computer from being required for part
program execution. With this method, by issuing the RUF command as a background task, the
controller will be able to accept other commands from the host computer, while it processes the part
program. The G-code Interpreter Commands (described later in the manual) are specifically designed
for this purpose. When using the RUF command in this way, the RUT command should be used to
terminate the background task.

5

3.0 G-code Interpreter Commands

The G-code Interpreter feature of the Multiflex Motion Controller includes MCCL commands that
facilitate running part programs. Note that these commands have 3 letter mnemonics, while the
standard motion commands all have 2 letter mnemonics. Other than this difference, the G-code
Interpreter commands can be used in the same manner as the motion commands.

3.1 Run Commands

RUE Run Part Program Enable (n = -1,0,1)

RCE Run Configuration Enable

RWE Run Work Coordinate Enable

RTE Run Tool Data Enable

RUFn Run Part Program File (-127 <= n <= 127)

RUT Run Terminate

RCFn Run Configuration File (1 <= n <= 127)

RWFn Run Work coordinate File (1 <= n <= 127)

RTFn Run Tool data File (1 <= n <= 127)

3.2 Control Commands

IST Initiate Start

IBB Initiate Block by Block

IFH Initiate FeedHold

EDR Enable Dry Run

DDR Disable Dry Run

EOS Enable Optional Stop

6

DOS Disable Optional Stop

EBS Enable Block Skip

DBS Disable Block Skip

SFOn Set Feedrate Override (0 <= n)

SROn Set Rapid Overrride (0 <= n)

SSOn Set Spindle Override (0 <= n)

3.3 Reporting Commands

DBT Display Block Text (n = 0 or 1 enables; n = -1 disables)

DEM Display Error Messages (n = 0 or 1 enables; n = -1 disables)

DFN Display File Number (n = 0 or 1 enables; n = -1 disables)

DFP Display File Position (n = 0 or 1 enables; n = -1 disables)

GRS Get Run status

TRS Tell Run Status

TBP Tell Block file Position

TNP Tell Next file Position

TPN Tell Program Number

TRC Tell Repeat Count

TSN Tell Sequence Number

TSS Tell Spindle Speed

TTN Tell Tool Number

7

3.4 File Loading Commands

LOF Load Fanuc Formatted Part Program

This command facilitates loading of Fanuc formatted part programs into the Multiflex’s file memory.
When the LOF command is issued to the controller, it will accept text with embedded words having
‘O’ addresses that specify what file number the text is to be stored in. The file should have the
following format to be loaded correctly:

ONE LINE TEXT LEADER, THIS WILL BE DISCARDED
Oaaaa
...

Obbbb
...

Occcc
...

Where aaaa, bbbb and cccc are decimal digits specifying the file number where the succeeding text
will be loaded. The valid range for the file numbers are 1 to 127. The End-Of-File ASCII character
(1A hex) should not be sent until after all text has been sent to the controller. This will terminate the
loading process.

8

4.0 Part Programs

The Mutiflex G-code Interpreter is designed to execute user written programs which command the
machine axes to follow specific paths. These motions commonly perform machining operations in
the manufacture of parts, so the programs are called 'Part Programs'. The G-code Interpreter supports
part programs following the EIA-274 specification: Interchangeable Variable Block Data Format for
Positioning, Contouring, and Contouring/Positioning Numerically Controlled Machines.

A part program consists of lines of text called 'blocks'. Each line or block in the program is separated
by a linefeed character (ASCII 10). A block may optionally be terminated with an 'End of Block'
(EOB) character. A block can be up to 255 characters in length, including the EOB and linefeed
characters. A program can consist of an unlimited number of blocks (within the limits of the
Multiflex’s file system if storing the program on the controller).

Each block is composed of 'words'. A word is defined to be an uppercase alpha character called the
'Address', followed by a numerical value. The Address of each word defines how the associated
numerical value is interpreted. The valid addresses and their meanings are listed below:

Address Description

A A Axis Dimension
B B Axis Dimension
C C Axis Dimension
E Max. Angle Change for Continuous Motion
F Feed Function
G Preparatory Function
H Misc. Function Parameter (integer value)
I Interpolation Parameter
J Interpolation Parameter
K Interpolation Parameter
L Repeat Block (integer value between 1 and 9999)
M Miscellaneous Function
N Sequence Number
O Program Number
P Misc. Function Parameter (integer value)
S Spindle Speed Function
T Tool number
U U Axis Dimension
V V Axis Dimension
W W Axis Dimension
X X Axis Dimension
Y Y Axis Dimension
Z Z Axis Dimension

9

The numerical values that follow these addresses may be integers or real numbers with decimal
points. If a value appears without a decimal point, it is interpreted as if the decimal point follows the
right most digit. The format detail for the G-code Interpreter is as follows:

N4G2X+90Y+90Z+90I+90J+90U+90V+90W+90F50S50T2M2H5E4*

This indicates that the sequence number contains up to 4 digits, the preparatory function code up to
2 digits, each of the dimension values have up to 9 digits (with optional decimal point), the feed and
spindle speed functions each have up to 5 digits (with optional decimal points), and the tool,
miscellaneous, parameter and repeat functions have up to 2, 2, 5 and 4 digits respectively.

A sequence number is a word beginning with the 'N' address followed by an integer. They may be
used to identify specific blocks in the program. If a block contains a sequence number, it should be
the first word in the block, and have a value distinct from all other block sequence numbers. If a
block is the destination of a program jump or call, it must include a sequence number word.

10

4.1 Main Program and Subprograms

When the Run Part Program File (RUF) command is issued to the Multiflex, the parameter to the
command must specify a part program that is resident in the controller’s file system. This starting
part program is referred to as the “Main” program. Block execution will start with the first block in
the file, and continue until either the M02 or M30 miscellaneous function code is encountered. These
codes will cause the execution to stop. There is no difference in how these two codes operate.

It is possible for the main program to cause another part program to be executed from the file system.
This is done by placing M98 in a block along with a P word specifying the number of another part
program in the Multiflex’s file system. Execution of the main program will be paused and the
execution of the specified subprogram will commence. When the subprogram completes its’ task,
it should call M99 to terminate execution of the subprogram and resume execution of the main
program at the block following the block that contained the subprogram call. If the block in the
subprogram containing M99 also contains a P word, execution will resume with the main program,
but at the block with a sequence number specified by the P word value.

If the block which calls a subprogram includes an L word, the subprogram will be executed multiple
times. The number of times is specified by the L word value.

It is acceptable for a subprogram to call another subprogram by using the M98 code. The block in
the subprogram which contains M98 must also include a P word specifying another (or the same)
subprogram. It may also include a L word specifying the number of times that subprogram should
be executed. Each time a subprogram is called, data for the current part program is saved in an
internal memory stack. That stack has room to store the data for 3 programs. This means that the G-
code Interpreter will allow subprogram calls to be “nested” up to 3 levels deep.

If the main program includes a block with a M99 code, the part program execution will jump to the
beginning of the main program and continue. If the block containing M99 also includes a P word,
program execution will jump to the block in the main program that contains the sequence number
specified by the P value.

11

4.2 Macros

The G-code Interpreter implements the ability to create part program subroutines and call them using
a single block. These subroutines are referred to as “macros” and are stored in the Multiflex file
system in the same manner as subprograms. One benefit of macros over subprograms is they can be
passed arguments from the calling program. The macro can access these argument values through
variables that can be used in the body of the macro.

To call a macro from a part program, use the G65 preparatory code in a block and include a P word
to specify the file number that the macro was stored under. The argument values to be passed to the
macro should be placed in words after the G65 code. Any address letters except G, L, N, O, or P may
be used to pass arguments to the macro. Each argument will be stored in a specific variable based
on the address that is used when the macro is called. The assignment of the arguments to the local
variables is specified in the table below.

Argument Address Local Variable

A #1

B #2

C #3

D #7

E #8

F #9

H #11

I #4

J #5

K #6

M #13

Q #17

R #18

S #19

T #20

U #21

12

V #22

W #23

X #24

Y #25

Z #26

In the block that calls a macro, a L word can be used to specify the number of times the macro will
be executed.

A macro has the same format as a subprogram, including the M99 code to signal the end of the
macro.

13

4.3 Variables

The G-code Interpreter allows variables to be used in part programs in place of numerical values.
A variable is specified in a part program with the pound character (“#”) followed by a positive
integer (example: #5). Initially, variables 1 through 999 have undefined values. A variable can be
assigned a value in an assignment statement with the equal sign (example: #7 = 125.0). The
numerical value following an address in a part program can be replace with a variable (example:
X#24). The variable can optionally be preceded by a hyphen (“-“) to cause the sign of the variable
value to be changed (example: Z-#26). When an assignment statement appears in a part program,
subprogram or macro, no other words can be included in the block.

There are three types of variables that are available: local, common and system. The main part
program and each macro is provided with 33 “local” variables that can be read or written. These
variables, numbered 1 to 33, are private to the main program or the macro that uses them. They are
not shared, so modifying variable 10 in a macro does not modify variable 10 available to the main
program. When a macro is called, the 33 local variables available to the macro may be loaded with
arguments specified when the macro was called.

In addition to the local variables, there are 900 “common” variables numbered 100 to 999. These
variables are shared by the main part program and any subprograms or macros that are called. If the
main program sets the value of a common variable, any subprogram or macro will see the same value
in that variable. Likewise, if a subprogram or macro assigns a value to one of the common variables,
then the main program and all other subprograms and macros will see the same value in that variable.

The “system” variables hold internal data that is maintained or accessible by the G-code Interpreter.
The system variables are numbered 1000 and above. Unless specifically noted otherwise, all the
system variables are “read only”. This means they can’t be changed by assigning a new value to the
variable. The available system variables are listed in the table below.

14

System Variable Contents

#1000 All Digital Inputs (32 bits)

#1001 - #1032 Single Digital Input (value = 0 or 1)
variable number - 1000 = channel number

#1100 All Digital Outputs (32 bits)

#1101 - #1132 Single Digital Output (value = 0 or 1)
variable number - 1100 = channel number

#2000 - #2999 Tool Compensation D & H Values

#4000 - #4120 Modal Information

#5001 - #5015 Block End Position

#5021 - #5035 Current Machine Coordinates

#5041 - #5055 Current Work Coordinates

#5081 - #5095 Current Tool Compensation

#5201 - #5215 Current Work Offset

#5221 - #5335 Work Offset Table G54 - G59 Values

15

4.4 Arithmetic Expressions

In the section describing variables, it was shown that an assignment statement can be used to set a
variable’s value. A more complex arithmetic expression can also be used in a variable assignment
statement (example: #25 = #4 / 2 + #5). This allows the value to be calculated at run time using a
combination of variables, functions, and numerical constants.

An arithmetic expression can also be used in place of a numerical constant after the address character
in a part program word. For the expression to be interpreted properly, it must be enclosed in square
brackets (example: X[#24 + 1.5]). The 2 tables below lists the expression operators that are
supported.

Addition Operators Description

+ Addition

- Subtraction

OR Bit Wise Logical OR

XOR Bit Wise Logical Exclusive OR

Multiplication Operators Description

* Multiplication

/ Division

AND Bit Wise Logical AND

MOD Remainder

A function is called by its’ name followed by the argument in square brackets []. The argument can
be a numerical constant, a variable, or an expression (example: #26 = #11 * sin[30]). The table
below lists the available functions.

Function Name Description

SIN Sine (argument in degrees)

COS Cosine (argument in degrees)

TAN Tangent (argument in degrees)

ASIN Arc Sine

16

ACOS Arc Cosine

ATAN Arc Tangent

SQRT Square Root

ABS Absolute value

ROUND Round to nearest integer

FIX Discard fractions less than 1 (Floor)

FUP Add 1 for fraction less than 1 (Ceil)

LN Natural Log

EXP Exponent with base e

The order of priority in evaluating an expression is: functions first, multiplication operations second,
and addition operations last. The order of expression evaluation can be modified by placing square
brackets in pairs in the expression (example: #25 = #4 / [2 + #5]). Up to 5 pairs of brackets can be
used in a single expression.

17

4.5 Canned Cycles

Similar to macros, the G-code Interpreter implements “canned cycles”; these are subroutines that can
be called from a single block. There are 8 preparatory codes (G82 - G89) reserved for calling canned
cycles. When one of these G-codes appears at the beginning of a block, the respective canned cycle
will be executed. The canned cycle subroutines are stored in the Multiflex file system in the same
manner as subprograms. The file numbers that are used when the canned cycles are stored in the
Multiflex file system must match the file numbers specified in the “GxxCANNEDCYCLEFILE”
configuration commands. See appendix B for a description of these configuration commands.

Like macros, canned cycles allow arguments to be passed from the calling program. The canned
cycle can access these argument values through variables that can be used in the body of the canned
cycle. The argument values to be passed to the canned cycle should be placed in words after the
canned cycle G-code. Any address letters except G, L, N, O, or P may be used to pass arguments to
the canned cycle. Each argument will be stored in a specific local variable based on the address that
is used when the canned cycle is called. The assignment of the arguments to the local variables is
specified in the table below.

Argument Address Local Variable

A #1

B #2

C #3

D #7

E #8

F #9

H #11

I #4

J #5

K #6

M #13

Q #17

R #18

S #19

18

T #20

U #21

V #22

W #23

X #24

Y #25

Z #26

In the block that calls a canned cycle, a L word can be used to specify the number of times the
canned cycle will be executed.

A canned cycle has the same format as a subprogram, including the M99 code to signal the end of
the canned cycle.

19

4.6 Control Commands

The execution flow of a part program can be modified with a block that contains an If-Then or a
While-Do command. The format of a If-Then command is: IF [conditional expression] GOTO n.
When the conditional expression is satisfied, program execution jumps to the block with sequence
number ‘n’. In an If-Then command, the value ‘n’ must be a constant. Also, the block that contains
sequence ‘n’ must be in the same program, subprogram or macro as the If-Then block. The following
table lists the conditional expressions that can be used.

Conditional Expression Function

#j EQ #k = (equal)

#j NE #k != (not equal)

#j GT #k > (greater than)

#j LT #k < (less than)

#j GE #k >= (greater than or equal)

#j LE #k <= (less than or equal)

In the conditional expressions, #j and #k can be a constant, a variable, or an arithmetic expression.
If #j or #k is an arithmetic expression, it must be enclosed in square brackets.

As an alternative, a block can contain just GOTO n. In this case the execution flow jumps
unconditionally to the block with sequence ‘n’.

The format of a While-Do commands is:
WHILE [conditional expression] DO n
...
END n

All blocks between the DO and END commands will be executed repeatedly while the conditional
expression is true. The value of ‘n’ used after the END command must be the same positive integer
that follows the matching DO command. The While-Do and matching End commands may be nested
up to 3 levels deep. Each pair of nested While-Do and End commands must have a unique ‘n’ value.

An alternative command format is:
DO n
...
END n

In this case, the enclosed blocks are repeated unconditionally.

20

4.7 Chopping Function

A block with G81 can be used to enable the “chopping Function” for a machine axis. Once this
function is enabled, the selected axis will cycle back and forth, while part program execution
continues on to succeeding blocks. The motion of the selected axis is independent of motion initiated
on the other axes. The cycling will continue until the chopping function is disabled with a G80
preparatory code in the part program.

A part program block to enable the chopping function must have the following form:

G81 Z___ Q___ R___ F___

In this example, the Z axis was selected as the axis to be enabled. Alternatively, one of the other
machine axes could have been selected by replacing the ‘Z’ address with the respective address
letter. The R word specifies the incremental distance between the axes’ current position, and the
starting position for the cycle motion. The Q word specifies the incremental distance to ending
position of the cycle motion (relative to the starting position). The F word specifies the feedrate that
will be used for cycle motion of the axis.

When the Chopping Function is enabled, the selected axis will move at the rapid rate to the starting
position. It will then cycle between the starting position and the ending position, at the specified
feedrate. When the Chopping function is disabled, the selected axis will continue motion until it
reaches the starting position before it comes to a stop.

21

Appendix A: Part Program Format

A part program consists of 'Blocks' separated by linefeeds. Each block consist of one or more 'Words'
and an End-Of-Block character. A word begins with an 'Address' character followed by an integer
or real number. The default End-Of-Block character is the newline charcter (ASCII 10 decimal). A
typical block has the following form:

N001 G01 X2.654 Y-4.623 Z1.0 F40.0 S1000.0 M03 *

where:
N = sequence number
G = preparatory function code
X, Y and Z = dimensions
F = feed rate
S = spindle rate
M = miscellaneous function code
* = represents End-of-Block character

Additional notes on part programs:

1. Sequence numbers are optional, but when include must be no more than 4 digits with
a value greater then 0 (eg. N115).

2. G,M and T codes must be no more than 2 digits (eg. G1 or G01).
3. Multiple G codes can be included in a single block.
4. Only one M code can occur in a single block.
5. Arcs (G02 & G03) must be specified as ending coordinates (X, Y and Z) and center

coordinates (I, J and K). The ending coordinates can be specified with absolute or
incremental dimensions, by default the center coordinates are interpreted as
incremental dimensions (relative to the starting point).

6. Spaces are optional between words of the block.
7. The Block Deleter character ' /' can be placed anywhere in a block. Any characters

preceded by the ' /' character will be skipped during part program execution if Block
Skip is enabled.

8. Comments in the part program are delimited by open and close parenthesis: ‘(‘ and
‘’)’.

For a complete description of the G-code language, refer to the Electronics Industry Association
specification EIA-274 and CNC technology text books.

Appendix A: Part Program Format (cont.)

22

Address Characters

Address Description

A A Axis Dimension
B B Axis Dimension
C C Axis Dimension
D Macro Parameter (integer value)
E Max. Angle Change for Continuous Motion
F Feed Function
G Preparatory Function
H Misc. Function or Macro Parameter (integer value)
I Interpolation Parameter
J Interpolation Parameter
K Interpolation Parameter
L Repeat Block (integer value between 1 and 9999)
M Miscellaneous Function
N Sequence Number
O Program Number
P Misc. Function Parameter (integer value)
Q Macro Parameter
R Macro Parameter
S Spindle Speed Function
T Tool number (integer value)
U U Axis Dimension
V V Axis Dimension
W W Axis Dimension
X X Axis Dimension
Y Y Axis Dimension
Z Z Axis Dimension

Appendix A: Part Program Format (cont.)

23

G-Codes

A preparatory function is a word beginning with the ' G' address followed by a 2 digit integer.
These codes cause the controller to enter certain control modes. The following is a list of available
G codes:

Code Description

G00 Point to point positioning at rapid rate
G01 Linear interpolation at feed rate
G02 Circular Contour, clockwise at feed rate
G03 Circular Contour, counter-clockwise at feed rate
G04 Dwell, delays program execution, period specified in seconds with X word
G17 XY Plane Selection
G18 ZX Plane Selection
G19 YZ Plane Selection

G20 Inch Programming (for Fanuc compatibility)
G21 Metric Programming (for Fanuc compatibility)

G40 Cutter Radius Compensation Cancel
G41 Cutter Radius Compensation Left
G42 Cutter Radius Compensation Right
G43 Tool Length Compensation Plus (Mill only)
G44 Tool Length Compensation Minus (Mill only)
G45 Tool Offset Increase
G46 Tool Offset Decrease
G47 Tool Offset Double Increase
G48 Tool Offset Double Decrease
G49 Tool Length Compensation Cancel

G52 Local Coordinate System Set
G53 Machine Coordinate System Select
G54 Work Coordinate System 1 Select
G55 Work Coordinate System 2 Select
G56 Work Coordinate System 3 Select
G57 Work Coordinate System 4 Select
G58 Work Coordinate System 5 Select
G59 Work Coordinate System 6 Select

G65 Macro Call

Appendix A: Part Program Format (cont.)

24

G66 Macro Modal Call
G67 Macro Modal Call Cancel

G70 Inch Programming (EIA-274 standard)
G71 Metric Programming (EIA-274 standard)

G80 Chopping Function Cancel
G81 Chopping Function
G82-G89 Canned Cycles (machine dependent, implemented as macros)

G90 Absolute Dimension Input
G91 Incremental Dimension Input
G92 Work Coordinate Change

Appendix A: Part Program Format (cont.)

25

M-Codes

A miscellaneous function is a word beginning with the 'M' address followed by a 2 digit number
from 0 to 99. These codes cause the controller to perform predefined and user defined auxiliary
functions. The following is a list of M codes that have predefined functions:

Code Description

M00 Program Stop
M02 End of Program
M03 Spindle Clockwise
M04 Spindle Counter-Clockwise
M05 Spindle Off
M06 Tool Change
M30 End of Data

M98 Sub Program Call (destination specified in P word, max. 10 levels of nesting)
M99 Sub Program Return

All of the miscellaneous function codes (except M98 and M99) can be setup to perform user defined
operations when they are executed by the controller. The G-code Interpreter will call the associated
Mutiflex MCCL macro whenever it encounters one of these M-codes. The MCCL macro that is
called is determined by adding the M code number to the “Base Miscellaneous Function Macro”
number. Since the Base Miscellaneous Function Macro number is 1000 by default, M03 will cause
MCCL macro number 1003 to be called.

M06 is a special case. Since it is used to change or select a tool, the G-code Interpreter will load the
tool number set by the T word into the Multiflex’s User Register 0 prior to calling the corresponding
MCCL macro. The commands in the MCCL macro can read the contents of the user register in order
to select the appropriate tool.

The MCCL macros that these codes cause to be called, should be defined prior to running the part
program. This can be done by downloading command files containing macro define statements to
the motion controller with the Win Control program.

Appendix A: Part Program Format (cont.)

26

Sample Part Program

Sample Part Program (the first line of the file will be discarded)
O0001
N001 G90
N002 G00 X-2.5 Y+2.5
N003 G01 X-1.5 Y+2.5 F50.0
N004 G01 X+1.5 Y+2.5
N005 G02 X+1.5 Y+1.5 I+0.0 J-0.5
N006 G01 X-2.5 Y+1.5
N007 G03 X-2.5 Y+0.5 I+0.0 J-0.5
N008 G01 X+1.5 Y+0.5
N009 G01 X+1.5 Y-0.5
N010 G01 X-2.5 Y-0.5
N011 G03 X-2.5 Y-1.5 I+0.0 J-0.5
N012 G01 X+1.5 Y-1.5
N013 G02 X+1.5 Y-2.5 I+0.0 J-0.5
N014 G01 X-2.5 Y-2.5
N015 G00 X+0.0 Y+0.0
N016 M02

27

Appendix B: Configuration Commands

Following is a list of configuration commands that the Multiflex recognizes. Each command
contained in a configuration file should be placed on a separate line. Additionally, the command
should start in the left most column with no preceding spaces or tabs. Any lines starting with the
semicolon character (“;”) will be ignored and can be used to include comments in the file.

The following characters are used to specify the type of parameter that a command uses:
d = integer number
n = real number, fixed or floating point (eg. 1000, 1000.0, 1E3)
t = ASCII text string (do not place text in quotes)

MACHINETYPE=t This command specifies the type of machine being controlled.
Valid machine types are listed below:
VMILL = Vertical Mill or Machining Center
HMILL = Horizontal Mill or Machining Center
LATHE= Lathe or Turning Center
GRINDER = Grinding Machine

PROGRAMCOMP= t This command selects part program compatibility. The only
valid type currently supported is FANUC; this is also the
default setting. For custom firmware, contact the factory for
the appropriate type.

ENDOFBLOCK=d This command sets the Ascii code used for the End-Of-Block
(EOB) character in part programs. The EOB defaults to the
newline character. Whatever the EOB is set to, it must appear
at the end of each block. Note that carriage return or newline
character will also signal the end of a block. In this case, the
EOB charcater is not required.

The following 4 commands are used to configure optional input and output signals. The G-code
Interpreter will use the Multiflex digital I/O channels selected by the user. Prior to using the G-code
Interpreter commands, the selected channels must be configured as active low or active high using
the 'CLn' and 'CHn' commands respectively.

ENABLESERVOCHANNEL=d This parameter specifies a digital I/O channel of the Multiflex
that is used as an output to enable the servo amplifiers. When
a part program starts, the servo enable output will be turned on.
It will remain on until the program is finished or a machine
error occurs. Machine errors include Emergency Stop inputs,
Drive Fault inputs, Servo Errors and Part Program errors. To

Appendix B: Configuration Commands (cont.)

28

recover from these errors the fault condition must be removed,
and the machine rehomed.

ESTOPCHANNEL=d This parameter specifies a digital input channel of the
Multiflex that is used for the input of a Emergency Stop signal.
While a part program is running, anytime the Emergency Stop
input is sensed on, the controller will turn the servos off and
abort the current part program. The 'E.STOP' status flag will be
set to signal the user.

EESTOPCHANNEL=d This parameter specifies an input channel identical in operation
to the Emergency Stop input channel described above. The
only difference is that this error results in a 'EXT.E.STOP'
status flag being set. It is intended to be connected to External
Emergency Stop switches such as machine covers or gates.

DRIVEFAULTCHANNEL=d This parameter specifies an input channel to be used to monitor
a drive fault signal from the servo amplifiers. This channel will
operate similar to the Emergency Stop channel described
above. When this input is on, the 'DRIVE FAULT' status flag
will be set.

BASEMISCFUNCMACRO=d This parameter specifies the range of Multiflex MCCL macros
that will be called whenever a M code is executed as part of a
part program. The default value for this parameter is 1000.
This implies that when M03 is present in a part program and
executed, macro number 1003 on the Multiflex will be
executed.

M06 is a special case because it is normally used for tool
changes. When the macro corresponding to M06 is called on
the Multiflex, the tool number set with the T word will be
placed in the Multiflex’s user register 0. The macro commands
can read the desired tool number from this register and retrieve
the appropriate tool.

G82CANNEDCYCLEFILE=d This parameter specifies the file number where the G82 canned
cycle is stored.

G83CANNEDCYCLEFILE=d Same as above, except for the G83 canned cycle.
G84CANNEDCYCLEFILE=d Same as above, except for the G84 canned cycle.
G85CANNEDCYCLEFILE=d Same as above, except for the G85 canned cycle.
G86CANNEDCYCLEFILE=d Same as above, except for the G86 canned cycle.

Appendix B: Configuration Commands (cont.)

29

G87CANNEDCYCLEFILE=d Same as above, except for the G87 canned cycle.
G88CANNEDCYCLEFILE=d Same as above, except for the G88 canned cycle.
G89CANNEDCYCLEFILE=d Same as above, except for the G89 canned cycle.

XAXIS=d Specifies the axis number of the motor to be assigned as the X
axis (Default is axis 1). The axis number is determined by the
connection of the motor to the Multiflex controller.

The Multiflex controller can support up to 4 servo and/or 4
stepper axes, they are numbered 1 through 8. The logical
number of the axis on the Multiflex board is the number that
should used in this parameter.

YAXIS=d Specifies the axis number of the motor to be assigned as the Y
axis (Default is axis 2).

ZAXIS=d Specifies the axis number of the motor to be assigned as the Z
axis (Default is no axis).

AAXIS=d Specifies the axis number of the motor to be assigned as the A
axis (Default is no axis).

BAXIS=d Specifies the axis number of the motor to be assigned as the B
axis (Default is no axis).

CAXIS=d Specifies the axis number of the motor to be assigned as the C
axis (Default is no axis).

UAXIS=d Specifies the axis number of the motor to be assigned as the U
axis (Default is no axis).

VAXIS=d Specifies the axis number of the motor to be assigned as the V
axis (Default is no axis).

WAXIS=d Specifies the axis number of the motor to be assigned as the W
axis (Default is no axis).

XSLAVE=d Specifies the axis number of the motor that is slaved to X axis
primary motor. This command is used if two motors are used
to drive the same machine axis (Default is no slave motor).

YSLAVE=d Specifies the axis number of the motor that is slaved to Y axis

Appendix B: Configuration Commands (cont.)

30

primary motor (Default is no slave motor).

ZSLAVE=d Specifies the axis number of the motor that is slaved to Z axis
primary motor (Default is no slave motor).

ASLAVE=d Specifies the axis number of the motor that is slaved to A axis
primary motor (Default is no slave motor).

BSLAVE=d Specifies the axis number of the motor that is slaved to B axis
primary motor (Default is no slave motor).

CSLAVE=d Specifies the axis number of the motor that is slaved to C axis
primary motor (Default is no slave motor).

USLAVE=d Specifies the axis number of the motor that is slaved to U axis
primary motor (Default is no slave motor).

VSLAVE=d Specifies the axis number of the motor that is slaved to V axis
primary motor (Default is no slave motor).

WSLAVE=d Specifies the axis number of the motor that is slaved to W axis
primary motor (Default is no slave motor).

SPINDLEAXIS=d Specifies the axis number of the motor to be assigned as the
Spindle axis (Default is no axis).

SPINDLEMODE=d Selects the spindle (S axis) mode. The following values are
recognized:

1 = Servo with encoder feedback (default)
2 = Variable speed drive

In the Servo mode, the SPINDLESCALE and
SPINDLERATECONV commands are used to setup
the servo’s encoder scaling and rate conversion
respectively.

In the variable speed drive mode there is no feedback from the
motor. In this mode, the SPINDLECONSTANT command
should be used to set to the speed units per volt.
Example: 3000 rpm / 10 volts = 300 rpm / volt

Appendix B: Configuration Commands (cont.)

31

SPINDLEPOLARITY=d Set to 1 or -1 to reverse direction of spindle rotation in all
modes.

In order to support switching between english and metric units in the Part Program, the following
initialization commands must be issued twice, once for english units and once for metric units. The
selection of which units succeeding initialization commands apply to, is done with the ENGLISH
and METRIC commands. The last ENGLISH or METRIC command to appear in the initialization
file selects the default starting units of the G-code Interpreter.

ENGLISH Selects english units for the initialization commands that
follow.

METRIC Selects metric units for the initialization commands that
follow.

XSCALE=n Specifies the conversion factor from part program units to
encoder units for the X axis. Examples: If the part program has
units in inches, and there are 1000 encoder counts per inch,
then n=1000. If the part program has units in millimeters, and
there were 1000 encoder counts per millimeter, then n=1000.

YSCALE=n Same as above, but for the Y axis.
ZSCALE=n Same as above, but for the Z axis.
USCALE=n Same as above, but for the U axis.
VSCALE=n Same as above, but for the V axis.
WSCALE=n Same as above, but for the W axis.

XMACHINEOFFSET=n Value that will be added to all X axis positions. This offset
should be used to establish a fixed point on the machine as
zero, independent of where the servo encoder index mark
occurs or where the stepper motor home switch activates. The
units to this parameter should be the same as the part
programs.

YMACHINEOFFSET=n Same as above, but for the Y axis.
ZMACHINEOFFSET=n Same as above, but for the Z axis.
AMACHINEOFFSET=n Same as above, but for the A axis.
BMACHINEOFFSET=n Same as above, but for the B axis.
CMACHINEOFFSET=n Same as above, but for the C axis.
UMACHINEOFFSET=n Same as above, but for the U axis.
VMACHINEOFFSET=n Same as above, but for the V axis.
WMACHINEOFFSET=n Same as above, but for the W axis.

XPROGRAMOFFSET=n Value that will be added to all X axis positions in the part

Appendix B: Configuration Commands (cont.)

32

program before execution. This offset should be used to
establish a zero point for the part program. This is typically a
corner point of the part being cut. The units to this parameter
should be the same as the part programs.

YPROGRAMOFFSET=n Same as above, but for the Y axis.
ZPROGRAMOFFSET=n Same as above, but for the Z axis.
APROGRAMOFFSET=n Same as above, but for the A axis.
BPROGRAMOFFSET=n Same as above, but for the B axis.
CPROGRAMOFFSET=n Same as above, but for the C axis.
UPROGRAMOFFSET=n Same as above, but for the U axis.
VPROGRAMOFFSET=n Same as above, but for the V axis.
WPROGRAMOFFSET=n Same as above, but for the W axis.

XRATECONV=n Used to set Rate Conversion factor. This value is determined
by the time unit used when specifying the rate of motion for a
particular axis. If rates are specified as inches per minute, the
time unit is a minute. The Rate Conversion factor is defined to
be the number of seconds per time unit. For example, if rates
are specified in inches or millimeters per minute, the Rate
Conversion factor is 60 seconds / 1 second = 60. If rates are
specified in inches or millimeters per second, the Rate
Conversion factor is 1second / 1second = 1.

YRATECONV=n Same as above, but for the Y axis.
ZRATECONV=n Same as above, but for the Z axis.
ARATECONV=n Same as above, but for the A axis.
BRATECONV=n Same as above, but for the B axis.
CRATECONV=n Same as above, but for the C axis.
URATECONV=n Same as above, but for the U axis.
VRATECONV=n Same as above, but for the V axis.
WRATECONV=n Same as above, but for the W axis.

XUPLIMIT=n X axis upper limit of travel.
YUPLIMIT=n Y axis upper limit of travel.
ZUPLIMIT=n Z axis upper limit of travel.
AUPLIMIT=n A axis upper limit of travel.
BUPLIMIT=n B axis upper limit of travel.
CUPLIMIT=n C axis upper limit of travel.
UUPLIMIT=n U axis upper limit of travel.
VUPLIMIT=n V axis upper limit of travel.
WUPLIMIT=n W axis upper limit of travel.

XLOWLIMIT=n X axis lower limit of travel.

Appendix B: Configuration Commands (cont.)

33

YLOWLIMIT=n Y axis lower limit of travel.
ZLOWLIMIT=n Z axis lower limit of travel.
ALOWLIMIT=n A axis lower limit of travel.
BLOWLIMIT=n B axis lower limit of travel.
CLOWLIMIT=n C axis lower limit of travel.
ULOWLIMIT=n U axis lower limit of travel.
VLOWLIMIT=n V axis lower limit of travel.
WLOWLIMIT=n W axis lower limit of travel.

RAPIDRATE=n Rapid Rate for machine motion. This is the speed used for
moving the machine into position between cutting operations.

RAPIDACCELERATION=n Rapid Rate Acceleration.
RAPIDDECELERATION=n Rapid Rate Deceleration.

FEEDRATE=n Feed Rate for machine motion. This is the speed used during
cutting operations. This value will typically be changed in the
part program during execution. It is used as the default value
if no feed rates are included in the part program.

FEEDACCELERATION=n Feed Rate Acceleration. Used for X, Y and Z axes.
FEEDDECELERATION=n Feed Rate Deceleration. Used for X, Y and Z axes.

SPINDLESCALE=n Spindle scale constant (counts / revolution)
SPINDLERATECONV=n Spindle rate conversion (seconds / speed time unit)
SPINDLECONSTANT=n Spindle output constant (speed units / volt)
SPINDLESPEED=n Speed of spindle. This is the speed used when the spindle is

turned on with the M04 or M05 codes. This value will typically
be changed in the part program during execution. It is used as
the default value if no speed changes are included in the part
program.

SPINDLEACCELERATION=n Spindle Acceleration.
SPINDLEDECELERATION=n Spindle Deceleration.

AACCELERATION=n Acceleration and deceleration rates for each of the
ADECELERATION=n independent axes.
BACCELERATION=n
BDECELERATION=n
CACCELERATION=n
CDECELERATION=n
UACCELERATION=n
UDECELERATION=n

Appendix B: Configuration Commands (cont.)

34

VACCELERATION=n
VDECELERATION=n
WACCELERATION=n
WDECELERATION=n

INCREMENT=n This parameter is used to specify the maximum angle change
that can occur in a continuous motion. This value can also be
changed within a G-code part program by an 'E' word.

35

Appendix C: Work Coordinate Initialization File

; This is an example of a Work Coordinate Initialization File
; The G-code Interpreter supports 6 work coordinate systems
; Only the first 2 are initialized in this file

WORKCOOR=1
ENGLISH
X=0
Y=0
Z=0
A=0
B=0
C=0
U=0
V=0
W=0
METRIC
X=0
Y=0
Z=0
A=0
B=0
C=0
U=0
V=0
W=0
WORKCOOR=2
ENGLISH
X=1.0
Y=2.0
Z=-3.0
A=0
B=0
C=0
U=0
V=0
W=0
METRIC
X=25.4
Y=50.8
Z=-76.2
A=0

36

B=0
C=0
U=0
V=0
W=0

37

Appendix D: Tool Data Initialization File

;This is an example of a Tool Data initialization file

; For "Tool Offset by Tool Number" the G-code Interpreter holds data for 9 tools
; Only the data for the first 2 are initialized in this file

TOOL= 1
Q=0 ;Tool orientation
F=0.001 ;Tool radius wear factor (change in wear per unit of cutting travel)
ENGLISH
X=0 ;X offset
Y=0 ;Y offset
Z=2.0 ;Z offset
R=0.25 ;Tool radius
W=0.01 ;Tool radius wear compensation (actual = tool radius - wear)
METRIC
X=0
Y=0
Z=50.8
R=6.35
W=0.25

TOOL=2
Q=0
F=0.001
ENGLISH
X=0
Y=0
Z=0.39370078
R=0.078740156
W=0.0039
METRIC
X=0
Y=0
Z=10
R=2
W=0.1

38

;For "tool offset by D and H codes" the G-code Interpreter holds data for 32 offsets
; Only the data for the first 2 are initialized in this file

DGEOMETRYOFFSETS
1=0.5
2=0.25

DWEAROFFSETS
1=0.0
2=0.0025

DWEARFACTORS
1=0.0
2=0.0001

HGEOMETRYOFFSETS
1=3.0
2=1.25

HWEAROFFSETS
1=0.025
2=0.0

HWEARFACTORS
1=0.0002
2=0.0

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42

